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Abstract

We introduce and frame the concept of poten-
tially problematic word usages (PPWUs): word
occurrences that are likely to cause communi-
cation breakdowns of a semantic nature. While
much research has been devoted to lexical com-
plexity, ambiguity, vagueness and related is-
sues, no work has attempted to fully capture
the intricate nature of PPWUs. We review lin-
guistic factors, datasets and metrics that can be
helpful for PPWU detection. We also discuss
challenges to their study, such as their complex-
ity and subjectivity, and highlight the need for
future work on this phenomenon.

1 Introduction

Language is a powerful communication tool allow-
ing us to exchange complex messages, but infor-
mation is not always conveyed successfully. Mis-
communication can be due to multiple factors, both
linguistic and non-linguistic (e.g., environmental or
psychological causes, such as a noisy background
or the listener’s lack of attention). In this paper,
we focus on cases where a specific use of a word
can give rise to a misunderstanding or an objection
related to its meaning.

We define a potentially problematic word us-
age (PPWU) as an instance of a word1 in context
which is likely to cause some type of miscommu-
nication (misunderstanding or non-understanding)
or disagreement of a semantic nature.2 For exam-
ple, in “I enjoy working on my car”, it is not clear
whether working means polishing it as a hobby
or repairing it (see Table 1). In practice, PPWUs
should be determined with a specific target popu-
lation in mind. In this paper, we discuss intrinsic
factors of words and their contexts which are prob-
lematic both for specific communities but also for

1We consider open-class lexemes or lexical items in gen-
eral, but refer to them as “words” for simplicity.

2We exclude cases of unclear referents of referring expres-
sions such as pronouns or proper nouns.

the general public (e.g., words with a false friend in
a language may only risk being misunderstood or
misused by speakers of that language, but a word in
an underconstrained context can be problematic for
anyone). We say, of a specific word usage, that it is
an (actual) problematic word usage (PWU) when
there is evidence that it has been misunderstood or
disagreed upon by someone (e.g., when someone
has signalled it in an interaction, asking “what do
you mean by ...?” or similar questions (Noble et al.,
2021)).

The detection of PPWUs has several applica-
tions. It can be useful for text simplification and
readability assessment and can also have uses in
applications related to language learning in gen-
eral, such as aiding in choosing the right learning
materials to adapt them to a student’s level, or de-
signing exercises that target specific types of PP-
WUs. If integrated with a conversational system,
PPWUs could either be actively avoided in produc-
tion, or trigger directed clarification requests to the
user. Ensuring clear language use contributes to de-
crease misunderstandings, which can have negative
psychological and physiological effects (Crockett
et al., 2022). As part of a writing assistance tool, it
could help identify words to be replaced to improve
clarity. It could also be used to detect lexical errors
in translated text.

Numerous studies focus on specific types or
causes of PPWUs, but a unifying perspective en-
compassing them in their full complexity is missing.
In this paper, we introduce and frame the notion
of PPWU bringing together insights and points of
view from research on different domains (e.g, psy-
cholinguistics, computational linguistics, cognitive
science, NLP) and with different goals, providing
a foundation and framework for future research on
PPWU detection. To this end, we compile and out-
line multiple reasons why a specific word or word
usage is likely to cause miscommunication or be
disagreed upon, thereby proposing a first character-
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ization of PPWUs. We also present existing com-
putational methods, resources and datasets that can
be helpful for the study and detection of PPWUs,
identifying areas where more work and knowledge
is necessary; and include a discussion on various
considerations to make when conducting research
on PPWUs.

To compile the bibliography for this survey, we
searched for relevant literature on Google Scholar
using keywords such as “polysemy detection,”
“false friends,” “lexical complexity,” “text readabil-
ity,” or “lexical errors;” and expanded the search by
examining papers citing, or cited by, the returned
papers.

2 Factors contributing to PPWUs

In this section we provide a non-exhaustive3 list
of linguistic properties and phenomena linked to
PPWUs. We distinguish between factors tied ex-
clusively to word identity (Section 2.1) and factors
linked to the linguistic context where a word is
used (Section 2.2).4 In the Appendix, we provide
examples (Table 1) and a diagram summarizing the
content of this section (Figure 1).

2.1 Context-independent factors

Some words are inherently difficult to understand,
regardless of the context they appear in. This is
often referred to as lexical complexity (North et al.,
2023). Here, we outline word characteristics that
may be reasons for a word not to be understood or
for its meaning to be disagreed upon.5 Note that
the properties presented here are not absolute deter-
minants of PPWUs; they often interact with each
other as well as with other linguistic variables.6

While we have aimed to define distinct categories
where possible, they are not mutually exclusive and
can co-occur in real-world usage.

3Our goal is to propose a categorization of PPWU causes
linked to relevant NLP tasks, but there are other idiosyncratic
causes of PPWUs that are difficult to categorize.

4This distinction bears some parallels to the notions of
“meaning potential” and “situated meaning” (Myrendal, 2019).

5Some of the notions presented are used as features in
lexical complexity detection. We exclude factors that, while
correlated with complexity, are not likely to cause miscom-
munication on their own (e.g., word length and syllable count
(Desai et al., 2021)).

6For example, a low-frequency word that is morpholog-
ically transparent (cardiomyopathy) may be easier to under-
stand than another rare word with an opaque morphology
(gybe).

2.1.1 Word properties

Lexical ambiguity. Words that have multiple
senses (homonyms and polysemous words) are
more likely to be misunderstood, even if the con-
text is enough for disambiguation, because the
audience might not be familiar with all of their
senses, especially if some of them are not very
frequent. The number of polysemous words and
unique senses in a text has been found to corre-
late with its readability (Danilov et al., 2023), and
the readers’ knowledge of the multiple senses of a
word correlates with reading comprehension (Ken-
neth Logan and Kieffer, 2017; Booton et al., 2022).
Martínez Alonso et al. (2015) found that, in a sense
annotation task, words with a higher number of
senses and sense entropy tend to display higher
disagreement. Words that have undergone lexical
semantic changes (LSC) can be particularly diffi-
cult: readers or listeners are less likely to know
novel senses of a word if these are recent, or, if
reading a text from a different time period, a word
may have changed in a way that the reader may not
be aware of (e.g., gay used to mean light-hearted,
cheerful). Approaches to quantifying a word’s
number of senses (polysemy detection, Garí Soler
and Apidianaki (2021a)) and whether, how and
when a word has changed meaning (LSC detec-
tion, Schlechtweg et al. (2020); Montariol et al.
(2021)) can be helpful in finding words that are
more likely to be misunderstood.

Word frequency is one of the most useful fea-
tures to estimate lexical complexity (Specia et al.,
2012; Wilkens et al., 2014; Garí et al., 2018). This
is not surprising, as rare words are less likely to be
part of a speaker’s vocabulary, because they may
have had less or no exposure to them. Acronyms,
if not commonly used and not introduced properly
in a text, are also a common source of confusion.
Numerous studies have shown the relationship be-
tween word frequency and reading comprehension
(Marks et al., 1974; Freebody and Anderson, 1983;
Nouri and Zerhouni, 2018), confirming that rarer
words are more prone to limit comprehension than
more frequent words. Word frequency lists exist for
multiple languages (Speer, 2022). Their source is
very important: the nature, register, variety and size
of the corpus, among other factors, may determine
the usefulness of word frequency estimations as
features for lexical complexity prediction (Wilkens
et al., 2014).
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Neologisms are newly created words recently in-
troduced into a language, and which have a cer-
tain degree of acceptance in a linguistic commu-
nity (e.g., rizz). As such, speakers (especially non-
native ones (Charteris-Black, 1998)) are less likely
to know them. An additional difficulty of neolo-
gisms is that they are often driven by technological
advancements, so certain speakers may be unfamil-
iar not only with a new word form but also with the
concept it expresses. At the same time, neologisms
are often coined from existing morphemes (e.g.,
mansplaining) or from other languages, which may
make their interpretation easier than that of neolo-
gisms created ex nihilo (e.g., cromulent) (Lehrer,
2003). Although less common, grammatical ne-
ologisms (existing words used with a new part of
speech (PoS)) can also be problematic. Approaches
to neologism detection (Janssen, 2012; Falk et al.,
2014; Klosa and Lüngen, 2018) can be useful for
detecting PPWUs. Finally, semantic neologisms
(the appearance of new senses) are a form of lexical
semantic change which can be addressed with the
task of novel sense detection (Section 2.2).

Lexical variation refers to differences in lexical
choice due to factors such as age, profession and
social class (sociolects) or geographical location
(dialectal variation). This includes slang, jargon
and dialect-specific words which may only be pro-
duced and understood by certain communities of
speakers. These differences can be particularly
problematic in heterogeneous conversations (with
people from, e.g., different age groups or cultures).
Work on detecting synchronic lexical differences
(Gonen et al., 2020; Yin et al., 2018; Schlechtweg
et al., 2019; Garimella et al., 2016) and dialect
lexicon induction (Scherrer, 2007; Artemova and
Plank, 2023) could help identify words that are
distinctive of certain groups of speakers.

Idioms are phrases with a non-compositional
meaning; i.e., their meaning cannot be inferred
from their parts (e.g., kick the bucket). As such,
they need to be learned as autonomous lexical
items. It is well known that idioms are particu-
larly challenging for second language (L2) learners
(Schraw et al., 1988; Alhaysony, 2017), except
when a similar idiom exists in their native language
(Irujo, 1986). Regardless of the frequency of an id-
iom, familiarity with the words that compose it can
give a false perception of understanding. In fact,
learners tend to overestimate their comprehension
of idioms made up of high frequency words (Mar-

tinez and Murphy, 2011; Park and Chon, 2019);
and when analyzing a sample of English idioms,
Libben and Titone (2008) found that the frequency
of verbs in idioms was negatively correlated with
the predictability of their meaning (see Section 5
for more considerations on undetected misunder-
standing). Relevant NLP tasks include idiomatic
expression identification (Zeng and Bhat, 2021),
the distinction between literal and non-literal id-
iom usages (Li and Sporleder, 2010), and compo-
sitionality detection (Cordeiro et al., 2019).

2.1.2 Concept-related properties

Complex meaning. Words designing complex
concepts may be misunderstood because of a lack
of or an incomplete knowledge of the reality being
described (e.g., enthalpy). While estimating the
complexity of a concept is a hard and subjective
task, as it is not a well-established notion, auto-
matic term extraction can be a good proxy to find
words designating advanced or technical concepts
(Hätty et al., 2020; Rigouts Terryn et al., 2020).

Vagueness and generality. Some words have an
inherently vague meaning, i.e., a meaning that lacks
precision (Van Rooij, 2011). This often concerns
gradable adjectives, both relative (such as big or
tall) and absolute (e.g., bald, flat), but it can also
be found in words of other PoS (e.g., heap, idiot).
These words describe qualities for which it is hard
to draw a line and which can have multiple inter-
pretations. Pezzelle and Fernández (2023) show
that when faced when unclear gradable adjectives,
speakers can increase their alignment with explicit
interaction about word meaning. Adjectives may
inherently be more problematic than other PoS
because their semantic contribution to a noun is
highly variable and combination-specific (Boleda
et al., 2013).

Words that are very general, or high in a hy-
pernymy hierarchy (e.g., thing or do), may not be
specific enough and require clarification or more
details. A mismatch between the provided level of
specificity and the level required by the commu-
nicative situation, i.e., flouting Grice’s maximum of
quantity (Grice, 1975), can also generate confusion
(Cruse, 1977).

Scalar adjective identification (Garí Soler and
Apidianaki, 2021b) can be useful to identify po-
tentially vague adjectives and distinguishing them
from relational ones (e.g., wooden). The VAGO
system (Icard et al., 2022) for measuring vague-
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ness in texts relies on a database with lexical vague-
ness information (Atemezing et al., 2022). Lexi-
cons and ontologies such as WordNet (Fellbaum,
1998) can serve as references for generality, and
work on semantic content quantification (Herbe-
lot and Ganesalingam, 2013; Santus et al., 2014)
and more specifically on hypernymy detection
(Shwartz et al., 2016; Cho et al., 2020) can help
identify words with a general meaning.

Connotatively loaded terms. Words related to
or referring to controversial topics are also prone to
cause disagreement and misunderstanding: speak-
ers may have different mental representations of
these words, which are affected by their own opin-
ions on the topic. For example, speakers may detect
a disagreement on what constitutes or qualifies as
sexism or abuse and signal this in a conversation
(Myrendal, 2019). Work on controversial topic
detection (Choi et al., 2010; Garimella et al., 2018)
as well as on lexico-semantic alignment in, or out-
side of, conversations (Garí Soler et al., 2022, 2023)
can potentially help detect this kind of words.

2.1.3 Cross-linguistic influence
In this section we describe cross-linguistic factors
that may result in PPWUs when the situation in-
volves L2 learners or bilingual individuals in a par-
ticular language pair.

False friends and partial cognates. Two words
in two different languages are said to be false
friends if they sound or look similar but have dif-
ferent meanings (e.g., embarrassed and Spanish
embarazada, which means pregnant). A related
concept is that of partial cognates, where the two
similar words share some, but not all, meanings
(see Table 1). These words can easily give rise
to confusion if they have not been learned prop-
erly. Work on false friend or partial cognate de-
tection (Inkpen et al., 2005; Mitkov et al., 2007;
Ljubešić and Fišer, 2013; Palmero Aprosio et al.,
2020; Lefever et al., 2020; Kanojia et al., 2021) can
help identify words that may be problematic, both
in terms of production (Raušer, 2017) and compre-
hension (Mattheoudakis and Patsala, 2007), when
a speaker of a particular language is involved.

Cross-linguistic inequivalence. Every language
offers different conceptualizations of the world
and maps words to referents in different ways
(Pavlenko, 2009). There is rarely a 100% transla-
tion equivalence between words in two languages,

and often words that are almost equivalent differ
in specific nuances that are hard to notice and
to master, for language learners (Shalaby et al.,
2009) but also bilingual speakers (Ameel et al.,
2005). These differences can be quite notorious7

or very subtle, such as what is reflected in the cat-
egorization and naming of similar objects (Malt
et al., 2003; Pavlenko and Malt, 2011). This is
sometimes referred to as “cross-linguistic near-
synonymy” (Gries et al., 2020) and is studied
in the fields of contrastive lexicology and lexico-
semantic typology (Schapper and Koptjevskaja-
Tamm, 2022). In other cases, for cultural or his-
torical reasons, some terms in a language may not
exist at all in another language, because they desig-
nate realities that do not exist in the other culture
(e.g., Russian форточка (fortochka), a specific
kind of small window for ventilation). These dif-
ferences can result in unintended cross-linguistic
transfer during production and comprehension by
multilingual individuals (Jarvis, 2011), which can
lead to misunderstandings. An NLP task that could
assist in automatically finding cross-linguistic near-
synonyms is bilingual lexicon induction (Irvine
and Callison-Burch, 2017).

Words from another language. Sometimes mul-
tilingual speakers interject words from other lan-
guages which may be unknown to their interlocu-
tors or readers. Code switching detection (Samih
et al., 2016; Kevers, 2022) and language identi-
fication algorithms can detect these usages, par-
ticularly when they are tailored to the word level
(Solorio et al., 2014; Rijhwani et al., 2017; Ansari
et al., 2021).

2.2 Context-dependent factors

A word usage may also be misunderstood or dis-
agreed upon because of the characteristics of the
context in which it is used, even if the word itself
is not usually problematic.8 See Table 1 in the
Appendix for examples.

Contextual underspecification. While many
words have multiple senses, context is often enough
for disambiguation, and in practice humans do not
have a problem understanding many polysemous
word usages (Piantadosi et al., 2012). When this

7meat is often translated as мясо (myaso) in Russian, but
in its everyday use, мясо does not include poultry.

8It is, however, not possible to fully disentangle context
from word identity: whether a word’s context is problematic
strongly depends on the word itself.
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is not the case, however, ambiguity may require
clarification. This happens with underconstrained
contexts which do not provide enough information
to establish the sense of a word, and which are
a common reason of disagreement in word sense
annotation, especially when allowing only the an-
notation of a single sense (Jurgens, 2014). There
is not much work on identifying such ambiguities
at the lexical level (Liu et al., 2023). Quantifying
the informativeness of a context with respect to
a specific target word could be helpful (Montariol
et al., 2019; Schick and Schütze, 2019), but ex-
isting approaches assume that the target word is
unknown.

Novel senses and metaphors. A speaker may
use a word in a new sense that it has only recently
acquired, or propose a creative or figurative use
of an existing word. The latter are called novel
metaphors (i.e., metaphors that do not rely on es-
tablished conceptual mappings such as LOVE IS A

JOURNEY (Lakoff, 1993)), and are harder to un-
derstand than conventional metaphors (Lai et al.,
2009; Horvat et al., 2022). There is work on un-
known or novel word sense detection (Erk, 2006;
Cook et al., 2014), as well as novel metaphor de-
tection (Schulder and Hovy, 2014; Haagsma and
Bjerva, 2016; Reimann and Scheffler, 2024). One
challenge is distinguishing these creative uses of
language from errors, discussed below.

Lexical errors. An existing word may be inap-
propriately used instead of a correct alternative for
multiple reasons. In text, a word can be confused
with a homophone or another similar-sounding
term, causing malapropisms (e.g., insurance for
assurance). Sometimes a speaker may mix words
that have a similar or related meaning (broth and
stock or trip and journey) (Shalaby et al., 2009),
or may use a different word because they can’t
come up with the correct one. Lexical errors can
also be due to misspellings which result in another
existing word (so-called “real-word errors,” like
angel for angle) (Azmi et al., 2019), or be caused
by automatic correction tools. Of course, native
and non-native speakers may make different mis-
takes. There is abundant work studying the types
of lexical errors encountered in essays written by
non-native speakers (Hemchua et al., 2006; Saud,
2018), but not so much about the kinds of mistakes
made by native speakers other than malapropisms
(Hirst et al., 1998), presumably because they are
much rarer and harder to detect. Not all mistakes

are equally confusing, however. While exposed
to linguistic input, humans develop expectations
about what is going to be said, and surface form
similarity may facilitate understanding. There is
also evidence that native speakers adapt their expec-
tations when faced with non-native speech, and are
more likely to find interpretations for implausible
statements (Lev-Ari, 2015; Gibson et al., 2017).

Studies targeting anomalies at the lexical level
aim at detecting text obfuscation (deliberate word
substitutions to encrypt a message (Fong et al.,
2008), for example to bypass censorship (Ji and
Knight, 2018)); at identifying real-word mis-
spellings (Samanta and Chaudhuri, 2013; Bravo-
Candel et al., 2021) or detecting miscollocations
(Wanner et al., 2013).

Rare senses. As discussed in Section 2.1.1, pol-
ysemous words used in a rare sense may be prob-
lematic. Precisely due to their low frequency,
Word Sense Disambiguation (WSD) and Neural
Machine Translation (NMT) systems also strug-
gle with them (Campolungo et al., 2022a). Efforts
toward identifying rare word senses (McCarthy
et al., 2004) and correctly disambiguating them
in context (Barba et al., 2021; Hangya et al., 2021;
Campolungo et al., 2022b) can be helpful to find
this kind of PPWUs.

Conversational Maxims Flouting. Going
against conversational maxims (Grice, 1975) can
cause confusion for the listener, especially the
maxim of quality, with contradictory statements,
jokes, information that goes against common
sense, or vandalism in, for example, collaborative
text editing (Adler et al., 2011). Approaches for
semantic plausibility (Ko et al., 2019) and joke
detection (Baranov et al., 2023) can be relevant
for these usages, but they are typically designed to
work at the sentence or text level.

3 Data

In this section we describe the kinds of data that
can be used to investigate PPWUs or to train sys-
tems to automatically detect them. Our focus is on
datasets of actual PWUs where there is evidence of
speaker differences in word meaning. For datasets
dedicated to the linguistic factors described in Sec-
tion 2, refer to Table 2 in the Appendix. The most
obvious clues come from real, spontaneous interac-
tions where a speaker explicitly signals a problem
with a word used in a conversation (Section 3.1).
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Non-dialogical types of data exposing word usage
or comprehension differences between speakers are
presented in Sections 3.2 and 3.3.

3.1 Dialog
When miscommunication happens in dialog, if it
is detected, it can be addressed by means of repair
strategies, such as rephrasing or asking for clarifi-
cation (Purver et al., 2003; Pickering and Garrod,
2004). While some datasets on clarification ques-
tions (Xu et al., 2019; Aliannejadi et al., 2019;
Kumar and Black, 2020) and repair strategies exist
(Rasenberg et al., 2022), they are rarely dedicated
to problems with word meaning.

The most relevant work is on word meaning
negotiation (WMN) in dialog, both in language
learning settings (Varonis and Gass, 1985) as well
as in online discussions (Myrendal, 2019). WMN
can be understood as a case of conversational re-
pair targeting the meaning of a specific word occur-
rence. WMN instances typically have three parts:
a trigger (the PWU), an indicator (the turn signal-
ing a clarification request or an objection), and
the meaning negotiation, which is a metalinguistic
discussion where speakers explicitly discuss the
meaning of the trigger word (Varonis and Gass,
1985; Myrendal, 2015). Myrendal (2015) distin-
guishes two types of WMN: those which arise from
an incomplete understanding and those caused by
a disagreement about how someone has used a
word. Currently, only one dataset with WMN an-
notations exists: the NeWMe corpus (Garí Soler
et al., 2025a). NeWMe contains over 600 WMNs
and related phenomena, coming from both oral and
online conversations and involving a PWU. This
kind of data can shed light on more aspects and
characteristics of (P)PWUs. For example, in an
analysis of triggers in NeWMe, Noble et al. (2025)
found that disagreement problems tend to involve
abstract terms, while understanding issues are more
often linked to concrete terms. However, the data
remains scarce; given the variety of PPWUs, more
annotations covering a wider range of conversa-
tional situations are needed for their study.

3.2 Monolog
In monolog-like text, due to the absence of feed-
back, it is typically harder to anticipate what parts
of the discourse may be unclear. In fact, speak-
ers tend to overestimate their interlocutor’s under-
standing (Keysar and Henly, 2002). Collaborative
writing environments like Wikipedia, where texts

are revised and edited by multiple authors, pro-
vide however a useful testbed to investigate prob-
lematic language use, by highlighting what can
be improved in the original text. The wikiHow-
ToImprove dataset (Anthonio et al., 2020) contains
2.7 million sentences with their revisions. The ad-
vantage of wikiHow compared to other sources of
revision histories like Wikipedia (Faruqui et al.,
2018) or news (Spangher et al., 2022) is that, in
the former, modifications are more likely to be lin-
guistically motivated instead of updating factual
knowledge or providing additional information.

In this kind of interactive setting, PPWUs can be
studied through word replacements. For example,
Anthonio and Roth (2020) investigate noun substi-
tutions in wikiHowToImprove. The fact that a word
is replaced, however, is not evidence of it being a
PWU: modifications are not always of a seman-
tic nature (e.g., misspelling corrections), and only
about 70% of revised versions in the dataset were
judged to be improvements. Indeed, revisions may
introduce vandalism, serve to just improve general
textual coherence, or simply reflect the editor’s per-
sonal lexical choice preferences (e.g., replacing
start with begin). A dataset of word replacements
annotated to indicate whether they constitute a se-
mantic improvement is currently missing. Other
kinds of modifications that can provide interesting
data for the study of PPWUs are specific kinds of
word insertions that clarify a word usage, such as
completions of underspecified noun phrases (tank
→ goldfish tank) (Roth et al., 2022).

Finally, another useful kind of data could be
obtained by directly asking annotators to mark, in
a text, the word usages that they do not understand.

3.3 Signals from annotator disagreement
We can also find evidence of PWUs in cases of
low inter-annotator agreement in semantic annota-
tions at the word level. For example, in datasets
where multiple people annotated senses (Jurgens
and Klapaftis, 2013) or word usage similarity (Erk
et al., 2009, 2013; Schlechtweg et al., 2021, 2025).
Disagreement can be due to multiple reasons, such
as inadequacy of the labels, but it can also point
to the difficulty and subjectivity of the task (Plank,
2022), unveiling ambiguous, unclear or underspec-
ified word usages. A tendency for a word to have
lower levels of agreement can indicate a vaguer
meaning (McCarthy et al., 2016) or other word
characteristics that hinder its comprehension.

Low intra-annotator (Abercrombie et al., 2023)
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agreement is also worth exploring. Schober (2005)
found evidence of “conceptual misalignment” (i.e.,
speakers having different mental representations of
words) in surveys: Respondents taking the same
survey twice were more likely to change their an-
swers when provided with clarifications such as
word definitions in the second iteration. This shows
that there had been a misunderstanding the first
time around. However, this kind of data is expen-
sive to obtain and it requires formulating hypothe-
ses about the words that are likely to be misunder-
stood.

4 Methods

We present here metrics, tools, features and meth-
ods that can be useful for PPWU prediction, for
example because they have been shown to correlate
with, or help predict, factors linked to PPWUs. We
do not discuss supervised models tailored to the
specific NLP tasks.

4.1 Language Model-derived measures
Language models (LMs) are trained with large
amounts of text and can provide a measure of the
likelihood of sentences or of words in context. Dif-
ferent LM-derived measures can be used to esti-
mate the predictability of a word.

One commonly used measure is word surprisal,
calculated as the negative log probability of a word
occurrence. Surprisal theory (Hale, 2001) states
that the cognitive effort required to process a word
is proportional to its surprisal. This relationship has
been largely studied, and surprisal has been found
to be a generally good predictor of words’ reading
times (RT) (Smith and Levy, 2013; Goodkind and
Bicknell, 2018); although it seems to better reflect
RTs of lower verbal intelligence profiles (Haller
et al., 2024). The choice of LM, however, is an im-
portant one. Surprisal values from large LMs with
lower perplexities provide worse RT estimations
than smaller models (Oh and Schuler, 2023).9

Another LM-derived measure is entropy. While
surprisal is a measure of how unexpected a given
word is in its context, entropy is calculated on
the probability distribution over the vocabulary, el-
licited by the preceding context of a specific word
position. It can be interpreted as the difficulty of
predicting the continuation of a context. Pimentel
et al. (2023) use entropy as an operationalization of

9The authors hypothesize that this is due to the vastly larger
amount of training data compared to what humans are exposed
to.

anticipation and find that it can be a better predictor
of RTs than surprisal.

One limitation of these measures for PPWU de-
tection is that they are not only sensitive to (some)
semantic anomalies but also to misspellings and
syntactic deviations. One promising first step to-
ward solving this problem, so far at the text level, is
the contrastive perplexity score (Todd et al., 2020).
The difference in perplexity between two LMs (one
of which has been fine-tuned on a specific domain)
gives information about the nature of the anomaly
found (i.e., semantic vs non-semantic).

4.2 Word vector representations
Vector representations of words have been used
for a long time in NLP. Static representations from
Vector Space Models or word2vec (Mikolov et al.,
2013), where a word is assigned a unique vec-
tor, have been shown to reflect multiple aspects
of words’ semantics. For instance, they can be
used for identifying synchronic and diachronic lex-
ical variation (Hamilton et al., 2016; Schlechtweg
et al., 2019; Gonen et al., 2020), idioms (Peng
and Feldman, 2017), hypernyms (Santus et al.,
2014) and, in their multilingual form, false friends
(Palmero Aprosio et al., 2020) (Section 2.1).

Contextualized word embeddings from
Transformer-based language models like BERT
(Devlin et al., 2019) additionally allow to represent
word semantics at the token level and obtain good
results on context-sensitive tasks (Section 2.2)
such as novel metaphor detection (Pedinotti et al.,
2021) and WSD (Wiedemann et al., 2019). The
similarity between a target word and its context
has been used to predict eye-tracking features
(Salicchi et al., 2023). At the same time, these
representations have been shown to encode rich
out-of-context lexico-semantic information, such
as a word’s polysemy level, intensity, complexity
and figurativeness (Garí Soler and Apidianaki,
2020; Xypolopoulos et al., 2021; Lyu et al., 2023).

4.3 Cognitive and neurolinguistic measures
Although costly to obtain, psycholinguistic and
neurolinguisic data at the word level, as measured
through eye-tracking and electroencefalography
(EEG), can also help identify PPWUs. See Table 2
for datasets annotated with related metrics.

Longer eye fixations and reading times are typi-
cally interpreted as an indication of higher cogni-
tive load (Just and Carpenter, 1980; Kintsch et al.,
1975). Some eye tracking-derived measures, such
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as gaze duration and first fixation duration, are af-
fected by word frequency and predictability (Inhoff,
1984). Ambiguity also plays a role: Eye fixation
times are longer on ambiguous words which have
equally likely meanings (Rayner and Duffy, 1986)
or for which previous context instantiated a less
frequent meaning (Sereno et al., 1992).

The N400 is an event-related potential signal in
the brain consisting of a negative peak occurring
about 400 milliseconds after a stimulus. It has been
observed as a reaction to all sorts of semantically
surprising input (Kutas and Hillyard, 1980; Kutas
and Federmeier, 2011). Marked N400 waves have
also been found in the processing of metaphorical
language (Coulson, 2008). N400 has been shown
to reflect word predictability modeled as LM sur-
prisal (Michaelov et al., 2024), and evidence from
joke processing shows that it is also sensitive to
semantic plausibility operationalized as the similar-
ity of a word with its preceding context (Xu et al.,
2024). However, thematic role violations (e.g., be-
tween a verb and its argument: “Every morning
at breakfast the eggs would eat...”) seem to ellicit
instead a P600 effect, typically linked with syntac-
tic violations and ambiguities, but no N400 effect
(Kuperberg, 2007).

4.4 Linguistic features
The earliest approaches to solving the NLP tasks
presented in Section 2 often relied on different
kinds and combinations of carefully selected lin-
guistic features. For example, frequency measures
(raw, comparative, or diachronic) can be useful
for neologism detection (Garcia-Fernandez et al.,
2011) and terminology extraction (Rigouts Terryn
et al., 2020). PoS and syntactic features have been
used to predict disagreement in sense annotations
(Martínez Alonso et al., 2015). In lexical complex-
ity prediction, multiple statistical, formal and psy-
cholinguistic features (e.g., word length and con-
creteness) are also often used (Desai et al., 2021).
Ngram information can be employed for neologism
(Falk et al., 2014) and code-switching detection
(Kevers, 2022), and word co-occurrence informa-
tion for semantic content quantification (Herbelot
and Ganesalingam, 2013). Finally, information on
words’ selectional preferences has been helpful for
metaphor detection (Haagsma and Bjerva, 2016).

4.5 Other approaches
While it is not possible to present all existing
methods here, there are other, less widespread ap-

proaches that are worth mentioning. For example,
the uncertainty of automatic sense annotations
from WSD models (Liu and Liu, 2023) can be used
to find ambiguous word usages as well as to iden-
tify words with a tendency to present disambigua-
tion difficulties. Anomaly or outlier detection
methods, although they are most often applied to
texts and not at the word level (Ruff et al., 2019;
Arora et al., 2021), have been used to detect novel
as well as figurative and metaphoric word usages
(Sasaki and Shinnou, 2012; Bejan et al., 2023) and
idioms (Feldman and Peng, 2013). Topic model-
ing has been used for novel word sense detection
(Lau et al., 2014) and idiom detection (Peng et al.,
2014); and sentiment analysis can be useful for
controversial topic detection (Choi et al., 2010).
There has also been work evaluating the ability of
generative Large LMs to detect ambiguities, not re-
stricted to lexical ones (Liu et al., 2023); but LLMs’
effectiveness to detect different kinds of PPWUs
remains unexplored.

5 Open Directions and Challenges

As we have shown, there is a substantial amount of
work on detecting individual phenomena or word
characteristics associated with PPWUs. For the
study of communicative success and failure, as well
as for the outlined applications of PPWU detection,
we argue that it is worth aspiring to address PPWUs
in their full diversity, encompassing the multiple
factors presented, but no such approach currently
exists.10 The present survey aims to provide an
initial overarching perspective that sets the ground
for future work.

One key reason for the lack of a comprehensive
approach is the complexity and the varied na-
ture of PPWUs. The most effective solution may
involve a combination of multiple approaches tai-
lored to specific purposes, audiences, situations,
or PPWU types. A big gap preventing progress is
the scarcity of large, good-quality datasets an-
notated with real PWUs. Annotation of WMNs
is helpful but costly; recent efforts striving toward
their semi-automatic annotation (Garí Soler et al.,
2025b) will contribute to a better understanding
of the characteristics of PWUs and their rate of

10Lexical complexity prediction is closely related, but it
has a narrower scope. It typically focuses on concept-related
difficulties that can cause non-understanding. Our definition
of PPWUs is broader and more context-dependent, including
usages that cause confusion and disagreement, and considers
phenomena such as humor, ambiguity, and lexical errors.
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occurrence, and will provide more data that could
eventually serve to train models for (P)PWU detec-
tion. Existing metrics and methodology (Section
4) typically address a particular phenomenon, but
it is not always clear what kinds of PPWUs they
may detect, which ones they may fail to capture,
and what kind of false positives they may propose.
For example, LM-derived measures can find un-
expected usages of words, which is practical for,
e.g., lexical error detection, but would probably not
be useful to identify contextual underspecification
problems.

Another difficulty lies in the subjectivity of PP-
WUs. As mentioned in Section 1, what constitutes
an actual PWU depends on various characteristics
of both the speaker and the listener, such as their
age, language proficiency, and any potential lan-
guage impairments or pathologies. It is therefore
important to take annotator characteristics into ac-
count when collecting data for PPWU detection,
and more data and studies are needed to determine
the types of usages that are problematic for each
type of audience. Differences are not necessarily
restricted to specific groups – individual variation
can occur even within a community, such as among
language learners (Degraeuwe and Goethals, 2024).
While the individual component should not be ne-
glected, and it may be desirable to restrict the scope
to usages problematic for a specific population, it
is also possible to identify usages that are problem-
atic across communities. Such usages may involve
errors, underspecification, or jokes; where the issue
comes from the production side and depends less
on the listener’s characteristics.

Unsignaled PPWUs present an additional chal-
lenge. Not all PPWUs result in communication
breakdowns: Many misunderstandings and dis-
agreements are not signaled, either because they go
undetected or because they do not pose a real prob-
lem to continue communication. A consequence of
this is that when collecting evidence of PPWUs in
conversation, an undetermined number of PPWUs
are prone to be overlooked. Identifying keywords
within a dialog may help determine the words that
are critical for the conversation to move forward.
In a conversational system, this could help restrict
the words for which clarification is needed. It is
possible that PPWUs worthy of being signaled are
more likely to be located in the parts of utterances
that introduce new information (i.e., the comment,
rather than the topic or theme, in information struc-
ture (Lambrecht, 1994)).

Although the perspective proposed here is in-
tended to be language-independent, there may also
be language- and culture-specific causes of PP-
WUs, and ways of adapting metrics and tools to
specific languages. Whether a PPWU is signaled
in a conversation may have a cultural component
and be influenced by different politeness norms, po-
tentially causing differences in the frequency with
which they are observed across languages.

6 Conclusion

We have introduced the notion of Potentially Prob-
lematic Word Usages (PPWUs) and reviewed work
from various disciplines to provide a comprehen-
sive perspective of related linguistic factors, meth-
ods for their detection, and the kinds of data that
can be used for their study. We have also discussed
challenges to take into account when working with
PPWUs, and identified areas for future work.

PPWUs are a complex and understudied phe-
nomenon. They are affected by multiple factors,
both linguistic (word and contextual properties)
and non-linguistic (e.g., interlocutor characteris-
tics and differences between them). More work is
needed to broaden our understanding of PPWUs,
their underlying causes and their prevalence, but
datasets containing evidence of miscommunication
due to specific word usages are scarce.

One of our long-term goals is to develop meth-
ods aimed at capturing PPWUs in their many forms,
rather than focusing on just one subtype. With this
work, we have laid out a framework organizing
existing knowledge and methods, pointing out the
diversity of problems that must be considered when
tackling PPWUs, in order to serve as a stepping
stone for future research on this multifaceted phe-
nomenon.

Limitations

While we have made an effort to provide a com-
prehensive and cross-disciplinary overview of phe-
nomena, datasets and approaches relevant to the
study of problematic word usages, some relevant
works may have been missed. Even regardless of
the methodology for bibliography search, however,
this survey cannot be fully exhaustive. For instance,
we have identified and presented discrete factors
associated with PPWUs, but word usages can be
problematic due to other idiosyncratic reasons that
may be hard to classify and detect (see last row
of Table 1 for an example). Moreover, it remains
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unclear how often each of the presented factors
actually leads to a PWU.

In this paper, partly due to space constraints, we
have chosen to give only a high-level overview of
the different research directions that need to be ex-
plored for studying PPWUs. Our primary goal was
to establish a conceptual and empirical foundation
for the study of PPWUs, which required an exten-
sive synthesis of prior work. While we point to
several avenues for future research, taking the first
concrete steps, such as carrying out corpus-based
studies that could propose a complete typology of
PPWUs, is left for future work.

Finally, we acknowledge that, if taken naively,
the definition of PPWUs is very broad and many
words in a text could be considered to be “po-
tentially problematic.” However, this is precisely
why we argue that PPWU identification must be
audience- and context-sensitive. Bringing these
factors together under a single perspective is cru-
cial, because in real-life interaction, problems may
arise from different sources, and effectively deter-
mining the underlying cause requires considering
them jointly.
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Cause Example Source
Low frequency Yes, I am a byword to them. Shardlow et al. (2020)

Neologism

– I, yeah, I-m, yeah, I do aerobics, uh, step classes and, uh
– Step classes?
– toning classes, yes.
(At the time of speaking, 1992, stepping classes were a new concept)

Godfrey et al. (1992);
Garí Soler et al. (2025a)

Lexical variation
chips denotes different things in UK and American English, and lorry is
mainly exclusively used in the UK.

Complex meaning

It is unlikely that morphological changes during development led to
impairment of spatial learning and motor coordination, and morphological
alterations in the cytoarchitecture of the hippocampus and cerebellum were
not observed (...)

Shardlow et al. (2020)

Vagueness

– Do you genuinely believe that the less palatable parts of TRP [The Red Pill]
are less effective than the positive parts?
– You’ll have to define “effective” for me and give me a specific example or
two (...). Many forms of abuse, manipulation, and deception might be
described as “effective”, depending on what your goal is and whether or not
you’re a psychopath.

Tan et al. (2016);
Garí Soler et al. (2025a)

Generality

– I wonder what kind of care you get when you’re hospitalised for
appendicitis, gallstone, ileus, inflammation of the pancreas or inflammation of
the intestines. (...)
– What do you mean by care? I was brought medicine and received help with
mixing the nutritional drink which was replacing food during the time my
intestines were resting. When I started feeling better and could move around I
had to fix that myself.

Myrendal (2015)

Connotatively loaded
term

– (...) agnosticism postulates that the existence or nonexistence of god is
beyond our knowledge or ability to gather it. (...)
– Not necessarily, or in most cases. Agnosticism argues that it is not possible
at a given moment in time to know absolutely, but then we don’t know
anything absolutely. Moreover, that that’s ok, we’ll work with what we have.
(...)
– (...) That’s kind of a flimsy sort of agnosticism (...)

Tan et al. (2016);
Garí Soler et al. (2025a)

False friend
We usually go to a magazine to buy milk.
(Russian магазин (magazin) or French magasin mean shop, store)

Yaylaci and Argynbayev
(2014)

Partial cognate
English blank and its equivalent in several Romance languages (ES: blanco,
FR: blanc, PT: branco, IT: bianco, CA: blanc). They can both mean empty but
the Romance versions also mean white.

Domínguez and Nerlich
(2002)

Cross-linguistic
inequivalence

Russian форточка (fortochka), a specific kind of small window for
ventilation common in post-Soviet states.

Pavlenko (2009)

Word from another
language

– (...) the truth is that I don’t know what the gringo fandom is like (...)
– (...) Not sure what you mean by gringo (...)
– Oh JAJFJWJF SORRY- “gringo” is a way that people who speak spanish
refer to people who speak english (...)

Noble et al. (2021)

Ambiguity or
contextual
underspecification

Rooms are classically decorated and warm Jurgens (2014)

Ambiguity or
contextual
underspecification

– (...) I enjoy working on my car (...)
(...)
– Oh I thought you meant “working on my car” as in polishing it and keeping
it in super condition as a hobby, not as in “occasional repairs”.

Tan et al. (2016);
Garí Soler et al. (2025a)

Novel sense The use of bet to mean yes
Metaphor Westerns have a gladiatorial, timeless quality. Do Dinh et al. (2018)
Lexical error Choose which charter you want to be . (correction: character) Anthonio et al. (2020)

Rare sense
– Anyone who has a link to a dirty Win7 download?
– What do you mean by dirty?
– What I meant by ‘dirty’ was an illegal copy of the operating system.

Myrendal (2015)

Vandalism
First , make sure your hamster is familiar with your scent and your poop .
(original word: “voice”)

Anthonio and Roth
(2020)

Semantic plausibility /
contradiction

i understand. i am not sure if i can afford a babysitter, i am a millionaire Ko et al. (2019)

Unclassified

– (...) True waffles are crisp on the outside and fluffy on the inside (...)
– So the definition of waffle changes based on how long you cook it? I happen
to enjoy my waffles slightly undercooked, does that mean that they are not
waffles?

Tan et al. (2016);
Garí Soler et al. (2025a)

Table 1: Examples of PPWUs.
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Task/Annotation Reference Language Resource name
(if existing)

Lexical Semantic Change

Schlechtweg et al. (2018) DE DURel
Schlechtweg et al. (2020) EN, DE, SV, LA SemEval 2020 Task 1
Basile et al. (2020) IT DIACR-Ita
Rodina and Kutuzov (2020) RU RuSemShift
Kutuzov et al. (2022) NO NorDiaChange
Chen et al. (2023) ZH ChiWUG

Complex Word Identification

Horn et al. (2014) EN

Paetzold and Specia (2016) EN CWI–2016
Yimam et al. (2018) EN, DE, ES CWI–2018
Maddela and Xu (2018) EN Word Complexity Lexicon
Lee and Yeung (2018) EN

Ortiz-Zambranoa and Montejo-Ráezb (2020) ES ALexS
Nishihara and Kajiwara (2020) JA

Shardlow et al. (2021) EN CompLex

Idiomatic Expressions

Haagsma et al. (2020) EN MAGPIE
Korkontzelos et al. (2013) EN SemEval-2013 Task 5
Cook et al. (2008) EN VNC-Tokens
Sporleder et al. (2010) EN IDIX

Term Extraction Rigouts Terryn et al. (2020) EN, FR, NL ACTER
Scalar Adjective Identification Garí Soler and Apidianaki (2021b) EN SCAL-REL
Vague terms Atemezing et al. (2022) EN, FR

False friends and cognates Palmero Aprosio et al. (2020) IT-{EN,FR,DE,ES}
Bilingual Lexicon Induction Pavlick et al. (2014) 100 languages

Code-switching

Solorio et al. (2014)
MSA-DA, EN-ES,
EN-ZH, EN-NE

Molina et al. (2016) MSA-DA, EN-ES

Kevers (2022) CO-FR BDLC
Nayak and Joshi (2022) HI-EN L3Cube-HingCorpus

Novel Word Sense Detection Cook et al. (2014) EN BNC-ukWaC & SiBol/Port
Metaphor Detection Steen et al. (2010) EN VUAMC
Novel Metaphor Detection Do Dinh et al. (2018) EN

Self-paced reading times Smith and Levy (2013) EN Brown Corpus
Self-paced reading times Futrell et al. (2021) EN Natural Stories Corpus
Word-level eye-tracking Kennedy et al. (2003) EN Dundee Corpus
Word-level eye-tracking Luke and Christianson (2018) EN Provo Corpus
N400 Toffolo et al. (2022) EN

Table 2: Selection of datasets annotated with linguistic information relevant for PPWUs.
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Figure 1: Factors associated with PPWUs and related NLP tasks, with examples.
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