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Abstract

Lexical-level sentence simplification is essen-
tial for improving text accessibility, yet tradi-
tional methods often struggle to dynamically
identify complex terms and generate contextu-
ally appropriate substitutions, resulting in lim-
ited generalization. While prompt-based ap-
proaches with large language models (LLMs)
have shown strong performance and adaptabil-
ity, they often lack interpretability and are
prone to hallucinating. This study proposes
a fine-tuning approach for mid-sized LLMs to
emulate the lexical simplification pipeline. We
transform complex word identification datasets
into an instruction—response format to support
instruction tuning. Experimental results show
that our method substantially enhances com-
plex word identification accuracy with reduced
hallucinations while achieving competitive per-
formance on lexical simplification benchmarks.
Furthermore, we find that integrating fine-
tuning with prompt engineering reduces depen-
dency on manual prompt optimization, leading
to a more efficient simplification framework.

1 Introduction

Lexical simplification (LS) aims to enhance text
readability and understandability by replacing com-
plex words or phrases with simpler alternatives
without shifting the original meaning or introduc-
ing grammatical errors. Traditional LS methodolo-
gies typically follow the pipeline, including iden-
tifying complex components, finding substitution
candidates, and choosing the optimal candidate
(Qiang et al., 2020; Lee and Yeung, 2019; Atharva
et al., 2023; Paetzold and Specia, 2017; Glavas and
Stajner, 2015). Although this strategy is widely
adopted, it suffers from fundamental limitations
in both design and execution. In particular, the
sequential architecture is prone to error propaga-
tion, where errors in early steps negatively impact
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the quality of the subsequent outcomes. Conse-
quently, accurately identifying complex words and
phrases within a given sentence plays a pivotal role
in the entire LS system. However, existing LS sys-
tems identify complex words by evaluating each
word separately. The word semantic complexity
relies on its context in real-world linguistic envi-
ronments. The isolated evaluation strategy tends
to reduce the recall of the complex word identi-
fication (CWI) module, lowering overall system
performance. Although n-gram-based tokeniza-
tion strategies can partially alleviate this issue, this
static segmentation scheme limits its effectiveness
in dealing with dynamic language environments
(Ferrés et al., 2017).

Furthermore, previous approaches face chal-
lenges in generating appropriate substitutions and
effectively ranking them. Static approaches, such
as vector space-based approaches (Glavas and Sta-
jner, 2015; Ferrés et al., 2017), rank the substitute
candidates by measuring the lexical semantic dis-
tance, which may result in semantic drift (Paetzold
and Specia, 2017) or part-of-speech (PoS) tag mis-
matching (Glava$ and Stajner, 2015). Although
dynamic approaches mitigate these limitations by
leveraging pre-trained language models that uti-
lize contextual knowledge to generate substitutes
(Qiang et al., 2020; Atharva et al., 2023), similar to
static approaches, these models are constrained to
replace complex terms using isolated lexical units,
which results in limited effectiveness in handling
complex multi-word terms. As shown later in Sec-
tion 4.2, our fine-tuned system is competitive with
traditional models in preserving both grammatical-
ity and adequacy.

Large language models have demonstrated re-
markable language understanding capabilities in
text generation tasks. Using LLMs enables effec-
tive adaptation to diverse linguistic contexts, effi-
ciently identifying complex words and phrases, and
generating appropriate substitutions by analyzing
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the entire context (Baez and Saggion, 2023; North
et al., 2024). However, since LLMs suffer from
hallucinations, inconsistency, and limited controlla-
bility, depending on prompting alone is unreliable
for LS tasks. Moreover, LLMs are sensitive to the
prompt format, leading to an extensive manual de-
sign and tuning, making the development process
both time-consuming and resource-intensive.

This paper proposes an LS approach that fine-
tunes LLMs on a modified corpus and instructs
the model to identify and simplify complex terms
within given sentences. The experimental results
demonstrate that the proposed system can identify
variable-length phrases or single words by leverag-
ing its advanced language understanding capability.
It simultaneously replaces all complex terms dur-
ing simplification, while avoiding semantic drift
arising from iterative substitution processes in tradi-
tional approaches. Moreover, this system addresses
the limitations of purely prompt-based methods.
Since our system only requires the user to write
the instructions in the same format as the train-
ing corpora, it does not require users to engage
in tuning prompt format. Besides, the fine-tuning
process effectively enhances the accuracy rate with
decreasing hallucinations. To enable LLMs to com-
prehend and execute instructions precisely, we con-
struct an LS-instruction-answer (LS-I-A) dataset
based on the CWIG3G2 English dataset (Yimam
et al., 2017). Experimental results indicate that the
proposed approach, integrating fine-tuning with
a prompt mechanism, achieves superior simpli-
fication efficiency compared with traditional LS
pipelines. Moreover, unlike few-shot and zero-shot
methods, this approach eliminates the requirements
for prompt tuning while effectively mitigating hal-
lucination rates. The key contributions of this paper
are as follows.

* We propose a two-step instruction-tuned
framework for lexical-level sentence simpli-
fication, which explicitly separates complex
word identification and lexical substitution,
enabling more accurate, context-aware simpli-
fications.

* We construct an instruction-based dataset by
reformatting the CWIG3G2 (Yimam et al.,
2017) corpus into structured CWI and LS
instances, facilitating instruction tuning and
downstream evaluation on lexical simplifica-
tion.
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* We conduct comprehensive experiments
across multiple LLM backbones (Mistral
(Jiang et al., 2023), Qwen (Yang et al., 2025),
and LLaMA (Touvron et al., 2023)), compar-
ing fine-tuned and non-fine-tuned settings us-
ing both standard automatic metrics (Section
4).

2 Related Works

Traditional LS approaches follow a three-step
pipeline—complex word identification, substitu-
tion generation, and ranking—yet suffer from er-
ror propagation and context-insensitive evaluations
(Paetzold and Specia, 2017; Glava$ and §tajner,
2015). To address these issues, edit-based mod-
els such as EditNTS (Dong et al., 2019) and Edit-
TS (Kumar et al., 2020) perform explicit token-
level operations (e.g., delete, replace, keep), achiev-
ing practical simplification with interpretable edits.
Similarly, GRS (Dehghan et al., 2022) combines
generation and revision in an unsupervised man-
ner, incorporating paraphrasing and deletion at the
lexical level. Dress-LS (Zhang and Lapata, 2017)
introduces a sequence-to-sequence model trained
with reinforcement learning to optimize simplifica-
tion quality, but offers limited control over specific
linguistic properties. ACCESS (Martin et al., 2019)
extends this by enabling controllable simplification
through attribute-specific constraints such as length
and lexical complexity. Despite these advances,
many of these systems rely on rigid heuristics or
lack the scalability to handle diverse inputs dynam-
ically.

Recent work also explores the use of LLMs such
as LLaMA (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) for lexical simplification (Baez and
Saggion, 2023; North et al., 2024). With strong
instruction-following and contextual understanding
abilities, these models can simplify complex terms
in context via prompting or fine-tuning, offering
greater flexibility and scalability. However, they
often suffer from limited interpretability and occa-
sional hallucinations, making them less reliable for
controlled LS tasks.

In contrast, our work leverages LLMs fine-tuned
on a structured instruction-based dataset to identify
and directly simplify complex terms in context.
Unlike edit-based systems or prompt-only LLM
approaches, our method balances controllability
and robustness while mitigating hallucinations and
format sensitivity.



CWI Instruction:

Build CWI
instruction

Given you a sentence: A bad part of the investigation is that we
may not get the why.

Identify and extract complex words and phrases form this sentence. |

Input CWI Instruction:

Output Complex Words

Complex words . L
—_— investigation

Large language
& guag get the why

model

Build LS
Instruction

Complex sentence:

A bad part of the investigation is that we may not get the why.

LS Instruction:
There is a sentence as follows:
A bad part of the investigation is that we may not get the why.

This sentence contains some complex terms as
follow: investigation, get the why

Input LS Instruction

Results

The appropriate substitution terms as follow:
The simplified substitution for 'investigation' is 'search
for answers'.
The simplified substitution for 'get the why' is 'find the
reason'.

The simplified sentence is as follows:
A bad part of the search for answers is that we may not
find the reason.

&

For each provided complex word or phrase, generate a simple, clear,
and easily understandable substitute based on the sentence context.
Generate simple substitutes in accordance with the following
instructions:

Generate a simple, clear, and easily understandable substitute
based on the sentence context.

The substitution should preserve the original semantic meaning
and be accessible to a broader audience without triggering grammar
errors.

Use the simple terms to substitute the complex words following
the following requirements:

To ensure grammatical correctness, you may:

Adjust the word order of some words in the new sentence.
Delete individual words that do not affect the meaning.
Modify certain prepositions if necessary.

Figure 1: The workflow of the LS system: it first identifies complex words using CWI instructions. Then, it builds
LS instructions by utilizing the extracted complex words. Finally, the system outputs the simplified versions under

the guidance of the constructed LS instructions.

3 Methodologies

We design a two-stage workflow for lexical simpli-
fication using a large language model, as Figure
1 shows. The first stage identifies complex words
and phrases within a given sentence. In the sec-
ond stage, the LLM is prompted with the original
sentence and the list of identified complex terms.
It is instructed to generate simpler, contextually
appropriate alternatives that preserve the original
meaning and ensure grammatical correctness. The
model may also perform minor syntactic adjust-
ments such as reordering words, modifying prepo-
sitions, or removing redundant tokens to maintain
fluency. This approach leverages the LLM’s con-
textual understanding and generation capabilities
to perform high-quality, semantic-preserving sim-
plification without requiring manually crafted rules
or external linguistic resources.

In the following sections, we detail methodolo-
gies used in designing this LS system, including
constructing the LS-I-A corpus, fine-tuning strat-
egy for LLMs, and evaluation metrics.
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3.1 LS-I-A Dataset

3.1.1 Complex Word Identification

We build on the CWI instruction dataset based
on the CWIG3G?2 English dataset (Yimam et al.,
2017) which contains human annotations of com-
plex words across various genres such as News,
WikiNews, and Wikipedia. In this study, we manu-
ally alter the dataset to transfer the original dataset
into instruction-answer format. To convert the
dataset into an instruction—answer format suitable
for prompting LLMs, we manually revise each in-
stance. This process involves the following steps:

* Sentence reformatting: we extract sentences
from the original tabular format and integrate
them into instructional prompts as is presented
in Figure 1 (CWI Instruction).

* Annotation consolidation: All annotated com-
plex terms within each sentence are aggre-
gated and listed in the answer as follows.

The complex words and phrases:

investigation, get the why.

3.1.2 Lexical Simplification

We further adapt the dataset for lexical simplifi-
cation. While CWIG3G2 was originally designed



for CWI, we extend it via GPT-assisted simplifi-
cation and expert validation, converting it into an
instruction-tuning dataset for LS. First, we employ
GPT-40 to generate appropriate simple substitute
candidates for each complex term. Next, the com-
plex terms are replaced with their corresponding
substitutes. To ensure adequacy and grammatical
correctness, we engage native English speakers to
assess and correct the simplified sentences. Si-
multaneously, non-native English speakers with
experience in English language teaching in China
assess the readability of the simplified terms for
non-native readers. Following the evaluation and
revision processes, we retain 1,784 instances in the
training set and 225 instances in the validation set.
The final dataset is formatted into an instruction-
answer format with the following structure.

* Instruction: It contains the original com-
plex sentence, followed by identified complex
terms. The instruction also specifies that each
complex term should be simplified based on
contextual knowledge. Furthermore, we out-
line certain restrictions to keep the original
meaning and avoid grammatical errors. The
instance is detailed in Figure 1 (LS Instruc-
tion)

* Answer: The answer should list simple sub-
stitution terms and present the simplified sen-
tence.

Therefore, the LS-I-A dataset comprises
four groups of attributes. The attributes
cwi_instruction and cwi_answer provide in-
structions and references designed for fine-tuning
LLMs to identify complex terms. Similarly,
1s_instruction and 1s_answer are constructed
to guide the fine-tuning process for lexical simplifi-
cation.

3.2 Fine-tuning

Notably, our fine-tuning is performed on a small-
scale dataset, demonstrating the feasibility of low-
resource instruction tuning for lexical simplifica-
tion. In the training process, to enable the model
to simulate the LS pipeline, for each instance, its
cwi_instruction is first fed into the LLMs, im-
mediately followed by its 1s_instruction. All
the instances are iteratively fed into the LLMs fol-
lowing these steps, enabling them to learn the sim-
plification rules and strategies.
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We use our newly constructed dataset to fine-
tune LL.Ms for complex word identification and
lexical simplification. In this study, we select
three mid-sized open-source instruction-aligned
LLMs: Llama-3.1-8B-Instruct!, Qwen2.5-7B-
Instruct-1M?, and Mistral-8B-Instruct-2410°.

All models are fine-tuned using LoRA (Low-
Rank Adaptation) with 4-bit precision (NF4 quan-
tization) to enhance memory efficiency. The fine-
tuning process is executed on an RTX 4090 GPU,
with gradient checkpointing enabled to reduce
memory consumption. The models are trained for
10 epochs with a per-device batch size of 2 and
a gradient accumulation of 4. To optimize per-
formance, a cosine learning rate scheduler with
an initial learning rate of le-4 is applied, comple-
mented by mixed precision (fp16). The optimizer
is configured as AdamW, with a weight decay of
0.05 and a maximum gradient norm of 0.3. Model
checkpoints and evaluations are performed at the
end of each epoch, and the best-performing model
is restored after the completion of training.

3.3 Evaluation Metrics

For CWI tasks, information retrieval metrics (preci-
sion, recall, and F1-score) are employed to evaluate
the systems, with the basic metrics illustrated by
Manning (2009). In addition to these basic infor-
mation retrieval metrics, we introduce a novel eval-
uation metric, hallucination rate (HR), to assess
the reliability of the LLMs. To obtain the HR, we
define a hallucination term as follows.

A hallucination term is defined as any term gen-
erated by the LLMs that either does not appear in
the original sentence or is identified as a numerical
value, special character, or stop word.

The equation for calculating HR is presented

below.
n
>
i=1

where, n represents the test size, h; denotes the
number of hallucination terms in instance i, and m;
is the number of identified terms in instance i.

We evaluate the effectiveness of our system on
the lexical-level sentence simplification task us-
ing three established metrics: SARI (Xu et al.,
2016) for simplicity, FKGL (Flesch—Kincaid Grade

1
HR = —
n

h;
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Zhttps://huggingface.co/Qwen/Qwen2.5-7B-Instruct- 1M

3https://huggingface.co/mistralai/Ministral-8B-Instruct-
2410



Level) (Kincaid et al., 1975) for fluency, and
BERT¢ore (Zhang et al., 2019) for adequacy. SARI
and FKGL are obtained through the EASSE eval-
uation toolkit (Stodden, 2024), which provides a
standardized framework for assessing simplifica-
tion quality, while BERT . (Zhang et al., 2019)
is calculated via the bert-score module*.

4 Results

4.1 CWI results

The reformulated CWI task requires the model to
extract all complex terms in a sentence rather than
focusing on preselected target words, thereby ex-
panding the instance space and altering the task
definition. Consequently, direct comparison with
traditional CWI methods is not methodologically
valid. Instead, we investigate the effectiveness of
instruction-based fine-tuning by contrasting it with
non-fine-tuned counterparts under identical condi-
tions.

We revise the CWIG3G?2 test set following the
methodology outlined in Section 3.1.1 to assess
the performance of our system on CWI tasks. The
resulting test set comprises 325 instances, each
consisting of an instruction paired with a corre-
sponding reference. The evaluation results are
presented in Table 1. As demonstrated, the fine-
tuned LLaMA model achieves the highest F1-score
(0.8188), along with notable precision (0.7784)
and the highest recall (0.8635), indicating a bal-
anced and highly effective identification of com-
plex words. The fine-tuned Mistral model also per-
forms strongly, with an F1-score of 0.8064 and the
lowest hallucination rate of 0.0055, demonstrating
its reliability. Additionally, the fine-tuned Qwen
model shows competitive performance, achieving
an Fl-score of 0.8079 and the highest precision
(0.7864) among all fine-tuned models while main-
taining a reasonable recall (0.8306).

In contrast, the non-fine-tuned versions of all
three models yield substantially lower F1 scores
and significantly higher hallucination rates. For
example, non-fine-tuned Qwen, despite achieving
the highest precision overall (0.8388), suffers from
a low recall (0.4727), resulting in a significantly
lower F1-score (0.6077). These results underscore
the effectiveness of fine-tuning in enhancing the
accuracy and robustness of LLMs for CWI tasks.

*https://github.com/Tiiiger/bert_score
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4.2 Simplification Results

This section presents the simplification results of
our system and provides a comparative analysis
against state-of-the-art lexical simplification mod-
els as well as non-fine-tuned LLMs. All the LS
systems are evaluated on the TurkCorpus (Xu et al.,
2016) and ASSET (Alva-Manchego et al., 2020)
datasets. This study selects NTS+SARI (Nisioi
et al., 2017), ACCESS (Martin et al., 2019), Ed-
itNTS (Dong et al., 2019), Edit-Unsup-TS (Ku-
mar et al., 2020), Dress-LS (Zhang and Lapata,
2017), GRS (Dehghan et al., 2022), non-fine-tuned
LLaMA, non-fine-tuned Qwen, and non-fine-tuned
Mistral as baseline models due to their relevance
to lexical-level sentence simplification. The evalu-
ation results are summarized in Table 2 for clarity
and comparison.

As shown in Table 2, our fine-tuned models
demonstrate competitive or superior performance
compared with both traditional lexical simplifica-
tion systems and non-fine-tuned LL.Ms. Notably,
the fine-tuned Qwen model achieves the highest
SARI score on the ASSET benchmark (41.41),
along with a BERT .o 0f 0.9492 and an FKGL
of 7.568, indicating its strong capability in produc-
ing simplified text while preserving semantic con-
tent. Fine-tuned Mistral also performs well, with
SARI scores of 39.55 on TurkCorpus and 41.24
on ASSET, BERT.ores of 0.942 and 0.953, and an
FKGL of 7.32 on both datasets. Similarly, fine-
tuned LLaMA attains SARI scores of 39.13 on
TurkCorpus and 40.59 on ASSET, with correspond-
ing BERT o8 of 0.941 and 0.950.

Among traditional systems, ACCESS achieves
the best performance on TurkCorpus, with the high-
est SARI score (42.08) and the lowest FKGL (7.29).
However, its BERT .o (0.955) remains slightly
lower than those of EditNTS (0.961) and Dress-LS
(0.964). On ASSET, GRS yields the lowest FKGL
(4.17), indicating enhanced readability, while Ed-
itNTS achieves the highest BERT .o (0.970), re-
flecting strong semantic fidelity.

Overall, these results confirm the effectiveness
of fine-tuning large language models for lexical
simplification. All fine-tuned models consistently
outperform their non-fine-tuned counterparts and
match or exceed the performance of established
simplification systems.



model precision T  recall T F11 HR |
ft Mistral 0.7667 0.8545  0.8064 ~ 0.0055
ft Qwen 0.7864 0.8306  0.8079 0.0145
ft LLaMA 0.7784 0.8635 0.8188  0.0065
non-ft Mistral 0.6207 0.7388  0.6778 0.0616
non-ft Qwen 0.8388 04727  0.6077  0.0335
non-ft LLaMA 0.7300 0.6712  0.6994 0.0532

Table 1: Evaluation results for the CWI task, comparing fine-tuned models with their original versions. Background
color indicates performance level (darker green = better; lower is better for HR).

Model TurkCorpus ASSET
SARI1T FKGL | BERTscoret | SARIT FKGL | BERTSscore

NTS+SARI (Nisioi et al., 2017) 36.93 8.18 0.959 34.02 8.18 0.967
ACCESS (Martin et al., 2019) 42.08 7.29 0.955 40.12 7.29 0.966
EditNTS (Dong et al., 2019) 38.51 8.37 0.961 34.94 8.37 0.970
Edit-Unsup-TS (Kumar et al., 2020) | 38.09 6.44 - 38.94 6.39 -
Dress-LS (Zhang and Lapata, 2017) | 36.89 7.58 0.964 36.90 7.58 0.951
GRS (Dehghan et al., 2022) - - - 37.9 4.17 -
non-ft Mistral 33.43 8.99 0.924 38.69 8.99 0.936
non-ft Qwen 32.61 5.24 0.901 39.13 5.24 0.915
non-ft LLaMA 34.68 7.47 0.921 39.71 7.47 0.932
ft Mistral 39.55 7.32 0.942 41.24 7.32 0.953
ft Qwen 38.60 7.57 0.940 41.41 7.568 0.949
ft LLaMA 39.13 7.59 0.941 40.59 7.59 0.950

Table 2: Performance of different models on TurkCorpus and ASSET benchmarks. Cell background color indicates
performance: darker green = better. For FKGL, lower values are better and mapped to deeper green.

5 Analysis

As shown in Table 1 and Table 2, the instruction-
tuned models exhibit substantial improvements
over their non-fine-tuned counterparts on the CWI
and LS tasks. These results suggest that instruction-
based fine-tuning enhances the ability of large lan-
guage models to identify complex lexical items
with greater accuracy. Furthermore, our system
is competitive with existing systems, generating
simplifications that are more fluent and contextu-
ally aligned. These findings underscore the ef-
fectiveness of our framework in steering LLMs
toward more precise, context-aware, and semanti-
cally faithful simplification.

To gain deeper insight into the behavior of our
instruction-tuned lexical simplification system, we
analyze the SARI subcomponents alongside the
structural and lexical metrics presented in Figures
2 and 3. These fine-grained evaluations go beyond
aggregate performance scores, offering a more nu-
anced understanding of how the model balances
adequacy, fluency, and simplicity in its simplifica-
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tion strategy.

5.1 SARI Subcomponent Analysis

As shown in Figure 2, our fine-tuned mod-
els exhibit competitive performance across the
three SARI subcomponents—add, keep, and
delete—demonstrating the effectiveness of our sys-
tem in capturing the diverse operations involved
in sentence simplification. Notably, the fine-tuned
LLaMA model achieves the highest add score on
TurkCorpus and maintains strong performance on
ASSET, indicating that it is particularly effective at
introducing simplified content that aligns well with
the surrounding context. This capability is associ-
ated with our instruction tuning framework, which
separates complex word identification from substi-
tution generation. By decoupling these stages, the
model is first guided to identify complex items by
leveraging word morphology and contextual cues,
and subsequently to generate replacements that are
better informed by the identified term and its con-
textual knowledge, resulting in more appropriate
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Dress-LS
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non-ft LLaMA

ft Mistral

ft Qwen

ft LLaMA
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Figure 2: SARI subcomponent ratio (add, keep, delete) for TurkCorpus and ASSET datasets across different models.

and semantically coherent simplifications. (left-shifted blue segment), while non-fine-tuned
Although the keep scores of our fine-tuned mod- ~ Mistral barely shortens inputs at all.
els are lower than those of traditional systems such Sentence split proportions (orange segments)

as EditNTS and ACCESS, they reflect a more trans-  are consistent across all models, with fine-tuned
formative simplification strategy. While higher  variants maintaining structural cohesion. The
keep scores generally indicate stronger preserva-  "Exact copies" segments (green) are minimal
tion of the original sentence structure, they may  for fine-tuned models—remarkably fine-tuned
also reflect a more conservative editing approach  LLaM A—highlighting their strong rewriting capa-
with limited modification. In contrast, our models  bility compared to traditional models like Dress-LS,
are more inclined to rephrase the complex items  which retain a higher proportion of copied content.
and partially restructure the input, yielding moder- Additionally, the red (Additions) and cyan (Dele-
ate keep scores that maintain core semantic content
while enabling both lexical and syntactic simplifi-
cation. This editing behavior is further supported
by consistently strong delete scores, which suggest
that our models are effective at removing unneces-
sary or overly complex content, thereby enhancing
clarity and conciseness.

tions) segments show that the fine-tuned models
engage in more balanced and substantive edits. For
example, fine-tuned LLaMA and Qwen demon-
strate nearly symmetrical proportions of additions
and deletions, indicating that the models are not
merely replacing individual words (as in shallow
lexical simplification) but are actively restructuring
sentences by inserting relevant information and re-
moving redundant or complex segments, thereby

Figure 3 offers a visual demonstration of how engaging in more meaningful and substantive sim-
instruction-based fine-tuning enhances the qual- plification.

ity of text simplification along both structural and Finally, the Levenshtein similarity (gray seg-
lexical dimensions. Compared to baseline models,  ments) and lexical complexity scores indicate that
our fine-tuned models exhibit a balanced distri- our fine-tuned models strike a desirable balance
bution across key structural indicators. Notably, between adequacy and fluency. The longer gray
the compression ratio (blue segments) for the fine-  bars in fine-tuned models signify sufficient diver-
tuned models remains close to 0.90, indicating that ~ gence from the source while maintaining coher-
they reduce sentence length effectively without ag-  ence. These visual patterns affirm the benefits of
gressive truncation. In contrast, non-fine-tuned fine-tuning LLLMs in sentence simplification, align-
models display more extreme behaviors—for ex-  ing more closely with human-like simplification
ample, non-fine-tuned Qwen heavily compresses  behaviors.
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5.2 Structural and Lexical Evaluation
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Figure 3: Distribution of Structural and Lexical Metrics Across Simplification Models.

In summary, these results validate the strength
of our instruction-based fine-tuning approach. By
structurally isolating CWI and LS within modular
prompt designs, our models consistently outper-
form their non-fine-tuned counterparts and match
or exceed the performance of existing state-of-the-
art lexical simplification systems across various
evaluation criteria, including simplification depth,
fluency, and adequacy. Further illustrations are de-
tailed in Appendix A, which includes three repre-
sentative cases comparing traditional models, non-
fine-tuned LLMs, and fine-tuned LLMs. The anal-
ysis demonstrates how instruction tuning enables
more fluent, semantically faithful, and structurally
appropriate simplifications across varied sentence

types.

6 Conclusion

This study proposes a lexical-level sentence sim-
plification system based on LLMs that emulate the
traditional LS pipeline. We revise the CWIG3G2
dataset to develop this system and construct a new
instruction—answer corpus, LS-1-A, for fine-tuning
LLMs. Experimental results demonstrate that fine-
tuning significantly enhances LLM performance
in CWI and LS tasks. On LS tasks, our system
achieves performance comparable to several state-
of-the-art models. Despite the strong performance,
our system still requires further improvements. No-
tably, while LS-I-A performs well in practice, it
lacks reasons for explaining the selection of com-
plex words and the generation of simplified alter-
natives. As a result, the system does not support
Chain-of-Thought reasoning in either the identi-
fication or substitution stages, limiting the inter-
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pretability of its outputs. In future work, we aim to
refine the LS-I-A dataset and incorporate strategies
that enhance the system’s reasoning capabilities.

Limitations

Our study has several limitations. First, the LS-I-A
dataset is designed to fine-tune LLMs by mimick-
ing the traditional LS pipeline, identifying complex
words, and providing substitutions. However, it
offers no explanations or rationales for simplify-
ing choices, lacking interpretability. Moreover, the
dataset does not consider stylistic factors; it primar-
ily emphasizes semantic preservation and grammat-
ical correctness, neglecting aspects such as tone or
fluency. Second, although fine-tuning improves
LLM performance on simplification tasks, the gen-
eration process remains largely uninterpretable and
challenging to control. As a result, models can still
produce hallucinations or overly aggressive simpli-
fications that distort the original meaning. Finally,
current evaluation metrics are insufficient for thor-
oughly assessing simplification quality. Sentence
simplification involves multiple dimensions that are
not comprehensively captured by existing metrics.
In particular, SARI is heavily reference-dependent
and can be biased by the lexical and stylistic pref-
erences in the reference simplifications.
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Case 1

She was among the first doctors to object to cigarette smoking around children, and drug use in pregnant
women.

She was among the first doctors to object to cigarette smoking around children, and drugs use in pregnant
She was one of the first doctors to find out how to cigarette smoking around children, and use in pregnant

She was among the first doctors to object to cigarette smoking around children, and drug use in pregnant

NTS+SARI

women.
ACCESS

women.
EditNTS

women.
Dress-LS

non-ft Mistral
non-ft Qwen
non-ft LLaMA

She was among the first doctors to make cigarette smoking around children .
She was a first medical professional to oppose smoking near kids and drug misuse during pregnancy.
She was among the earliest doctors to oppose smoking near kids and taking drugs while pregnant.

She was among the first doctors who opposed cigarette smoking near children, and drug use when women
were expecting a baby.

ft Mistral She was among the first doctors to protest against smoking around children, and drug use in expecting women.
ft Qwen She was among the first doctors to protest smoke around children, and drug use by expecting mothers.

ft LLaMA She was among the first doctors to protest smoking around children, and drug use in expecting women.
Case 2 They are culturally akin to the coastal peoples of Papua New Guinea.

NTS+SARI They are culturally akin to the coastal communities of Papua New Guinea.

ACCESS They are to the coastal peoples of Papua New Guinea, Papua New Guinea.

EditNTS They are akin to the coastal peoples of Papua New Guinea.

Dress-LS They are culturally referring to the coastal peoples of Papua New Guinea.

non-ft Mistral
non-ft Qwen
non-ft LLaMA

They have similar cultures to the people who live near the coasts of Papua New Guinea.
They are similar to people who live near the coast in Papua New Guinea.
The coastal peoples of Papua New Guinea have much in common with them.

ft Mistral They are similar in culture to the near-sea people of Papua New Guinea.

ft Qwen They are similar to the people near the sea in Papua New Guinea.

ft LLaMA They are similar in culture to the people near the sea in Papua New Guinea.

Case 3 These attacks may have been psychological in origin rather than physical.
NTS+SARI These attacks may have been psychological in origin than physical.

ACCESS These attacks may have been different in origin rather than physical.

EditNTS These attacks may have been psychological in origin and physical.

Dress-LS These attacks may have been psychological in origin rather than physical.

non-ft Mistral ~ These actions could have started mentally instead of physically.

non-ft Qwen These assaults might have started in people’s minds instead of causing direct harm.
non-ft LLaMA  These attacks may be caused by emotional pain instead of causing physical harm.
ft Mistral These attacks may have been meant to scare people rather than hurt them.

ft Qwen These attacks may have been mental in source rather than physical.

ft LLaMA These attacks may have been mental cause rather than physical.

Table 3: Lexical simplification examples across three cases. Our instruction-tuned models produce simpler, more
fluent outputs while retaining the original meaning.

A Appendix

Three representative examples are used to ana-
lyze the behavioral differences across simplifica-
tion systems. The comparison includes outputs
from traditional models, non-fine-tuned LLMs, and
instruction-fine-tuned LLMs.

The first case contains multiple complex expres-
sions joined by coordination. Traditional models
such as Dress-LS and EditNTS perform primarily
local edits, often deleting or replacing single-word
units. This strategy frequently results in incomplete
simplifications or loss of important content. Non-
fine-tuned LLMs produce more syntactically varied
outputs, but these are often semantically inaccurate.
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Instruction-fine-tuned models apply edits across
multiple spans, preserving the core meaning while
improving surface fluency. The instruction—answer
format used during training presents simplification
as a global transformation task, requiring the model
to operate over the entire sentence rather than iso-
lated tokens.

The second case includes a long noun phrase
with generalized referents. Outputs from traditional
models exhibit minimal restructuring and mostly
retain the original phrasing. Non-fine-tuned LLMs
attempt paraphrasing but often generate repetitive
or verbose alternatives. Instruction-fine-tuned mod-
els produce simpler constructions that reduce lexi-



cal and syntactic complexity without distorting the
original meaning. The presence of sentence-level,
span-aligned annotations in the LS-I-A dataset pro-
vides direct supervision for such multi-span trans-
formations, encouraging broader structural adjust-
ment rather than surface-level replacement.

The third case features contrastive lexical ele-
ments and implicit logical relations. Traditional
models often simplify only part of a contrastive ex-
pression or leave the contrast unclear, reducing se-
mantic clarity in the output. Non-fine-tuned LLMs
vary in output quality, often generating inconsis-
tent or logically disjointed results. Instruction-fine-
tuned models consistently preserve the contrast and
simplify the associated expressions in a controlled
manner. The simplification objective in training is
framed around semantic preservation under min-
imal complexity, which supports stable handling
of discourse-level relationships in cases involving
contrast or attribution.

The observed differences across systems corre-
spond to their supervision regimes. Traditional
models rely on local alignment or rule-based edit-
ing, which constrains their capacity for struc-
tural rewriting. Non-fine-tuned LLMs lack ex-
plicit task grounding and produce unstable outputs.
Instruction-fine-tuned LLMs receive training on
task-specific instructions and span-level supervi-
sion, which enables more consistent simplification
at both lexical and structural levels.
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