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Abstract

Cross-lingual Extractive Question Answering (EQA)
extends standard EQA by requiring models to find
answers in passages written in languages different
from the questions. The Generalized Cross-Lingual
Transfer (G-XLT) task evaluates models’ zero-shot
ability to transfer question answering capabilities
across languages using only English training data.
While previous research has primarily focused on
scenarios where answers are always present, real-
world applications often encounter situations where
no answer exists within the given context. This
paper introduces an enhanced G-XLT task defini-
tion that explicitly handles unanswerable questions,
bridging a critical gap in current research. To ad-
dress this challenge, we present two new datasets:
miXQuAD and MLQA-IDK, which address both
answerable and unanswerable questions and respec-
tively cover 12 and 7 language pairs. Our study
evaluates state-of-the-art large language models us-
ing fine-tuning, parameter-efficient techniques, and
in-context learning approaches, revealing interesting
trade-offs between a smaller fine-tuned model’s per-
formance on answerable questions versus a larger
in-context learning model’s capability on unanswer-
able questions. We also examine language similarity
patterns based on model performance, finding align-
ments with known language families."

1 Introduction

Extractive Question Answering (EQA) is the task
of finding text spans within given contexts that an-
swer given natural language questions. This field
was formalized with the Stanford Question An-
swering Dataset (SQuAD, Rajpurkar et al., 2016),
which set a key benchmark for EQA. Recent ad-
vances in large language models (LLMs, Brown
et al., 2020) have significantly improved EQA per-
formance, marking important progress in Natural
Language Understanding. Cross-lingual EQA is a
task where the question and its corresponding con-
text are presented in different languages?, address-
'The code and datasets are publicly available at https://gi
thub.com/NLU-BGU/Cross-Lingual-Extractive-Quest
ion-Answering-with-Unanswerable-Questions.
This term is sometimes also used for referring to the case
where the training and test corpora are in different languages,

while in each of them the question and the context are in the
same language (Artetxe et al., 2020).
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Figure 1: Illustration of Cross-lingual EQA task using
MiXQuAD examples. In these examples, questions are in
Spanish and contexts/answers are in English, demonstrating
both answerable and unanswerable cases. The English transla-
tion of each question is provided for reference.

ing a critical need in today’s globalized world. For
instance, an English-speaking user might need to
query content available only in Chinese or Arabic,
challenging the monolingual assumptions in tradi-
tional QA systems. Recent research has demon-
strated that EQA techniques can be effectively
applied to downstream tasks, showing promis-
ing results for example in zero-shot event extrac-
tion (Lyu et al., 2021) and summarization evalu-
ation (Deutsch et al., 2021; Durmus et al., 2020).
While these studies focused on English, their QA-
based approaches could naturally extend to cross-
lingual scenarios such as cross-lingual summariza-
tion (Wang et al., 2022) and cross-lingual event ex-
traction (Subburathinam et al., 2019). Lewis et al.
(2020) introduced the Generalized Cross-Lingual
Transfer (G-XLT) task, addressing cross-lingual
QA in the case where models are trained on En-
glish and evaluated on multiple language pairs, as-
suming that all questions are answerable. However,
the ability to identify when a question cannot be
answered is crucial for real-world applications.
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In this paper, we expand the G-XLT frame-
work by introducing unanswerable questions, as
illustrated in Figure 1. This extension reflects
real-world scenarios where answers may not ex-
ist within the given context. Our approach also
broadens the evaluation of Lewis et al. (2020), lim-
ited to encoder-based models, to include state-of-
the-art models, encompassing large language mod-
els (LLMs) and various transformer architectures,
providing a more comprehensive assessment of
cross-lingual QA capabilities. To address the limi-
tations in current datasets and to provide a robust
benchmark for this extended task, we have devel-
oped two test datasets: miXQuAD and MLQA-
IDK. The miXQuAD dataset combines elements
from SQuAD v2.0 and XQuAD (Rajpurkar et al.,
2018; Artetxe et al., 2020), integrating unanswer-
able questions into a multilingual framework. It
covers 12 languages and includes a total of 2,072
examples per language, balancing answerable and
unanswerable questions. The MLQA-IDK dataset,
derived from MLQA (Lewis et al., 2020), specifi-
cally focuses on cross-lingual unanswerability, cov-
ering 7 language pairs and employing techniques
such as antonym and entity augmentation to gener-
ate unanswerable questions.

Our cross-lingual QA analysis reveals a trade-off
between fine-tuned small models and large models
with in-context learning: mT5-large (1.2B param-
eters) with fine-tuning excelled at detecting unan-
swerable questions, while AYA-101 (13B parame-
ters) with hint prompting, where the unanswerabil-
ity option is mentioned in the prompt, performed
better on answerable questions. Hint prompting
significantly improved unanswerable question de-
tection across models while maintaining perfor-
mance on answerable questions. Fine-tuned AYA-
101 achieved the best performance, outperform-
ing both its regular prompt version and mT5-large
across both answerable and unanswerable ques-
tions. Out-of-domain testing on MLQA-IDK and
open-domain evaluation on XTREME-UP (Ruder
et al., 2023) demonstrate model robustness across
diverse QA scenarios, including low-resource lan-
guages.

We also examine the dependence of the results
on the specific languages and on linguistic rela-
tionships. First, comparing between cases where
the question is in English (English-Questions) to
those where the context is in English (English-
Contexts), we observe that models performed bet-
ter when contexts are in English, indicating that
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processing questions in various languages while
keeping English contexts is more manageable. Sec-
ond, language clustering analysis revealed three
groups that align to some extent with language
typology—suggesting linguistic relationships influ-
ence model behavior.

In an advanced analysis, we examine
answerability-related error patterns, test the
models’ reliance on parametric knowledge, and
explore their uncertainty in the different types
of prediction. In particular, we observe that hint
prompting reduces uncertainty when classifying
unanswerable questions, while fine-tuning im-
proves overall certainty but reduces the confidence
gap between correct and incorrect predictions.

Our main contributions are the following. First,
we expand the Generalized Cross-Lingual Transfer
(G-XLT) task to explicitly handle unanswerable
questions. Second, we introduce two novel test
sets, miXQuAD and MLQA-IDK for the extended
task. Third, through the analysis of state-of-the-art
models with varying architectures and parameter
sizes, we provide insights into performance pat-
terns and language dependency, and reveal trade-
offs between model size and training approaches,
advancing cross-lingual QA understanding.

2 Related Work

2.1 Extractive Question Answering

EQA is a fundamental Natural Language Under-
standing (NLU) task that involves identifying and
extracting answer spans from a given context in
response to natural language questions. This task
serves as a critical benchmark in evaluating ma-
chine reading comprehension capabilities (Wang
et al., 2018). Initially, EQA research focused
primarily on monolingual settings, with SQuAD
(Rajpurkar et al., 2016) establishing foundational
benchmarks through English Wikipedia-derived
question-answer pairs. The introduction of BERT
(Devlin et al., 2019) marked a significant advance-
ment through its use of bidirectional transform-
ers, though early development remained largely
English-centric, with other language datasets often
being SQuAD translations such as Arabic (Mozan-
nar et al., 2019) and Spanish (Carrino et al., 2020).

2.2 Evolution of Cross-lingual QA

The development of QA in multiple languages
has followed two main strategies: fine-tuning ex-
isting models for new languages and developing



zero-shot transfer capabilities across languages.
Datasets like XQuAD (Artetxe et al., 2020), Ty-
DiQA (Clark et al., 2020), and XTREME (Hu
et al., 2020) have facilitated this research through
multilingual question-answer pairs. The Multilin-
gual Transfer (XLT) task, introduced with MLQA
(Lewis et al., 2020), pioneered generalization from
English-trained models to other languages, where
questions and contexts are in the same language.
Its extension, the G-XLT task, formalized cross-
lingual QA by requiring models trained solely on
English data to handle questions and contexts in
different languages. Recent work has explored
retrieval-augmented approaches to address cross-
lingual challenges. Cross-lingual QA has also been
studied in open-domain QA, where document re-
trieval is required before answering the question.
In particular, XOR-TyDi QA (Asai et al., 2020) re-
vealed severe performance drops when answers ex-
ist only in foreign-language documents, requiring
retrieval across massive multilingual corpora. More
recently, Ranaldi et al. (2025) demonstrated that
multilingual RAG systems face unique difficulties
when retrieved documents span multiple languages,
with performance degrading when models must
integrate information across linguistic boundaries.
However, all these frameworks assumed questions
were answerable. We extend the G-XLT frame-
work to address this gap by introducing two com-
plementary benchmarks: miXQuAD and MLQA-
IDK, providing evaluation capabilities across mul-
tiple languages with explicit no-answer detection.
We also explore the adaptability of our study to
open-domain settings in Section 5.4.

2.3 No Answer Importance

The ability to identify unanswerable questions
is critical in real-world applications, with NQ
(Kwiatkowski et al., 2019) showing that 51% of
real queries lack answers in their given context.
While this challenge has been studied in English
monolingual settings, beginning with SQuAD v2.0
(Rajpurkar et al., 2018), research has shown that
even advanced language models struggle with this
task, often hallucinating plausible but incorrect an-
swers (Slobodkin et al., 2023). English-focused
datasets like HotpotQA (Yang et al., 2018) and
MuSiQue (Trivedi et al., 2022) further demon-
strated this challenge through multi-document rea-
soning requirements, with MuSiQue introducing
contrast questions to increase evaluation rigor.
However, these existing datasets and research have

focused on monolingual settings, leaving a gap in
understanding how models perform on unanswer-
able questions in cross-lingual scenarios, which we
address in this paper.

3 Task, Dataset Creation And Structure

3.1 The Task

The task of Generalized Cross-Lingual EQA with
IDK is defined as follows. Given a training dataset
D = {(ci,qi,a;)}Y,, N € N, where ¢; is a con-
text, g; is a question, a; is an answer, and all ele-
ments c¢;, q;, a; are in English, we aim to learn a

mapping:

s C ¢ if answer exists

IDK  otherwise

f:(qELq,ceLc)—>{
where L. and L, are the context and question lan-
guages respectively, and L. = L, = English.
During evaluation, we consider two settings:
(1) English-Questions: where questions are in En-
glish and contexts are in other languages (L, =
English, L. # English), and (ii) English-Contexts:
where contexts are in English and questions are in
other languages (L. = English, L, # English).

3.2 Dataset Creation and Structure

To evaluate cross-lingual EQA capabilities, we
present two evaluation test sets: miXQuAD and
MLQA-IDK.

miXQuAD Creation The miXQuAD dataset
was created by combining XQuAD (which con-
tains questions and contexts in 12 languages) with
unanswerable questions from SQuAD v2.0. Since
XQuAD only includes answerable questions, we
enhanced it by identifying matching contexts in
SQuAD v2.0 that contained unanswerable ques-
tions and aligning these with the corresponding
XQuAD contexts across all languages. For the
English-Questions setting, we paired English unan-
swerable questions with contexts in each target lan-
guage. For the English-Contexts setting, we trans-
lated these unanswerable questions into the 11 non-
English languages. This design ensures no data
leakage, as XQuAD derives from SQuAD v2.0’s
dev set while models train exclusively on SQuAD
v2.0’s train set. The resulting miXQuAD dataset
contains 12 language-specific test sets available in
both English-Questions and English-Contexts con-
figurations. In the English-Questions setting, each
language maintains exactly 1,190 answerable and
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882 unanswerable examples (2,072 total). In the
English-Contexts setting, while answerable ques-
tions remain constant at 1,190, unanswerable ques-
tion counts vary by language as shown in Table 1.
The languages covered are English (en), Spanish
(es), German (de), Greek (el), Russian (ru), Turkish
(tr), Arabic (ar), Vietnamese (vi), Thai (th), Chi-
nese (zh), Hindi (hi), and Romanian (ro).

en ar e th de hi tr e ro vi ru zh

A 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K
U 9K 7K 8K .6K 8K 8K .8K .8K .8K .8K .8K .7K
T 2.1K 1.9K 2.0K 1.8K 2.0K 2.0K 2.0K 2.0K 2.0K 2.0K 2.0K 1.9K

Table 1: miXQuAD English-Contexts statistics. A: answer-
able, U: unanswerable questions. T: total. Overall, there are
24,000 questions (14,400 answerable, 9,600 unanswerable)
across 12 languages.

MLQA-IDK Creation Starting from MLQA, a
cross-lingual dataset containing answerable ques-
tions, we extended it to include unanswerable cases
to create MLQA-IDK. Following techniques from
Gautam et al. (2023), we employed two primary
methods for generating unanswerable questions:
entity swapping and antonym substitution (exam-
ples shown in Figure 6, Appendix A). These meth-
ods create unanswerable questions by substituting
key information while preserving the overall struc-
ture and domain relevance of the original questions.
We generated the unanswerable questions in En-
glish to create the English-Questions setting, and
translated these questions into the other six lan-
guages to create the English-Contexts setting. Due
to MLQA’s incomplete overlap between questions
and contexts across languages, the amount of data
varies by language, as summarized in Table 2. The
dataset encompasses seven languages: English (en),
Spanish (es), German (de), Arabic (ar), Vietnamese
(vi), Chinese (zh), and Hindi (hi). Our quality as-
sessment of MLQA-IDK’s generated unanswerable
questions, performed by two of the authors on a
random sample of 100 questions, achieved 95%
inter-annotator agreement on both unanswerability
and well-formedness. The analysis revealed a 7%
noise rate, comparable to that reported in SQUAD
v2.0’s manual analysis (Rajpurkar et al., 2018).

ar de en es hi vi zh

A 53K 45K 11.6K 53K 49K 5.5K 5.1K
U 37K 3.2K 129K 3.7K 3.5K 4.0K 3.6K
T 9.1K 7.7K 245K 9.0K 84K 9.5K 8.8K

Table 2: MLQA-IDK dataset statistics. A: answerable, U:
unanswerable questions, T: total. Overall, there are 76.9K
questions (46.7K A, 30.2K U) across 7 languages.

Evaluating Machine Translation All transla-
tions were performed using the Google Translate
API. To ensure the accuracy of translations within
our dataset, we implemented a back-translation
strategy, as described in Lin et al. (2021). This
involved translating the questions from foreign
languages back into English. We then employed
Sentence-BERT (Reimers and Gurevych, 2019) to
generate embeddings for both the original and back-
translated English texts, subsequently computing
the cosine similarity between them. Only ques-
tions with a cosine similarity score above 0.75 were
retained. This stringent validation procedure, de-
picted in Figure 2, guarantees the reliability of our
dataset for evaluating the effectiveness of EQA
systems across language pairs. All the statistics
reported in this section, including those in Tables
1 and 2 concern the final versions of the corpora,
after validation.

/" English machine Arabic machine " English
._ Sentence / translation Sentence translation Sentence

~ ~
A0 cosine -
1» imilarit AL

Sentence-Bert l Sentence-Bert

\_ threshold
\ >=0.75
\ '/

Figure 2: Example of the back-translation strategy encoding
an Arabic sentence.

4 Methodology

All our experiments were conducted in a zero-shot
setting, where the training data (for fine-tuning)
and provided examples (for in-context learning)
are exclusively in English from the SQuAD v2.0
dataset. As detailed in Appendix B, we experi-
mented with a diverse set of models ranging from
168M to 13B parameters, using either fine-tuning
or in-context learning approaches depending on
model architecture and size.

4.1 Fine-Tuning Language Models

Our methodological framework centers on fine-
tuning state-of-the-art multilingual language mod-
els for EQA tasks. We employ two main fine-tuning
strategies to optimize model performance:

Fine-Tuning We conduct full fine-tuning on
smaller multilingual models including mBERT
(168M parameters), XLM-RoBERTa (279M pa-
rameters), mDeBERTa (276M parameters), and
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mT5-large (1.2B parameters). This approach al-
lows us to thoroughly adapt these models to the
specific requirements of cross-lingual EQA.

Parameter-Efficient Fine-Tuning For larger
models like AYA-101 (13B parameters) and AYA-
23 (8B parameters), we utilize two efficient fine-
tuning techniques: Low-Rank Adaptation (LoRA,
Hu et al., 2021) and Quantized LoRA (QLoRA,
Dettmers et al., 2024). LoRA enables efficient
training without fully retraining the model, while
QLoRA further reduces memory usage through
quantization. These methods are particularly valu-
able for fine-tuning large-scale LLMs while main-
taining computational efficiency.

4.2 In-Context Learning

In-context learning is a pivotal methodology in our
research for training models on EQA tasks, lever-
aging the model’s ability to learn from a few exam-
ples. For this approach, we employed several large
language models: GPT4-O-mini (8B parameters)
using OpenAl API, Gemma-2 (9B parameters),
Mistral-Nemo (12.2B parameters), AYA-101 (13B
parameters), BLOOMZ (7B parameters), and AYA-
23 (8B parameters). We adapted prompt formats
from Slobodkin et al. (2023) to the cross-lingual
case. For each prompt type, we used three differ-
ent variants of few-shot prompts, each containing
three examples (two answerable and one unanswer-
able), thus minimizing potential bias from specific
example selections.

As shown in Figure 3, our approach uses two
prompt families. The Question Answering fam-
ily includes Regular-Prompt, Hint-Prompt, and
Hint-Translate-Prompt, guiding models to provide
answers or identify when no answer exists. The
Hint-Prompt alerts models to potential answer ab-
sence, while Hint-Translate-Prompt adds a question
translation step. The Classification family, using
Answerability-Prompt, focuses solely on determin-
ing if sufficient information exists to answer the
question. To identify unanswerable questions, we
implemented pattern matching that includes varia-
tions of “unanswerable”, “no answer”, “unknown”,
“not enough information”, and similar phrases in
different contexts and formulations.

5 Results

5.1 Model Architecture and Training
Approach Effects

Our analysis primarily focuses on the English-
Questions setting, while a detailed discussion of
the English-Contexts setting is presented in Section
5.3.1.

Encoder-only architectures Early cross-lingual
EQA research relied heavily on encoder-only archi-
tectures. Table 3 reveals an intriguing characteristic
of these models: while mDeBERTa achieved the
best overall performance among encoders (63.64
F1), all three models exhibited remarkably strong
No Answer performance (76.18-86.06 F1) but
struggled significantly with answerable questions
(34.13-52.26 F1). This severe imbalance suggests
that encoder-only architectures excel at identifying
when questions cannot be answered from the given
context.

Model Avg Has Ans No Ans
mBERT 56.23 34.13 86.06
XLM-R 58.57 45.52 76.18
mDeBERTa  63.64 52.26 78.98

Table 3: F1 scores comparison of encoder-only models aver-
aged across all languages in miXQuAD English-Questions
setting. The bold scores represent the best performance for
each category.

5.2 Model Size and Training Approach Effect

Given the limitations of encoder-only models, we
focus on encoder-decoder and decoder-only archi-
tectures. Table 4 presents a comprehensive compar-
ison revealing several key patterns in cross-lingual
QA performance.

Hint prompting improves unanswerability de-
tection. Adding hints about potential unanswer-
ability substantially increased No Answer F1
scores across all models. AYA-101 improved from
35.16 to 54.74, while GPT40-mini showed the most
dramatic increase from 4.97 to 60.23. Crucially,
this improvement maintained comparable answer-
able question performance (AYA-101: 67.86 vs.
66.71), suggesting that hint prompting helps mod-
els better calibrate confidence thresholds rather
than simply biasing toward ’unanswerable’ pre-
dictions.

Parameter count alone does not determine per-
formance. Despite having over 10x more param-
eters, AYA-101 (13B) with regular prompting un-
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Regular-Prompt

Hint-Prompt

"Given the following passage and question, answer the
question. Your answer must be in {LANG}."

"Given the following passage and question, answer the
question. Your answer must be in {LANG}.{HINT_ADD}"

Hint-Translate-Prompt

the question to {LANG}, then answer the question,

"Given the following passage and question.first translate
'Your answer must be in {LANG}.{HINT_ADD}",

Question Answering

W

g Answerability
"Given the following passage and question, decide if the
question is answerable based on the passage.
Reply only "answerable" or "unanswerable"."
Classification
A

*{HINT_ADD}* - "If it cannot be answered based on the
passage, reply "unanswerable™

*{LANG}* - replace with the appropriate language

Figure 3: Example prompts used to evaluate the in-context learning methodology.

derperformed mT5-large (1.2B)—64.03 vs. 53.94
Average Fl—revealing complementary strengths
across architectures.’ AYA-101 excelled at an-
swer extraction (67.86 vs. 50.55 F1) while mT5-
large dominated unanswerability detection (82.20
vs. 54.74 F1). Only through fine-tuning did AYA-
101 achieve the best overall performance (81.23
F1), demonstrating that the training approach mat-
ters more than parameter count.

Verbosity correlates with poor task adaptation.
Answer verbosity appears to impact only untrained
large models. GPT40-mini and Mistral-Nemo, both
large models without task-specific training, pro-
duced excessively verbose answers (6-9 words on
average) which likely contributed to their lower F1
scores through partial match penalties. In contrast,
all other models regardless of size maintained con-
cise responses similar to gold answer length (1-3
words), as detailed in Appendix G. This pattern
suggests that excessive verbosity is a symptom of
insufficient task adaptation rather than an inherent
characteristic of model size.

Translation-based prompting consistently un-
derperforms. Hint-translate prompting system-
atically underperformed standard hint prompting
across all models and languages. This degra-
dation was particularly severe for answerable
questions—GPT4o0-mini dropped from 49.60 to
30.98 F1, while even well-performing models like
BLOOMZ showed similar patterns. The consis-
tency of this effect suggests that additional transla-

3Statistical significance was assessed using t-tests between
systems across all languages.

tion steps introduce systematic errors rather than
beneficial cross-lingual signals.

Model Avg HasAns No Ans
mT5-large 64.03 50.55 82.20
Aya-101 53.94 67.86 35.16
+Hint 61.61 66.71 54.74
+Hint-translate  61.41 66.20 54.94
+Fine tuned 81.23 77.09 86.80
GPT40-mini 28.90 46.65 4.97
+Hint 54.12 49.60 60.23
+Hint-translate ~ 43.49 30.98 60.37
Aya-23 41.01 58.98 16.77
+Hint 48.56 56.87 37.36
+Hint-translate  47.10 54.12 37.63
+Fine tuned 53.36 50.65 59.02
BLOOMZ 41.57 42.33 40.56
+Hint 48.03 37.69 61.98
+Hint-translate ~ 47.96 39.11 59.89
Gemma-2 30.63 34.87 2491
+Hint 38.93 40.04 37.44
+Hint-translate ~ 38.99 43.61 32.75
Mistral-Nemo 29.96 42.59 12.91
+Hint 50.96 43.86 60.54
+Hint-translate ~ 48.39 42.50 56.33

Table 4: Average F1 scores by category on miXQuAD English-
Questions setting. The bold scores represent the best perfor-
mance for each category.

5.3 Language Dependency
5.3.1 English-Questions vs. English-Contexts

In the English-Contexts setting (Table 5), hint
prompting maintained its effectiveness across mod-
els. AYA-101 showed improvement from its reg-
ular prompt version. Similar enhancements were
observed in other models like BLOOMZ, Gemma-
2, and notably Mistral-Nemo. As shown in Fig-
ure 4, analyzing Average F1 scores across all
model variants (regular, hint, hint-translate, and
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Figure 4: Average F1 scores across languages for English-
Questions and English-Contexts settings. Each bar represents
the mean performance of all models and their variants (reg-
ular, hint, hint-translate, and fine-tuned) for each language,
comparing both experimental settings.
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fine-tuned), models consistently performed better
in the English-Contexts setting compared to the
English-Questions setting. The gap is largest for
Asian languages (Thai: 47.56 vs. 31.91, Hindi:
51.81 vs. 29.03) and the performances are com-
parable for European languages (Spanish: 56.84
vs 56.89, German: 56.16 vs. 57.02). The data
suggests that processing questions in various lan-
guages while keeping English contexts is more
manageable than handling contexts in different lan-
guages. This pattern can be attributed to two key
factors: (1) questions generally have simpler lin-
guistic structures than full contexts, making them
easier to process across languages, and (2) answer
extraction in English (the training data language) is
more straightforward than in other languages. The
complete model-specific performance can be found
in Appendix B.

5.3.2 Language Similarity

The clustering methodology comprised two se-
quential phases, first applying K-Means clustering
(k=3) to each model’s F1 performance data across
has-answer, no-answer, and combined metrics,
then synthesizing results through a co-occurrence
matrix quantifying language pair clustering fre-
quency. Final consensus clusters were determined
using hierarchical clustering with Ward’s linkage
(Ward Jr, 1963). The analysis reveals three dis-
tinct clusters (Figure 5): (1) five Indo-European
languages (Russian, Romanian, Spanish, German,
English); (2) Vietnamese, Turkish, Arabic, and
Greek—Ilanguages from four different language

Model Avg HasAns No Ans
mT5-large 72.38 70.99 74.24
Aya-101 70.30 81.07 55.77
+Hint 73.24 79.03 65.43
+Hint-translate ~ 72.94 79.13 64.59
+Fine tuned 80.96 78.44 84.35
GPT40-mini 17.34 26.40 5.12
+Hint 47.42 39.48 58.15
+Hint-translate ~ 28.52 28.99 27.87
Aya-23 51.59 72.31 23.65
+Hint 57.28 70.31 39.69
+Hint-translate  55.53 69.58 36.56
+Fine tuned 63.07 68.03 56.38
BLOOMZ 52.14 53.57 50.22
+Hint 57.54 47.66 70.88
+Hint-translate ~ 57.79 46.99 72.35
Gemma-2 47.75 61.07 29.79
+Hint 50.23 61.02 35.67
+Hint-translate ~ 49.49 62.20 32.34
Mistral-Nemo 30.23 44.84 10.50
+Hint 51.77 36.38 72.53
+Hint-translate ~ 49.79 37.97 65.73

Table 5: Average F1 scores by category on miXQuAD English-
Contexts setting. The bold scores represent the best perfor-
mance for each category.

Consensus Clustering Dendrogram

w

Co-occurrence Distance

Languages

Figure 5: Hierarchical clustering dendrogram of languages
based on consensus clustering across all models, using F1
scores averaged over has-answer and no-answer questions

families; and (3) Chinese, Hindi, and Thai, which
all use non-Latin scripts. The second cluster’s un-
expected grouping of unrelated languages suggests
that factors other than linguistic family relation-
ships determine model performance patterns in
cross-lingual transfer.

5.4 Evaluating Model Robustness

We evaluated model robustness using MLQA-IDK
beyond their original training domain. Since all
models were trained on SQuAD v2.0 or received
examples from it during in-context learning, this
dataset provides insight into their ability to gen-
eralize to unseen data sources. Results, shown in
Table 6, confirm that hint prompting improves per-
formance across models, particularly for unanswer-

106



able questions, while fine-tuned AYA-101 main-
tains performance on unseen data, achieving 69.96
F1 and 76.23 F1 in English-Questions and English-
Contexts respectively.

We examined model adaptability to open-
domain question answering using XTREME-UP
QA (Ruder et al., 2023), which includes Arabic,
Finnish, Japanese, Korean, Russian, and 26 low-
resource Indic languages. This dataset pairs ques-
tions with gold paragraphs for evaluation of answer
extraction capabilities in multilingual settings. Re-
sults are in Table 16 (Appendix F). In this case too,
hint prompting enhanced performance on unan-
swerable questions, improving the ability to clas-
sify cases where no answer exists in the provided
context. We also observe that fine-tuning AYA-101
improved performance on unanswerable questions.
The inclusion of XTREME-UP emphasizes evalu-
ation in open-domain QA settings, particularly in
low-resource language contexts.

6 Advanced Analysis

6.1 Error Pattern Analysis

We conducted a detailed analysis of models’ perfor-
mance as binary classifiers for question answerabil-
ity across different prompting strategies. Two main
approaches were evaluated: Hint-Prompt, which
explicitly warns about potential unanswerable ques-
tions, and Answerability-Prompt, which focuses
solely on determining answerability. As shown in
Table 7, our analysis reveals a consistent trade-off
across models. Hint-Prompt achieves higher recall
on answerable questions but moderate recall on
unanswerable ones, while Answerability-Prompt
shows the opposite pattern. For example, AYA-101
with Hint-Prompt achieves 0.929/0.601 recall (an-
swerable/unanswerable) compared to 0.706/0.849
with Answerability-Prompt. These patterns suggest
that the choice between prompting strategies de-
pends on whether correctly identifying answerable
questions or detecting unanswerable ones is more
critical for the specific application.

6.2 Testing Models’ Reliance on Parametric
Knowledge

Parametric knowledge refers to information stored
in the model’s parameters during pre-training that
can be accessed without external context. To eval-
uate the extent of this knowledge in our models,
we conducted two experiments. First, using reg-
ular prompts, we evaluated answerable questions

without their corresponding contexts. All models
showed performance drops when context was re-
moved, with AYA-101’s average F1 score falling
from 73.23 to 2.63 (see in Appendix D). To further
validate these findings on truly unseen data, we
evaluated our models on repliQA-Trans, which was
created after all models’ pre-training by translating
500 answerable questions from RepliQA (Mon-
teiro et al., 2024) into 11 languages using our val-
idated machine translation pipeline ( Section 3.2).
The results show that Gemma-2 achieved the high-
est average performance (87.37 F1), followed by
fine-tuned AYA-101 (81.87 F1) and AYA-23 (80.14
F1). The complete language-specific results are pre-
sented in Appendix E, demonstrating that models
maintain performance even on post-training data.

6.3 Uncertainty Estimation

We analyzed model confidence in cross-lingual QA
using the Claim Conditioned Probability method
from Vashurin et al. (2025). This white-box method
estimates uncertainty based on the probability of
the predicted answer conditioned on the input us-
ing the model’s internal logits. The evaluation in-
cluded six models: AYA-23, AYA-101, BLOOMZ,
and a fine-tuned variant of AYA-101, evaluated
on the miXQuAD dataset. Building on our find-
ings that hint prompting improves unanswerable
question classification, we observe two key results:
hint prompting reduces uncertainty when classi-
fying unanswerable questions compared to reg-
ular prompting, aligning with the improved per-
formance on "No answer" cases in our F1 eval-
uations (Section 5.2). Additionally, while fine-
tuning improves overall model certainty, it reduces
the confidence gap between correct and incorrect
predictions—fine-tuned models show lower uncer-
tainty overall but lose the ability to distinguish
between confidence levels for right versus wrong
answers compared to non-fine-tuned models. De-
tailed uncertainty scores and calibration analysis
are in Appendix H.

7 Conclusion

Our study advances cross-lingual EQA through sev-
eral key findings. Fine-tuning large language mod-
els proved most effective, with AYA-101 outper-
forming both smaller fine-tuned models and large
models using in-context learning. Hint prompting
enhanced unanswerable question detection without
compromising answerable performance. Models
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English-Questions

| English-Contexts

Model Average Has Ans No Ans \ Average Has Ans No Ans
mT5-large 51.24 44.50 70.79 65.66 66.72 64.57
Aya-101 48.47 57.50 37.09 59.69 76.11 37.89
+Hint 52.68 56.08 48.50 65.42 73.91 54.08
+Hint-translate 52.44 55.62 48.61 65.20 73.95 53.52
+Fine tuned 69.96 62.05 81.02 76.23 76.43 75.88
GPT40-mini 25.47 40.37 6.51 16.30 26.59 3.84
+Hint 47.20 41.87 55.41 41.52 37.79 47.50
+Hint-translate 40.99 27.91 59.42 27.55 29.67 24.59
Aya-23 36.71 56.35 11.38 49.26 73.43 17.52
+Hint 42.78 53.28 29.83 52.96 70.72 29.75
+Hint-translate 41.49 51.89 28.79 51.28 69.91 26.94
+Fine tuned 43.41 42.69 44.98 56.35 61.89 49.09
BLOOMZ 43.01 55.01 27.79 54.58 71.66 32.15
+Hint 46.42 48.18 44.83 57.79 65.28 48.05
+Hint-translate 46.77 51.89 40.40 57.94 65.22 48.49
Gemma-2 27.31 37.54 14.87 42.17 59.42 19.79
+Hint 33.11 41.13 24.00 43.09 59.54 22.07
+Hint-translate 32.65 43.98 19.08 42.87 61.20 19.38
Mistral-Nemo 29.43 41.85 13.81 30.64 45.14 12.08
+Hint 45.60 39.06 55.43 47.69 35.29 65.76
+Hint-translate 44.43 38.93 52.75 47.11 36.38 62.81

Table 6: Average F1 scores by category on MLQA-IDK comparing English-Questions and English-Contexts settings. The bold

scores represent the best performance for each category.

| H-Prompt | Answerability
Model HA NA HA NA
P R|P R|P R|P R

AYA-23 | .67 94|.83 39|.75 .83|.73 .62
BLOOMZ | .73 .65|.59 . .64 . .61 .
AYA-101 |.76 .93 |.86 .60|.86 .71 .68 .85
GPT4-O |.76 .94|.88 .59(.90 .71|.69 .89
Gemma-2 |.66 90|.72 .37|.74 .61|.58 .71
M-Nemo |.75 .76 |.67 .67|.89 .35|.52 94

Table 7: Precision (P) and Recall (R) metrics averaged across
MiXQuAD test sets for question answerability. Acronyms:
HA (Has Answer), NA (No Answer), H-Prompt (Hint-
Prompt), M-Nemo (Mistral-Nemo), GPT4-O (GPT40-mini).

showed better performance with English contexts
versus English questions. Performance patterns
aligned to some extent with traditional language
families, indicating the influence of linguistic re-
lationships. Our study also suggests that models
rely on contextual understanding rather than mem-
orized knowledge. These findings support devel-
oping more effective cross-lingual EQA systems
across diverse languages.

Limitations

This work evaluated scenarios where one language
is English, leaving unexplored the model’s capabil-
ity to handle question-answer pairs between two
non-English languages. While our study focuses
on datasets derived from SQuAD and MLQA, fu-
ture research should explore cases of longer con-

texts and more complex reasoning, such as in the
monolingual HotpotQA dataset. Additionally, for
the use of prompting with LLMs, we only consid-
ered few-shot prompting with English examples.
Future work could explore instruction-only prompt-
ing, where no examples are provided.
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A Examples of Unanswerable Questions

Figure 6 shows examples of our unanswerable ques-
tions generation methods: entity swapping (ques-
tions 1-2) and antonym substitution (question 3).

B Additional Details of Models

Table 8 provides a comprehensive overview of the
transformer models used in our experiments, in-
cluding their architectures, parameter counts, and
adaptation methods.

C Model Performance on Different
Settings

In this section, we present detailed performance
results across different experimental settings. Ta-
bles 9 and 10 show the full results on miXQuAD
English-Questions and English-Contexts settings,
respectively. While Tables 11 and 12 show results
on MLQA-IDK English-Questions and English-
Contexts settings, respectively.

D Analysis of Context Dependency

To investigate how models leverage contextual in-
formation versus parametric knowledge, we com-
pare performance with and without providing the
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context passage. Our analysis examines the mod-
els’ performance across different languages and
question types when contextual information is in-
troduced. Table 13 demonstrates the substantial
performance improvements observed when contex-
tual information is provided.

E Performance on Post-Training Data

To validate our findings on truly unseen data, we
evaluate performance on repliQA-Trans, created
after model pre-training. Table 14 shows Has An-
swer F1 scores across all languages, demonstrating
the models’ ability to generalize to new content.

F Performance on Open-Domain Data

We evaluated our models as answer extraction
components for open-domain QA systems using
XTREME-UP QA’s reading comprehension data
(Ruder et al., 2023), where questions are paired
with gold paragraphs. Table 16 shows detailed per-
formance across languages, while the full dataset
statistics can be found in Table 15, demonstrat-
ing the models’ effectiveness at extracting answers
from retrieved documents.

G Answer Length Analysis

To analyze the verbosity of model responses, we
compared the average number of words in model
predictions with gold answers across different set-
tings. Table 17 presents this analysis for both
MiXQuAD and MLQA-IDK datasets in English-
Questions and English-Contexts settings. Notably,
larger models like GPT40-mini and Mistral-Nemo
tend to produce longer answers, with averages up to
3 times the length of gold answers in some settings.

H Uncertainty Estimation Analysis

This section provides detailed results from our un-
certainty estimation analysis using the Claim Con-
ditioned Probability method. The uncertainty score
is calculated as:

Uncertainty = log P(claim|input) (1)

where P(claim|input) is the probability of the
model’s predicted answer (claim) given the input
question and context. This method leverages the
model’s internal logits to estimate confidence in
the prediction.

Table 18 presents uncertainty scores for correctly
classified unanswerable questions across different
models and prompting strategies.


https://doi.org/10.1162/tacl_a_00520
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

Context:

and Saizen (Merck Serono). In 2006, the U.S. Fo

Nutropin Depot (Genentech and Alkermes) was

Unanswerable Questions:

3. [Antonym] What company manufactured the

As of 2005, recombinant growth hormones available in the United States (and their manufacturers)
included Nutropin (Genentech), Humatrope (Lilly), Genotropin (Pfizer), Norditropin (Novo),

a version of rHGH called Omnitrope (Sandoz). A sustained-release form of growth hormone,

fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued by
Genentech/Alkermes in 2004 for financial reasons.

1. [Entity Swap] What company manufactured the first Genotropin approved rHGH?

2. [Entity Swap] What company manufactured the first FDA approved Omnitrope?

od and Drug Administration (FDA) approved

approved by the FDA in 1999, allowing for

last FDA approved tHGH?

Figure 6: Example of unanswerable questions from MLQA-IDK.

While the questions appear answerable and are related to the

context, they require information beyond what is provided in the passage.

Model Arch | Params | FT | ICL
mBERT (Devlin et al., 2019) E 168M | vV X
XLM-RoBERTa (Conneau et al., 2020) E 27TOM | vV X
mDeBERTa (He et al., 2020) E 276M | Vv X
mT5-large (Xue et al., 2021) E-D 1.2B | V X
GPT40-mini (Hurst et al., 2024) D 8B | x v
Gemma-2 (Team et al., 2024) D 9B | x v
Mistral-Nemo (Sreenivas et al., 2024) D 122B | x v
AYA-101 (Ustiin et al., 2024) E-D 13B | v v
BLOOMZ (Muennighoff et al., 2023) D 7B | x v
Aya-23 (Aryabumi et al., 2024) D 8B | Vv v

Table 8: Overview of Transformer Models and Methodologies. Arch: Architecture (E: Encoder, D: Decoder); Params: Number
of parameters; FT: Fine-Tuning; ICL: In-Context Learning. FT and ICL represent our proposed methods for adapting models to
the G-XLT task. v" indicates the method was applied to the model.

The results demonstrate that hint prompting con-
sistently reduces uncertainty (increases confidence)
when correctly classifying unanswerable questions
across most models. Notably, hint prompting also
increases the number of correctly classified unan-
swerable instances, supporting our main findings
about improved performance on "No answer" cases.
Table 19 compares uncertainty scores between cor-
rect and incorrect predictions to assess model cal-
ibration. Well-calibrated models should exhibit
higher confidence (lower uncertainty) for correct
predictions compared to incorrect ones.

I Hyperparameters

All experiments were conducted using NVIDIA
RTX 6000 Ada GPUs for LLMs (AYA-101, AYA-
23, BLOOMZ) and RTX 4090 GPUs for encoder-
only models (mBERT, XLLM-RoBERTa, mDe-
BERTa) and mT5-large.

I.1 Encoder-Only Models

For fine-tuning the encoder-only models mBERT*,
XLM-RoBERT2’, and mDeBERT2°, we utilized a

4https://huggingface.co/bert—base—multilingual—c
ased

5https://huggingface.co/xlm—roberta—base

6https://huggingface.co/microsoft/mdeberta—v3—b
ase
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Category  Model\Language ar es th de hi tr el ro vi en ru zh ‘ Avg
mT5-large 52.64 72772 5929 7078 5770 6335  56.06 7226 6396 84.19 5697 5840 | 64.03
AYA-101 51.85 6335 2663 6677 25.12 5545 5883 6340 5855 7423 5289 5023 | 53.94

+Hint 5852 72.09 3498 7310 3329 63.11 6576 7258 6677 8022 59.70  59.18 | 61.61
+Hint-translate 58.04 7111 3517 7279 3418 6252 6575 71.89 6634 7990 5931 59.86 | 61.41

+Fine tuned 7842 84.10 81.39 8354 8196 7735 80.55 8291 79.03 8843 7885 78.17 | 81.23
GPT40-mini 31.82 34.56 9.80 37.61 6.75 30.80 3430 31.70 3856 4022 2897 21.76 | 28.90

+Hint 55.02 6258 3449 6453 3358 57.64 5987 6131 6337 66.839 4897 4124 | 54.12
+Hint-translate 4527 4727 32,69 5080 28.30 4393 4793 4520 52.00 60.84 3521 3244 | 4349

Ep Aya-23 40.71  51.58 13.03  53.13 14.66  43.68 4020 50.23 4840 6576  38.49 3223 | 41.01
5 +Hint 48.07 61.67 21.69 60.68 2041 5246 4699 5825 5573 70.53 4640 39.88 | 48.56
z +Hint-translate 45.41 59.69 2460 5812 2128 5049 4423 5697 54.13 6923 4385 37.15 | 47.10
+Fine tuned 49.04 5420 42.02 6569 36.09 53.13 5207 54.82 5851 79.00 50.70 45.06 | 53.36
BLOOMZ 4489 5571 2997 4339 19.00 3493 3188 3952 51.13  73.74 2955 4515 | 41.57

+Hint 50.54 6039  38.83 5035 2437 4299 4080 46.03 5563 77.17 3837 50.88 | 48.03
+Hint-translate 50.81 6125  38.61 50.17 2277 4293 4086 4580 5594 77.10 38.39  50.87 | 47.96

Gemma-2 22.07 39.05 2274 4017 20.55 2854 23.13 37.68 3292 6222 20.00 1845 | 30.63

+Hint 3221 4980 2955 4980 27.57 38.04 31.06 46.67 4370 62.08 29.85 26.85 | 38.93
+Hint-translate 31.02  50.39 28.00 50.01 26.65 39.89 30.44 4741 4498 60.50 3142  27.16 | 38.99
Mistral-Nemo 2232 33.57 11.70  40.15 1290 2950 26.82  38.21 3732 59.15 2778  20.06 | 29.96

+Hint 4357  57.80  29.10 59.67 32.12 5339 4844 5945 5854  72.87 5348  43.09 | 50.96
+Hint-translate 40.13  51.83 2586 5624 3047 5255 4246  59.51 5846 7097  53.00 39.18 | 48.39
mT5-large 30.15 6628 4390  62.05 3795 51.65 3685 6547 52.88 8289 3532 41.26 | 50.55
AYA-101 7476  81.59 2465 8135 20.62 71.11 7840 81.66 77.68 8535 7424 6290 | 67.86

+Hint 7447  80.15 2460 79.01 2057 7045 7686 80.52  76.71 8322 72,68 6122 | 66.71
+Hint-translate 7399 7925 2442 7848 2055 69.84 7645 79.88 77.08 83.26 72.07 59.15 | 66.20

+Fine tuned 73.09 81.15 7840 80.03 79.32 71.86 76.67 8047 7508 84.76  72.61 71.68 | 77.09
GPT40-mini 51.53 5870  17.06 5624 11.75 51.60 58.80 5440 5625 64.14 4981 2949 | 46.65

+Hint 5298  63.03 17.57 59.03 1343 5511 5975 5898 58.69 70.54 51.81 3429 | 49.60

5 +Hint-translate 34.66  40.84 1246  33.29 7.38 32.87 3097 3323 38.19 5690 3424 16.18 | 30.98
s Aya-23 62.54  76.48 16.89  71.64 1843 6191 60.64 7398 7217 8475 5842  49.87 | 58.98
g +Hint 60.64  71.52 16.70  67.75 18.64 5888 59.97 7047 6878 8322 57.14 4876 | 56.87
E] +Hint-translate 56.62 7020 16.14 6652 17.75  56.67 5345 68.65 6634 8343 5148  42.14 | 54.12
T +Fine tuned 52.68  67.74 4.07 61.78 6.76 55.63 57.05 6538 6592 77.13 5676 3694 | 50.65
BLOOMZ 61.01  61.56 3.89 4693  20.17  20.59 1582 40.74 7354 8355 21.23 5890 | 42.33

+Hint 5331  54.06 2.53 41.42 19.53 14.87 11.73 3544  69.66 7747 17.87 5434 | 37.69
+Hint-translate 62.44 5637 2.61 41.08 1998 1491 11.78 3472 73.68 7642 17.57 5778 | 39.11
Gemma-2 16.40  45.61 1779 5135 16.64  39.19 2605 4390 40.85 74.89 2145 2428 | 34.87

+Hint 2350 4951 19.07 5545 1736 47.60  30.21  49.53 4897 7770 2838  33.18 | 40.04
+Hint-translate 25776 5843 1933 5843 17.10 5241 31.67 5575 5568  78.83 3190 38.07 | 43.61
Mistral-Nemo 36.00 5240 18.71 55.22 1478 4343 4515 53.83  47.05 7856 4145 2453 | 4259

+Hint 4129  56.06 19.13  56.31 1497 4560 5293 5444 4030 75.17 4471  25.38 | 43.86
+Hint-translate 4425 5335 18.02 5053 13.61 4661 4798 51.62 39.80 73.88 4238 2797 | 42.50
mT5-large 83.00 81.41 80.05 8254 8436 79.14 8198 8141 7892 8595 86.17 81.52 | 82.20
AYA-101 2094 3874 2929 47.09 31.18 3432 3243 3878 3273 5923 2408 33.15 | 35.16

+Hint 37.00 61.23 4898 65.12 5046 5322 5080 61.87 5337 76.16 42.18 5643 | 54.74
+Hint-translate 36.51 60.13  49.66  65.12 5257 52,65 5133 61.12  51.86 7536  42.11  60.81 54.94

+Fine tuned 85.61 88.06 8542 8829 8553 8477 8579 8621 8436 93.39 8727 8693 | 86.80
GPT40-mini 522 1.99 0.00 12.48 0.00 2.73 1.25 1.08 14.69 7.94 0.86 11.34 4.97

+Hint 5777 6197 5732 7194 60.78 61.06 60.04 6446 69.68 6197 4513  50.63 | 60.23

5 +Hint-translate 59.59 5596 5998 7444 5584 58.85  70.81 61.34 7064 66.16 3651 5437 | 60.37
z Aya-23 11.27 17.99 7.83 28.16 9.57 19.09 12.63  18.18 16.33  40.14  11.61 8.43 16.77
£ +Hint 31.11 4838 2843 5114 2279 4381 2948 41.77 3814 5341 3190 2790 | 37.36
° +Hint-translate 30.28 4551  36.02 4679 2604 42,14 3179 4120 37.65 50.08 33.57 3043 | 37.63
z +Fine tuned 46.04  38.67 93.13 73.17 76.08 54.05 4861 39.80 52.01 8130 4388 6149 | 59.02
BLOOMZ 23.13  47.81 65.16  38.63 1743 5428 5356  37.87 2090 60.51 40.78  26.61 40.56

+Hint 4679 6894 87.80 6240 30.88 8092  80.01 60.32 3670  76.76  66.03 4623 | 61.98
+Hint-translate 35.11  67.84 87.19 6244 2654 80.73 80.09 60.74 32.02 78.01 6648 41.54 | 59.89

Gemma-2 2971 3020 2941 2510 2582 14.18 1920 2929 2223  45.13 18.03  10.59 | 24.91

+Hint 4396 50.19 4369 4218 4135 25.14 3220 4282 3659 41.01 3183 18.30 | 37.44
+Hint-translate 38.10 39.54  39.69 38,67 39.54 2298 2877 36.17 3054 3576  30.77 1244 | 3275
Mistral-Nemo 3.86 8.17 2.23 19.81 1036 10.70 2.08 1713 24.19 3296 9.34 14.03 1291

+Hint 46.64  60.13 4256 6422 5526 6391 4237 6622 8315 69.77 6531 6697 | 60.54
+Hint-translate 3459 49.78 3644 6395 5322 6055 3500 70.15 83.64 67.05 6731 5431 56.33

Table 9: F1 scores (averaged over 3 model seeds) across three categories (Average F1, Has answer F1, and No answer F1) on
miXQuAD, English-Questions across 12 language pairs. The best performance for each category and language appears in bold.

learning rate of 5e-5, a batch size of 12, and a max-
imum sequence length of 384. A document stride
of 128 was applied to handle overlapping text seg-
ments. Training was conducted over 2 epochs with
a weight decay of 0.01 using the AdamW optimizer.
The inputs were lowercased before processing to
ensure consistency.

.2 mT5-large Fine-tuning

For fine-tuning the mT5-large model’” on SQuAD
2.0, we used a learning rate of 5e-5 and a training
batch size of 2. The model was trained for 5 epochs
with a maximum sequence length of 512. AdamW
was employed as the optimizer to facilitate effective
gradient updates during fine-tuning.

"https://huggingface.co/google/mt5-1large
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Category  Model\Language ar es th de hi tr el ro vi en ru zh ‘ Avg
mT5-large 66.29 76.19 7135 7519  69.72 69.83 7241 74.71 6592 8419  73.77 6896 | 72.38
AYA-101 61.68 68.03 69.26 7473 69.68 71.86 70.71 7243  69.81 7423 71.65 69.52 | 70.30

+Hint 69.10 75.06 7175 7572 7231 7342 7292 7377 7128 8022 7293 7038 | 73.24
+Hint-translate 68.73 7474 7181 7545 7179 7296 7255 7341  71.17 7990 7250  70.26 | 72.94

+Fine tuned 7846  83.12 79.69 84.07 7894 79.06 79.74 81.59 7750 8843 8121 79.66 | 80.96
GPT40-mini 9.66 1374 2222 17.57 13.65 18.49 12.01 14.87 17.80  40.22 12.57 15.33 17.34

+Hint 39.97 4525 5256 4841 4269 4207 46.08 4395 4971 66.89 4628 4523 | 4742
+Hint-translate 2417 3045 22,63 2924 2406 2630 2331 2537 2442 60.84 2578 2561 28.52

Aya-23 5145 56.17 2827 57.88 46.65 5251 5290 53.00 51.18 65.76 53.64  49.71 51.59

‘é;.) +Hint 56.41 6227 3452 6428 5231 57.60 5851 59.30  57.05 70.53  59.65 54.89 | 57.28
5 +Hint-translate 5438  59.67 3503 6262 50.10 5582 56.52 57.88 5490 6923 57.82 5233 | 5553
] +Fine tuned 62.53 6557 4352 6850 5822 6133 6478 57.88 6219 7890 6565 67.75 | 63.07
BLOOMZ 56.19 6378  33.02 51.88 5745 41.25 4004 3832 5942 73.74 4846 62.16 | 52.14

+Hint 6129 69.66 41.60 56.83 63.55 43777 4492 4534 64.04 7717 5461 6772 | 57.54
+Hint-translate 61.99  69.92 4177 5657 6394 4349 4496 4589 6484 77.10 55.08 67.89 | 57.79

Gemma-2 50.66  48.81 5020 47.84 45.09 3874 49.66 43.66 46.13 6222 4893  41.09 | 47.75

+Hint 5244 5220 53.15 50.84 47.60 40.13 5339 4844 4785 62.08 51.58 43.05 | 5023
+Hint-translate 51.87 51.83 5131 5050 4733  39.00 5269 4797 4626 60.50 5191 4273 | 49.49
Mistral-Nemo 24.02 27.21 28.66  29.79 2492 2553 27.21 2258 36,70 59.15 31.20 2573 | 30.23

+Hint 5021 5120 5024  51.69  46.06 47.12  49.74  47.05 5092 72.87 53.67 5047 | 51.77
+Hint-translate 4999 4871 4624  49.68 4192 44.67 4725 4481 5036 7097 5328  49.54 | 49.79
mT5-large 60.21 75776 69.68  73.02 7399 7091 7120 7436 6284 82.89 7146 6561 70.99
AYA-101 7991 8263 79.36 81.64 7928 7997 8278 82.07 80.52 8535 8134 7799 | 81.07

+Hint 7746  80.09 7798 7934 7758 77.84 8155 80.37 7850 8322 79.02 7537 | 79.03
+Hint-translate 77156 7996 7823  79.61 7751 7794 8165 8030 7859 8326 7929  75.66 | 79.13

+Fine tuned 73.84 8029 7752 8235 7764 77.18 76776 80.25 7560 84.76 7745  77.69 | 78.44
GPT40-mini 1455  21.05 3465 2416 21.15 2846 1755 2344 2645 64.14 1874 2249 | 2640

+Hint 28.58 33.15 46.85 3698 4096 37.08 3486 33.62 41.68 70.54 3231 37.15 | 39.48
+Hint-translate 2284 2847 2407 2960 2726 2790 2432 2568 2740 5690 26.10 27.36 | 28.99

5 Aya-23 73.80 78.42 41.06 76.65 66.71 72.15 78.54 72.87 72.84 84.75 77.79 72.10 72.31
z +Hint 71.86 7643  37.85 7430 6326 69.16 7666 71.03 7196 8322 76.83  71.11 70.31
g +Hint-translate 7073 7465 4032 7331 6190 6858 7575 70.07 70.60 8343 7586 69.80 | 69.58
% +Fine tuned 69.32 7417 4439 7123 66.03 6538 7201 7052 6930 77.13 7028  66.58 | 68.03
T BLOOMZ 72.87  80.60 3.63 5772 75.88 8.07 1526 3484 7449 8355 6096 7493 | 53.57
+Hint 67.32 7571 1.31 4824 71.32 4.08 9.14 2628 6820 7747  54.63  68.19 | 47.66
+Hint-translate 67.15 7512 1.46 4562  71.02 343 8.78 2449  68.01 7642 5467 67772 | 46.99

Gemma-2 61.25 5568 6128 5273 6024 57.65 6734 5485 6147 7489  66.01 5942 | 61.07

+Hint 5991 5732  61.62 5320 58.76 56.85 6643 5465 61.04 7770 6467 60.09 | 61.02
+Hint-translate 62.47  58.61 6230 5520 5972 57.14 6743 5525 6199 7883  66.06 6139 | 62.20
Mistral-Nemo 40.42 4127 4877 4270 4092 3851 4589  34.07 4451 78.56 43776 38.69 | 44.84

+Hint 3394 3727 49.67 3336 3680 2682 3582 2122 2112 7517 2829 37.09 | 36.38
+Hint-translate 3444 3826 51.18 3408 39.09 2946 3852 2340 21.84 73.88 3136 40.10 | 37.97
mT5-large 7449 76776 7359 7812 6395 6837 7404 75.18 70.07 8595 76.88 7347 | 7424
AYA-101 37.08 4834 5564 6542 5673 6093 5443 5942 5537 5923 5858 58.09 | 55.77

+Hint 57.83 6826 6335 7083 6520 6747 6127 6486 6153 76.16 6471  63.65 | 6543
+Hint-translate 56.81  67.69 63.16 6985 64.06 6626 6028 64.10 61.15 7536 6335 6297 | 64.59

+Fine tuned 84.70 8693 82.62 8640 80.69 81.60 8375 8341 80.05 93.39 8629 8232 | 84.35
GPT40-mini 3.07 3.86 5.45 8.68 3.52 5.05 4.54 3.29 6.13 7.94 4.26 5.67 5.12

+Hint 5533 6157 6027 6384 4502 4881 6123 57.88 6055 6197 6514 56.13 | 58.15
+Hint-translate 2597  33.11 20.70  28.75 19.73 2415 2194 2495 2041 66.16 2535 2325 | 27.87

) Aya-23 2128 2616 11.00  32.54 19.58  26.01 1830 2620 2196 40.14 21.06 19.51 23.65
H +Hint 3557 4316 3001 50.76 3753 4199 34.02 4347 3693 5341 3648 33.00 | 39.69
£ +Hint-translate 3232 3946 2790 4819  34.17 3859 3058 4143 3372 50.08 3349 2877 | 36.56
° +Fine tuned 5337 5397 4233 6482 47770 5586 55.03 40.82 5261 8130 5942  69.32 | 56.38
z BLOOMZ 33.68 41.09 72.68 44.00 3258 86.02 7347  43.01 39.08  60.51 31.60 4494 | 50.22
+Hint 53.14 6149 9596  68.41 53.07 9732 9320 71.06 5843 76776 5458  67.09 | 70.88
+Hint-translate 55.03 6289 96.15 7136 5439 9755 93777 7476 6055 7801 5564  68.11 72.35
Gemma-2 3636  39.54 3527 4124 2465 13.23 2582 2858 2544 4513 2589 1637 | 29.79

+Hint 4237 4528  41.73  47.66 3254 1758 3579  40.07 30.05 41.01 3391 20.07 | 35.67
+Hint-translate 37.57 42,67 3648 44.15  30.62 1452 3281 38.14 2502 3576 3281 17.54 | 32.34
Mistral-Nemo 1.89 8.24 1.52 12.36 3.33 8.02 2.01 7.07 26.16 3296  14.25 8.24 10.50

+Hint 72.15 7000 51.03 7642 5855 7449 6852 8190 91.12 69.77 8791 6852 | 72.53
+Hint-translate 7098 62.82 39.57 7072 4573 6520 59.04 73770 88.86 67.05 8285 62.29 | 65.73

Table 10: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
miXQuAD English-Contexts setting across 12 language pairs. The bold scores represent the best performance for each category

and language.

LI.3 In-Context Learning Settings

In-context learning experiments were conducted
using AYA-101%, AYA-23°, BLOOMZ!?, GPT4o-
mini (via OpenAl API), Gemma-2'!, and Mistral-

8h'ctps ://huggingface.co/CohereForAI/AYA-101
9h’ctps: //huggingface.co/CohereForAl/aya-23
Ohttps://huggingface.co/bigscience/bloomz
Thttps://huggingface.co/google/gemma-2b

Nemo!?. The models were configured with a maxi-
mum of 25 new tokens and an input window size
of 4024. To provide the models with sufficient con-
textual information, we employed three few-shot
examples. The hint prompt template used was, "If
it cannot be answered based on the passage, reply

Zhttps://huggingface.co/mistralai/Nemo-2.0
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Category  Model\Language ar de en es hi vi zh ‘ Avg
mT5-large 46.10 5255 6594 5554 4641 4977 4238 | 51.24
AYA-101 44.62 5927 5991 5691 2272 52.01  43.84 | 4847

+Hint 4786 6024  67.89 6285 2722 56.05 46.62 | 52.68
+Hint-translate 4731  60.19 6771  62.63 2748 5524 4651 | 52.44

+Fine tuned 6757 6687 81.64 7248 71.70 70.80 58.63 | 69.96
GPT40-mini 27.84 3298  30.11 32.21 6.28 33.68 15.19 | 2547

+Hint 4780  55.64 5562 5530 2849 5493 32,65 | 47.20
+Hint-translate 4220 4760 51.19 4596 2542 4815 2638 | 40.99

Aya-23 3595 4496 51.08 4572 1239 4489 2198 | 36.71

Ep +Hint 4178  51.74 5572 53.18 17.03 5132 28.71 42.78
5 +Hint-translate 40.04  50.09 54.60 52.15 17.50 4934 2674 | 4149
] +Fine tuned 39.13  51.09 5926 4549 3384 4723 2782 | 4341
BLOOMZ 4586  39.56  55.11 4842 1850 5171  41.89 | 43.01

+Hint 48.01 43.84 59.85 51.00 22779 54.17 4530 | 4642
+Hint-translate 50.19  43.67 59.99 5172 2097 5507 4575 | 46.77

Gemma-2 18.60 3444 4639 3314  14.13 3075 13.69 | 27.31

+Hint 2717 4039 4556 4206 19.55 3824  18.79 | 33.11
+Hint-translate 2601 3996 4446 4259 1856  38.97 18.01 32.65
Mistral-Nemo 23.05 3845 4837  32.57 11.58 3444  17.52 | 29.43

+Hint 39.78 5196  61.09 5052 28.08 51.62 36.14 | 45.60
+Hint-translate 3828 51.03 6027 49.10 2751 5256 3226 | 44.43
mT5-large 26.53 4923 7865 5461  30.17 51.83 2050 | 44.50
AYA-101 60.40 64.84 7817 7216 17.83 66.54 4258 | 57.50

+Hint 59.89 6256 7633 6943 1759 64.88  41.87 | 56.08
+Hint-translate 59.61 62.07 7641 69.32 1736  64.66  39.88 | 55.62

+Fine tuned 58.04 57.85 8042 6733  66.71 63.23  40.78 | 62.05
GPT40-mini 4419 4823 5777 53.60 10.72  48.85 19.21 40.37

+Hint 4492  46.11 6518 5374  11.89  49.03 2222 | 41.87
+Hint-translate 30.21  27.07 5139 3735 7.35 33.67 8.32 2791

) Aya-23 56.65  63.10 82.64  71.18 16.62 6999 3425 | 56.35
S +Hint 54.89 5827  80.62  64.42 16.53  66.07  32.14 | 53.28
g +Hint-translate 52.67 57.87 80.88 6424 1588 6351 2820 | 51.89
] +Fine tuned 41.60  47.13  66.69  60.19 7.02 5421 2196 | 42.69
T BLOOMZ 62.87 39.11 77.70 5558 2094 7697 5190 | 55.01
+Hint 5413 3066  71.13  46.23 19.64  71.84  43.60 | 48.18
+Hint-translate 65.06 3134 71.14 4876  20.55 76.69  49.67 | 51.89

Gemma-2 18.61 5041 7248 4449 1345 44.61 18.70 | 37.54

+Hint 2494 5219 7479 4747  13.85 5141 2328 | 41.13
+Hint-translate 2639 5446  76.16  54.83 13.87 5642 2573 | 43.98
Mistral-Nemo 3644 5144 7428  50.57 13.00 4585 2140 | 41.85

+Hint 3893 4623  69.99 5023 1263 36.54  18.86 | 39.06
+Hint-translate 4284 4252 69.01 4924 1237 3536  21.16 | 38.93
mT5-large 7398  67.14 6920 6787 7673 6725 7339 | 70.79
AYA-101 22.05 5146 4357 3533  29.61 3197 4562 | 37.09

+Hint 30.65 5698  60.34 5355 4075 43.86 5337 | 48.50
+Hint-translate 29.73 5756 59.92 5317 41770 4225 5594 | 48.61

+Fine tuned 81.20 79.51 82.73 79.76 78.73 81.23  83.97 | 81.02
GPT40-mini 4.45 11.58 5.34 1.93 0.03 12.77 9.49 6.51

+Hint 5192  69.00 47.07 5751 5185 63.08 47.46 | 5541
+Hint-translate 59.33 7643 51.01 58.14 5085 @ 68.11 52.04 | 59.42

5 Aya-23 6.35 19.51 22.82 9.69 6.46 10.27 4.53 11.38
z +Hint 23.04 4256 3343 3727 1774 3097  23.83 | 29.83
£ +Hint-translate 2197  39.17 31.07 3505 19.78 29.80 24.67 | 28.79
° +Fine tuned 3560  56.65 52.60 2469 71.55 37.61 36.15 | 44.98
~ BLOOMZ 21.54 40.20 34.88 38.30 15.08 16.87 27.67 27.79
+Hint 39.27 6232 49.76 57776 2723  29.80 47770 | 44.83
+Hint-translate 2894 6097  50.00 5590 21.56 2526  40.18 | 40.40

Gemma-2 18.60  12.04 23.04 17.08 15.09 11.63 6.58 14.87

+Hint 30.37 23.82 1939 3440 27.56  20.07 12.42 | 24.00
+Hint-translate 25.47 19.62 1607 2527 25.15 14.91 7.04 19.08
Mistral-Nemo 3.90 2022 2517 7.11 9.58 18.71 12.01 13.81

+Hint 41.00  59.99  53.13 5094 49.81 7243  60.70 | 55.43
+Hint-translate 3176 6299 5244 4891 4881 7629  48.05 | 52.75

Table 11: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
MLQA-IDK English-Questions setting across 7 language pairs. The bold scores represent the best performance for each category

and language.

Mdn

“unanswerable”," as illustrated in Figure 3.

L4 AYA-101 Fine-tuning

To fine-tune AYA-101 on the SQuAD 2.0 dataset,
we employed the QLoRA method to optimize mem-
ory efficiency and maintain high performance. The
input window size was set to 2048 tokens to accom-
modate longer context passages effectively. The

training process used a learning rate of 3e-5 and
a batch size of 2 for both training and evaluation.
The LoRA-specific parameters included a rank of
64, a scaling factor (alpha) of 32, and a dropout
rate of 0.1 to prevent overfitting. The LoRA bias
was configured as “none 7, and all linear layers
in the model were targeted for parameter-efficient
updates.
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Category  Model\Language ar de en es hi vi zh ‘ Avg
mT5-large 61.12  68.09 73.66 69.06 6341 61.67 62.64 | 65.66
AYA-101 56.29 6744 5991 5956 5793 5732 5935 | 59.69

+Hint 6230 68.76  67.89 6544 6374 6390 6591 65.42
+Hint-translate 62.08 6845 6771 6532 6352 6373 65.60 | 6520

+Fine tuned 73.03 7805 81.64 77.64 73.86 7353 75.85 | 76.23
GPT40-mini 10.06 17.56  30.11 13.58 12.31 16.84 13.65 16.30

+Hint 3640 4271  55.62 3931 3577 42,09 3872 | 41.52
+Hint-translate 21.26 2648 51.19 2458  21.52 2278  25.02 | 27.55

Aya-23 48.81 5451 51.08 53.06 4396 4833 4507 | 49.26

Ep +Hint 51.99 5836 5572 57.07 47.04 5223 4832 | 52.96
5 +Hint-translate 50.38 5726 5460 5556 4463 5033  46.19 | 51.28
] +Fine tuned 5482  59.72  59.26 5824  51.19 5294 5826 | 56.35
BLOOMZ 55.67  46.67 5511 5745 53.63 5593 57.57 | 54.58

+Hint 5877  49.66  59.85 6042 56.68 59.00 60.16 | 57.79
+Hint-translate 58.86  49.58 59.99 6046  57.12  59.21 60.37 | 57.94

Gemma-2 44.63 4294 4639 4329  39.60 42.08 3624 | 42.17

+Hint 4592 4425 4556 4498  41.18 4246 3729 | 43.09
+Hint-translate 4575 4425 4446 4525 4125 4151 37.63 | 42.87
Mistral-Nemo 2570  31.13 4837 2746 2424 3380 23.80 | 30.64

+Hint 4394  48.08 61.09 4646 4234  47.67 4424 | 47.69
+Hint-translate 4439  47.16 6027 4562 4095 47.19  44.16 | 47.11
mT5-large 55.81  69.47 7865 7037 68778 61.60 6233 | 66.72
AYA-101 7370  80.73  78.17 7638  75.88  74.82  73.08 | 76.11

+Hint 7154  79.10 7633 7401 7373 7238 7029 | 7391
+Hint-translate 7142 79.33 76.41 74.05 73.65 7246 7033 73.95

+Fine tuned 70.17 7890 8042 7641 7711 7573 7625 | 7643
GPT40-mini 1519 2643  57.77  21.01 19.20  26.13 2043 | 26.59

+Hint 2741  37.03 6518 3123 3546 3628 3191 37.79
+Hint-translate 21.12 28.84 51.39 2578 26779 2654 2724 | 29.67

5 Aya-23 72.49 77.45 82.64 76.95 65.78 71.23 67.46 73.43
S +Hint 69.83 7451 80.62 7379 6148 6940 6544 | 70.72
g +Hint-translate 69.11  73.81 80.88 7338 60.18 6821 63.82 | 69.91
] +Fine tuned 60.61 6478 66.69 6529 59.70 58.89 57.30 | 61.89
T BLOOMZ 7494 5251 7770 7622 7386  73.53 7283 | 71.66
+Hint 69.08 4393 71.13 7070 6897 67.66 6550 | 6528
+Hint-translate 69.11 4299 71.14 70773  69.30 67.62 65.62 | 6522

Gemma-2 59.10 5626 7248  56.01 57.52  60.03  54.53 | 59.42

+Hint 5847  56.04 7479 5695 56.18 59.57 5477 | 59.54
+Hint-translate 60.88  58.09 76.16 58.62 57.63 60.54 56.46 | 61.20
Mistral-Nemo 4039 4398 7428 41.89 3929 4251 33.67 | 45.14

+Hint 28.87 2995 69.99 3442 3406 19.56 30.19 | 35.29
+Hint-translate 29.03 3030 69.01 3512 37.08 20.58  33.51 36.38
mT5-large 68.73  66.14  69.20 67.19 5585 61.78  63.08 | 64.57
AYA-101 31.39  48.80 43,57 3576  32.69 33.18 39.85 | 37.89

+Hint 49.08 5425 6034 5331  49.70 5220  59.69 | 54.08
+Hint-translate 4872 53.19 5992 5297 4928 5170  58.86 | 53.52

+Fine tuned 7712 7685 8273 7938 69.28 7050 75.28 | 75.88
GPT40-mini 2.71 5.12 5.34 3.08 2.61 4.03 4.02 3.84

+Hint 4925  50.67 47.07 50.75 3621 50.11 4841 47.50
+Hint-translate 21.47 23.18 51.01 22.89 1410  17.59  21.87 | 24.59

5 Aya-23 14.94 22.33 22.82 19.26 13.27 16.75 13.24 17.52
= +Hint 2648 3571 3343 3340 2673 2855 2398 | 29.75
£ +Hint-translate 2359 3402 31.07 3035 2276 2567 21.14 | 2694
° +Fine tuned 46.54  52.63  52.60 4825 3921 4474  59.63 | 49.09
~ BLOOMZ 28.11 3847 3488 30.88 2517 31.66 35.89 | 32.15
+Hint 44.04  57.69 4976 4587  39.39  47.05 52.57 | 48.05
+Hint-translate 4419 5884  50.00 4593  39.99 47.61 52.90 | 48.49

Gemma-2 2395 2425 23.04 2528 1441 17.32 1025 19.79

+Hint 27.97 2771 1939  28.05 20.08 18.86 1245 | 22.07
+Hint-translate 24.11 24.84 1607  26.32 1820 1526  10.87 19.38
Mistral-Nemo 4.70 13.08  25.17 7.03 3.06 21.78 9.77 12.08

+Hint 6550  73.52  53.13 6351 5398 86.44 6421 65.76
+Hint-translate 66.35 70.81 5244 6048 4639 83.89 59.29 | 62.81

Table 12: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
MLQA-IDK English-Contexts setting across 7 language pairs. The bold scores represent the best performance for each category

and language.

The model was fine-tuned over 2 epochs using
the AdamWS8bit optimizer, which supports low-
memory operations while ensuring efficient gradi-
ent updates. Additionally, a weight decay of 0.01
was applied to regularize the model and prevent
overfitting. This configuration enabled effective
fine-tuning of AYA-101 on the question-answering
task while optimizing for both memory and com-

putational efficiency.
To further optimize memory and computational
efficiency, we employed 4-bit quantization.

LI.5 Fine-tuning AYA-23

For fine-tuning AYA-23 on SQuAD 2.0, we used
a learning rate of 3e-5 and set the batch size to
2 for both training and evaluation. The LoRA-
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Model | ar es th de hi tr el ro vi en ru zh | Avg
Aya-23 7.08 1043 0.78 1363 576 9.44 1031 1032 11.66 24.07 1220 6.73 | 10.20
+context 68.19 74.80 38.72 73.87 61.53 6791 76.18 67.23 66.73 83.77 73.97 64.12 | 68.09
BLOOMZ 038 023 000 0.00 0.17 000 0.00 0.00 041 066 0.10 023 | 0.18
+context 70.82 77.73 271 56.62 73.13 7.63 14.51 31.70 72.74 82.04 59.74 73.92 | 51.94
AYA-101 253 257 428 124 214 417 088 426 213 124 441 173 | 2.63
+context 70.00 73.74 70.50 74.71 70.16 72.79 76.65 74.20 73.90 79.01 73.65 69.46 | 73.23
Gemma-2 842 9.78 831 10.70 6.43 9.13 11.12 11.24 1097 16.00 11.00 8.07 | 10.10
+context 5840 5193 5894 49.76 59.93 5592 64.21 5223 58.79 72.10 63.29 60.17 | 58.81
Mistral-Nemo | 10.65 832 9.69 1031 831 735 10.86 6.70 10.50 20.87 8.83 8.05 | 10.04
+context 41.43 41.70 50.95 43.34 4341 40.26 48.76 36.02 46.62 79.19 4551 40.59 | 46.48
Table 13: Has Answer Performance Across Languages: No Context vs. With Context
Model\Language ar es th de hi tr el ro vi en ru zh Avg
AYA-101 7129 6632  59.13 6923  71.20  69.61 72.33 7139 6437  62.86 70.79 68.80 68.11
+hint 71.83 67.43 5884  69.25 7153 70.88 73.21 72.44  65.68  62.14 71.95 69.11 68.69
+hint translate 7140  66.61 58.58 6850 69.87 70.52 7257 7178 6499  61.57 71.15 67.83 67.95
+fine tuned 85.44  84.08 6093 80.36  85.34  78.28 85.29 84.12  83.10  88.64 83.54 83.27 81.87
GPT40-mini 3637 27.06 4124 34091 4550  40.25 2899 3450 3697  58.15 4091 33.27 38.18
+hint 70.73 5694 6376 64.16 7890 6565 6674 61.00 6295 85.18 7092  60.88 | 67.32
+hint translate 15.73 19.85 17.75 22.44 19.89 19.32 16.87  21.86 1922 5778 18.39 18.31 22.28
Aya-23 79.60  87.96 4525 88.00 67.94  81.45 89.81 86.67 7837  95.07 85.91 75.68 80.14
+hint 79.33 84.99  44.87 87.51 6436  80.36 8845 85.06 7748  95.38 84.22 73.59 78.80
+hint translate 74.75 81.04 4641 87.19  64.19  78.68 85.19 8296 7521 95.37 82.14 72.10 77.10
BLOOMZ 82.27 86.27 1676 66.57 84.23 3452 3527 5591 81.01 89.88 73.54 83.67 65.83
+hint 7950  84.53 11.03  62.67 82.58 24.64 2639 5120 77.89 87.91 69.26 81.49 61.59
+hint translate 76.68 82.99 9.17 58.66  79.98 21.77  23.03 4742  76.28 86.16 64.95 78.47 58.80
Gemma-2 91.06 8842 86.67 89.19 83.67 8449 9234 8213 85.06 96.02 85.97 83.41 87.37
+hint 90.48 88.13 86.12 88.90  81.70  83.18 90.76 8270  83.84  96.33 85.98 80.55 86.56
+hint translate 90.42 8753 85.30  89.49 8332 8373 90.68 83.35 83.62  96.41 87.10  82.13 86.92
Mistral-Nemo 62.10  60.34  60.03 6630 56.51 66.10 6834 62770  66.21 94.42 64.27 54.08 65.12
+hint 60.38 5886  60.12  53.15  56.01 57.84  62.81 58.15 46.60  94.68 57.41 55.49 60.13
+hint translate 5540 53.06 5250 4755 50.69 5140 57.08 5391 4350  94.03 54.16 52.34 55.47

Table 14: Has Answer F1 scores across 12 language pairs on repliQA-Trans dataset (English-Contexts setting). The bold scores

represent the best performance for each category and language.

Category ar fi ja ko ru avg indi
Answered (A) 301 312 240 282 235 538
Unanswered (U) 281 294 231 266 213 96
Total 582 606 471 548 448 634

Table 15: XTREME-UP QA dataset statistics on English con-
text settings. A: answerable questions, U: unanswerable ques-
tions, Total: total number of questions. The avg_indi column
represents the average over 26 low-resource languages in-
cluded in XTREME-UP (Ruder et al., 2023).

specific parameters included a rank of 64, an alpha
value of 32, and a dropout rate of 0.1, with the
bias set to “none . All linear layers were targeted
for parameter-efficient fine-tuning. The model was
trained for 3 epochs using the AdamW optimizer
with a weight decay of 0.01, and the maximum
sequence length was configured to 2048 tokens.

J Prompt Control Analysis

We conducted control experiments to evaluate
model sensitivity to prompt variations, particularly
focusing on language specification placement and
minor prompt changes. As shown in Figure 7, we
tested four prompt variants: Hint-Prompt, Hint-
Translate-Prompt, and their respective control ver-
sions that explicitly mention the target language in
the question description. Results in Table 20 show
minimal performance differences between these
variants, indicating that the model is robust to such
prompt modifications.
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Category  Model\Language ar fi ja ko ru avg_indi avg \
mT5-large 59.66  59.23  67.11 6536  70.78 50.77 53.30
AYA-101 7320 7212 7319  73.09 73.63 65.99 67.30

+hint 7347 7130 7289 7291 7433 63.90 65.58

+hint translate 7339 7209 72.80 7272  74.72 63.89 65.60

+fine tuned 7257 68.03  72.81 7522  70.60 52.90 56.41
GPT4o-mini 10.87  11.95 13.60 1547 9.44 20.54 19.01

g +hint 60.25 5637 6240 63.64 54.19 44.80 47.50
] +hint translate 20.78  28.82 3320 4517 3277 19.00 21.44
2 Aya-23 5044 4892 4535 5434 5329 39.49 41.53
< +hint 61.80 6098 6045 66.14 6439 40.08 44.28
+hint translate 5745 6026 5549  63.44 6043 40.67 44.14

+fine tuned 61.86 5494 6842  62.10 64.26 40.40 44.46
BLOOMZ 68.44 - 6591  53.41 60.81 52.61 53.86

+hint 67.63 - 64.55 5227 6211 47.69 49.80

+hint translate 68.03 - 64.47 52775 6221 47.66 49.81

Gemma-2 23.25 10.69 2244 2299 2537 22.06 21.86

+hint 31.70 4034 4634 4286  40.53 26.97 29.45

+hint translate 3552 4297 4692 4157 4630 30.06 32.39
mT5-large 5471 4196  59.83 59.99 5898 47.30 48.74
AYA-101 65.67 5622 56.83 6341  66.60 62.04 61.99

+hint 63.53 5333  55.12  60.12  65.81 58.74 58.90

+hint translate 63.95 5444 5494  60.11  67.13 58.85 59.09

+fine tuned 54.60 46.12 5559 5947 5245 45.46 46.98

- GPT4o-mini 18.03 19.67 2043 2403 16.29 23.09 22.46
g +hint 3044 2294 3245 3750 19.89 34.84 33.69
z +hint translate 11.60  16.55 15.14 2039 1395 13.23 13.65
s Aya-23 7040 53.14 57.04 74.62 71.22 41.66 46.04
= +hint 6777 4227 5641 6836  67.28 34.09 38.97
+hint translate 65.44  44.61 5473 7056  66.40 35.81 40.35

+fine tuned 6734 3415 6093 6298 6562 39.27 42.77
BLOOMZ 57.58 - 50.19  19.87  49.54 47.74 45.53

+hint 45.27 - 39.17  11.38 4194 38.85 36.80

+hint translate 45.37 - 38.88 1232 4215 38.69 36.70

Gemma-2 44.06 19.69  40.01 43.02  45.66 27.15 29.25

+hint 39.69 1393  36.21 4025  36.55 21.06 23.33

+hint translate 4254 1925 37.07 4034  41.03 24.28 26.46
mT5-large 6495 7156 7468 71.06 83.81 69.43 70.35
AYA-101 81.26  89.01  90.19 8334  81.38 85.50 85.41

+hint 84.11 90.37 9135 8647  83.73 89.06 88.72

+hint translate 8352 9082 9135 86.10 83.10 88.54 88.25

+fine tuned 91.82 9127 90.70 9192  90.62 88.52 89.03
GPT4o-mini 321 3.75 6.50 6.40 1.88 6.84 6.38

§ +hint 92.18 91.84 9351 9136  92.02 90.62 90.91
] +hint translate 30.61 4184 5195 7143 5353 43.01 44.28
: Aya-23 29.07 4445 33.19 3284 3349 31.88 32.39
zZ +hint 5540 80.84 6465 6379 61.19 71.71 70.50
+hint translate 48.88  76.88 5628 5589  53.84 67.31 65.65

+fine tuned 56.00 7699 7620 61.16 6276 47.41 50.97
BLOOMZ 80.08 - 8226 8898 7324 77.16 78.50

+hint 91.58 - 9091  95.62 8436 90.31 87.71

+hint translate 90.29 - 91.06 95.62 84.36 90.76 86.11

Gemma-2 0.95 1.14 4.19 1.76 2.98 1.15 1.34

+hint 23.14 6837 56.86 4562 4492 59.53 57.35

+hint translate 28.00 68.15 57.15 4286  52.12 61.52 59.32

Hint-Translate-Prompt

Table 16: F1 scores across three categories (Overall F1, Has answer F1, and No answer F1) on XTREME-UP dataset with English-
Contexts setting. The table shows performance across different languages with various models. The bold scores represent the
best performance for each category and language. The avg_indi column represents the average over 26 low-resource languages
included in XTREME-UP.

Hint-Prompt

"Given the following passage and question first translate
the question to {LANG}, then answer the question,
Your answer must be in {LANG}.{HINT_ADD}"

"Given the following passage and question, answer the
question. Your answer must be in {LANG}.{HINT_ADD}"

Hint-Translate-Prompt-control

Hint-Prompt-control

("Given the following question in {LANG} and the following

passage. first translate the question to {LANG}, then
answer the question, Your answer must be in {LANG}.
{HINT_ADD}"

"Given the following question in {LANG} and the following
passage, answer the question. Your answer must

be in {LANG}{HINT_ADD}"
/

Question Answering - Control

*{HINT_ADD}* - "If it cannot be answered based on the
passage, reply \"unanswerable\""

*{LANG}* - replace with the appropriate
language

Figure 7: Prompt variations used in control experiments to test model robustness to language specification and prompt formatting.
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Model MiXQuAD MiXQuAD MLQA-IDK MLQA-IDK
English-Questions English-Contexts  English-Questions English-Contexts
mBERT 1.36 1.58 1.51 1.45
XLM-R 1.80 1.69 1.74 1.53
mDeBERTa 1.99 2.47 1.89 2.21
mT5-large 1.91 2.43 1.79 2.39
AYA-23 3.58 3.52 3.52 3.60
+Hint 3.25 3.36 3.19 345
+Hint-translate 3.34 3.44 3.27 3.51
+Fine tuned 1.86 2.21 1.69 2.01
BLOOMZ 1.94 1.84 2.01 2.16
+Hint 1.56 1.48 1.70 1.91
+Hint-translate 1.69 1.51 1.95 2.00
AYA-101 2.61 2.34 2.54 2.05
+Hint 2.50 2.13 2.28 1.46
+Hint-translate 2.56 2.14 2.36 1.44
+Fine tuned 2.30 242 2.01 2.32
GPT40-mini 6.08 9.38 6.92 9.41
+Hint 4.78 7.48 4.95 7.26
+Hint-translate 7.25 11.36 6.67 9.38
Gemma-2 243 2.34 2.33 2.28
+Hint 2.39 2.52 2.34 2.52
+Hint-translate 2.72 2.73 2.69 2.75
Mistral-Nemo 4.77 6.88 4.69 6.49
+Hint 3.61 3.80 3.38 3.39
+Hint-translate 3.97 4.59 3.74 3.85
Average (gold) \ 2.86 2.92 3.31 3.18

Table 17: Average number of words in model predictions compared to gold answers across development sets in MiXQuAD and
MLQA-IDK datasets for both English-Questions and English-Contexts settings.
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Model Method Count  Uncertainty
AYA-23 Regular-Prompt 4034 -0.8205
AYA-23 Hint-Prompt 8939 -0.8802
AYA-101 Regular-Prompt 11752 -0.8738
AYA-101 Hint-Prompt 12347 -0.8917
BLOOMZ Regular-Prompt 8309 -0.6782
BLOOMZ Hint-Prompt 13351 -0.7840

Table 18: Uncertainty scores for correctly classified unanswer-
able questions across models and prompting methods. Lower
uncertainty values (more negative) indicate higher confidence.
Count represents the number of questions where the model
predicted "unanswerable" and the true label was also "unan-

swerable" (true positives for the unanswerable category).

Model Method Correct Incorrect Diff.

AYA-23  Regular-Prompt -0.8492 -0.7198 -0.1295
AYA-23  Hint-Prompt -0.8571 -0.7256 -0.1315
AYA-101 Regular-Prompt -0.9001 -0.8288 -0.0713
AYA-101  Hint-Prompt -0.9087 -0.8273 -0.0814
AYA-101  Fine-Tuned -0.8652 -0.8751 0.0099
BLOOMZ Regular-Prompt -0.7713  -0.6675 -0.1038
BLOOMZ Hint-Prompt -0.8168 -0.7108 -0.1060

Table 19: Mean uncertainty scores for correct versus incorrect
predictions. Negative differences indicate higher confidence
for correct predictions. The fine-tuned AYA-101 model shows

reduced calibration with near-zero difference.
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Category Model\Language ar es th de hi tr el ro vi en ru zh \Avg

hint 55.49 71.42 35.69 71.73 31.65 62.50 62.01 68.66 54.86 79.02 59.50 58.0959.22

Average h@nt—control 55.12 70.54 35.84 70.91 30.29 62.13 61.42 67.92 53.22 78.79 59.61 57.55|58.61
hint-translate 54.62 71.06 35.39 70.60 31.31 61.36 60.43 66.74 53.10 78.63 58.94 58.12|58.36
hint-translate-control 54.15 68.96 35.35 70.13 30.89 61.09 58.46 65.52 51.85 78.33 58.41 57.41|57.55

hint 71.31 76.79 23.73 76.65 19.23 68.74 71.66 75.60 63.59 80.53 70.90 59.13|63.16

Has answer h?nt—control 71.10 76.43 23.65 75.57 17.77 68.27 71.14 74.81 60.56 80.20 70.94 59.18|62.47
hint-translate 70.40 76.16 23.72 74.69 17.62 67.16 70.18 73.76 61.36 80.68 70.36 56.48|61.88
hint-translate-control 69.66 75.52 23.56 73.96 17.23 66.86 67.33 72.83 60.36 80.50 70.10 57.10|61.25

hint 34.13 64.18 51.82 65.08 48.42 54.09 48.98 59.30 43.09 76.99 44.11 56.69|53.91

No answer h@nt—control 33.57 62.59 52.27 64.63 47.17 53.86 48.30 58.62 43.32 76.88 44.34 55.33|53.41
hint-translate 33.34 64.18 51.14 65.08 49.78 53.52 47.28 57.26 41.96 75.86 43.54 60.32|53.61
hint-translate-control 33.22 60.10 51.25 64.97 49.32 53.29 46.49 55.67 40.37 75.40 42.64 57.83|52.55

Table 20: F1 scores across three categories (Average F1, Has Answer F1, and No Answer F1) for AYA-101 on miXQuAD in
the English-Questions setting across 12 language pairs. The bold scores represent the best performance for each category and
language.
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