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Abstract
Cross-lingual Extractive Question Answering (EQA)
extends standard EQA by requiring models to find
answers in passages written in languages different
from the questions. The Generalized Cross-Lingual
Transfer (G-XLT) task evaluates models’ zero-shot
ability to transfer question answering capabilities
across languages using only English training data.
While previous research has primarily focused on
scenarios where answers are always present, real-
world applications often encounter situations where
no answer exists within the given context. This
paper introduces an enhanced G-XLT task defini-
tion that explicitly handles unanswerable questions,
bridging a critical gap in current research. To ad-
dress this challenge, we present two new datasets:
miXQuAD and MLQA-IDK, which address both
answerable and unanswerable questions and respec-
tively cover 12 and 7 language pairs. Our study
evaluates state-of-the-art large language models us-
ing fine-tuning, parameter-efficient techniques, and
in-context learning approaches, revealing interesting
trade-offs between a smaller fine-tuned model’s per-
formance on answerable questions versus a larger
in-context learning model’s capability on unanswer-
able questions. We also examine language similarity
patterns based on model performance, finding align-
ments with known language families.1

1 Introduction

Extractive Question Answering (EQA) is the task
of finding text spans within given contexts that an-
swer given natural language questions. This field
was formalized with the Stanford Question An-
swering Dataset (SQuAD, Rajpurkar et al., 2016),
which set a key benchmark for EQA. Recent ad-
vances in large language models (LLMs, Brown
et al., 2020) have significantly improved EQA per-
formance, marking important progress in Natural
Language Understanding. Cross-lingual EQA is a
task where the question and its corresponding con-
text are presented in different languages2, address-
1The code and datasets are publicly available at https://gi
thub.com/NLU-BGU/Cross-Lingual-Extractive-Quest
ion-Answering-with-Unanswerable-Questions.

2This term is sometimes also used for referring to the case
where the training and test corpora are in different languages,
while in each of them the question and the context are in the
same language (Artetxe et al., 2020).

Figure 1: Illustration of Cross-lingual EQA task using
MiXQuAD examples. In these examples, questions are in
Spanish and contexts/answers are in English, demonstrating
both answerable and unanswerable cases. The English transla-
tion of each question is provided for reference.

ing a critical need in today’s globalized world. For
instance, an English-speaking user might need to
query content available only in Chinese or Arabic,
challenging the monolingual assumptions in tradi-
tional QA systems. Recent research has demon-
strated that EQA techniques can be effectively
applied to downstream tasks, showing promis-
ing results for example in zero-shot event extrac-
tion (Lyu et al., 2021) and summarization evalu-
ation (Deutsch et al., 2021; Durmus et al., 2020).
While these studies focused on English, their QA-
based approaches could naturally extend to cross-
lingual scenarios such as cross-lingual summariza-
tion (Wang et al., 2022) and cross-lingual event ex-
traction (Subburathinam et al., 2019). Lewis et al.
(2020) introduced the Generalized Cross-Lingual
Transfer (G-XLT) task, addressing cross-lingual
QA in the case where models are trained on En-
glish and evaluated on multiple language pairs, as-
suming that all questions are answerable. However,
the ability to identify when a question cannot be
answered is crucial for real-world applications.
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In this paper, we expand the G-XLT frame-
work by introducing unanswerable questions, as
illustrated in Figure 1. This extension reflects
real-world scenarios where answers may not ex-
ist within the given context. Our approach also
broadens the evaluation of Lewis et al. (2020), lim-
ited to encoder-based models, to include state-of-
the-art models, encompassing large language mod-
els (LLMs) and various transformer architectures,
providing a more comprehensive assessment of
cross-lingual QA capabilities. To address the limi-
tations in current datasets and to provide a robust
benchmark for this extended task, we have devel-
oped two test datasets: miXQuAD and MLQA-
IDK. The miXQuAD dataset combines elements
from SQuAD v2.0 and XQuAD (Rajpurkar et al.,
2018; Artetxe et al., 2020), integrating unanswer-
able questions into a multilingual framework. It
covers 12 languages and includes a total of 2,072
examples per language, balancing answerable and
unanswerable questions. The MLQA-IDK dataset,
derived from MLQA (Lewis et al., 2020), specifi-
cally focuses on cross-lingual unanswerability, cov-
ering 7 language pairs and employing techniques
such as antonym and entity augmentation to gener-
ate unanswerable questions.

Our cross-lingual QA analysis reveals a trade-off
between fine-tuned small models and large models
with in-context learning: mT5-large (1.2B param-
eters) with fine-tuning excelled at detecting unan-
swerable questions, while AYA-101 (13B parame-
ters) with hint prompting, where the unanswerabil-
ity option is mentioned in the prompt, performed
better on answerable questions. Hint prompting
significantly improved unanswerable question de-
tection across models while maintaining perfor-
mance on answerable questions. Fine-tuned AYA-
101 achieved the best performance, outperform-
ing both its regular prompt version and mT5-large
across both answerable and unanswerable ques-
tions. Out-of-domain testing on MLQA-IDK and
open-domain evaluation on XTREME-UP (Ruder
et al., 2023) demonstrate model robustness across
diverse QA scenarios, including low-resource lan-
guages.

We also examine the dependence of the results
on the specific languages and on linguistic rela-
tionships. First, comparing between cases where
the question is in English (English-Questions) to
those where the context is in English (English-
Contexts), we observe that models performed bet-
ter when contexts are in English, indicating that

processing questions in various languages while
keeping English contexts is more manageable. Sec-
ond, language clustering analysis revealed three
groups that align to some extent with language
typology—suggesting linguistic relationships influ-
ence model behavior.

In an advanced analysis, we examine
answerability-related error patterns, test the
models’ reliance on parametric knowledge, and
explore their uncertainty in the different types
of prediction. In particular, we observe that hint
prompting reduces uncertainty when classifying
unanswerable questions, while fine-tuning im-
proves overall certainty but reduces the confidence
gap between correct and incorrect predictions.

Our main contributions are the following. First,
we expand the Generalized Cross-Lingual Transfer
(G-XLT) task to explicitly handle unanswerable
questions. Second, we introduce two novel test
sets, miXQuAD and MLQA-IDK for the extended
task. Third, through the analysis of state-of-the-art
models with varying architectures and parameter
sizes, we provide insights into performance pat-
terns and language dependency, and reveal trade-
offs between model size and training approaches,
advancing cross-lingual QA understanding.

2 Related Work

2.1 Extractive Question Answering

EQA is a fundamental Natural Language Under-
standing (NLU) task that involves identifying and
extracting answer spans from a given context in
response to natural language questions. This task
serves as a critical benchmark in evaluating ma-
chine reading comprehension capabilities (Wang
et al., 2018). Initially, EQA research focused
primarily on monolingual settings, with SQuAD
(Rajpurkar et al., 2016) establishing foundational
benchmarks through English Wikipedia-derived
question-answer pairs. The introduction of BERT
(Devlin et al., 2019) marked a significant advance-
ment through its use of bidirectional transform-
ers, though early development remained largely
English-centric, with other language datasets often
being SQuAD translations such as Arabic (Mozan-
nar et al., 2019) and Spanish (Carrino et al., 2020).

2.2 Evolution of Cross-lingual QA

The development of QA in multiple languages
has followed two main strategies: fine-tuning ex-
isting models for new languages and developing
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zero-shot transfer capabilities across languages.
Datasets like XQuAD (Artetxe et al., 2020), Ty-
DiQA (Clark et al., 2020), and XTREME (Hu
et al., 2020) have facilitated this research through
multilingual question-answer pairs. The Multilin-
gual Transfer (XLT) task, introduced with MLQA
(Lewis et al., 2020), pioneered generalization from
English-trained models to other languages, where
questions and contexts are in the same language.
Its extension, the G-XLT task, formalized cross-
lingual QA by requiring models trained solely on
English data to handle questions and contexts in
different languages. Recent work has explored
retrieval-augmented approaches to address cross-
lingual challenges. Cross-lingual QA has also been
studied in open-domain QA, where document re-
trieval is required before answering the question.
In particular, XOR-TyDi QA (Asai et al., 2020) re-
vealed severe performance drops when answers ex-
ist only in foreign-language documents, requiring
retrieval across massive multilingual corpora. More
recently, Ranaldi et al. (2025) demonstrated that
multilingual RAG systems face unique difficulties
when retrieved documents span multiple languages,
with performance degrading when models must
integrate information across linguistic boundaries.
However, all these frameworks assumed questions
were answerable. We extend the G-XLT frame-
work to address this gap by introducing two com-
plementary benchmarks: miXQuAD and MLQA-
IDK, providing evaluation capabilities across mul-
tiple languages with explicit no-answer detection.
We also explore the adaptability of our study to
open-domain settings in Section 5.4.

2.3 No Answer Importance

The ability to identify unanswerable questions
is critical in real-world applications, with NQ
(Kwiatkowski et al., 2019) showing that 51% of
real queries lack answers in their given context.
While this challenge has been studied in English
monolingual settings, beginning with SQuAD v2.0
(Rajpurkar et al., 2018), research has shown that
even advanced language models struggle with this
task, often hallucinating plausible but incorrect an-
swers (Slobodkin et al., 2023). English-focused
datasets like HotpotQA (Yang et al., 2018) and
MuSiQue (Trivedi et al., 2022) further demon-
strated this challenge through multi-document rea-
soning requirements, with MuSiQue introducing
contrast questions to increase evaluation rigor.
However, these existing datasets and research have

focused on monolingual settings, leaving a gap in
understanding how models perform on unanswer-
able questions in cross-lingual scenarios, which we
address in this paper.

3 Task, Dataset Creation And Structure

3.1 The Task
The task of Generalized Cross-Lingual EQA with
IDK is defined as follows. Given a training dataset
D = {(ci, qi, ai)}Ni=1, N ∈ N, where ci is a con-
text, qi is a question, ai is an answer, and all ele-
ments ci, qi, ai are in English, we aim to learn a
mapping:

f : (q ∈ Lq, c ∈ Lc) →
{
s ⊆ c if answer exists
IDK otherwise

where Lc and Lq are the context and question lan-
guages respectively, and Lc = Lq = English.

During evaluation, we consider two settings:
(i) English-Questions: where questions are in En-
glish and contexts are in other languages (Lq =
English, Lc ̸= English), and (ii) English-Contexts:
where contexts are in English and questions are in
other languages (Lc = English, Lq ̸= English).

3.2 Dataset Creation and Structure
To evaluate cross-lingual EQA capabilities, we
present two evaluation test sets: miXQuAD and
MLQA-IDK.

miXQuAD Creation The miXQuAD dataset
was created by combining XQuAD (which con-
tains questions and contexts in 12 languages) with
unanswerable questions from SQuAD v2.0. Since
XQuAD only includes answerable questions, we
enhanced it by identifying matching contexts in
SQuAD v2.0 that contained unanswerable ques-
tions and aligning these with the corresponding
XQuAD contexts across all languages. For the
English-Questions setting, we paired English unan-
swerable questions with contexts in each target lan-
guage. For the English-Contexts setting, we trans-
lated these unanswerable questions into the 11 non-
English languages. This design ensures no data
leakage, as XQuAD derives from SQuAD v2.0’s
dev set while models train exclusively on SQuAD
v2.0’s train set. The resulting miXQuAD dataset
contains 12 language-specific test sets available in
both English-Questions and English-Contexts con-
figurations. In the English-Questions setting, each
language maintains exactly 1,190 answerable and
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882 unanswerable examples (2,072 total). In the
English-Contexts setting, while answerable ques-
tions remain constant at 1,190, unanswerable ques-
tion counts vary by language as shown in Table 1.
The languages covered are English (en), Spanish
(es), German (de), Greek (el), Russian (ru), Turkish
(tr), Arabic (ar), Vietnamese (vi), Thai (th), Chi-
nese (zh), Hindi (hi), and Romanian (ro).

en ar es th de hi tr el ro vi ru zh

A 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K
U .9K .7K .8K .6K .8K .8K .8K .8K .8K .8K .8K .7K
T 2.1K 1.9K 2.0K 1.8K 2.0K 2.0K 2.0K 2.0K 2.0K 2.0K 2.0K 1.9K

Table 1: miXQuAD English-Contexts statistics. A: answer-
able, U: unanswerable questions. T: total. Overall, there are
24,000 questions (14,400 answerable, 9,600 unanswerable)
across 12 languages.

MLQA-IDK Creation Starting from MLQA, a
cross-lingual dataset containing answerable ques-
tions, we extended it to include unanswerable cases
to create MLQA-IDK. Following techniques from
Gautam et al. (2023), we employed two primary
methods for generating unanswerable questions:
entity swapping and antonym substitution (exam-
ples shown in Figure 6, Appendix A). These meth-
ods create unanswerable questions by substituting
key information while preserving the overall struc-
ture and domain relevance of the original questions.
We generated the unanswerable questions in En-
glish to create the English-Questions setting, and
translated these questions into the other six lan-
guages to create the English-Contexts setting. Due
to MLQA’s incomplete overlap between questions
and contexts across languages, the amount of data
varies by language, as summarized in Table 2. The
dataset encompasses seven languages: English (en),
Spanish (es), German (de), Arabic (ar), Vietnamese
(vi), Chinese (zh), and Hindi (hi). Our quality as-
sessment of MLQA-IDK’s generated unanswerable
questions, performed by two of the authors on a
random sample of 100 questions, achieved 95%
inter-annotator agreement on both unanswerability
and well-formedness. The analysis revealed a 7%
noise rate, comparable to that reported in SQuAD
v2.0’s manual analysis (Rajpurkar et al., 2018).

ar de en es hi vi zh

A 5.3K 4.5K 11.6K 5.3K 4.9K 5.5K 5.1K
U 3.7K 3.2K 12.9K 3.7K 3.5K 4.0K 3.6K
T 9.1K 7.7K 24.5K 9.0K 8.4K 9.5K 8.8K

Table 2: MLQA-IDK dataset statistics. A: answerable, U:
unanswerable questions, T: total. Overall, there are 76.9K
questions (46.7K A, 30.2K U) across 7 languages.

Evaluating Machine Translation All transla-
tions were performed using the Google Translate
API. To ensure the accuracy of translations within
our dataset, we implemented a back-translation
strategy, as described in Lin et al. (2021). This
involved translating the questions from foreign
languages back into English. We then employed
Sentence-BERT (Reimers and Gurevych, 2019) to
generate embeddings for both the original and back-
translated English texts, subsequently computing
the cosine similarity between them. Only ques-
tions with a cosine similarity score above 0.75 were
retained. This stringent validation procedure, de-
picted in Figure 2, guarantees the reliability of our
dataset for evaluating the effectiveness of EQA
systems across language pairs. All the statistics
reported in this section, including those in Tables
1 and 2 concern the final versions of the corpora,
after validation.

Figure 2: Example of the back-translation strategy encoding
an Arabic sentence.

4 Methodology

All our experiments were conducted in a zero-shot
setting, where the training data (for fine-tuning)
and provided examples (for in-context learning)
are exclusively in English from the SQuAD v2.0
dataset. As detailed in Appendix B, we experi-
mented with a diverse set of models ranging from
168M to 13B parameters, using either fine-tuning
or in-context learning approaches depending on
model architecture and size.

4.1 Fine-Tuning Language Models

Our methodological framework centers on fine-
tuning state-of-the-art multilingual language mod-
els for EQA tasks. We employ two main fine-tuning
strategies to optimize model performance:

Fine-Tuning We conduct full fine-tuning on
smaller multilingual models including mBERT
(168M parameters), XLM-RoBERTa (279M pa-
rameters), mDeBERTa (276M parameters), and
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mT5-large (1.2B parameters). This approach al-
lows us to thoroughly adapt these models to the
specific requirements of cross-lingual EQA.

Parameter-Efficient Fine-Tuning For larger
models like AYA-101 (13B parameters) and AYA-
23 (8B parameters), we utilize two efficient fine-
tuning techniques: Low-Rank Adaptation (LoRA,
Hu et al., 2021) and Quantized LoRA (QLoRA,
Dettmers et al., 2024). LoRA enables efficient
training without fully retraining the model, while
QLoRA further reduces memory usage through
quantization. These methods are particularly valu-
able for fine-tuning large-scale LLMs while main-
taining computational efficiency.

4.2 In-Context Learning

In-context learning is a pivotal methodology in our
research for training models on EQA tasks, lever-
aging the model’s ability to learn from a few exam-
ples. For this approach, we employed several large
language models: GPT4-O-mini (8B parameters)
using OpenAI API, Gemma-2 (9B parameters),
Mistral-Nemo (12.2B parameters), AYA-101 (13B
parameters), BLOOMZ (7B parameters), and AYA-
23 (8B parameters). We adapted prompt formats
from Slobodkin et al. (2023) to the cross-lingual
case. For each prompt type, we used three differ-
ent variants of few-shot prompts, each containing
three examples (two answerable and one unanswer-
able), thus minimizing potential bias from specific
example selections.

As shown in Figure 3, our approach uses two
prompt families. The Question Answering fam-
ily includes Regular-Prompt, Hint-Prompt, and
Hint-Translate-Prompt, guiding models to provide
answers or identify when no answer exists. The
Hint-Prompt alerts models to potential answer ab-
sence, while Hint-Translate-Prompt adds a question
translation step. The Classification family, using
Answerability-Prompt, focuses solely on determin-
ing if sufficient information exists to answer the
question. To identify unanswerable questions, we
implemented pattern matching that includes varia-
tions of “unanswerable”, “no answer”, “unknown”,
“not enough information”, and similar phrases in
different contexts and formulations.

5 Results

5.1 Model Architecture and Training
Approach Effects

Our analysis primarily focuses on the English-
Questions setting, while a detailed discussion of
the English-Contexts setting is presented in Section
5.3.1.

Encoder-only architectures Early cross-lingual
EQA research relied heavily on encoder-only archi-
tectures. Table 3 reveals an intriguing characteristic
of these models: while mDeBERTa achieved the
best overall performance among encoders (63.64
F1), all three models exhibited remarkably strong
No Answer performance (76.18-86.06 F1) but
struggled significantly with answerable questions
(34.13-52.26 F1). This severe imbalance suggests
that encoder-only architectures excel at identifying
when questions cannot be answered from the given
context.

Model Avg Has Ans No Ans

mBERT 56.23 34.13 86.06
XLM-R 58.57 45.52 76.18
mDeBERTa 63.64 52.26 78.98

Table 3: F1 scores comparison of encoder-only models aver-
aged across all languages in miXQuAD English-Questions
setting. The bold scores represent the best performance for
each category.

5.2 Model Size and Training Approach Effect
Given the limitations of encoder-only models, we
focus on encoder-decoder and decoder-only archi-
tectures. Table 4 presents a comprehensive compar-
ison revealing several key patterns in cross-lingual
QA performance.

Hint prompting improves unanswerability de-
tection. Adding hints about potential unanswer-
ability substantially increased No Answer F1
scores across all models. AYA-101 improved from
35.16 to 54.74, while GPT4o-mini showed the most
dramatic increase from 4.97 to 60.23. Crucially,
this improvement maintained comparable answer-
able question performance (AYA-101: 67.86 vs.
66.71), suggesting that hint prompting helps mod-
els better calibrate confidence thresholds rather
than simply biasing toward ’unanswerable’ pre-
dictions.

Parameter count alone does not determine per-
formance. Despite having over 10× more param-
eters, AYA-101 (13B) with regular prompting un-
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Figure 3: Example prompts used to evaluate the in-context learning methodology.

derperformed mT5-large (1.2B)—64.03 vs. 53.94
Average F1—revealing complementary strengths
across architectures.3 AYA-101 excelled at an-
swer extraction (67.86 vs. 50.55 F1) while mT5-
large dominated unanswerability detection (82.20
vs. 54.74 F1). Only through fine-tuning did AYA-
101 achieve the best overall performance (81.23
F1), demonstrating that the training approach mat-
ters more than parameter count.

Verbosity correlates with poor task adaptation.
Answer verbosity appears to impact only untrained
large models. GPT4o-mini and Mistral-Nemo, both
large models without task-specific training, pro-
duced excessively verbose answers (6-9 words on
average) which likely contributed to their lower F1
scores through partial match penalties. In contrast,
all other models regardless of size maintained con-
cise responses similar to gold answer length (1-3
words), as detailed in Appendix G. This pattern
suggests that excessive verbosity is a symptom of
insufficient task adaptation rather than an inherent
characteristic of model size.

Translation-based prompting consistently un-
derperforms. Hint-translate prompting system-
atically underperformed standard hint prompting
across all models and languages. This degra-
dation was particularly severe for answerable
questions—GPT4o-mini dropped from 49.60 to
30.98 F1, while even well-performing models like
BLOOMZ showed similar patterns. The consis-
tency of this effect suggests that additional transla-

3Statistical significance was assessed using t-tests between
systems across all languages.

tion steps introduce systematic errors rather than
beneficial cross-lingual signals.

Model Avg Has Ans No Ans

mT5-large 64.03 50.55 82.20
Aya-101 53.94 67.86 35.16
+Hint 61.61 66.71 54.74
+Hint-translate 61.41 66.20 54.94
+Fine tuned 81.23 77.09 86.80

GPT4o-mini 28.90 46.65 4.97
+Hint 54.12 49.60 60.23
+Hint-translate 43.49 30.98 60.37

Aya-23 41.01 58.98 16.77
+Hint 48.56 56.87 37.36
+Hint-translate 47.10 54.12 37.63
+Fine tuned 53.36 50.65 59.02

BLOOMZ 41.57 42.33 40.56
+Hint 48.03 37.69 61.98
+Hint-translate 47.96 39.11 59.89

Gemma-2 30.63 34.87 24.91
+Hint 38.93 40.04 37.44
+Hint-translate 38.99 43.61 32.75

Mistral-Nemo 29.96 42.59 12.91
+Hint 50.96 43.86 60.54
+Hint-translate 48.39 42.50 56.33

Table 4: Average F1 scores by category on miXQuAD English-
Questions setting. The bold scores represent the best perfor-
mance for each category.

5.3 Language Dependency

5.3.1 English-Questions vs. English-Contexts
In the English-Contexts setting (Table 5), hint
prompting maintained its effectiveness across mod-
els. AYA-101 showed improvement from its reg-
ular prompt version. Similar enhancements were
observed in other models like BLOOMZ, Gemma-
2, and notably Mistral-Nemo. As shown in Fig-
ure 4, analyzing Average F1 scores across all
model variants (regular, hint, hint-translate, and
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Figure 4: Average F1 scores across languages for English-
Questions and English-Contexts settings. Each bar represents
the mean performance of all models and their variants (reg-
ular, hint, hint-translate, and fine-tuned) for each language,
comparing both experimental settings.

fine-tuned), models consistently performed better
in the English-Contexts setting compared to the
English-Questions setting. The gap is largest for
Asian languages (Thai: 47.56 vs. 31.91, Hindi:
51.81 vs. 29.03) and the performances are com-
parable for European languages (Spanish: 56.84
vs 56.89, German: 56.16 vs. 57.02). The data
suggests that processing questions in various lan-
guages while keeping English contexts is more
manageable than handling contexts in different lan-
guages. This pattern can be attributed to two key
factors: (1) questions generally have simpler lin-
guistic structures than full contexts, making them
easier to process across languages, and (2) answer
extraction in English (the training data language) is
more straightforward than in other languages. The
complete model-specific performance can be found
in Appendix B.

5.3.2 Language Similarity
The clustering methodology comprised two se-
quential phases, first applying K-Means clustering
(k=3) to each model’s F1 performance data across
has-answer, no-answer, and combined metrics,
then synthesizing results through a co-occurrence
matrix quantifying language pair clustering fre-
quency. Final consensus clusters were determined
using hierarchical clustering with Ward’s linkage
(Ward Jr, 1963). The analysis reveals three dis-
tinct clusters (Figure 5): (1) five Indo-European
languages (Russian, Romanian, Spanish, German,
English); (2) Vietnamese, Turkish, Arabic, and
Greek—languages from four different language

Model Avg Has Ans No Ans

mT5-large 72.38 70.99 74.24
Aya-101 70.30 81.07 55.77
+Hint 73.24 79.03 65.43
+Hint-translate 72.94 79.13 64.59
+Fine tuned 80.96 78.44 84.35

GPT4o-mini 17.34 26.40 5.12
+Hint 47.42 39.48 58.15
+Hint-translate 28.52 28.99 27.87

Aya-23 51.59 72.31 23.65
+Hint 57.28 70.31 39.69
+Hint-translate 55.53 69.58 36.56
+Fine tuned 63.07 68.03 56.38

BLOOMZ 52.14 53.57 50.22
+Hint 57.54 47.66 70.88
+Hint-translate 57.79 46.99 72.35

Gemma-2 47.75 61.07 29.79
+Hint 50.23 61.02 35.67
+Hint-translate 49.49 62.20 32.34

Mistral-Nemo 30.23 44.84 10.50
+Hint 51.77 36.38 72.53
+Hint-translate 49.79 37.97 65.73

Table 5: Average F1 scores by category on miXQuAD English-
Contexts setting. The bold scores represent the best perfor-
mance for each category.

Figure 5: Hierarchical clustering dendrogram of languages
based on consensus clustering across all models, using F1
scores averaged over has-answer and no-answer questions

families; and (3) Chinese, Hindi, and Thai, which
all use non-Latin scripts. The second cluster’s un-
expected grouping of unrelated languages suggests
that factors other than linguistic family relation-
ships determine model performance patterns in
cross-lingual transfer.

5.4 Evaluating Model Robustness
We evaluated model robustness using MLQA-IDK
beyond their original training domain. Since all
models were trained on SQuAD v2.0 or received
examples from it during in-context learning, this
dataset provides insight into their ability to gen-
eralize to unseen data sources. Results, shown in
Table 6, confirm that hint prompting improves per-
formance across models, particularly for unanswer-
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able questions, while fine-tuned AYA-101 main-
tains performance on unseen data, achieving 69.96
F1 and 76.23 F1 in English-Questions and English-
Contexts respectively.

We examined model adaptability to open-
domain question answering using XTREME-UP

QA (Ruder et al., 2023), which includes Arabic,
Finnish, Japanese, Korean, Russian, and 26 low-
resource Indic languages. This dataset pairs ques-
tions with gold paragraphs for evaluation of answer
extraction capabilities in multilingual settings. Re-
sults are in Table 16 (Appendix F). In this case too,
hint prompting enhanced performance on unan-
swerable questions, improving the ability to clas-
sify cases where no answer exists in the provided
context. We also observe that fine-tuning AYA-101
improved performance on unanswerable questions.
The inclusion of XTREME-UP emphasizes evalu-
ation in open-domain QA settings, particularly in
low-resource language contexts.

6 Advanced Analysis

6.1 Error Pattern Analysis

We conducted a detailed analysis of models’ perfor-
mance as binary classifiers for question answerabil-
ity across different prompting strategies. Two main
approaches were evaluated: Hint-Prompt, which
explicitly warns about potential unanswerable ques-
tions, and Answerability-Prompt, which focuses
solely on determining answerability. As shown in
Table 7, our analysis reveals a consistent trade-off
across models. Hint-Prompt achieves higher recall
on answerable questions but moderate recall on
unanswerable ones, while Answerability-Prompt
shows the opposite pattern. For example, AYA-101
with Hint-Prompt achieves 0.929/0.601 recall (an-
swerable/unanswerable) compared to 0.706/0.849
with Answerability-Prompt. These patterns suggest
that the choice between prompting strategies de-
pends on whether correctly identifying answerable
questions or detecting unanswerable ones is more
critical for the specific application.

6.2 Testing Models’ Reliance on Parametric
Knowledge

Parametric knowledge refers to information stored
in the model’s parameters during pre-training that
can be accessed without external context. To eval-
uate the extent of this knowledge in our models,
we conducted two experiments. First, using reg-
ular prompts, we evaluated answerable questions

without their corresponding contexts. All models
showed performance drops when context was re-
moved, with AYA-101’s average F1 score falling
from 73.23 to 2.63 (see in Appendix D). To further
validate these findings on truly unseen data, we
evaluated our models on repliQA-Trans, which was
created after all models’ pre-training by translating
500 answerable questions from RepliQA (Mon-
teiro et al., 2024) into 11 languages using our val-
idated machine translation pipeline ( Section 3.2).
The results show that Gemma-2 achieved the high-
est average performance (87.37 F1), followed by
fine-tuned AYA-101 (81.87 F1) and AYA-23 (80.14
F1). The complete language-specific results are pre-
sented in Appendix E, demonstrating that models
maintain performance even on post-training data.

6.3 Uncertainty Estimation

We analyzed model confidence in cross-lingual QA
using the Claim Conditioned Probability method
from Vashurin et al. (2025). This white-box method
estimates uncertainty based on the probability of
the predicted answer conditioned on the input us-
ing the model’s internal logits. The evaluation in-
cluded six models: AYA-23, AYA-101, BLOOMZ,
and a fine-tuned variant of AYA-101, evaluated
on the miXQuAD dataset. Building on our find-
ings that hint prompting improves unanswerable
question classification, we observe two key results:
hint prompting reduces uncertainty when classi-
fying unanswerable questions compared to reg-
ular prompting, aligning with the improved per-
formance on "No answer" cases in our F1 eval-
uations (Section 5.2). Additionally, while fine-
tuning improves overall model certainty, it reduces
the confidence gap between correct and incorrect
predictions—fine-tuned models show lower uncer-
tainty overall but lose the ability to distinguish
between confidence levels for right versus wrong
answers compared to non-fine-tuned models. De-
tailed uncertainty scores and calibration analysis
are in Appendix H.

7 Conclusion

Our study advances cross-lingual EQA through sev-
eral key findings. Fine-tuning large language mod-
els proved most effective, with AYA-101 outper-
forming both smaller fine-tuned models and large
models using in-context learning. Hint prompting
enhanced unanswerable question detection without
compromising answerable performance. Models
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English-Questions English-Contexts

Model Average Has Ans No Ans Average Has Ans No Ans

mT5-large 51.24 44.50 70.79 65.66 66.72 64.57
Aya-101 48.47 57.50 37.09 59.69 76.11 37.89
+Hint 52.68 56.08 48.50 65.42 73.91 54.08
+Hint-translate 52.44 55.62 48.61 65.20 73.95 53.52
+Fine tuned 69.96 62.05 81.02 76.23 76.43 75.88

GPT4o-mini 25.47 40.37 6.51 16.30 26.59 3.84
+Hint 47.20 41.87 55.41 41.52 37.79 47.50
+Hint-translate 40.99 27.91 59.42 27.55 29.67 24.59

Aya-23 36.71 56.35 11.38 49.26 73.43 17.52
+Hint 42.78 53.28 29.83 52.96 70.72 29.75
+Hint-translate 41.49 51.89 28.79 51.28 69.91 26.94
+Fine tuned 43.41 42.69 44.98 56.35 61.89 49.09

BLOOMZ 43.01 55.01 27.79 54.58 71.66 32.15
+Hint 46.42 48.18 44.83 57.79 65.28 48.05
+Hint-translate 46.77 51.89 40.40 57.94 65.22 48.49

Gemma-2 27.31 37.54 14.87 42.17 59.42 19.79
+Hint 33.11 41.13 24.00 43.09 59.54 22.07
+Hint-translate 32.65 43.98 19.08 42.87 61.20 19.38

Mistral-Nemo 29.43 41.85 13.81 30.64 45.14 12.08
+Hint 45.60 39.06 55.43 47.69 35.29 65.76
+Hint-translate 44.43 38.93 52.75 47.11 36.38 62.81

Table 6: Average F1 scores by category on MLQA-IDK comparing English-Questions and English-Contexts settings. The bold
scores represent the best performance for each category.

H-Prompt Answerability

Model HA NA HA NA
P R P R P R P R

AYA-23 .67 .94 .83 .39 .75 .83 .73 .62
BLOOMZ .73 .65 .59 .66 .64 .83 .61 .36
AYA-101 .76 .93 .86 .60 .86 .71 .68 .85
GPT4-O .76 .94 .88 .59 .90 .71 .69 .89
Gemma-2 .66 .90 .72 .37 .74 .61 .58 .71
M-Nemo .75 .76 .67 .67 .89 .35 .52 .94

Table 7: Precision (P) and Recall (R) metrics averaged across
MiXQuAD test sets for question answerability. Acronyms:
HA (Has Answer), NA (No Answer), H-Prompt (Hint-
Prompt), M-Nemo (Mistral-Nemo), GPT4-O (GPT4o-mini).

showed better performance with English contexts
versus English questions. Performance patterns
aligned to some extent with traditional language
families, indicating the influence of linguistic re-
lationships. Our study also suggests that models
rely on contextual understanding rather than mem-
orized knowledge. These findings support devel-
oping more effective cross-lingual EQA systems
across diverse languages.

Limitations

This work evaluated scenarios where one language
is English, leaving unexplored the model’s capabil-
ity to handle question-answer pairs between two
non-English languages. While our study focuses
on datasets derived from SQuAD and MLQA, fu-
ture research should explore cases of longer con-

texts and more complex reasoning, such as in the
monolingual HotpotQA dataset. Additionally, for
the use of prompting with LLMs, we only consid-
ered few-shot prompting with English examples.
Future work could explore instruction-only prompt-
ing, where no examples are provided.
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A Examples of Unanswerable Questions

Figure 6 shows examples of our unanswerable ques-
tions generation methods: entity swapping (ques-
tions 1-2) and antonym substitution (question 3).

B Additional Details of Models

Table 8 provides a comprehensive overview of the
transformer models used in our experiments, in-
cluding their architectures, parameter counts, and
adaptation methods.

C Model Performance on Different
Settings

In this section, we present detailed performance
results across different experimental settings. Ta-
bles 9 and 10 show the full results on miXQuAD
English-Questions and English-Contexts settings,
respectively. While Tables 11 and 12 show results
on MLQA-IDK English-Questions and English-
Contexts settings, respectively.

D Analysis of Context Dependency

To investigate how models leverage contextual in-
formation versus parametric knowledge, we com-
pare performance with and without providing the

context passage. Our analysis examines the mod-
els’ performance across different languages and
question types when contextual information is in-
troduced. Table 13 demonstrates the substantial
performance improvements observed when contex-
tual information is provided.

E Performance on Post-Training Data

To validate our findings on truly unseen data, we
evaluate performance on repliQA-Trans, created
after model pre-training. Table 14 shows Has An-
swer F1 scores across all languages, demonstrating
the models’ ability to generalize to new content.

F Performance on Open-Domain Data

We evaluated our models as answer extraction
components for open-domain QA systems using
XTREME-UP QA’s reading comprehension data
(Ruder et al., 2023), where questions are paired
with gold paragraphs. Table 16 shows detailed per-
formance across languages, while the full dataset
statistics can be found in Table 15, demonstrat-
ing the models’ effectiveness at extracting answers
from retrieved documents.

G Answer Length Analysis

To analyze the verbosity of model responses, we
compared the average number of words in model
predictions with gold answers across different set-
tings. Table 17 presents this analysis for both
MiXQuAD and MLQA-IDK datasets in English-
Questions and English-Contexts settings. Notably,
larger models like GPT4o-mini and Mistral-Nemo
tend to produce longer answers, with averages up to
3 times the length of gold answers in some settings.

H Uncertainty Estimation Analysis

This section provides detailed results from our un-
certainty estimation analysis using the Claim Con-
ditioned Probability method. The uncertainty score
is calculated as:

Uncertainty = logP (claim|input) (1)

where P (claim|input) is the probability of the
model’s predicted answer (claim) given the input
question and context. This method leverages the
model’s internal logits to estimate confidence in
the prediction.

Table 18 presents uncertainty scores for correctly
classified unanswerable questions across different
models and prompting strategies.
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Context:
As of 2005, recombinant growth hormones available in the United States (and their manufacturers)
included Nutropin (Genentech), Humatrope (Lilly), Genotropin (Pfizer), Norditropin (Novo),
and Saizen (Merck Serono). In 2006, the U.S. Food and Drug Administration (FDA) approved
a version of rHGH called Omnitrope (Sandoz). A sustained-release form of growth hormone,
Nutropin Depot (Genentech and Alkermes) was approved by the FDA in 1999, allowing for
fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued by
Genentech/Alkermes in 2004 for financial reasons.

Unanswerable Questions:

1. [Entity Swap] What company manufactured the first Genotropin approved rHGH?

2. [Entity Swap] What company manufactured the first FDA approved Omnitrope?

3. [Antonym] What company manufactured the last FDA approved rHGH?

Figure 6: Example of unanswerable questions from MLQA-IDK. While the questions appear answerable and are related to the
context, they require information beyond what is provided in the passage.

Model Arch Params FT ICL
mBERT (Devlin et al., 2019) E 168M ✓ x
XLM-RoBERTa (Conneau et al., 2020) E 279M ✓ x
mDeBERTa (He et al., 2020) E 276M ✓ x
mT5-large (Xue et al., 2021) E-D 1.2B ✓ x
GPT4o-mini (Hurst et al., 2024) D 8B x ✓
Gemma-2 (Team et al., 2024) D 9B x ✓
Mistral-Nemo (Sreenivas et al., 2024) D 12.2B x ✓
AYA-101 (Üstün et al., 2024) E-D 13B ✓ ✓
BLOOMZ (Muennighoff et al., 2023) D 7B x ✓
Aya-23 (Aryabumi et al., 2024) D 8B ✓ ✓

Table 8: Overview of Transformer Models and Methodologies. Arch: Architecture (E: Encoder, D: Decoder); Params: Number
of parameters; FT: Fine-Tuning; ICL: In-Context Learning. FT and ICL represent our proposed methods for adapting models to
the G-XLT task. ✓ indicates the method was applied to the model.

The results demonstrate that hint prompting con-
sistently reduces uncertainty (increases confidence)
when correctly classifying unanswerable questions
across most models. Notably, hint prompting also
increases the number of correctly classified unan-
swerable instances, supporting our main findings
about improved performance on "No answer" cases.
Table 19 compares uncertainty scores between cor-
rect and incorrect predictions to assess model cal-
ibration. Well-calibrated models should exhibit
higher confidence (lower uncertainty) for correct
predictions compared to incorrect ones.

I Hyperparameters

All experiments were conducted using NVIDIA
RTX 6000 Ada GPUs for LLMs (AYA-101, AYA-
23, BLOOMZ) and RTX 4090 GPUs for encoder-
only models (mBERT, XLM-RoBERTa, mDe-
BERTa) and mT5-large.

I.1 Encoder-Only Models
For fine-tuning the encoder-only models mBERT4,
XLM-RoBERTa5, and mDeBERTa6, we utilized a
4https://huggingface.co/bert-base-multilingual-c
ased

5https://huggingface.co/xlm-roberta-base
6https://huggingface.co/microsoft/mdeberta-v3-b
ase
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Category Model\Language ar es th de hi tr el ro vi en ru zh Avg

Av
er

ag
e

mT5-large 52.64 72.72 59.29 70.78 57.70 63.35 56.06 72.26 63.96 84.19 56.97 58.40 64.03
AYA-101 51.85 63.35 26.63 66.77 25.12 55.45 58.83 63.40 58.55 74.23 52.89 50.23 53.94

+Hint 58.52 72.09 34.98 73.10 33.29 63.11 65.76 72.58 66.77 80.22 59.70 59.18 61.61
+Hint-translate 58.04 71.11 35.17 72.79 34.18 62.52 65.75 71.89 66.34 79.90 59.31 59.86 61.41
+Fine tuned 78.42 84.10 81.39 83.54 81.96 77.35 80.55 82.91 79.03 88.43 78.85 78.17 81.23

GPT4o-mini 31.82 34.56 9.80 37.61 6.75 30.80 34.30 31.70 38.56 40.22 28.97 21.76 28.90
+Hint 55.02 62.58 34.49 64.53 33.58 57.64 59.87 61.31 63.37 66.89 48.97 41.24 54.12
+Hint-translate 45.27 47.27 32.69 50.80 28.30 43.93 47.93 45.20 52.00 60.84 35.21 32.44 43.49

Aya-23 40.71 51.58 13.03 53.13 14.66 43.68 40.20 50.23 48.40 65.76 38.49 32.23 41.01
+Hint 48.07 61.67 21.69 60.68 20.41 52.46 46.99 58.25 55.73 70.53 46.40 39.88 48.56
+Hint-translate 45.41 59.69 24.60 58.12 21.28 50.49 44.23 56.97 54.13 69.23 43.85 37.15 47.10
+Fine tuned 49.04 54.20 42.02 65.69 36.09 53.13 52.07 54.82 58.51 79.00 50.70 45.06 53.36

BLOOMZ 44.89 55.71 29.97 43.39 19.00 34.93 31.88 39.52 51.13 73.74 29.55 45.15 41.57
+Hint 50.54 60.39 38.83 50.35 24.37 42.99 40.80 46.03 55.63 77.17 38.37 50.88 48.03
+Hint-translate 50.81 61.25 38.61 50.17 22.77 42.93 40.86 45.80 55.94 77.10 38.39 50.87 47.96

Gemma-2 22.07 39.05 22.74 40.17 20.55 28.54 23.13 37.68 32.92 62.22 20.00 18.45 30.63
+Hint 32.21 49.80 29.55 49.80 27.57 38.04 31.06 46.67 43.70 62.08 29.85 26.85 38.93
+Hint-translate 31.02 50.39 28.00 50.01 26.65 39.89 30.44 47.41 44.98 60.50 31.42 27.16 38.99

Mistral-Nemo 22.32 33.57 11.70 40.15 12.90 29.50 26.82 38.21 37.32 59.15 27.78 20.06 29.96
+Hint 43.57 57.80 29.10 59.67 32.12 53.39 48.44 59.45 58.54 72.87 53.48 43.09 50.96
+Hint-translate 40.13 51.83 25.86 56.24 30.47 52.55 42.46 59.51 58.46 70.97 53.00 39.18 48.39

H
as

an
sw

er

mT5-large 30.15 66.28 43.90 62.05 37.95 51.65 36.85 65.47 52.88 82.89 35.32 41.26 50.55
AYA-101 74.76 81.59 24.65 81.35 20.62 71.11 78.40 81.66 77.68 85.35 74.24 62.90 67.86

+Hint 74.47 80.15 24.60 79.01 20.57 70.45 76.86 80.52 76.71 83.22 72.68 61.22 66.71
+Hint-translate 73.99 79.25 24.42 78.48 20.55 69.84 76.45 79.88 77.08 83.26 72.07 59.15 66.20
+Fine tuned 73.09 81.15 78.40 80.03 79.32 71.86 76.67 80.47 75.08 84.76 72.61 71.68 77.09

GPT4o-mini 51.53 58.70 17.06 56.24 11.75 51.60 58.80 54.40 56.25 64.14 49.81 29.49 46.65
+Hint 52.98 63.03 17.57 59.03 13.43 55.11 59.75 58.98 58.69 70.54 51.81 34.29 49.60
+Hint-translate 34.66 40.84 12.46 33.29 7.88 32.87 30.97 33.23 38.19 56.90 34.24 16.18 30.98

Aya-23 62.54 76.48 16.89 71.64 18.43 61.91 60.64 73.98 72.17 84.75 58.42 49.87 58.98
+Hint 60.64 71.52 16.70 67.75 18.64 58.88 59.97 70.47 68.78 83.22 57.14 48.76 56.87
+Hint-translate 56.62 70.20 16.14 66.52 17.75 56.67 53.45 68.65 66.34 83.43 51.48 42.14 54.12
+Fine tuned 52.68 67.74 4.07 61.78 6.76 55.63 57.05 65.38 65.92 77.13 56.76 36.94 50.65

BLOOMZ 61.01 61.56 3.89 46.93 20.17 20.59 15.82 40.74 73.54 83.55 21.23 58.90 42.33
+Hint 53.31 54.06 2.53 41.42 19.53 14.87 11.73 35.44 69.66 77.47 17.87 54.34 37.69
+Hint-translate 62.44 56.37 2.61 41.08 19.98 14.91 11.78 34.72 73.68 76.42 17.57 57.78 39.11

Gemma-2 16.40 45.61 17.79 51.35 16.64 39.19 26.05 43.90 40.85 74.89 21.45 24.28 34.87
+Hint 23.50 49.51 19.07 55.45 17.36 47.60 30.21 49.53 48.97 77.70 28.38 33.18 40.04
+Hint-translate 25.76 58.43 19.33 58.43 17.10 52.41 31.67 55.75 55.68 78.83 31.90 38.07 43.61

Mistral-Nemo 36.00 52.40 18.71 55.22 14.78 43.43 45.15 53.83 47.05 78.56 41.45 24.53 42.59
+Hint 41.29 56.06 19.13 56.31 14.97 45.60 52.93 54.44 40.30 75.17 44.71 25.38 43.86
+Hint-translate 44.25 53.35 18.02 50.53 13.61 46.61 47.98 51.62 39.80 73.88 42.38 27.97 42.50

N
o

an
sw

er

mT5-large 83.00 81.41 80.05 82.54 84.36 79.14 81.98 81.41 78.92 85.95 86.17 81.52 82.20
AYA-101 20.94 38.74 29.29 47.09 31.18 34.32 32.43 38.78 32.73 59.23 24.08 33.15 35.16

+Hint 37.00 61.23 48.98 65.12 50.46 53.22 50.80 61.87 53.37 76.16 42.18 56.43 54.74
+Hint-translate 36.51 60.13 49.66 65.12 52.57 52.65 51.33 61.12 51.86 75.36 42.11 60.81 54.94
+Fine tuned 85.61 88.06 85.42 88.29 85.53 84.77 85.79 86.21 84.36 93.39 87.27 86.93 86.80

GPT4o-mini 5.22 1.99 0.00 12.48 0.00 2.73 1.25 1.08 14.69 7.94 0.86 11.34 4.97
+Hint 57.77 61.97 57.32 71.94 60.78 61.06 60.04 64.46 69.68 61.97 45.13 50.63 60.23
+Hint-translate 59.59 55.96 59.98 74.44 55.84 58.85 70.81 61.34 70.64 66.16 36.51 54.37 60.37

Aya-23 11.27 17.99 7.83 28.16 9.57 19.09 12.63 18.18 16.33 40.14 11.61 8.43 16.77
+Hint 31.11 48.38 28.43 51.14 22.79 43.81 29.48 41.77 38.14 53.41 31.90 27.90 37.36
+Hint-translate 30.28 45.51 36.02 46.79 26.04 42.14 31.79 41.20 37.65 50.08 33.57 30.43 37.63
+Fine tuned 46.04 38.67 93.13 73.17 76.08 54.05 48.61 39.80 52.01 81.30 43.88 61.49 59.02

BLOOMZ 23.13 47.81 65.16 38.63 17.43 54.28 53.56 37.87 20.90 60.51 40.78 26.61 40.56
+Hint 46.79 68.94 87.80 62.40 30.88 80.92 80.01 60.32 36.70 76.76 66.03 46.23 61.98
+Hint-translate 35.11 67.84 87.19 62.44 26.54 80.73 80.09 60.74 32.02 78.01 66.48 41.54 59.89

Gemma-2 29.71 30.20 29.41 25.10 25.82 14.18 19.20 29.29 22.23 45.13 18.03 10.59 24.91
+Hint 43.96 50.19 43.69 42.18 41.35 25.14 32.20 42.82 36.59 41.01 31.83 18.30 37.44
+Hint-translate 38.10 39.54 39.69 38.67 39.54 22.98 28.77 36.17 30.54 35.76 30.77 12.44 32.75

Mistral-Nemo 3.86 8.17 2.23 19.81 10.36 10.70 2.08 17.13 24.19 32.96 9.34 14.03 12.91
+Hint 46.64 60.13 42.56 64.22 55.26 63.91 42.37 66.22 83.15 69.77 65.31 66.97 60.54
+Hint-translate 34.59 49.78 36.44 63.95 53.22 60.55 35.00 70.15 83.64 67.05 67.31 54.31 56.33

Table 9: F1 scores (averaged over 3 model seeds) across three categories (Average F1, Has answer F1, and No answer F1) on
miXQuAD, English-Questions across 12 language pairs. The best performance for each category and language appears in bold.

learning rate of 5e-5, a batch size of 12, and a max-
imum sequence length of 384. A document stride
of 128 was applied to handle overlapping text seg-
ments. Training was conducted over 2 epochs with
a weight decay of 0.01 using the AdamW optimizer.
The inputs were lowercased before processing to
ensure consistency.

I.2 mT5-large Fine-tuning

For fine-tuning the mT5-large model7 on SQuAD
2.0, we used a learning rate of 5e-5 and a training
batch size of 2. The model was trained for 5 epochs
with a maximum sequence length of 512. AdamW
was employed as the optimizer to facilitate effective
gradient updates during fine-tuning.

7https://huggingface.co/google/mt5-large
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Category Model\Language ar es th de hi tr el ro vi en ru zh Avg
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e

mT5-large 66.29 76.19 71.35 75.19 69.72 69.83 72.41 74.71 65.92 84.19 73.77 68.96 72.38
AYA-101 61.68 68.03 69.26 74.73 69.68 71.86 70.71 72.43 69.81 74.23 71.65 69.52 70.30

+Hint 69.10 75.06 71.75 75.72 72.31 73.42 72.92 73.77 71.28 80.22 72.93 70.38 73.24
+Hint-translate 68.73 74.74 71.81 75.45 71.79 72.96 72.55 73.41 71.17 79.90 72.50 70.26 72.94
+Fine tuned 78.46 83.12 79.69 84.07 78.94 79.06 79.74 81.59 77.50 88.43 81.21 79.66 80.96

GPT4o-mini 9.66 13.74 22.22 17.57 13.65 18.49 12.01 14.87 17.80 40.22 12.57 15.33 17.34
+Hint 39.97 45.25 52.56 48.41 42.69 42.07 46.08 43.95 49.71 66.89 46.28 45.23 47.42
+Hint-translate 24.17 30.45 22.63 29.24 24.06 26.30 23.31 25.37 24.42 60.84 25.78 25.61 28.52

Aya-23 51.45 56.17 28.27 57.88 46.65 52.51 52.90 53.00 51.18 65.76 53.64 49.71 51.59
+Hint 56.41 62.27 34.52 64.28 52.31 57.60 58.51 59.30 57.05 70.53 59.65 54.89 57.28
+Hint-translate 54.38 59.67 35.03 62.62 50.10 55.82 56.52 57.88 54.90 69.23 57.82 52.33 55.53
+Fine tuned 62.53 65.57 43.52 68.50 58.22 61.33 64.78 57.88 62.19 78.90 65.65 67.75 63.07

BLOOMZ 56.19 63.78 33.02 51.88 57.45 41.25 40.04 38.32 59.42 73.74 48.46 62.16 52.14
+Hint 61.29 69.66 41.60 56.83 63.55 43.77 44.92 45.34 64.04 77.17 54.61 67.72 57.54
+Hint-translate 61.99 69.92 41.77 56.57 63.94 43.49 44.96 45.89 64.84 77.10 55.08 67.89 57.79

Gemma-2 50.66 48.81 50.20 47.84 45.09 38.74 49.66 43.66 46.13 62.22 48.93 41.09 47.75
+Hint 52.44 52.20 53.15 50.84 47.60 40.13 53.39 48.44 47.85 62.08 51.58 43.05 50.23
+Hint-translate 51.87 51.83 51.31 50.50 47.33 39.00 52.69 47.97 46.26 60.50 51.91 42.73 49.49

Mistral-Nemo 24.02 27.21 28.66 29.79 24.92 25.53 27.21 22.58 36.70 59.15 31.20 25.73 30.23
+Hint 50.21 51.20 50.24 51.69 46.06 47.12 49.74 47.05 50.92 72.87 53.67 50.47 51.77
+Hint-translate 49.99 48.71 46.24 49.68 41.92 44.67 47.25 44.81 50.36 70.97 53.28 49.54 49.79

H
as

an
sw

er

mT5-large 60.21 75.76 69.68 73.02 73.99 70.91 71.20 74.36 62.84 82.89 71.46 65.61 70.99
AYA-101 79.91 82.63 79.36 81.64 79.28 79.97 82.78 82.07 80.52 85.35 81.34 77.99 81.07

+Hint 77.46 80.09 77.98 79.34 77.58 77.84 81.55 80.37 78.50 83.22 79.02 75.37 79.03
+Hint-translate 77.56 79.96 78.23 79.61 77.51 77.94 81.65 80.30 78.59 83.26 79.29 75.66 79.13
+Fine tuned 73.84 80.29 77.52 82.35 77.64 77.18 76.76 80.25 75.60 84.76 77.45 77.69 78.44

GPT4o-mini 14.55 21.05 34.65 24.16 21.15 28.46 17.55 23.44 26.45 64.14 18.74 22.49 26.40
+Hint 28.58 33.15 46.85 36.98 40.96 37.08 34.86 33.62 41.68 70.54 32.31 37.15 39.48
+Hint-translate 22.84 28.47 24.07 29.60 27.26 27.90 24.32 25.68 27.40 56.90 26.10 27.36 28.99

Aya-23 73.80 78.42 41.06 76.65 66.71 72.15 78.54 72.87 72.84 84.75 77.79 72.10 72.31
+Hint 71.86 76.43 37.85 74.30 63.26 69.16 76.66 71.03 71.96 83.22 76.83 71.11 70.31
+Hint-translate 70.73 74.65 40.32 73.31 61.90 68.58 75.75 70.07 70.60 83.43 75.86 69.80 69.58
+Fine tuned 69.32 74.17 44.39 71.23 66.03 65.38 72.01 70.52 69.30 77.13 70.28 66.58 68.03

BLOOMZ 72.87 80.60 3.63 57.72 75.88 8.07 15.26 34.84 74.49 83.55 60.96 74.93 53.57
+Hint 67.32 75.71 1.31 48.24 71.32 4.08 9.14 26.28 68.20 77.47 54.63 68.19 47.66
+Hint-translate 67.15 75.12 1.46 45.62 71.02 3.43 8.78 24.49 68.01 76.42 54.67 67.72 46.99

Gemma-2 61.25 55.68 61.28 52.73 60.24 57.65 67.34 54.85 61.47 74.89 66.01 59.42 61.07
+Hint 59.91 57.32 61.62 53.20 58.76 56.85 66.43 54.65 61.04 77.70 64.67 60.09 61.02
+Hint-translate 62.47 58.61 62.30 55.20 59.72 57.14 67.43 55.25 61.99 78.83 66.06 61.39 62.20

Mistral-Nemo 40.42 41.27 48.77 42.70 40.92 38.51 45.89 34.07 44.51 78.56 43.76 38.69 44.84
+Hint 33.94 37.27 49.67 33.36 36.80 26.82 35.82 21.22 21.12 75.17 28.29 37.09 36.38
+Hint-translate 34.44 38.26 51.18 34.08 39.09 29.46 38.52 23.40 21.84 73.88 31.36 40.10 37.97

N
o

an
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er

mT5-large 74.49 76.76 73.59 78.12 63.95 68.37 74.04 75.18 70.07 85.95 76.88 73.47 74.24
AYA-101 37.08 48.34 55.64 65.42 56.73 60.93 54.43 59.42 55.37 59.23 58.58 58.09 55.77

+Hint 57.83 68.26 63.35 70.83 65.20 67.47 61.27 64.86 61.53 76.16 64.71 63.65 65.43
+Hint-translate 56.81 67.69 63.16 69.85 64.06 66.26 60.28 64.10 61.15 75.36 63.35 62.97 64.59
+Fine tuned 84.70 86.93 82.62 86.40 80.69 81.60 83.75 83.41 80.05 93.39 86.29 82.32 84.35

GPT4o-mini 3.07 3.86 5.45 8.68 3.52 5.05 4.54 3.29 6.13 7.94 4.26 5.67 5.12
+Hint 55.33 61.57 60.27 63.84 45.02 48.81 61.23 57.88 60.55 61.97 65.14 56.13 58.15
+Hint-translate 25.97 33.11 20.70 28.75 19.73 24.15 21.94 24.95 20.41 66.16 25.35 23.25 27.87

Aya-23 21.28 26.16 11.00 32.54 19.58 26.01 18.30 26.20 21.96 40.14 21.06 19.51 23.65
+Hint 35.57 43.16 30.01 50.76 37.53 41.99 34.02 43.47 36.93 53.41 36.48 33.00 39.69
+Hint-translate 32.32 39.46 27.90 48.19 34.17 38.59 30.58 41.43 33.72 50.08 33.49 28.77 36.56
+Fine tuned 53.37 53.97 42.33 64.82 47.70 55.86 55.03 40.82 52.61 81.30 59.42 69.32 56.38

BLOOMZ 33.68 41.09 72.68 44.00 32.58 86.02 73.47 43.01 39.08 60.51 31.60 44.94 50.22
+Hint 53.14 61.49 95.96 68.41 53.07 97.32 93.20 71.06 58.43 76.76 54.58 67.09 70.88
+Hint-translate 55.03 62.89 96.15 71.36 54.39 97.55 93.77 74.76 60.55 78.01 55.64 68.11 72.35

Gemma-2 36.36 39.54 35.27 41.24 24.65 13.23 25.82 28.58 25.44 45.13 25.89 16.37 29.79
+Hint 42.37 45.28 41.73 47.66 32.54 17.58 35.79 40.07 30.05 41.01 33.91 20.07 35.67
+Hint-translate 37.57 42.67 36.48 44.15 30.62 14.52 32.81 38.14 25.02 35.76 32.81 17.54 32.34

Mistral-Nemo 1.89 8.24 1.52 12.36 3.33 8.02 2.01 7.07 26.16 32.96 14.25 8.24 10.50
+Hint 72.15 70.00 51.03 76.42 58.55 74.49 68.52 81.90 91.12 69.77 87.91 68.52 72.53
+Hint-translate 70.98 62.82 39.57 70.72 45.73 65.20 59.04 73.70 88.86 67.05 82.85 62.29 65.73

Table 10: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
miXQuAD English-Contexts setting across 12 language pairs. The bold scores represent the best performance for each category
and language.

I.3 In-Context Learning Settings

In-context learning experiments were conducted
using AYA-1018, AYA-239, BLOOMZ10, GPT4o-
mini (via OpenAI API), Gemma-211, and Mistral-
8https://huggingface.co/CohereForAI/AYA-101
9https://huggingface.co/CohereForAI/aya-23
10https://huggingface.co/bigscience/bloomz
11https://huggingface.co/google/gemma-2b

Nemo12. The models were configured with a maxi-
mum of 25 new tokens and an input window size
of 4024. To provide the models with sufficient con-
textual information, we employed three few-shot
examples. The hint prompt template used was, "If
it cannot be answered based on the passage, reply

12https://huggingface.co/mistralai/Nemo-2.0
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mT5-large 46.10 52.55 65.94 55.54 46.41 49.77 42.38 51.24
AYA-101 44.62 59.27 59.91 56.91 22.72 52.01 43.84 48.47

+Hint 47.86 60.24 67.89 62.85 27.22 56.05 46.62 52.68
+Hint-translate 47.31 60.19 67.71 62.63 27.48 55.24 46.51 52.44
+Fine tuned 67.57 66.87 81.64 72.48 71.70 70.80 58.63 69.96

GPT4o-mini 27.84 32.98 30.11 32.21 6.28 33.68 15.19 25.47
+Hint 47.80 55.64 55.62 55.30 28.49 54.93 32.65 47.20
+Hint-translate 42.20 47.60 51.19 45.96 25.42 48.15 26.38 40.99

Aya-23 35.95 44.96 51.08 45.72 12.39 44.89 21.98 36.71
+Hint 41.78 51.74 55.72 53.18 17.03 51.32 28.71 42.78
+Hint-translate 40.04 50.09 54.60 52.15 17.50 49.34 26.74 41.49
+Fine tuned 39.13 51.09 59.26 45.49 33.84 47.23 27.82 43.41

BLOOMZ 45.86 39.56 55.11 48.42 18.50 51.71 41.89 43.01
+Hint 48.01 43.84 59.85 51.00 22.79 54.17 45.30 46.42
+Hint-translate 50.19 43.67 59.99 51.72 20.97 55.07 45.75 46.77

Gemma-2 18.60 34.44 46.39 33.14 14.13 30.75 13.69 27.31
+Hint 27.17 40.39 45.56 42.06 19.55 38.24 18.79 33.11
+Hint-translate 26.01 39.96 44.46 42.59 18.56 38.97 18.01 32.65

Mistral-Nemo 23.05 38.45 48.37 32.57 11.58 34.44 17.52 29.43
+Hint 39.78 51.96 61.09 50.52 28.08 51.62 36.14 45.60
+Hint-translate 38.28 51.03 60.27 49.10 27.51 52.56 32.26 44.43

H
as

an
sw

er

mT5-large 26.53 49.23 78.65 54.61 30.17 51.83 20.50 44.50
AYA-101 60.40 64.84 78.17 72.16 17.83 66.54 42.58 57.50

+Hint 59.89 62.56 76.33 69.43 17.59 64.88 41.87 56.08
+Hint-translate 59.61 62.07 76.41 69.32 17.36 64.66 39.88 55.62
+Fine tuned 58.04 57.85 80.42 67.33 66.71 63.23 40.78 62.05

GPT4o-mini 44.19 48.23 57.77 53.60 10.72 48.85 19.21 40.37
+Hint 44.92 46.11 65.18 53.74 11.89 49.03 22.22 41.87
+Hint-translate 30.21 27.07 51.39 37.35 7.35 33.67 8.32 27.91

Aya-23 56.65 63.10 82.64 71.18 16.62 69.99 34.25 56.35
+Hint 54.89 58.27 80.62 64.42 16.53 66.07 32.14 53.28
+Hint-translate 52.67 57.87 80.88 64.24 15.88 63.51 28.20 51.89
+Fine tuned 41.60 47.13 66.69 60.19 7.02 54.21 21.96 42.69

BLOOMZ 62.87 39.11 77.70 55.58 20.94 76.97 51.90 55.01
+Hint 54.13 30.66 71.13 46.23 19.64 71.84 43.60 48.18
+Hint-translate 65.06 31.34 71.14 48.76 20.55 76.69 49.67 51.89

Gemma-2 18.61 50.41 72.48 44.49 13.45 44.61 18.70 37.54
+Hint 24.94 52.19 74.79 47.47 13.85 51.41 23.28 41.13
+Hint-translate 26.39 54.46 76.16 54.83 13.87 56.42 25.73 43.98

Mistral-Nemo 36.44 51.44 74.28 50.57 13.00 45.85 21.40 41.85
+Hint 38.93 46.23 69.99 50.23 12.63 36.54 18.86 39.06
+Hint-translate 42.84 42.52 69.01 49.24 12.37 35.36 21.16 38.93

N
o

an
sw

er

mT5-large 73.98 67.14 69.20 67.87 76.73 67.25 73.39 70.79
AYA-101 22.05 51.46 43.57 35.33 29.61 31.97 45.62 37.09

+Hint 30.65 56.98 60.34 53.55 40.75 43.86 53.37 48.50
+Hint-translate 29.73 57.56 59.92 53.17 41.70 42.25 55.94 48.61
+Fine tuned 81.20 79.51 82.73 79.76 78.73 81.23 83.97 81.02

GPT4o-mini 4.45 11.58 5.34 1.93 0.03 12.77 9.49 6.51
+Hint 51.92 69.00 47.07 57.51 51.85 63.08 47.46 55.41
+Hint-translate 59.33 76.43 51.01 58.14 50.85 68.11 52.04 59.42

Aya-23 6.35 19.51 22.82 9.69 6.46 10.27 4.53 11.38
+Hint 23.04 42.56 33.43 37.27 17.74 30.97 23.83 29.83
+Hint-translate 21.97 39.17 31.07 35.05 19.78 29.80 24.67 28.79
+Fine tuned 35.60 56.65 52.60 24.69 71.55 37.61 36.15 44.98

BLOOMZ 21.54 40.20 34.88 38.30 15.08 16.87 27.67 27.79
+Hint 39.27 62.32 49.76 57.76 27.23 29.80 47.70 44.83
+Hint-translate 28.94 60.97 50.00 55.90 21.56 25.26 40.18 40.40

Gemma-2 18.60 12.04 23.04 17.08 15.09 11.63 6.58 14.87
+Hint 30.37 23.82 19.39 34.40 27.56 20.07 12.42 24.00
+Hint-translate 25.47 19.62 16.07 25.27 25.15 14.91 7.04 19.08

Mistral-Nemo 3.90 20.22 25.17 7.11 9.58 18.71 12.01 13.81
+Hint 41.00 59.99 53.13 50.94 49.81 72.43 60.70 55.43
+Hint-translate 31.76 62.99 52.44 48.91 48.81 76.29 48.05 52.75

Table 11: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
MLQA-IDK English-Questions setting across 7 language pairs. The bold scores represent the best performance for each category
and language.

“unanswerable”," as illustrated in Figure 3.

I.4 AYA-101 Fine-tuning

To fine-tune AYA-101 on the SQuAD 2.0 dataset,
we employed the QLoRA method to optimize mem-
ory efficiency and maintain high performance. The
input window size was set to 2048 tokens to accom-
modate longer context passages effectively. The

training process used a learning rate of 3e-5 and
a batch size of 2 for both training and evaluation.
The LoRA-specific parameters included a rank of
64, a scaling factor (alpha) of 32, and a dropout
rate of 0.1 to prevent overfitting. The LoRA bias
was configured as “none ”, and all linear layers
in the model were targeted for parameter-efficient
updates.
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Category Model\Language ar de en es hi vi zh Avg

Av
er

ag
e

mT5-large 61.12 68.09 73.66 69.06 63.41 61.67 62.64 65.66
AYA-101 56.29 67.44 59.91 59.56 57.93 57.32 59.35 59.69

+Hint 62.30 68.76 67.89 65.44 63.74 63.90 65.91 65.42
+Hint-translate 62.08 68.45 67.71 65.32 63.52 63.73 65.60 65.20
+Fine tuned 73.03 78.05 81.64 77.64 73.86 73.53 75.85 76.23

GPT4o-mini 10.06 17.56 30.11 13.58 12.31 16.84 13.65 16.30
+Hint 36.40 42.71 55.62 39.31 35.77 42.09 38.72 41.52
+Hint-translate 21.26 26.48 51.19 24.58 21.52 22.78 25.02 27.55

Aya-23 48.81 54.51 51.08 53.06 43.96 48.33 45.07 49.26
+Hint 51.99 58.36 55.72 57.07 47.04 52.23 48.32 52.96
+Hint-translate 50.38 57.26 54.60 55.56 44.63 50.33 46.19 51.28
+Fine tuned 54.82 59.72 59.26 58.24 51.19 52.94 58.26 56.35

BLOOMZ 55.67 46.67 55.11 57.45 53.63 55.93 57.57 54.58
+Hint 58.77 49.66 59.85 60.42 56.68 59.00 60.16 57.79
+Hint-translate 58.86 49.58 59.99 60.46 57.12 59.21 60.37 57.94

Gemma-2 44.63 42.94 46.39 43.29 39.60 42.08 36.24 42.17
+Hint 45.92 44.25 45.56 44.98 41.18 42.46 37.29 43.09
+Hint-translate 45.75 44.25 44.46 45.25 41.25 41.51 37.63 42.87

Mistral-Nemo 25.70 31.13 48.37 27.46 24.24 33.80 23.80 30.64
+Hint 43.94 48.08 61.09 46.46 42.34 47.67 44.24 47.69
+Hint-translate 44.39 47.16 60.27 45.62 40.95 47.19 44.16 47.11

H
as

an
sw

er

mT5-large 55.81 69.47 78.65 70.37 68.78 61.60 62.33 66.72
AYA-101 73.70 80.73 78.17 76.38 75.88 74.82 73.08 76.11

+Hint 71.54 79.10 76.33 74.01 73.73 72.38 70.29 73.91
+Hint-translate 71.42 79.33 76.41 74.05 73.65 72.46 70.33 73.95
+Fine tuned 70.17 78.90 80.42 76.41 77.11 75.73 76.25 76.43

GPT4o-mini 15.19 26.43 57.77 21.01 19.20 26.13 20.43 26.59
+Hint 27.41 37.03 65.18 31.23 35.46 36.28 31.91 37.79
+Hint-translate 21.12 28.84 51.39 25.78 26.79 26.54 27.24 29.67

Aya-23 72.49 77.45 82.64 76.95 65.78 71.23 67.46 73.43
+Hint 69.83 74.51 80.62 73.79 61.48 69.40 65.44 70.72
+Hint-translate 69.11 73.81 80.88 73.38 60.18 68.21 63.82 69.91
+Fine tuned 60.61 64.78 66.69 65.29 59.70 58.89 57.30 61.89

BLOOMZ 74.94 52.51 77.70 76.22 73.86 73.53 72.83 71.66
+Hint 69.08 43.93 71.13 70.70 68.97 67.66 65.50 65.28
+Hint-translate 69.11 42.99 71.14 70.73 69.30 67.62 65.62 65.22

Gemma-2 59.10 56.26 72.48 56.01 57.52 60.03 54.53 59.42
+Hint 58.47 56.04 74.79 56.95 56.18 59.57 54.77 59.54
+Hint-translate 60.88 58.09 76.16 58.62 57.63 60.54 56.46 61.20

Mistral-Nemo 40.39 43.98 74.28 41.89 39.29 42.51 33.67 45.14
+Hint 28.87 29.95 69.99 34.42 34.06 19.56 30.19 35.29
+Hint-translate 29.03 30.30 69.01 35.12 37.08 20.58 33.51 36.38

N
o

an
sw

er

mT5-large 68.73 66.14 69.20 67.19 55.85 61.78 63.08 64.57
AYA-101 31.39 48.80 43.57 35.76 32.69 33.18 39.85 37.89

+Hint 49.08 54.25 60.34 53.31 49.70 52.20 59.69 54.08
+Hint-translate 48.72 53.19 59.92 52.97 49.28 51.70 58.86 53.52
+Fine tuned 77.12 76.85 82.73 79.38 69.28 70.50 75.28 75.88

GPT4o-mini 2.71 5.12 5.34 3.08 2.61 4.03 4.02 3.84
+Hint 49.25 50.67 47.07 50.75 36.21 50.11 48.41 47.50
+Hint-translate 21.47 23.18 51.01 22.89 14.10 17.59 21.87 24.59

Aya-23 14.94 22.33 22.82 19.26 13.27 16.75 13.24 17.52
+Hint 26.48 35.71 33.43 33.40 26.73 28.55 23.98 29.75
+Hint-translate 23.59 34.02 31.07 30.35 22.76 25.67 21.14 26.94
+Fine tuned 46.54 52.63 52.60 48.25 39.21 44.74 59.63 49.09

BLOOMZ 28.11 38.47 34.88 30.88 25.17 31.66 35.89 32.15
+Hint 44.04 57.69 49.76 45.87 39.39 47.05 52.57 48.05
+Hint-translate 44.19 58.84 50.00 45.93 39.99 47.61 52.90 48.49

Gemma-2 23.95 24.25 23.04 25.28 14.41 17.32 10.25 19.79
+Hint 27.97 27.71 19.39 28.05 20.08 18.86 12.45 22.07
+Hint-translate 24.11 24.84 16.07 26.32 18.20 15.26 10.87 19.38

Mistral-Nemo 4.70 13.08 25.17 7.03 3.06 21.78 9.77 12.08
+Hint 65.50 73.52 53.13 63.51 53.98 86.44 64.21 65.76
+Hint-translate 66.35 70.81 52.44 60.48 46.39 83.89 59.29 62.81

Table 12: F1 scores (averaged over 3 model seeds) across three categories (Overall F1, Has answer F1, and No answer F1) on
MLQA-IDK English-Contexts setting across 7 language pairs. The bold scores represent the best performance for each category
and language.

The model was fine-tuned over 2 epochs using
the AdamW8bit optimizer, which supports low-
memory operations while ensuring efficient gradi-
ent updates. Additionally, a weight decay of 0.01
was applied to regularize the model and prevent
overfitting. This configuration enabled effective
fine-tuning of AYA-101 on the question-answering
task while optimizing for both memory and com-

putational efficiency.
To further optimize memory and computational

efficiency, we employed 4-bit quantization.

I.5 Fine-tuning AYA-23

For fine-tuning AYA-23 on SQuAD 2.0, we used
a learning rate of 3e-5 and set the batch size to
2 for both training and evaluation. The LoRA-
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Model ar es th de hi tr el ro vi en ru zh Avg

Aya-23 7.08 10.43 0.78 13.63 5.76 9.44 10.31 10.32 11.66 24.07 12.20 6.73 10.20
+context 68.19 74.80 38.72 73.87 61.53 67.91 76.18 67.23 66.73 83.77 73.97 64.12 68.09

BLOOMZ 0.38 0.23 0.00 0.00 0.17 0.00 0.00 0.00 0.41 0.66 0.10 0.23 0.18
+context 70.82 77.73 2.71 56.62 73.13 7.63 14.51 31.70 72.74 82.04 59.74 73.92 51.94

AYA-101 2.53 2.57 4.28 1.24 2.14 4.17 0.88 4.26 2.13 1.24 4.41 1.73 2.63
+context 70.00 73.74 70.50 74.71 70.16 72.79 76.65 74.20 73.90 79.01 73.65 69.46 73.23

Gemma-2 8.42 9.78 8.31 10.70 6.43 9.13 11.12 11.24 10.97 16.00 11.00 8.07 10.10
+context 58.40 51.93 58.94 49.76 59.93 55.92 64.21 52.23 58.79 72.10 63.29 60.17 58.81

Mistral-Nemo 10.65 8.32 9.69 10.31 8.31 7.35 10.86 6.70 10.50 20.87 8.83 8.05 10.04
+context 41.43 41.70 50.95 43.34 43.41 40.26 48.76 36.02 46.62 79.19 45.51 40.59 46.48

Table 13: Has Answer Performance Across Languages: No Context vs. With Context

Model\Language ar es th de hi tr el ro vi en ru zh Avg

AYA-101 71.29 66.32 59.13 69.23 71.20 69.61 72.33 71.39 64.37 62.86 70.79 68.80 68.11
+hint 71.83 67.43 58.84 69.25 71.53 70.88 73.21 72.44 65.68 62.14 71.95 69.11 68.69
+hint translate 71.40 66.61 58.58 68.50 69.87 70.52 72.57 71.78 64.99 61.57 71.15 67.83 67.95
+fine tuned 85.44 84.08 60.93 80.36 85.34 78.28 85.29 84.12 83.10 88.64 83.54 83.27 81.87

GPT4o-mini 36.37 27.06 41.24 34.91 45.50 40.25 28.99 34.50 36.97 58.15 40.91 33.27 38.18
+hint 70.73 56.94 63.76 64.16 78.90 65.65 66.74 61.00 62.95 85.18 70.92 60.88 67.32
+hint translate 15.73 19.85 17.75 22.44 19.89 19.32 16.87 21.86 19.22 57.78 18.39 18.31 22.28

Aya-23 79.60 87.96 45.25 88.00 67.94 81.45 89.81 86.67 78.37 95.07 85.91 75.68 80.14
+hint 79.33 84.99 44.87 87.51 64.36 80.36 88.45 85.06 77.48 95.38 84.22 73.59 78.80
+hint translate 74.75 81.04 46.41 87.19 64.19 78.68 85.19 82.96 75.21 95.37 82.14 72.10 77.10

BLOOMZ 82.27 86.27 16.76 66.57 84.23 34.52 35.27 55.91 81.01 89.88 73.54 83.67 65.83
+hint 79.50 84.53 11.03 62.67 82.58 24.64 26.39 51.20 77.89 87.91 69.26 81.49 61.59
+hint translate 76.68 82.99 9.17 58.66 79.98 21.77 23.03 47.42 76.28 86.16 64.95 78.47 58.80

Gemma-2 91.06 88.42 86.67 89.19 83.67 84.49 92.34 82.13 85.06 96.02 85.97 83.41 87.37
+hint 90.48 88.13 86.12 88.90 81.70 83.18 90.76 82.70 83.84 96.33 85.98 80.55 86.56
+hint translate 90.42 87.53 85.30 89.49 83.32 83.73 90.68 83.35 83.62 96.41 87.10 82.13 86.92

Mistral-Nemo 62.10 60.34 60.03 66.30 56.51 66.10 68.34 62.70 66.21 94.42 64.27 54.08 65.12
+hint 60.38 58.86 60.12 53.15 56.01 57.84 62.81 58.15 46.60 94.68 57.41 55.49 60.13
+hint translate 55.40 53.06 52.50 47.55 50.69 51.40 57.08 53.91 43.50 94.03 54.16 52.34 55.47

Table 14: Has Answer F1 scores across 12 language pairs on repliQA-Trans dataset (English-Contexts setting). The bold scores
represent the best performance for each category and language.

Category ar fi ja ko ru avg_indi

Answered (A) 301 312 240 282 235 538
Unanswered (U) 281 294 231 266 213 96
Total 582 606 471 548 448 634

Table 15: XTREME-UP QA dataset statistics on English con-
text settings. A: answerable questions, U: unanswerable ques-
tions, Total: total number of questions. The avg_indi column
represents the average over 26 low-resource languages in-
cluded in XTREME-UP (Ruder et al., 2023).

specific parameters included a rank of 64, an alpha
value of 32, and a dropout rate of 0.1, with the
bias set to “none ”. All linear layers were targeted
for parameter-efficient fine-tuning. The model was
trained for 3 epochs using the AdamW optimizer
with a weight decay of 0.01, and the maximum
sequence length was configured to 2048 tokens.

J Prompt Control Analysis

We conducted control experiments to evaluate
model sensitivity to prompt variations, particularly
focusing on language specification placement and
minor prompt changes. As shown in Figure 7, we
tested four prompt variants: Hint-Prompt, Hint-
Translate-Prompt, and their respective control ver-
sions that explicitly mention the target language in
the question description. Results in Table 20 show
minimal performance differences between these
variants, indicating that the model is robust to such
prompt modifications.
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Category Model\Language ar fi ja ko ru avg_indi avg

Av
er

ag
e

mT5-large 59.66 59.23 67.11 65.36 70.78 50.77 53.30
AYA-101 73.20 72.12 73.19 73.09 73.63 65.99 67.30

+hint 73.47 71.30 72.89 72.91 74.33 63.90 65.58
+hint translate 73.39 72.09 72.80 72.72 74.72 63.89 65.60
+fine tuned 72.57 68.03 72.81 75.22 70.60 52.90 56.41

GPT4o-mini 10.87 11.95 13.60 15.47 9.44 20.54 19.01
+hint 60.25 56.37 62.40 63.64 54.19 44.80 47.50
+hint translate 20.78 28.82 33.20 45.17 32.77 19.00 21.44

Aya-23 50.44 48.92 45.35 54.34 53.29 39.49 41.53
+hint 61.80 60.98 60.45 66.14 64.39 40.08 44.28
+hint translate 57.45 60.26 55.49 63.44 60.43 40.67 44.14
+fine tuned 61.86 54.94 68.42 62.10 64.26 40.40 44.46

BLOOMZ 68.44 - 65.91 53.41 60.81 52.61 53.86
+hint 67.63 - 64.55 52.27 62.11 47.69 49.80
+hint translate 68.03 - 64.47 52.75 62.21 47.66 49.81

Gemma-2 23.25 10.69 22.44 22.99 25.37 22.06 21.86
+hint 31.70 40.34 46.34 42.86 40.53 26.97 29.45
+hint translate 35.52 42.97 46.92 41.57 46.30 30.06 32.39

H
as

an
sw

er

mT5-large 54.71 41.96 59.83 59.99 58.98 47.30 48.74
AYA-101 65.67 56.22 56.83 63.41 66.60 62.04 61.99

+hint 63.53 53.33 55.12 60.12 65.81 58.74 58.90
+hint translate 63.95 54.44 54.94 60.11 67.13 58.85 59.09
+fine tuned 54.60 46.12 55.59 59.47 52.45 45.46 46.98

GPT4o-mini 18.03 19.67 20.43 24.03 16.29 23.09 22.46
+hint 30.44 22.94 32.45 37.50 19.89 34.84 33.69
+hint translate 11.60 16.55 15.14 20.39 13.95 13.23 13.65

Aya-23 70.40 53.14 57.04 74.62 71.22 41.66 46.04
+hint 67.77 42.27 56.41 68.36 67.28 34.09 38.97
+hint translate 65.44 44.61 54.73 70.56 66.40 35.81 40.35
+fine tuned 67.34 34.15 60.93 62.98 65.62 39.27 42.77

BLOOMZ 57.58 - 50.19 19.87 49.54 47.74 45.53
+hint 45.27 - 39.17 11.38 41.94 38.85 36.80
+hint translate 45.37 - 38.88 12.32 42.15 38.69 36.70

Gemma-2 44.06 19.69 40.01 43.02 45.66 27.15 29.25
+hint 39.69 13.93 36.21 40.25 36.55 21.06 23.33
+hint translate 42.54 19.25 37.07 40.34 41.03 24.28 26.46

N
o

an
sw

er

mT5-large 64.95 77.56 74.68 71.06 83.81 69.43 70.35
AYA-101 81.26 89.01 90.19 83.34 81.38 85.50 85.41

+hint 84.11 90.37 91.35 86.47 83.73 89.06 88.72
+hint translate 83.52 90.82 91.35 86.10 83.10 88.54 88.25
+fine tuned 91.82 91.27 90.70 91.92 90.62 88.52 89.03

GPT4o-mini 3.21 3.75 6.50 6.40 1.88 6.84 6.38
+hint 92.18 91.84 93.51 91.36 92.02 90.62 90.91
+hint translate 30.61 41.84 51.95 71.43 53.53 43.01 44.28

Aya-23 29.07 44.45 33.19 32.84 33.49 31.88 32.39
+hint 55.40 80.84 64.65 63.79 61.19 71.71 70.50
+hint translate 48.88 76.88 56.28 55.89 53.84 67.31 65.65
+fine tuned 56.00 76.99 76.20 61.16 62.76 47.41 50.97

BLOOMZ 80.08 - 82.26 88.98 73.24 77.16 78.50
+hint 91.58 - 90.91 95.62 84.36 90.31 87.71
+hint translate 90.29 - 91.06 95.62 84.36 90.76 86.11

Gemma-2 0.95 1.14 4.19 1.76 2.98 1.15 1.34
+hint 23.14 68.37 56.86 45.62 44.92 59.53 57.35
+hint translate 28.00 68.15 57.15 42.86 52.12 61.52 59.32

Table 16: F1 scores across three categories (Overall F1, Has answer F1, and No answer F1) on XTREME-UP dataset with English-
Contexts setting. The table shows performance across different languages with various models. The bold scores represent the
best performance for each category and language. The avg_indi column represents the average over 26 low-resource languages
included in XTREME-UP.

Figure 7: Prompt variations used in control experiments to test model robustness to language specification and prompt formatting.
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Model MiXQuAD MiXQuAD MLQA-IDK MLQA-IDK
English-Questions English-Contexts English-Questions English-Contexts

mBERT 1.36 1.58 1.51 1.45
XLM-R 1.80 1.69 1.74 1.53
mDeBERTa 1.99 2.47 1.89 2.21
mT5-large 1.91 2.43 1.79 2.39

AYA-23 3.58 3.52 3.52 3.60
+Hint 3.25 3.36 3.19 3.45
+Hint-translate 3.34 3.44 3.27 3.51
+Fine tuned 1.86 2.21 1.69 2.01

BLOOMZ 1.94 1.84 2.01 2.16
+Hint 1.56 1.48 1.70 1.91
+Hint-translate 1.69 1.51 1.95 2.00

AYA-101 2.61 2.34 2.54 2.05
+Hint 2.50 2.13 2.28 1.46
+Hint-translate 2.56 2.14 2.36 1.44
+Fine tuned 2.30 2.42 2.01 2.32

GPT4o-mini 6.08 9.38 6.92 9.41
+Hint 4.78 7.48 4.95 7.26
+Hint-translate 7.25 11.36 6.67 9.38

Gemma-2 2.43 2.34 2.33 2.28
+Hint 2.39 2.52 2.34 2.52
+Hint-translate 2.72 2.73 2.69 2.75

Mistral-Nemo 4.77 6.88 4.69 6.49
+Hint 3.61 3.80 3.38 3.39
+Hint-translate 3.97 4.59 3.74 3.85

Average (gold) 2.86 2.92 3.31 3.18

Table 17: Average number of words in model predictions compared to gold answers across development sets in MiXQuAD and
MLQA-IDK datasets for both English-Questions and English-Contexts settings.
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Model Method Count Uncertainty

AYA-23 Regular-Prompt 4034 -0.8205
AYA-23 Hint-Prompt 8939 -0.8802
AYA-101 Regular-Prompt 11752 -0.8738
AYA-101 Hint-Prompt 12347 -0.8917
BLOOMZ Regular-Prompt 8309 -0.6782
BLOOMZ Hint-Prompt 13351 -0.7840

Table 18: Uncertainty scores for correctly classified unanswer-
able questions across models and prompting methods. Lower
uncertainty values (more negative) indicate higher confidence.
Count represents the number of questions where the model
predicted "unanswerable" and the true label was also "unan-
swerable" (true positives for the unanswerable category).

Model Method Correct Incorrect Diff.

AYA-23 Regular-Prompt -0.8492 -0.7198 -0.1295
AYA-23 Hint-Prompt -0.8571 -0.7256 -0.1315
AYA-101 Regular-Prompt -0.9001 -0.8288 -0.0713
AYA-101 Hint-Prompt -0.9087 -0.8273 -0.0814
AYA-101 Fine-Tuned -0.8652 -0.8751 0.0099
BLOOMZ Regular-Prompt -0.7713 -0.6675 -0.1038
BLOOMZ Hint-Prompt -0.8168 -0.7108 -0.1060

Table 19: Mean uncertainty scores for correct versus incorrect
predictions. Negative differences indicate higher confidence
for correct predictions. The fine-tuned AYA-101 model shows
reduced calibration with near-zero difference.
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Category Model\Language ar es th de hi tr el ro vi en ru zh Avg

Average

hint 55.49 71.42 35.69 71.73 31.65 62.50 62.01 68.66 54.86 79.02 59.50 58.09 59.22
hint-control 55.12 70.54 35.84 70.91 30.29 62.13 61.42 67.92 53.22 78.79 59.61 57.55 58.61
hint-translate 54.62 71.06 35.39 70.60 31.31 61.36 60.43 66.74 53.10 78.63 58.94 58.12 58.36
hint-translate-control 54.15 68.96 35.35 70.13 30.89 61.09 58.46 65.52 51.85 78.33 58.41 57.41 57.55

Has answer

hint 71.31 76.79 23.73 76.65 19.23 68.74 71.66 75.60 63.59 80.53 70.90 59.13 63.16
hint-control 71.10 76.43 23.65 75.57 17.77 68.27 71.14 74.81 60.56 80.20 70.94 59.18 62.47
hint-translate 70.40 76.16 23.72 74.69 17.62 67.16 70.18 73.76 61.36 80.68 70.36 56.48 61.88
hint-translate-control 69.66 75.52 23.56 73.96 17.23 66.86 67.33 72.83 60.36 80.50 70.10 57.10 61.25

No answer

hint 34.13 64.18 51.82 65.08 48.42 54.09 48.98 59.30 43.09 76.99 44.11 56.69 53.91
hint-control 33.57 62.59 52.27 64.63 47.17 53.86 48.30 58.62 43.32 76.88 44.34 55.33 53.41
hint-translate 33.34 64.18 51.14 65.08 49.78 53.52 47.28 57.26 41.96 75.86 43.54 60.32 53.61
hint-translate-control 33.22 60.10 51.25 64.97 49.32 53.29 46.49 55.67 40.37 75.40 42.64 57.83 52.55

Table 20: F1 scores across three categories (Average F1, Has Answer F1, and No Answer F1) for AYA-101 on miXQuAD in
the English-Questions setting across 12 language pairs. The bold scores represent the best performance for each category and
language.
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