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Abstract

Recommendation systems, for documents,
have become tools for finding relevant con-
tent on the Web. However, these systems
have limitations when it comes to recommend-
ing documents in languages different from the
query language, which means they might over-
look resources in non-native languages. This
research focuses on representing documents
across languages by using Transformer Lever-
aged Document Representations (TLDRs) that
are mapped to a cross-lingual domain. Four
multilingual pre-trained transformer models
(mBERT, mT5 XLM RoBERTa, ErnieM) were
evaluated using three mapping methods across
20 language pairs representing combinations
of five selected languages of the European
Union. Metrics like Mate Retrieval Rate and
Reciprocal Rank were used to measure the ef-
fectiveness of mapped TLDRs compared to
non-mapped ones. The results highlight the
power of cross-lingual representations achieved
through pre-trained transformers and mapping
approaches suggesting a promising direction
for expanding beyond language connections,
between two specific languages.

1 Introduction

The rapid expansion of online information from di-
verse sources and the growing multilingual nature
of the web underscore the escalating significance
of information retrieval (IR) and recommender sys-
tems (RS). Today’s web is no longer limited to a
single language, but is increasingly rich in multiple
languages, mirroring the multilingual capacities of
its global users (Steichen et al., 2014; Tashu et al.,
2023). This diversity highlights the urgent need for
cross-lingual recommender systems. Traditional
recommender systems often prioritize content in
a single language, sidelining a wealth of multilin-
gual documents that may hold valuable insights.
This gap leads to the emergence of cross-language
information access, where recommender systems

suggest items in different languages based on user
queries (Lops et al., 2010; Narducci et al., 2016;
Salamon et al., 2021).

Machine Learning and Deep Learning, which
have significantly impacted language representa-
tion and processing, are pivotal to enhancing infor-
mation retrieval and recommender systems, espe-
cially in the realm of document recommendation
(Tashu et al., 2023; Feng et al., 2022). With these
advancements, documents ranging from historical
texts and scientific papers to legal ones can be rec-
ommended more accurately. However, current rec-
ommender systems falter when content is available
in various languages, often recommending docu-
ments in only the query language. In multinational
contexts such as the European Union, such limita-
tions can hinder effective policy formation.

There are two main strategies to address this gap:
on the one hand, one can translate the query into
multiple target languages or develop a cross-lingual
representation space for documents. While this can
be effective, this approach is fraught with chal-
lenges, including the need for large-scale data, the
computational expense of training, and potential
loss in translation, especially in domains like law
that require precision. On the other hand, cross-
lingual representations, which focus on creating
shared embedding spaces for documents across lan-
guages, are the focal point of this study (Tashu
et al., 2023). By employing mapping-aligned doc-
ument embeddings and comparing their similarity
with the query, it offers a computationally cheaper
solution without the need for extensive fine-tuning
of pre-trained large language models.

The rest of the paper is organized as follows.
Section 2 presents the related works. The proposed
methodology is presented in section 3. Section 4
presents the experimental setting and the datasets
used in this work. The experimental results will
be presented in Section 5, while the results are
discussed in Section 6. Finally, the conclusions
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will be presented in section 7.

2 Related work

The work towards generating inter-lingual and mul-
tilingual representations, which can encapsulate
information across multiple languages in a uni-
fied form, has gained substantial attention in re-
cent years. This interest spans both word-level
and document-level representations. Early obser-
vations, such as those introduced by (Mikolov
et al., 2013), identified that word embedding spaces
across languages possess structural similarities.
These insights led to the development of linear
mappings from one language embedding space
to another, utilizing parallel vocabularies. Sub-
sequent works (Lample et al., 2018; Smith et al.,
2017; Xing et al., 2015), have aimed to refine these
cross-lingual word embeddings, mainly through
modifications in space alignment methods or re-
trieval techniques. Techniques like averaging word
vectors (Litschko et al., 2018) or leveraging cross-
lingual knowledge bases like Wikipedia (Potthast
et al., 2008) or BabelNet (Franco-Salvador et al.,
2014) have been used to learn document-level
cross-lingual representation. A notable method-
ology in this domain is the cross-lingual semantic
indexing (CL-LSI) (Deerwester et al., 1990; Saad
et al., 2014), which extends the well-known latent
semantic indexing (LSI) to encapsulate multiple
languages through the singular value decomposi-
tion of concatenated monolingual document-term
matrices.

An emerging strategy in both word-level,
sentence-level and document-level research is the
use of neural network architectures. One of the
pioneer works in this direction was the work by
(Schwenk and Douze, 2017) where they used a
deep neural network to directly encode long text
passages in a language-independent manner. The
work by (Artetxe and Schwenk, 2019) used a
multilingual auto-encoder to generate language-
independent sentence embeddings. Recently, pre-
trained models such as BERT (Devlin et al., 2019)
have changed the landscape of cross-lingual repre-
sentation research. These models have enabled the
generation of sentence encoders on multilingual un-
labeled corpora without the need for parallel data
(Conneau et al., 2020; Feng et al., 2022; Goswami
et al., 2021; Litschko et al., 2022). Concurrently,
certain studies have leveraged pre-trained multi-
lingual transformers for cross-lingual information

retrieval (IR). The work by (Shi et al., 2020) com-
bined mBERT with Google Translate in their in-
formation retrieval pipeline, while Litschko et al.
(2022) utilized mBERT and XLM for the same
purpose, emphasizing the need for fine-tuning for
efficient and effective document-level results. Col-
lectively, these studies underscore the potential of
transformers in cross-lingual information retrieval,
paving the way for alternative methodologies such
as mapping over fine-tuning, as explored in the cur-
rent investigation. While these approaches have
shown promise, the study herein differentiates it-
self by presenting a methodology that uses map-
ping methods to create inter-lingual representations.
The novelty of this work primarily lies in the use
of mapping methods to align monolingual repre-
sentations obtained separately for each language
from pre-trained large language models, to produce
inter-lingual document-level representations.

3 Methods

In this section, we will introduce the different large
language models used in this study and the map-
ping approaches used to learn interlingual represen-
tation from the pre-trained large language models.

3.1 Transformers

Transformers, introduced by Vaswani et al. (2017)
have transformed the landscape of natural language
processing (NLP). Instead of relying heavily on re-
current or convolutional layers, transformers lever-
age multiple attention heads to weigh the signifi-
cance of different parts of an input sequence dif-
ferently, allowing for parallel processing and the
capture of long-range dependencies in data. There
exist a plethora of variations within the transformer
architecture. In the following sections, we will
discuss the specific variants of transformer-based
large language models used in the context of this
study.

3.1.1 mBERT
Multilingual BERT is an extension of the Bidirec-
tional Encoder Representation from Transformers
(BERT) that was introduced by Devlin et al. (De-
vlin et al., 2019). BERT stands out as a pre-trained
model, having undergone training on vast volumes
of unlabelled data, primarily focusing on two pre-
training objectives:

• Masked Language Modelling (MLM): This
objective requires the model to predict masked



41

portions of the provided input. Specifically,
15% of the training data tokens undergo mask-
ing. Of these masked tokens, 80% are substi-
tuted with the "[MASK]" placeholder, 10%
are replaced with a random token, and the
remaining 10% are left unaltered.

• Next Sentence Prediction (NSP): BERT’s
versatility allows it to manage tasks that in-
volve pairs of sentences, which may or may
not exhibit contextual coherence. During its
training phase, BERT was supplied with sen-
tence pairs where 50% of the pairs were con-
textually sequential from the training dataset,
while the remaining 50% constituted random,
unrelated sentences.

BERT was originally pre-trained on a strictly
monolingual English corpus. Recognizing the
limitations of such a unilingual approach, there
emerged a demand for a model with broader lin-
guistic capabilities. In response, the Multilingual
BERT (mBERT) (Devlin et al., 2019), was concep-
tualized. This iteration extends the foundational
principles of BERT, accommodating text from a
diverse array of 104 languages.

3.1.2 mT5
Multilingual(Xue et al., 2020) Text-to-Text Trans-
fer Transformer (mT5) is an encoder-decoder
model pre-trained on 101 languages, closely based
on the original T5 model from (Raffel et al., 2019).
It has been pre-trained on an objective similar to
MLM, called MLM span-corruption, where con-
secutive tokens from the input are masked from the
model during pre-training.

mT5 is highly specialised for text-to-text tasks
such as machine translation and text generation,
however, it can also be used as an encoder model
only, which was done for this project. Like BERT,
the maximum amount of tokens that were used was
512, with an embedding dimensionality of 768,
corresponding to the "base" version.

3.1.3 XLM-RoBERTa
The Cross-Lingual Modelling for Robustly Opti-
mised BERT, colloquially termed XLM-RoBERTa,
stands as a notable iteration of pre-trained multi-
lingual transformers. Introduced by Conneau et al.
(2019), this model is an evolution of RoBERTa
(Liu et al., 2019). Diverging from conventional
methodologies, XLM-RoBERTa eschews both the
Next Sentence Prediction (NSP) and translation

objectives, concentrating exclusively on Masked
Language Modelling (MLM). The key innovation
lies in refining the training procedure and extending
the training duration, measures that synergistically
enhance model performance. Adapted to cater to
100 languages, XLM-RoBERTa can function ef-
fectively as an encoder-only model. For the pur-
poses of this research, the "base" variant of XLM-
RoBERTa was deployed, accommodating a max-
imum of 512 tokens and featuring an embedding
dimensionality of 768.

3.1.4 ErnieM
The Multilingual Ernie (ErnieM) (Ouyang et al.,
2021) represents a distinguished pre-trained mul-
tilingual transformer. Drawing inspiration from
the XLM-RoBERTa, ErnieM’s hallmark feature
lies in its capacity to synchronize linguistic rep-
resentations across its embedded languages. This
harmonization is operationalized through a cross-
lingual semantic alignment, juxtaposing parallel
data with its monolingual counterpart. In the spirit
of achieving this, the authors put forth two pre-
training objectives:

• Cross-Attention MLM (CAMLM): A strategy
devised to cohesively align the semantic rep-
resentation of parallel data across the entire
linguistic spectrum.

• Back-Translation MLM (BTMLM): This ob-
jective embarks on aligning cross-lingual se-
mantics with monolingual contexts. Through
back-translation, it facilitates the generation
of novel linguistic tokens from monolin-
gual corpora, and subsequently acquaints the
model with their multilingual semantic align-
ment.

Supplemented by the translation modelling lan-
guage task (an initiative akin to MLM but marked
by the amalgamation of sequences from an array
of languages) and the Multilingual MLM (char-
acterized by masking tokens transcending diverse
languages), these objectives jointly constitute the
pre-training paradigm of ErnieM. Maintaining con-
sistency, this study harnesses the "base" version of
ErnieM, with a stipulated threshold of 512 tokens
and an embedding dimensionality set at 768.

The models selected for this investigation inher-
ently embrace a multilingual ethos, underpinned
by two pivotal reasons: Firstly, the monolingual
iterations of these models have not ubiquitously
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undergone training across the selected quintet of
languages earmarked for this research. More crit-
ically, the inherent overlap in the models’ embed-
ding space across languages posits a fertile ground
to evaluate the potential of leveraging ready-made
multilingual models sans the requisite of supple-
mentary mapping or precision-tuning. To draw an
illustrative parallel, juxtaposing disparate models
of analogous frameworks, each tailored to indi-
vidual languages (e.g., BERT vis-à-vis its Gallic
analogue), might yield embeddings that, owing to
divergent training trajectories, manifest disparities
too profound to be semantically reconciled.

3.2 Mapping approaches

Given two monolingual document collections,
Dx = {dx,1, . . . , dx,n} in language x and Dy =
{dy,1, . . . , dy,n} in language y . To embark on a nu-
anced analysis of these documents, it is imperative
first to learn or extract the embedding for each doc-
ument. To achieve this, we employ the pre-trained
large language models introduced in section 3 sub-
section 3.1. Notwithstanding, it’s worth noting that
any representation learning algorithm that embeds
the document sets Dx and Dy into vectors within
the space Rk can be used.

From the language models, we ob-
tain sets of vectors, respectively, defined
as Cx = {d̂x,1, . . . , d̂x,n} ⊂ Rk and
Cy = {d̂y,1, . . . , d̂y,n} ⊂ Rk. Conceptually,
Cx and Cy can be interpreted as "Conceptual
Vector Spaces", encapsulating broader linguistic
and thematic abstractions inherent to the original
documents. Nevertheless, a salient point to
recognize is that even if vectors within Cx and
Cy encapsulate analogous concepts transversal to
languages, the representation schema might vary.
Consequently, a mere direct juxtaposition of d̂x,k
and d̂y,kmight not manifest the underlying content
congruencies.

All the mapping methods used in this study are
adopted from the works of Tashu et al.(Tashu et al.,
2023). In the upcoming section, we will present a
summary of three different mappings where more
details on each of the methods can be found in
(Lenz et al., 2021; Tashu et al., 2023).

3.2.1 Linear concept approximation (LCA)
The motivation is to directly embed the test docu-
ments into the space spanned by the training doc-
uments in the semantic space using linear least
squares (Salamon et al., 2021). This is based

on the assumption that the vector space spanned
by the parallel training documents is the same in
their respective language. Therefore, the coordi-
nates of the test documents in that span would
be a good language-independent representation
of these documents. Using the representation ob-
tained from the large language models presented
in section 3, we can derive low-dimensional repre-
sentations of each document within Rk. Multiple
documents can be concatenated into matrices. If
there are n documents available in both languages,
we can create the representation/concept matrices
Cx = XT ∈ Rn×k and Cy = Y T ∈ Rn×k in
which every column is a concept in its respective
language.

3.2.2 Linear Concept Compression (LCC)
The motivation behind LCC is to find mappings
into an inter-lingual space, ECx, Cy, such that the
comparison of Cx(d̂x,k), Cy(d̂y,k), provides a mea-
sure of content similarity. For two monolingual
representations, we want to find their inter-lingual
representations, which encode the same informa-
tion as the different monolingual spaces do. More
precisely, for a given document d and its repre-
sentations in each respective language, d̂x,k and
d̂y,k, we want to find mappings Cx and Cy, re-
spectively, such that Cx(d̂x,k) = Cy(d̂y,k) and the
information of d̂x,k and d̂y,k is preserved. The intu-
ition is to train an Encoder-Decoder approach. The
purpose of the Encoder is to encode monolingual
representations in a language-independent space.
The purpose of the Decoder is to reconstruct the
monolingual representations of multiple languages
from that encoding(Lenz, 2021).

3.2.3 Neural Concept Approximation (NCA)
In contrast to conventional approaches where map-
pings are directly derived from given vectors,
Cx and Cy, the proposed methodology leverages
a Neural Network to approximate these vectors.
Specifically, a Feed Forward Neural Network
(FFNN). Two distinct models were trained: one
mapping from the source language to the target lan-
guage, and the other in the reverse direction (Tashu
et al., 2023).

Both models were defined in the same manner: 1
layer of 500 neurons, using the Exponential Linear
Unit (ELU), with the Huber objective function, for
a maximum of 250 epochs with the implementation
of early stopping and a learning rate of 5·10−4. The
network’s architecture consists of 3 total layers, one
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input layer with dimensionality d (the dimension
of a given document), followed by the hidden layer
(with dimensionality d× 500), and the output layer
with dimensionality 500× d.

4 Experiment

4.1 Data

The JRC-Acquis corpus (Steinberger et al., 2006)
was used for this project because of its character-
istics. It is a publicly available, sentence-aligned
corpus consisting of the 22 official languages of the
European Union (EU), containing legal documents
pertaining to EU matters from 1958 to 2006. Since
this study dealt with language pairs, only five lan-
guages were used, those being English, Romanian,
Dutch, German, and French, for a total of 20 or-
dered pairs (i.e. English → French and French →
English are treated as a different pair). Since the
documents for each language were not aligned, it
was necessary to perform a secondary alignment
for the five chosen languages such that documents
were shared across the subset, resulting in 6, 538
unique documents. There were also some issues
at the character level of some non-English docu-
ments from the initial dataset. For instseveralber
of French documents presented corrupted letters,
meaning that letters with diacritics were instead
displayed in XML format (e.g. "é" displayed as
"%eacute"). A preprocessing step was as such in-
troduced to replace these corrupted variants with
their original form and to remove any additional
white space from the documents. The documents,
at the same time, were converted from XML to a
standard string format to be used by the models. In
this study, 60% was used for the training set, 20%
for the validation set and 20% for the test set.

4.2 Embeddings

It is necessary to represent the documents in a con-
tinuous manner to be able to apply any mapping
approach. This was achieved by passing all doc-
uments, in each language, through the tokenizer
and model modules of the previously discussed
transformer models.

An input text undergoes several processing steps
while passing through the tokenizer: it is truncated
or padded to the maximum length allowed by the
models (N = 512 tokens), after which the tokens
are converted to internal ID representations stored
in the vocabulary of the model, and for which the
attention mask is computed. The latter part allows

the model to look only at the relevant tokens in
the sequence, ignoring padding tokens. Since this
study only deals with the embeddings of the models
and not their decoded outputs, the final hidden state
from the encoder part of the models is extracted.
The model computed the embedding for each token,
and as such, documents are now represented as
512× 768 matrices, while it is necessary to obtain
a vector of size 768. This was solved by performing
a global pooling operation on all of the outputted
states, where tokens that were not ignored by the
attention mask were averaged together. As such,
documents are now represented by vectors with
dimensionality 768, to be used in the following
section.

4.3 Evaluation metrics

Two evaluation metrics were used to compute the
performance of the mapping approaches:

• Mate Retrieval Rate: the retrieval rate of the
most symmetric document; this metric eval-
uates how similar two documents are - the
query and retrieved document. If the retrieved
document is the same as the query document,
that is called a mate retrieval. It is defined as:

MR(d) = argmax Sd · TT
d

S(d, d′) =

{
1 d = d′

0 d ̸= d′

(1)

where S is the similarity between 2 documents
d and d′, and MR is the mate retrieval for a
given document d in the source S and target
language T . It can be said that a mate retrieval
is successful if d and d′ are the same. The
equations in 1 can be combined to compute
the mate retrieval rate for all documents (D),
as seen in equation 2:

RetrievalRate =
1

|D|

|D|∑
d=1

S(d,MR(d)) (2)

• Mean Reciprocal Rank: this represents how
high-ranked documents are, based on a simi-
larity measure. This has been achieved using
cosine similarity, defined below:

C(d1, d2) =
d1 · d2

∥d1∥ · ∥d2∥
(3)
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where the numerator represents the inner prod-
uct of the vector representations of documents
d1 and d2, and the denominator is the mag-
nitude product of the two vectors. If the two
documents are similar to each other, their co-
sine will be closer to 1 and will be closer to
−1 if they are not similar. This equation can
be used to obtain the cosine matrix similarity
of all documents.

Furthermore, the rank r of a document can
be defined as its cosine similarity compared
to other documents obtained from the matrix
cosine similarity. If it is most similar to itself
in the target language, then its rank will be 1.
Finally, these components can be combined to
form the mean reciprocal rank:

ReciprocalRank =
1

|D|

|D|∑
d=1

1

rd
(4)

5 Results

The performance of the mapped (or not) embed-
dings was measured using the evaluation metrics
defined in the previous section. Due to the large
number of results that were obtained (640 total
results across four transformer models, three map-
ping methods and no mapping, for 20 language
pairs, for each evaluation metric), the final results
have been averaged across models and language
pairs. As such, Figures 1 and 2 only present their
average evaluation metric for all dimensions. Both
figures showcase significant results when compar-
ing mapped and non-mapped embeddings. How-
ever, there is also a significant difference between
embeddings mapped using NCA and embeddings
mapped with the other methods.

The best mapping method across both evalua-
tion metrics was LCA (Retrieval Rate = 0.937,
Reciprocal Rank = 0.958), while the worst map-
ping method was NCA (Retrieval Rate = 0.609,
Reciprocal Rank = 0.696). Still, all meth-
ods performed significantly better than the non-
mapped embeddings (Retrieval Rate = 0.201,
Reciprocal Rank = 0.279). Table 1 presents the
results across all language pairs for both metrics,
broken down for each transformer model and map-
ping method, and additionally the results obtained
by Tashu et al. (2023). Using the same mapping
approaches, mBERT embeddings mapped using
LCA outperform all other models and mapping
combinations, including those from the mentioned

Model Mapping MRRank MRtRate

mBERT

None 0.2 0.115
LCA* 0.975 0.963
LCC 0.973 0.959
NCA 0.84 0.781

mT5

None 0.466 0.37
LCA* 0.947 0.922
LCC 0.936 0.907
NCA 0.814 0.756

XLM-RoBERTa

None 0.114 0.057
LCA 0.948 0.925
LCC* 0.951 0.928
NCA 0.617 0.499

ErnieM

None 0.443 0.355
LCA* 0.965 0.949
LCC 0.962 0.946
NCA 0.742 0.67

Table 1: Mean Reciprocal Rank (MRRank) and Mate
Retrieval Rate (MRtRate).

Figure 1: Line plot of the average Mate Retrieval Rate
across dimensions for all language pairs and models,
using LCA, LCC, NCA, and no mapping.

paper, across both metrics (RetrievalRate = 0.963,
ReciprocalRank = 0.975).

6 Discussion

From our results, it becomes evident that Trans-
former Leveraged embeddings combined with map-
ping methods markedly outperform non-mapped
embeddings across all models, as delineated in
Table 1. These Leveraged embeddings, in all in-
stances, show significant superiority compared to
the non-mapped variants. This underscores that em-
ploying an off-the-shelf model devoid of enhance-
ments (e.g., fine-tuning, mapping) results in subpar
outcomes, irrespective of the model’s type. Figures
1 and 2 further substantiate this, demonstrating that
mapped embeddings consistently outpace their non-
mapped counterparts across all metrics. Within
this context, the NCA mapping method displayed
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Figure 2: Line plot of the average Mean Reciprocal
Rank across dimensions for all language pairs and mod-
els, using LCA, LCC, NCA, and no mapping.

the favourableorable performance, overshadowing
only the non-mapped embeddings. This could be
attributable to the network’s architectural design,
potentially falling short in capturing the nuanced
similarities between documents to establish an ef-
fective mapping.

An examination of Table 1 reveals mBERT’s
dominance over other transformer models across
all mapping strategies. Notably, when paired
with LCA and LCC-mapped embeddings, mBERT
eclipsed all other embedding and mapping combi-
nations as referenced by (Tashu et al., 2023). This
superior performance may be credited to the exten-
sive data mBERT trained on, complemented by its
pre-training tasks.

Interestingly, both ErnieM and mT5, when
aligned with non-mapped embeddings, showcased
better performance than their transformer coun-
terparts under identical conditions. The under-
lying reason might be traced back to the distinc-
tive training data and methodologies employed by
these models. In contrast to mBERT and XLM-
RoBERT, which utilize MLM (and additionally
NSP for mBERT), ErnieM incorporates a broader
spectrum of pre-training objectives geared towards
cross-lingual alignment. This distinction could elu-
cidate the superior performance of its non-mapped
embeddings. mT5’s commendable performance
can be attributed to its foundational design, being
inherently an encoder-decoder model, though this
project exclusively utilized its encoding facet.

In general, our study highlights the efficacy of
Transformer Leveraged embeddings when syner-
gized with mapping techniques, resulting in a no-
ticeable performance leap over non-mapped embed-
dings. This aligns with the findings of (Litschko
et al., 2022), which accentuate that standalone
out-of-the-box models, without refinements or

supplementary techniques, are generally less effi-
cient. However, diverging from their study, our
research underscores that optimal performance
doesn’t solely hinge on model fine-tuning. In the
realm of IR, integrating mapping techniques can
be equally potent in driving commendable results.

7 Conclusion

Document recommendation stands at the forefront
of Information Retrieval (IR) systems. Within rec-
ommendation frameworks, it efficiently suggests
pertinent documents in alignment with a user’s
query. In our research, we delved into the possibili-
ties of crafting cross-lingual representations by har-
nessing embeddings from pre-existing multilingual
transformers in conjunction with mapping strate-
gies. Using embeddings from these pre-trained
multilingual transformers allows for document rep-
resentation without requiring further training or
intricate processing. Nonetheless, our research il-
luminated that solely depending on the raw em-
beddings from the transformers fell short in terms
of efficacy. A notable enhancement in results was
witnessed when the embeddings were synergized
with mapping techniques such as LCA, LCC, and
NCA. The languages incorporated within our study
hold considerable prominence across various lin-
guistic tasks. Consequently, the adopted models
and mapping techniques have the potential to foster
efficient representations by mapping low-resource
languages onto those that are more abundantly rep-
resented. It beckons further exploration into how
these mapping techniques perform when applied to
low-resource languages. Future research might not
restrict itself to merely language pairs, as was the
focus of this study, but could expand to encompass
language tuples—translating from a single source
language to multiple target languages. Achieving
this might necessitate refining the present mapping
methodologies, introducing supplementary steps,
or pioneering entirely novel methods. The code of
this project is publicly available on GitHub.

https://github.com/Tron404/BScThesis.git
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