
Proceedings of the 2nd SUMEval Workshop: Scaling Up Multilingual & Multi-Cultural Evaluation, pages 48–59
January 20, 2025. ©2025 Association for Computational Linguistics

48

VRCP: Vocabulary Replacement Continued Pretraining
for Efficient Multilingual Language Models

Yuta Nozaki*, Dai Nakashima*, Ryo Sato*,
Naoki Asaba*, Shintaro Kawamura*

*Ricoh Company, Ltd.
{yuta.nozaki1,dai.nakashima,ryo.sato4,

naoki.asaba,shintaro.kawamura}@jp.ricoh.com

Abstract

Building large language models (LLMs) for
non-English languages involves leveraging ex-
tensively trained English models through con-
tinued pre-training on the target language cor-
pora. This approach harnesses the rich se-
mantic knowledge embedded in English mod-
els, allowing superior performance compared
to training from scratch. However, tokeniz-
ers not optimized for the target language may
make inefficiencies in training. We propose
Vocabulary Replacement Continued Pretrain-
ing (VRCP), a method that optimizes the to-
kenizer for the target language by replacing
unique (solely available) vocabulary from the
source tokenizer while maintaining the overall
vocabulary size. This approach preserves the
semantic knowledge of the source model while
enhancing token efficiency and performance for
the target language. We evaluated VRCP using
the Llama-2 model on Japanese and Chinese
corpora. The results show that VRCP matches
the performance of vocabulary expansion meth-
ods on benchmarks and achieves superior per-
formance in summarization tasks. Additionally,
VRCP provides an optimized tokenizer that bal-
ances token efficiency, task performance, and
GPU memory footprint, making it particularly
suitable for resource-constrained environments.

1 Introduction

Recent advancements in large language mod-
els (LLMs) based on transformer architectures
(Vaswani et al., 2017) have brought significant
progress to the field of NLP. Models such as GPT-4
(OpenAI et al., 2023) and Llama-2 (Touvron et al.,
2023) have predominantly been trained on exten-
sive English corpora, leaving a gap in the availabil-
ity of models optimized for non-English languages.
This disparity is due to the relative scarcity of high-
quality, large-scale corpora for many non-English
languages compared to English. Consequently, this
limits the potential improvements based on the scal-

�
��
�
�
�
�

�
�	

�
�

�
��

�

�
�

�
�

�

��

���������

������

�	���������������

����	����

�������

������

�
��
�
�
�
�

�
�	

�
�

�
��

�

�
�

�
�
�

��

���������

������

����	�������������

����	����

High Low
��� ��	�!

High Low
��� ��	�!

Figure 1: Illustration of VRCP: The English Optimized
Tokenizer (left) replaces low-frequency English vocabu-
lary with high-frequency Japanese vocabulary to create
the Japanese Optimized Tokenizer (right). This retains
common vocabulary while optimizing for Japanese.

ing laws (Kaplan et al., 2020) of language models
for these languages.

One promising approach to developing models
specialized for non-English languages involves con-
tinued pretraining of extensively pretrained models
on the target language corpora (Yong et al., 2023;
Wang et al., 2020; Pfeiffer et al., 2021). This ap-
proach leverages the semantic knowledge and intel-
ligence of the English-based models, enabling high
performance even with relatively small amounts
of target language corpora. This approach, akin to
DAPT (domain-adaptive pre-training) (Gururan-
gan et al., 2020), allows for the incorporation of
new linguistic characteristics while retaining the
established knowledge base.

However, this approach presents significant chal-
lenges. The vocabulary of tokenizers used in
English-based model is optimized for efficient to-
kenizing of English texts. When applied to texts
in target languages, these tokenizers often segment
the text into excessively small units. This leads
to a considerable reduction in the length of se-
quences that can be processed in the same batch,
thereby increasing the training time for the target

49

language data and significantly decreasing training
efficiency. This inefficiency is particularly problem-
atic in scenarios involving Retrieval-Augmented
Generation (RAG), where language models need
to process long texts as prompts for seq2seq tasks,
e.g., summarization (Lewis et al., 2021). Given the
inherent limitations in sequence length imposed
by transformer architectures, using a tokenizer that
inefficiently for the target language restricts the
amount of text that can be included in the prompt.
Even when a model supports very long sequence
lengths, the computational complexity increases at
an O(n2) rate with the sequence length (Vaswani
et al., 2017), leading to poor computational effi-
ciency.

Additionally, languages with non-alphabetic
scripts, such as Japanese and Chinese, often en-
counter issues with frequent out-of-vocabulary
words or characters being fragmented at the byte
level (Rust et al., 2021).

To address these inefficiencies, a previous ap-
proach is to expand the tokenizer’s vocabulary with
tokens relevant to the target language, reducing
the number of tokens needed to represent the same
text (Wang et al., 2020; Yao et al., 2021; Liu et al.,
2020; Wang et al., 2019; Minixhofer et al., 2022).
However, this method inadvertently increases the
parameter count of the embedding layer of the
model and, consequently, a lager memory footprint.

Maintaining a constant vocabulary size while op-
timizing for target languages is crucial for prevent-
ing an increase in model parameters and controlling
memory consumption. This is particularly impor-
tant for smaller models, where the embedding layer
represents a significant portion of the overall model
size. For instance, in models like Qwen-2 (0.5B
and 1.5B), embedding tying is used to prevent an
increase in model size (Yang et al., 2024). More-
over, works on machine translation models have
shown that embedding tying can reduce model size
while maintaining performance (Press and Wolf,
2017). Additionally, increasing the size of the
embedding layer exacerbates communication over-
head during distributed training, as highlighted in
studies by (Acun et al.). Maintaining a constant
vocabulary size allows us to mitigate these issues
and improve training efficiency.

We propose a novel method, Vocabulary Re-
placement Continued Pretraining (VRCP), to en-
hance token efficiency for the target language in
continued pretraining while maintaining the vocab-
ulary size. Our method involves constructing a new

tokenizer tailored to the target language and sub-
stituting unique (solely available) vocabulary from
the source tokenizer with vocabulary from the tar-
get language. This enables continued pretraining
that leverages the semantic knowledge of the ex-
isting model while improving token efficiency. As
illustrated in Figure 1, VRCP is a simple method
whereby low-frequency words from the target lan-
guage corpus within the source tokenizer are re-
placed with high-frequency words from the same
target language corpus.

We evaluated VRCP through experiments on
Japanese and Chinese texts. The results demon-
strated that VRPC matches the token efficiency and
task performance of expanding vocabulary meth-
ods. By not increasing the model size, VRCP also
prevents any additional GPU memory footprint.
Notably, for summarization tasks, VRCP showed
superior performance compared to previous meth-
ods. This indicates its suitability for use cases such
as RAG.

Our main contributions are as follows:

• We propose a method, VRCP, to enhance to-
ken efficiency for the target language in con-
tinued pretraining while maintaining the vo-
cabulary size.

• Through experiments with Japanese and Chi-
nese, we demonstrated that VRCP can achieve
token efficiency and task performance compa-
rable to vocabulary expanding methods while
maintain vocabulary size.

• We showed that VRCP improves summariza-
tion task performance, making it ideal for use
cases such as RAG.

2 Formulization

2.1 Tokenizer Definition
A tokenizer performs two primary tasks: segment-
ing a text into tokens and mapping these tokens to
unique IDs using its vocabulary V .

First, the segmentation function S processes
a text text and produces a sequence of tokens
{t1, t2, . . . , tn}, where each token ti belongs to
V :

S(text, V) = {t1, t2, . . . , tn} (1)

Then, the mapping function M assigns each to-
ken ti an ID idi within the range {0, 1, . . . , |V | −
1}:

M(ti, V) = idi (2)

50

2.2 Embedding Definition
Each token ID idi is associated with an embedding
vector from the embedding matrix E. This matrix
E is of size |V | × d, where |V | is the vocabulary
size and d is the dimensionality of the embedding
vectors. For a token ti, its embedding vector e⃗idi is
obtained by mapping ti to its ID idi using M , and
then retrieving the corresponding vector from E:

e⃗idi = E[M(ti, V)] (3)

2.3 Vocabulary Expansion Method
To expand the vocabulary of a source tokenizer, a
new vocabulary V ′ is constructed from the target
language corpus. This new vocabulary V ′ is com-
bined with the original vocabulary V to form an
expanded vocabulary:

Vnew = V ∪ V ′ (4)

For each new token v′i in V ′, its embed-
ding e⃗idv′

i

is computed by taking the arithmetic
mean of the embeddings of its segmented sub-
tokens. Specifically, if v′i is segmented into
{t1, t2, . . . , tn}, we first map these tokens to their
IDs {id1, id2, . . . , idn} using M , and then retrieve
their embeddings e⃗id1 , e⃗id2 , . . . , e⃗idn from E. The
new embedding vector e⃗idv′

i

is calculated as the
arithmetic mean of these vectors:

e⃗idv′
i

=
1

n

n∑
j=1

e⃗idj (5)

These new embeddings are then added to the
original embedding matrix E, resulting in an up-
dated matrix:

E′ =

{
e⃗id if id ∈ V

e⃗idv′
i

if v′i ∈ V ′ (6)

3 Proposed Method: VRCP

Our proposed method, Vocabulary Replacement
Continued Pretraining (VRCP), consists of four
main components: Vocabulary Construction, Vo-
cabulary Replacement, Embedding Replacement,
and Continued Pretraining.

3.1 Vocabulary Construction
The first step of VRCP is to construct a new vocab-
ulary specialized for the target language. We define
the vocabulary size to be equal to that of the source
tokenizer and develop the tokenizer using a corpus

that combines both the target language and English.
Including English corpus ensures that common vo-
cabulary between the target language and English
is retained, which helps in effectively utilizing the
semantic knowledge of the source model.

3.2 Vocabulary Replacement

Next, we replace the unique vocabulary of the
source vocabulary V with those from the con-
structed vocabulary V ′. This process retains the
token ID mappings for the common vocabulary be-
tween V and V ′, enabling the model to leverage its
knowledge of source model effectively.

The process is carried out using the following
steps and equations:

1. Identifying Common Vocabulary:

Identify the common vocabulary between the
source vocabulary V and the constructed vo-
cabulary V ′ by taking their intersection:

Vcom = V ∩ V ′ (7)

2. Identifying Unique Vocabulary:

Determine the unique vocabulary in V ′ that
are not present in V by taking the difference:

V ′
uni = V ′ \ V (8)

3. Constructing the New Vocabulary:

Form the new vocabulary Vnew by combining
the common vocabulary Vcom and the unique
vocabulary from V ′, V ′

uni:

Vnew = Vcom ∪ V ′
uni (9)

To preserve the integrity of token IDs, for any
vocabulary vcom ∈ Vcom, the token ID in the new
vocabulary Vnew remains the same:

M(vcom, Vnew) = M(vcom, V) (10)

This equality holds because vcom is a part of the
common vocabulary Vcom and thus its token ID
does not change with the new vocabulary Vnew. By
preserving these mappings, the model retains its
knowledge associated with the shared tokens, en-
abling effective utilization of existing knowledge
while adapting to new language nuances.

51

mail

�

�

�

Source Vocab / Embedd

�

�

�

2549

provide 13603���� (solely

available in

�)

mail

�

�

�

Target Vocab

�

�

�

14842

�� 19752�′��� (solely

available in

��)

mail

�

�

�

New Vocab / Embedd

�

�

�

2549

�� 13603

Replace with

� 30647

� 30462
��

Replace with

Figure 2: VRCP Process: Source vocabulary V and target vocabulary V ′ are used to create a new vocabulary Vnew.
Common tokens Vcom are retained, while unique tokens Vuni from V are replaced with unique tokens V ′

uni from V ′.

3.3 Embedding Replacement

Replacing the vocabulary alone does not ensure
that the embedding vectors for the unique vocabu-
lary V ′ (V ′

uni) align with the embeddings E. This is
because the unique vocabulary v′i ∈ V ′

uni have em-
bedding vectors e⃗idv′

i

that may not fit well with the
source embedding space. To address this, we need
to replace these embeddings to maintain semantic
consistency. Specifically, the following relation
holds:

1. Token Segmentation and ID Mapping:

For each token v′i in the constructed vocabu-
lary V ′, use the source tokenizer S and the
vocabulary V to segment v′i and map it to a
sequence of token IDs {id1, id2, . . . , idn}:

{id1, id2, . . . , idn} = M(S(v′i, V), V)
(11)

where each idj corresponds to the token tj in
the vocabulary V .

2. Retrieving Source Embedding Vectors:

Retrieve the corresponding embedding vec-
tors e⃗idj from the source embedding matrix E

for each token ID idj :

e⃗idj = E[idj] (12)

3. Calculating the Arithmetic Mean Embed-
ding Vector:

Compute the arithmetic mean of the embed-
ding vectors e⃗idj for all sub-tokens tj and cre-
ate the embedding vector e⃗idv′

i

for the con-

structed vocabulary v′i:

e⃗idv′
i

=
1

n

n∑
j=1

e⃗idj (13)

4. Updating the Embedding Matrix:

After calculating the embedding vectors e⃗idv′
i

for the constructed vocabulary V ′, update the
source embedding matrix E to form the new
embedding matrix E′:

E′ =

{
e⃗id if id ∈ V

e⃗idv′
i

if v′i ∈ V ′
uni

(14)

This update ensures that the new embedding
matrix E′ remains semantically consistent
with the existing embedding matrix E.

52

3.4 Continued Pretraining

In VRCP, the continued pretraining process primar-
ily utilizes the target language corpus. However, to
enhance the stability and effectiveness of training,
we include a small portion of English corpus, align-
ing with the Domain-Adaptive Pretraining (DAPT)
(Gururangan et al., 2020) strategy.

This inclusion follows approach of DAPT, where
maintaining a minor amount of English data helps
to mitigate the risk of catastrophic forgetting and
prevents abrupt changes in the data distribution
from destabilizing the model adaptation process.

4 Experiments

We evaluated the effectiveness of our proposed
method using experiments with Japanese and Chi-
nese corpora.

We evaluated the methods based on three key
aspects:

• Token Efficiently (Target/English)

– We evaluated each method by tokenizing
the test data and measuring the average
character length per token (Length Per
Token, LPT) of the resulting token se-
quence.

• Task performance (Target/English)

– We evaluated the models trained with
each tokenizer method on benchmark
tasks to assess their performance.

• GPU Memory Footprint

– We measured the average GPU memory
footprint per device in training.

4.1 Setup

Preparation of Corpora: We prepared mixed cor-
pora of the target language and English for both
Japanese and Chinese, ensuring a balanced ratio of
6:5 between the target language and English. The
details of the corpora used are as follows:

• Japanese: Wikipedia (Japanese), CC100
Conneau et al. (2020) (Japanese), Wikipedia
(English)

• Chinese: NLP Chinese Corpus (Xu, 2019)
(Baike, News, Wikipedia), Wikipedia (En-
glish)

Construction of Tokenizer: We built a tok-
enizer with 32,000 words (V ′) using SentencePiece
(Kudo and Richardson, 2018) and BPE (charac-
ter_coverage=0.9995, Byte Fallback=True) from
the mixed corpus of the target language and En-
glish, prepared as described in the previous sec-
tion. Subsequently, we applied VRCP to replace
the unique vocabulary (Vuni) from the Llama-2 to-
kenizer with the unique vocabulary (V ′

uni) derived
from the vocabulary constructed using this mixed
corpus.

To evaluate the effectiveness of VRCP, we com-
pared it against three other tokenizer approaches:

• V ∪ V ′ (|V ′| = 16k): In this approach,
we expanded the Llama-2 tokenizer (V) by
adding 16,000 vocabulary constructed exclu-
sively from a corpus in the target language.

• V ∪ V ′ (|V ′| = 32k): In this approach,
we expanded the Llama-2 tokenizer (V) by
adding 32,000 vocabulary constructed exclu-
sively from a corpus in the target language,
similar to the previous approach.

• Unchanged Llama-2 tokenizer (V): In this
approach, we used the Llama-2 tokenizer as-
is, without any replacements or additions.

Continued Pretraining: We conducted further
pretraining of Llama-2-7B using a mixed corpus
consisting of both the target language and English.
For this process, we used the same types of corpora
as those used for the construction of Tokenizer, but
with a different sampling strategy. Specifically, the
ratio of English data in the training dataset was
adjusted to under 5%. We describe the detailed
training settings in the appendix.

4.1.1 Result and Discussion on Token
Efficiency

VRCP significantly improved token efficiency for
both Japanese and Chinese compared to the Llama-
2 tokenizer, achieving approximately 2.2 times bet-
ter efficiency for Japanese and 1.8 times better for
Chinese. This is a major achievement of our study,
particularly because we impose a constraint of not
expanding the vocabulary size (see Tables 1 and 2
for detailed efficiency metrics).

When comparing VRCP to the vocabulary ex-
pansion method with |V ′| = 16, 000 and |V ′| =
32, 000, we find that VRCP includes more tar-
get language vocabulary. Although VRCP shows

53

Table 1: Tokenization Efficiency for Japanese

Methods
Vocab

Size

JA

Vocab

Size

Common

Vocab

Size

EN

LPT

JA

LPT

Vcom ∪ V ′
uni

(VRCP)
32,000 15,293 12,137 3.740 1.838

V ∪ V ′

(|V ′| = 16k)
46,312 14,553 32,000 3.738 1.883

V ∪ V ′

(|V ′| = 32k)
61,701 29,273 32,000 3.758 2.081

Llama 2 32,000 837 32,000 3.523 0.851

Table 2: Tokenization Efficiency for Chinese

Methods
Vocab

Size

ZH

Vocab

Size

Common

Vocab

Size

EN

LPT

ZH

LPT

Vcom ∪ V ′
uni

(VRCP)
32,000 13,476 12,756 3.767 1.257

V ∪ V ′

(|V ′| = 16k)
46,073 14,065 32,000 3.767 1.445

V ∪ V ′

(|V ′| = 32k)
61,191 28,284 32,000 3.736 1.580

Llama 2 32,000 700 32,000 3.523 0.705

slightly lower token efficiency compared to the vo-
cabulary expansion methods, the Length Per Token
(LPT) is almost equivalent or better, especially for
English. Even with |V ′| = 32, 000, the improve-
ment in LPT is not significantly greater compared
to the efficiency improvement observed when re-
placing the unique vocabulary in the Llama-2 to-
kenizer with VRCP’s vocabulary (refer to Table 1
and Table 2).

Overall, we emphasize that substantial improve-
ment of VRCP on token efficiency for the target
languages, achieved without expanding the vocab-
ulary size, remains highly competitive against vo-
cabulary expansion methods. This suggests that
excluding non-target languages from the tokenizer
enhances tokenization efficiency for both the target
language and English, providing a balanced and ef-
ficient approach for multilingual tokenization (see
Tables 1 and 2 for a summary of results).

4.2 Evaluation of Task Performance

We evaluated the performance on benchmark
tasks using models pretrained with each tokenizer
method:

• English: ARC, HellaSwag, MMLU, XLSum-

EN

• Japanese: JCommonsenseQA, JSQuAD, NI-
ILC, XLSum-JA

• Chinese: C-Eval, CMMLU, CMRC, XLSum-
ZH

4.2.1 Discussion on Task Performance for
Japanese and Chinese

Japanese: Overall, the Unchanged method showed
the highest average performance across tasks (see
Table 3). This may be explained by the fact that
the Llama-2 model has been extensively trained
with its tokenizer on a vast amount of data, op-
timizing the model for this tokenizer. This phe-
nomenon has also been reported in previous studies.
However, when excluding the Unchanged method,
VRCP demonstrated the best performance among
the methods tested.

In particular, in summarization tasks, VRCP sig-
nificantly improved performance compared to the
Unchanged method (see Table 3). This improve-
ment was especially notable in the version of VRCP
without embedding replacement, which performed
better than the vocabulary expansion methods. In
fact, the more we expanded the total vocabulary
size, the lower the performance tended to be. This
may be because modifying the embedding vectors
for vocabulary expansion can negatively impact
text generation tasks. Even if the initial values
of the embeddings do not align perfectly with the
meaning of the vocabulary, it has been shown that
maintaining these initial embeddings can be advan-
tageous for text generation tasks.

Regarding English tasks, VRCP showed slightly
lower performance compared to the vocabulary ex-
pansion methods. However, the decrease in perfor-
mance was not severe enough to suggest a break-
down of the model. Notably, the decrease in per-
formance for English summarization tasks was less
pronounced than for other tasks. This indicates
that the extensive training of Llama-2 has made
the model robust to some changes in the tokenizer,
especially for text generation tasks, e.g., summa-
rization (see Table 3 for performance metrics).

Chinese: Similar trends were observed for Chi-
nese tasks. VRCP performed best in summariza-
tion tasks, with particularly strong results in the
version without embedding replacement. The pat-
tern of performance decreasing as the vocabulary
size expanded was also noted in Chinese, indicating

54

Table 3: Performance for Different Methods (Japanese)

Type Method EN JA GPU Memory
Footprint (GB)Avg. XLSum-EN Avg. XLSum-JA

Vocab
Replace
(VRCP)

Vcom ∪ V ′
uni .627 .900 .672 .734 52.78

Vcom ∪ V ′
uni

(Without Embed Replace) .617 .897 .637 .737 52.78

Vocab
Expand

(Previous)

V ∪ V ′

(|V ′| = 16k) .643 .901 .668 .736 54.57

V ∪ V ′

(|V ′| = 32k) .640 .901 .658 .717 56.16

Unchanged
(Baseline) V .626 .900 .691 .712 52.78

Vanilla Llama 2-7B .670 .905 .591 .690 N/A

Table 4: Performance for Different Methods (Chinese)

Type Method EN ZH GPU Memory
Footprint (GB)Avg. XLSum-EN Avg. XLSum-ZH

Vocab
Replace
(VRCP)

Vcom ∪ V ′
uni .622 .902 .507 .625 52.78

Vcom ∪ V ′
uni

(Without Embed Replace) .616 .902 .502 .652 52.78

Vocab
Expand

(Previous)

V ∪ V ′

(|V ′| = 16k) .639 .902 .493 .605 54.51

V ∪ V ′

(|V ′| = 32k) .642 .901 .488 .596 57.35

Unchanged
(Baseline) V .633 .900 .483 .553 52.78

Vanilla Llama 2-7B .670 .905 .499 .619 N/A

that expanding the vocabulary may reduce perfor-
mance, similar to what was seen with Japanese
tasks. Additionally, the slightly lower performance
in English tasks when using VRCP was observed
in both Japanese and Chinese settings, but again,
the decrease was not severe enough to compromise
the model’s effectiveness (see Table 4 for detailed
results).

Summary of Task Performance: The experi-
ments indicate that the vocabulary size in the target
language does not necessarily impact performance.
Both VRCP and the vocabulary expansion meth-
ods showed similar average scores across tasks.
This suggests that expanding the vocabulary is not
always essential to achieve high performance. In-
stead, the approach of VRCP, which involves re-
placing unique vocabulary without expanding the
total vocabulary size, remains competitive and ef-
fective, especially in text generation tasks. Addi-
tionally, VRCP’s improvement in English summa-
rization tasks supports the benefit of vocabulary
replacement for task performance in the target lan-

guage as well as in English (see Tables 3 and 4 for
task performance comparisons).

4.3 Evaluation of GPU Memory Footprint

We evaluated the GPU memory footprint of each
method in experiments with Japanese and Chi-
nese. VRCP maintains the same vocabulary size
as the Llama-2 model, ensuring a consistent GPU
memory footprint. This indicates its effectiveness
in resource-constrained environments without the
need for extensive vocabulary expansion (refer to
Table 3 and Table 4 for memory footprint details).

Vocabulary expansion methods increased mem-
ory footprint. Specifically, as the vocabulary size in-
creased, the GPU footprint increased linearly. This
result indicates that extensive vocabulary expan-
sions may not be efficient or necessary for improv-
ing performance (see Figure 3 for a visual represen-
tation of the linear increase in memory footprint).

As shown in Figure 3, even though increasing the
vocabulary size does not significantly improve the
Length Per Token (LPT), the GPU memory foot-

55

print continues to increase linearly. This demon-
strates that increasing vocabulary size leads to a
predictable linear increase in memory footprint,
without a corresponding substantial improvement
in tokenization efficiency.

10000 20000 30000 40000 50000 60000
Vocab Size

0

1

2

3

4

5

LP
T

LPT (Japanese)
LPT (English)
LPT (Chinese)
GPU Memory Footprint

0

20

40

60

80

100

GP
U
M
em
or
y
Fo
ot
pr
in
t (
GB
)

Figure 3: Relationship between vocabulary size, LPT,
and GPU memory footprint.

5 Related Works

Several studies have explored enhancing model per-
formance for low-resource languages by expand-
ing vocabulary and embedding layers in continued
pretraining. For example, Wang et al. (2020) and
Pfeiffer et al. (2021) expanded the vocabulary and
embedding layers for mBERT (Pires et al., 2019),
which improved performance by incorporating low-
resource language corpora. These methods typi-
cally involve expanding the vocabulary size, which
increases the number of model parameters and the
GPU memory footprint. This is because expand-
ing the vocabulary requires adding corresponding
embedding vectors. In decoder-only models like
Llama-2 (Touvron et al., 2023), embeddings must
be placed both after the input and before the out-
put. Therefore, expanding the vocabulary by Nnew
tokens with an embedding dimension of D results
in an increase of 2×D×Nnewmodel parameters. In
contrast, our proposed method maintains the source
vocabulary size by focusing on vocabulary replace-
ment. This preserves the semantic knowledge of
the source model while optimizing for the target
language.

Limisiewicz et al. (2023) highlight the signifi-
cant impact of tokenization on multilingual models,
especially the importance of language-specific to-
ken coverage for word-level tasks. Their study
provides guidelines for selecting tokenizers before
expensive model pre-training.

Our research aligns with these insights by ad-
dressing the optimization of tokenizers for multi-
lingual models without expanding the vocabulary
size. This is particularly beneficial in resource-
constrained environments. We provide an alterna-
tive strategy that leverages source model knowl-
edge while adapting to the target language, comple-
menting the guidelines suggested by Limisiewicz
et al. (2023).

6 Conclusion

We introduced Vocabulary Replacement Continued
Pretraining (VRCP), a method that optimizes tok-
enizers for non-English languages without increas-
ing vocabulary size. VRCP replaces low-frequency
English tokens with high-frequency target language
tokens, leveraging the semantic knowledge of En-
glish models while enhancing token efficiency for
the target language.

Our experiments with Japanese and Chinese cor-
pora demonstrated that VRCP matches the perfor-
mance of traditional vocabulary expansion methods
and excels in tasks requiring text generation, such
as summarization. This improved performance in
generation tasks suggests that VRCP can be effec-
tively applied to language models integrated into
retrieval-augmented generation (RAG) frameworks,
where generating coherent and contextually accu-
rate summaries is critical. Additionally, VRCP
avoids additional GPU memory costs by maintain-
ing the original vocabulary size, making it suitable
for resource-constrained environments.

Limitations

One limitation of our work is its language speci-
ficity. Our experiments were conducted only on
Japanese and Chinese, meaning that the findings
may not necessarily generalize to other languages.
Since each language has unique characteristics, ap-
plying VRCP to other languages may require fur-
ther adjustments and validation.

Additionally, while VRCP aims to prevent an
increase in GPU memory consumption by main-
taining a constant vocabulary size, modern dis-
tributed training techniques already provide effi-
cient memory management solutions. Frameworks
like TensorParallel, PipelineParallel (Narayanan
et al., 2021), and ZeRO (Rajbhandari et al., 2020))
offer alternative or complementary strategies for
managing resource constraints in large-scale model
training.

56

References
Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade

Nie, Carole-Jean Wu, and Kim Hazelwood. Under-
standing training efficiency of deep learning recom-
mendation models at scale. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 802–814. IEEE.

François Chollet. 2019. On the measure of intelligence.
Preprint, arXiv:1911.01547.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.
2019. A span-extraction dataset for chinese ma-
chine reading comprehension. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5883–5889, Hong Kong,
China. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. Xl-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, jiayi lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 62991–
63010. Curran Associates, Inc.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide
Shibata. 2022. Jglue: Japanese general language
understanding evaluation. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 2957–2966, Marseille, France. European
Language Resources Association.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang,
Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. 2024. Cmmlu: Measuring massive mul-
titask language understanding in chinese. Preprint,
arXiv:2306.09212.

Tomasz Limisiewicz, Jiří Balhar, and David Mareček.
2023. Tokenization impacts multilingual language
modeling: Assessing vocabulary allocation and over-
lap across languages. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
5661–5681, Toronto, Canada. Association for Com-
putational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale lan-
guage model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference

https://arxiv.org/abs/1911.01547
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D19-1600
https://doi.org/10.18653/v1/D19-1600
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6ec1844bec96d6d32ae95ae694e23d8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6ec1844bec96d6d32ae95ae694e23d8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6ec1844bec96d6d32ae95ae694e23d8-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/2022.lrec-1.317
https://aclanthology.org/2022.lrec-1.317
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209

57

for High Performance Computing, Networking, Stor-
age and Analysis, SC ’21, New York, NY, USA. As-
sociation for Computing Machinery.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
et al. 2023. Gpt-4 technical report.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2021. Unks everywhere: Adapting multi-
lingual language models to new scripts. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10186–10203,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 157–163, Valencia, Spain.
Association for Computational Linguistics.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’20. IEEE Press.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Satoshi Sekine. 2003. Development of a question
answering system focused on an encyclopedia (in
japanese only). 9th Annual Meeting of the Associ-
ation for Natural Language Processing, pages 637–
640.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, and Dong
Yu. 2019. Improving pre-trained multilingual model
with vocabulary expansion. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 316–327, Hong
Kong, China. Association for Computational Lin-
guistics.

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending multilingual BERT to low-
resource languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2649–2656, Online. Association for Computational
Linguistics.

Bright Xu. 2019. Nlp chinese corpus: Large scale chi-
nese corpus for nlp.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

Yunzhi Yao, Shaohan Huang, Wenhui Wang, Li Dong,
and Furu Wei. 2021. Adapt-and-distill: Developing
small, fast and effective pretrained language models
for domains. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
460–470, Online. Association for Computational Lin-
guistics.

Zheng Xin Yong, Hailey Schoelkopf, Niklas Muen-
nighoff, Alham Fikri Aji, David Ifeoluwa Adelani,
Khalid Almubarak, M Saiful Bari, Lintang Sutawika,
Jungo Kasai, Ahmed Baruwa, , et al. 2023. Bloom+1:
Adding language support to bloom for zero-shot
prompting. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 11682–11703,
Toronto, Canada. Association for Computational Lin-
guistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Choi Yejin. 2019. Hellaswag: Can a
machine really finish your sentence? pages 4791–
4800.

A Training Settings and
Hyperparameters

In our experiments, we used the same settings and
hyperparameters for continued pretraining across

https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/P19-1493
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.5281/zenodo.3402023
https://doi.org/10.5281/zenodo.3402023
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/2021.findings-acl.40
https://doi.org/10.18653/v1/2021.findings-acl.40
https://doi.org/10.18653/v1/2021.findings-acl.40
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

58

all configurations, including VRCP, Vocabulary Ex-
pansion and Unchanged models (see Table 5).

Table 5: Training Hyperparameters

Hyperparameter Value

Global Batch Size (GBS) 256
Sequence Length 4096
Learning Rate (LR) 7.5e-5
Warmup Ratio 0.05
Weight Decay 0.1

DeepSpeed ZeRO Stage
(Rajbhandari et al., 2020)

2

AllGather Bucket Size 7e8
Reduce Bucket Size 7e8

GPU
NVIDIA H100

(80GB)
Number of GPUs 8

B Corpora Details

We used different corpora for Japanese and Chinese
pretraining, as detailed in Table 6 and Table 7.

Table 6: Japanese Corpora Details

Corpus Size (MB)

Wikipedia (Japanese) 3,178.95
CC100 (Japanese) 10,405.93
Wikipedia (English) 374.87

Table 7: Chinese Corpora Details

Corpus Size (MB)

Wikipedia (Chinese) 1,115.09
Baike 1,186.11
News 5,837.07
Wikipedia (English) 374.87

C Evaluation Tasks

We evaluated the models on various benchmark
tasks for Japanese, Chinese, and English. Each
task focuses on different aspects of language under-
standing and generation, as summarized in Table 8,
Table 9, and Table 10.

For the Japanese evaluation, we utilized
the JCommonsenseQA, JSQuAD, NIILC, and
XLSum-JA datasets.

Table 8: Japanese Evaluation Tasks

Task Shots Metric

JCommonsenseQA 4 Exact Match (EM)
JSQuAD 4 Character-level F1
NIILC 4 Character-level F1
XLSum-JA 1 BERTScore

Table 9: Chinese Evaluation Tasks

Task Shots Metric

C-Eval 4 Accuracy
CMMLU 4 Accuracy
CMRC 4 Accuracy
XLSum-ZH 1 BERTScore

Table 10: English Evaluation Tasks

Task Shots Metric

ARC 25 Normalized Accuracy
HellaSwag 10 Normalized Accuracy
MMLU 5 Accuracy
XLSum-EN 1 BERTScore

• JCommonsenseQA evaluates common sense
reasoning abilities in Japanese. This dataset
is part of the JGLUE benchmark and provides
questions that require the model to use back-
ground knowledge to choose the correct an-
swer from multiple choices (Kurihara et al.,
2022).

• JSQuAD is a question-answering task also
included in the JGLUE benchmark. It focuses
on extracting answers from provided contexts
based on Japanese text (Kurihara et al., 2022).

• NIILC (National Institute of Informatics
Large-scale Encyclopedia Corpus) presents
open-ended questions, where the model must
generate answers using knowledge embed-
ded within the model. This task assesses
the model’s encyclopedic knowledge and its
ability to produce accurate responses (Sekine,
2003).

• XLSum-JA is a summarization task that re-
quires the model to generate concise sum-
maries from Japanese news articles (Hasan
et al., 2021).

For evaluating Chinese language capabilities, we

59

used the C-Eval, CMMLU, CMRC, and XLSum-
ZH datasets.

• C-Eval includes tasks for reading comprehen-
sion, text generation, and reasoning based on
various domains of knowledge, such as litera-
ture, history, science, and technology (Huang
et al., 2023).

• CMMLU (Massive Multitask Language Un-
derstanding in Chinese) encompasses a set
of tasks across multiple domains, including
comprehension, text generation, classification,
translation, and dialogue (Li et al., 2024).

• CMRC (Chinese Machine Reading Compre-
hension) focuses on question-answering by
extracting answers from given contexts (Cui
et al., 2019).

• XLSum-ZH is the Chinese counterpart of the
summarization task for news articles, where
the model generates brief summaries from
longer articles (Hasan et al., 2021).

The evaluation for English language tasks was
conducted using the ARC, HellaSwag, MMLU,
and XLSum-EN datasets, which test various as-
pects of knowledge and reasoning:

• ARC (AI2 Reasoning Challenge) is designed
to assess middle school level science rea-
soning abilities. The dataset includes ques-
tions that require the model to apply scientific
knowledge and reasoning skills to select the
correct answer from multiple choices (Chollet,
2019).

• HellaSwag measures ability of the models to
perform contextual and common sense reason-
ing (Zellers et al., 2019).

• MMLU (Massive Multitask Language Under-
standing) covers a wide range of knowledge
domains and evaluates the model’s capability
to apply this knowledge in answering ques-
tions accurately (Hendrycks et al., 2021).

• XLSum-EN is the English version of the sum-
marization task, where the model must create
concise summaries from news articles (Hasan
et al., 2021).

	Introduction
	Formulization
	Tokenizer Definition
	Embedding Definition
	Vocabulary Expansion Method

	Proposed Method: VRCP
	Vocabulary Construction
	Vocabulary Replacement
	Embedding Replacement
	Continued Pretraining

	Experiments
	Setup
	Result and Discussion on Token Efficiency

	Evaluation of Task Performance
	Discussion on Task Performance for Japanese and Chinese

	Evaluation of GPU Memory Footprint

	Related Works
	Conclusion
	Training Settings and Hyperparameters
	Corpora Details
	Evaluation Tasks

