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Preface

Massively Multilingual Language Models (MMLMs) like mBERT, XLMR and XY-LENT support
around 100 languages of the world. Additionally, generative models like GPT-4 and BLOOM have
shown impressive performance in English and a few high-resource languages. However, most existing
multilingual NLP benchmarks reflect a handful of cultures and languages. The languages present in
evaluation benchmarks are usually high-resource and largely belong to the Indo-European language
family. By extension, the cultures represented in evaluation benchmarks are also largely reflective of
Western society. This makes current evaluation unreliable and does not provide a full picture of the
performance of MMLMs across the linguistic and cultural landscape. Although efforts are being made
to create benchmarks that cover a larger variety of tasks, cultures, languages, and language families, it is
clear that scaling-up multilingual and multi-cultural evaluation that can eventually lead to better models
for all languages and cultures remains a formidable research challenge. This workshop is the second
workshop in the SUMEval series, following a successful first workshop SUMEval 2022 co-located with
AACL 2022. This year’s workshop SUMEval-2, co-located with COLING 2025, has a wider scope
focusing on multicultural evaluation in addition to multilingual evaluation.
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Abstract

Suicidal ideation is a serious health problem
affecting millions of people worldwide. So-
cial networks provide information about these
mental health problems through users’ emo-
tional expressions. We propose a multilingual
model leveraging transformer architectures like
mBERT, XML-R, and mT5 to detect suicidal
text across posts in six languages - Spanish, En-
glish, German, Catalan, Portuguese and Italian.
A Spanish suicide ideation tweet dataset was
translated into five other languages using Seam-
lessM4T. Each model was fine-tuned on this
multilingual data and evaluated across classifi-
cation metrics. Results showed mT5 achieving
the best performance overall with F1 scores
above 85%, highlighting capabilities for cross-
lingual transfer learning. The English and
Spanish translations also displayed high quality
based on perplexity. Our exploration under-
scores the importance of considering linguistic
diversity in developing automated multilingual
tools to identify suicidal risk. Limitations exist
around semantic fidelity in translations and eth-
ical implications which provide guidance for
future human-in-the-loop evaluations.

1 Introduction

According to data published by the World Health
Organization (WHO), over 700,000 people die by
suicide each year (Organization et al., 2021), with
an additional 10 to 20 million attempting to take
their own lives. Suicidal behavior typically begins
with thoughts and ideations of death, eventually
leading to suicide attempts - conscious acts with
the purpose of ending one’s existence (Liu and
Miller, 2014). In this context, social networks have
become spaces where individuals often disclose
emotions and information that they don’t feel com-
fortable sharing with healthcare providers (Ji et al.,
2020; Desmet and Hoste, 2013; Sueki, 2015).

Early identification of signs of suicidal ideation
in these online environments poses a major chal-

lenge. This is where Natural Language Process-
ing (NLP) and Deep Learning (DL) can play a
crucial role in the automatic detection of suicidal
thoughts in computational settings. Furthermore,
these computational approaches may contribute to
the development of tools for harm reduction and
prevention. However, the majority of research on
suicidal ideation detection has been conducted on
English language data, resulting in a scarcity of
linguistic resources (e.g.: datasets, lexicons, and
Language Models) for most other languages.

Previous computational approaches to identify-
ing suicidal ideation have relied heavily on hand-
engineered features and domain expertise. For ex-
ample, some studies have used structural and emo-
tional features to train statistical prediction models
on suicide text (Jones and Bennell, 2007; Pestian
et al., 2012). Additionally, conventional machine
learning algorithms like Logistic Regression (LR)
(Ramírez-Cifuentes et al., 2020; Jain et al., 2019;
Schoene and Dethlefs, 2016; O’dea et al., 2015),
Decision Tree (DT) (Jain et al., 2019; Huang et al.,
2015), Naive Bayes (NB) (Shah et al., 2020; Ra-
bani et al., 2020; Chiroma et al., 2018; Schoene and
Dethlefs, 2016), Support Vector Machine (SVM)
(Renjith et al., 2022; Shah et al., 2020; Ramírez-
Cifuentes et al., 2020), K-nearest neighbor algo-
rithm (KNN) (Shah et al., 2020; Vioules et al.,
2018) and Extreme Gradient Boost (XGBoost) (Ra-
jesh Kumar et al., 2020; Jain et al., 2019; Ji et al.,
2018) have been applied. While achieving some
success, these methods depend on costly feature
engineering and professional knowledge.

Recently, deep learning has emerged as a promis-
ing approach that can automatically learn repre-
sentations from data (Goldberg, 2022). Moreover,
deep learning techniques like CNNs (Yao et al.,
2020; Renjith et al., 2022; Tadesse et al., 2019),
LSTMs (Haque et al., 2022; Tadesse et al., 2019;
Renjith et al., 2022; Ji et al., 2018; Ma et al., 2018),
BiLSTM (Haque et al., 2022; Zhang et al., 2022;
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He and Lin, 2016) and DLSTMAttention (Zhang
et al., 2022; Renjith et al., 2022) have been applied
in detecting suicidal ideation, with competitive per-
formance.

On the other hand, with the increasing use of
pre-trained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
mT5 (Xue et al., 2020), the landscape of suicide
ideation detection has evolved significantly. These
pre-trained models, developed through massive un-
supervised learning on diverse linguistic tasks, of-
fer a powerful foundation for understanding intri-
cate nuances of language. Researchers are now
exploring the adaptation of those models for the de-
tection of suicidal ideation (Bhaumik et al., 2023;
Devika et al., 2023; Haque et al., 2020). Leveraging
the contextual understanding encoded in these pre-
trained models, studies have reported promising
results in discerning subtle and complex expres-
sions related to suicidal thoughts, contributing to
the advancement of automated detection systems
(Bhaumik et al., 2023). This shift towards pre-
trained language models signifies a paradigmatic
enhancement in the field, as it allows for a more
nuanced comprehension of linguistic patterns as-
sociated with suicidal ideation, thereby enhancing
the overall accuracy and sensitivity of detection
algorithms.

In our approach, we emphasize the importance of
addressing the detection of suicidal texts in the con-
text of using multilingual language models. Trans-
lating a corpus from Spanish into five different
languages and fine-tuning a multilingual language
model allows us to classify suicidal texts in various
languages, thus expanding the applicability of our
approach.

In our research, we aim to explore the effective-
ness of multilingual pretrained language models
such as mBERT (Devlin et al., 2019), XML-R (Liu
et al., 2019) and mT5 (Xue et al., 2020) for detect-
ing suicidal text on social media. The main focus
of our study is to leverage these multilingual pre-
trained models to translate and recognize suicidal
text in six languages: Spanish, English, German,
Catalan, Portuguese and Italian.

Our primary contribution lies in the implemen-
tation of a multilingual language model with the
capability to detect suicidal text in these six distinct
languages. Additionally, to address the lack of la-
beled suicidal text in other languages, we utilize
a labeled corpus and translate it into five different
languages using an automatic translation model

(SeamlessM4T(Barrault et al., 2023)). Therefore,
this approach enables us to effectively tackle the
linguistic diversity present on social media and pro-
vides a valuable tool for the early identification of
suicidal content in various cultural and linguistic
contexts.

The main objectives of our study are:

1. Prediction of Suicidal Text in Six Lan-
guages: The model focuses on predicting
posts with suicidal content by analyzing the
words or phrases written by users, utilizing
multilingual pretrained language models such
as mBERT, XML-R and mT5.

2. Improvement of Prediction Accuracy in
Various Languages: We aim to enhance the
accuracy of predicting suicidal text by incor-
porating attention mechanisms from multilin-
gual pretrained language models. These at-
tention mechanisms highlight crucial aspects
within the obtained information, providing ef-
fective detection in six different languages.

The significant contributions of our work in-
clude:

1. Detection of Suicidal Texts Using Mul-
tilingual Pretrained Language Models
(mBERT, XML-R, mT5): We propose a
model that integrates multilingual pretrained
language models, including mBERT, XML-R
amd mT5, for effective detection of suicidal
texts in social media posts in six different lan-
guages.

2. Prediction of User-Specific Suicidal Tenden-
cies in Various Languages: The model ex-
amines the posts of specific users to determine
if they exhibit suicidal tendencies, leveraging
the capabilities of the mentioned multilingual
pretrained language models.

2 Related Work

The initial approaches to automatic suicide risk
detection were based on identifying specific lan-
guage features present in psychiatric literature. For
instance, in Lumontod III (2020); Tadesse et al.
(2019), the LIWC dictionary was used to extract
emotional and cognitive markers, while Masuda
et al. (2013) designed a set of emotional features
such as feelings of loneliness, helplessness, and
hopelessness. Additionally, Pestian et al. (2010)
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employed suicide notes to identify common lan-
guage themes and styles.

However, the limitations of manual feature engi-
neering in terms of scalability and adaptability have
led to the exploration of more recent approaches
based on deep learning, specifically pre-trained
language models. In a comparative study (Tav-
chioski et al., 2023; Sawhney et al., 2018), BERT,
RoBERTa, BERTweet, and mentalBERT were eval-
uated on a Reddit dataset, revealing that pre-trained
models consistently outperformed traditional classi-
fiers (Valeriano et al., 2020; Maalouf, 2011; Aladağ
et al., 2018).

In summary, pre-trained language models have
shown promising results, often outperforming tra-
ditional methods in automatic suicide risk detec-
tion. However, most studies have been limited
to relatively small datasets. Regarding linguistic
diversity, studies have predominantly focused on
English data from platforms such as Twitter (Kabir
et al., 2023; Coppersmith et al., 2015), Reddit (Tav-
chioski et al., 2023; Losada and Crestani, 2016;
Losada et al., 2017), and Facebook. Neverthe-
less, no research has been found exploring mul-
tilingual language models for suicide risk detection.
Models like mBERT (Devlin et al., 2019), XLM-
RoBERTa (Liu et al., 2019), and mT5 (Xue et al.,
2020), trained on multilingual data, could transfer
linguistic knowledge across related languages, im-
proving performance in low-resource situations for
languages with less training data.

As far as is known, there are also no studies
utilizing automatically translated datasets to lever-
age data from other languages. The quality of
automatic translations of datasets from a source
language to a target language could be crucial in
increasing dataset size and improving the perfor-
mance of trained models.

Both research directions, i.e., multilingual mod-
els and automatic translation of data, represent
promising yet unexplored areas for automatic sui-
cide risk detection, opening opportunities for sig-
nificant contributions in this field.

3 Experiments

In this section, we delineate the setup of diverse
experiments aimed at exploring the feasibility of a
multilingual model capable of classifying suicidal
texts across six different languages.

3.1 Dataset

The dataset we utilized in our experiments is the
set of 2,068 Spanish tweets introduced in Valeri-
ano et al. (2020). This dataset was compiled by
the authors through targeted keyword searches on
expressions of suicidal ideation. The tweets were
then manually annotated by humans, labeling each
as either containing suicidal intent or not – a bi-
nary classification scheme. After annotation, the
dataset contains 498 tweets (24%) expressing sui-
cidal ideas, with example phrases like "I want to
disappear" or "I can’t stand life anymore." The
remaining 1,570 Spanish tweets do not express sui-
cide risk.

We split the full dataset into training, valida-
tion. 80% of the data, encompassing 1,654 Spanish
tweets, was used for model training to learn sig-
nals of suicidal intent. The validation set makes
up 20% of the data, with 414 tweets, which was
leveraged during model development for hyperpa-
rameter tuning and performance checks. Moreover,
we used as test set the Lexicography Saves Lives
(LSL) Schoene et al. (2025).

We leveraged this dataset by machine translat-
ing the entire corpus of 2,068 Spanish tweets into
five other languages: Catalan, English, German,
Italian, and Portuguese. The translations were pro-
duced using Facebook’s SeamlessM4T model (Bar-
rault et al., 2023), allowing us to obtain versions of
the suicide texts dataset across multiple languages
stemming from the original Spanish source data
(Valeriano et al., 2020).

3.2 Pre-trained language models

The recent advances in neural network-based lan-
guage models have demonstrated substantial im-
provements across a wide range of natural lan-
guage processing tasks (Goldberg, 2022). In par-
ticular, the introduction of Transformer architec-
tures (Vaswani et al., 2017) led to unprecedented
progress in semantic and syntactic modeling ca-
pabilities. Unlike previous recurrent models such
as LSTMs (Hochreiter and Schmidhuber, 1997),
Transformer networks apply a purely attention-
based mechanism to learn intricate context repre-
sentations. By utilizing multiple attention heads in
parallel, these architectures can capture both local
and global dependencies in a sequence of tokens.

The original authors of the Transformer intro-
duced a specific implementation called BERT (De-
vlin et al., 2019), which laid the groundwork for a
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new generation of contextualized language models.
Through pre-training objectives such as predicting
subsequent sentences and token masking, BERT
achieves a deep syntactic and semantic understand-
ing of language. However, the initial version of
BERT was limited to the English language. Subse-
quent research focused on extending these models
to a multilingual context to enable cross-lingual
learning.

Adaptations such as mBERT1 (Devlin et al.,
2019) emerged, incorporating shared vocabular-
ies and subword segmentation to represent a wide
range of languages. Then, XML-R2 (Liu et al.,
2019) enhanced the multifaceted approach by
adding byte-level tokenization and techniques like
Whole-Word Masking. Finally, mT53 (Xue et al.,
2020) adopted an encoder-decoder architecture in-
stead of the exclusively encoder format. Consid-
ering the rapid progress in multilingual language
models, this work aimed to evaluate three trans-
formative alternatives for the automatic detection
of suicidal ideation: mBERT, XML-R, and mT5.
Through thorough experimentation, the goal is to
determine their capabilities in both language and
semantics.

Each chosen model presents unique character-
istics, as described earlier, that could positively
impact their performance for the given task. Ad-
ditionally, all of them were pretrained in various
languages, incorporating millions of trainable pa-
rameters and state-of-the-art techniques to enhance
cross-linguistic transfer. In combination, this diver-
sity allows addressing the problem from multiple
perspectives, enabling a comprehensive evaluation
of the relative advantages of different cutting-edge
approaches for such a sensitive scenario as the ex-
pression of suicidal intentions.

For this study, three pre-trained language models
were utilized and we oultine below further details
about the architecture, hyperparameters, and train-
ing datasets for each.

3.3 Suicide phrase recognition

In the pursuit of robust multilingual performance,
our experiments enlisted the capabilities of four
cutting-edge language models: mBERT (Devlin
et al., 2019), XML-R (Liu et al., 2019) and mT5

1https://github.com/google-research/bert/blob/
master/multilingual.md

2https://huggingface.co/xlm-roberta-base
3https://github.com/google-research/

multilingual-t5

Parameter mBERT XML-R mT5
Starting
learning
rate

2e-5 3e-5 3e-5

Batch size 16 16 32
Epochs 10 10 10
Dropout 0.3 0.5 0.5
Weight
decay

0.01 0.01 0.01

Optimizer AdamW AdamW AdamW

Table 1: Hyperparameters for models fine-tuning

(Xue et al., 2020). To fortify their adaptability,
each model underwent a meticulous fine-tuning
process. Leveraging the Spanish dataset, as pre-
viously detailed, and its translations into six lan-
guages—Catalan, English, German, Italian, and
Portuguese—we aimed to comprehensively cap-
ture the nuances of suicidal text across linguistic
variations.

The initial configurations for fine-tuning were
aligned with the recommended settings provided
by each language model. Subsequently, recogniz-
ing the intricate interplay of hyperparameters in
influencing model performance, we conducted an
exhaustive search to identify the most effective and
contextually relevant hyperparameter sets for each
individual model. This process was undertaken
with a dual purpose: ensuring optimal performance
across languages and tailoring the models to the
specific intricacies of suicidal text classification.

We fine-tune mBERT, XML-R and mT5 on 1
NVIDIA 4070 GPUs with FP32. Model hyper-
parameters are tuned on the validation set, where
learning rate {2e-5, 3e-5, 3e-5}, batch size {16,
16, 32}, a dropout rate of {0.3, 0.5, 0.5}, a weight
decay of 0.01, a warmup proportion of 0.01. For
clarity and replicability, the detailed configurations
for all models, including the identified hyperparam-
eter sets, are meticulously documented in Table
1.

4 Results

In this section, we present an analysis of the re-
sults obtained from our fine-tuned language mod-
els—mBERT, XML-R and mT5 deployed in the
task of suicidal text classification across six lan-
guages. Our objective is to scrutinize the models’
performance intricacies, assess their multilingual
adaptability, and glean insights into the efficacy of
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Lang. mBERT XML-R mT5
Acc. F1. AUC Acc. F1. AUC Acc. F1. AUC

Spanish 82.4 82.1 82.2 84.6 84.3 84.3 87.9 87.7 87.8
English 83.6 83.3 83.1 85.6 85.5 85.4 88.5 88.1 88.1
Italian 78.7 78.5 78.4 80.6 80.6 80.4 83.3 83.2 83.1
German 81.1 80.9 80.7 82.9 82.9 82.8 86.2 86.1 86.0
Catalan 81.3 81.1 81.0 82.8 82.7 82.6 86.2 86.1 86.0
Portuguese 79.9 79.9 79.8 81.7 81.7 81.5 84.9 84.8 84.8

Table 2: Experimental results with mBERT, XML-R, and mT5 across different languages. Notation: Acc. =
accuracy and F1. = F1-score.

our approach.

4.1 Classifiers Performance Analysis
We delve into the nuanced evaluation of our lan-
guage models’ performance across six languages:
Spanish, Catalan, English, German, Italian, and
Portuguese. Table 2 shows that, mT5 displays supe-
rior performance over the other two models across
all metrics and for all languages. The precision,
recall, F1, and AUC scores are consistently high,
surpassing 85% in most cases.

This indicates that mT5 is exceptionally good
at both positively detecting relevant cases (high
recall) as well as minimizing false positives (high
precision). It also maintains an adequate balance
between both goals, as shown by its high F1-score.
There is clearly substantial superiority of mT5 at
this task compared to more generic BERT models.

On the other hand, we see that mBERT obtains
the lowest scores, although still decent (around
80-83% for key metrics). XML-R improves upon
mBERT’s results across all languages, suggesting
that language-specific pretraining can be beneficial.

Regarding languages, English and Spanish con-
sistently achieve the top scores across all models,
followed by German and Catalan. Italian and Por-
tuguese appear to be the most difficult. This could
be due to several factors: data availability, similar-
ity to English, etc.

An interesting finding is that the relative gaps
between models remain remarkably stable across
languages. This implies that the inherent strengths
of each model transcend linguistic particularities.
While some languages are more complex, all ben-
efit from mT5’s architectural improvements over
BERT models.

In summary, mT5 is better suited to suicide
text detection, especially excelling for English and
Spanish. mBERT may perform adequately as a
baseline, but there is clear room for improvement

with more advanced models such as XML-R and
especially mT5.

4.2 Model Validation
To delve deeper into understanding the learn-
ing mechanism, we implemented k-fold cross-
validation to determine the mean accuracy in our
three models: mBERT, XML-R and mT5. Cross-
validation is a widely used data resampling strategy
to assess the generalization capabilities of predic-
tive models and estimate the true estimation er-
ror. In k-fold cross-validation, the learning set is
divided into k subgroups of approximately equal
length, and the number of subgroups produced is
referred to as ‘fold’. This partition is achieved
by randomly selecting examples from the learning
set without replacement. Our language models,
including mBERT, XML-R and mT5, were fine-
tuned using k = 10 subsets representing the entire
training set. Each model was then applied to the
remaining subset, known as the validation set, and
its performance was evaluated. This process was
repeated until all k subsets had served as validation
sets.

Subsequently, we proceeded to conduct addi-
tional tests in our six languages since our models
are multilingual. This variant involves applying our
models in scenarios with various languages, adding
an additional level of complexity and versatility
to the evaluation of their performance in detecting
suicidal text. Figure 1 illustrates the F1-score of
each of our three language models for each fold in
the cross-validation, highlighting their adaptability
to diverse subsets of data and linguistic scenarios.
This meticulous approach ensures robust training
and optimal performance for each of our models
in the detection of suicidal text, considering both
linguistic diversity and the specific characteristics
of mBERT, XML-R and mT5 in this particular con-
text.
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Figure 1: 10-fold Cross-Validation for each language model

5 Translation analysis

For the translation of the Spanish dataset into the
other 5 target languages (English, Catalan, Ger-
man, Italian and Portuguese), this study employed
the SeamlessM4T4 model developed by Facebook
(Barrault et al., 2023).

SeamlessM4T is based on the Transformer archi-
tecture, demonstrating the effectiveness of cross-
lingual model pretraining and transfer learning.
In particular, it leverages a sequence-to-sequence
model with encoder-decoder structure trained on
large-scale data across multiple languages (100 lan-
guages).

The key advantages of this specific architecture
include:

• Attention-based interactions model both
global and local dependencies in input and
output sequences. This provides greater con-
text and reduces reliance on recurrence.

• Multi-head self-attention combines represen-

4https://github.com/facebookresearch/seamless_
communication

tations from different positional offsets, learn-
ing synergistic features.

• Masked language modeling and denoising ob-
jectives during pretraining further enhance
context modeling.

It was pretrained on a variety of language pairs,
including Spanish, English, Catalan, Italian and
Portuguese. It demonstrated excellent BLEU met-
rics on translations between these languages, cor-
roborating its suitability for the present cross-
lingual research task.

5.1 Evaluation Metrics

Perplexity serves as an indicator to quantify the
quality of each translation. We employed mono-
lingual language models specific to each target
language, assessing their ability to predict word
sequences in the translated texts.

5.2 Results

The perplexity scores for each translation are pre-
sented in the Table 3:
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Translation to Language Perplexity Score
English1 3.43
Catalan2 5.65
German2 8.18
Italian2 7.75
Portuguese2 4.61

Table 3: Perplexity scores for each translation.

With a low perplexity of 3.43, the English trans-
lation demonstrates notable coherence and fluency,
suggesting successful adaptation from the Spanish
source. This indicates that the model competently
encoded the linguistic intricacies in mapping be-
tween the closely-related languages.

The Catalan translation perplexity of 5.65 sig-
nifies adequate synchronization from Spanish,
though with slightly heightened linguistic complex-
ity. This points to competent cross-lingual transfer
learning while highlighting some incremental chal-
lenges for the more distant language pair.

However, the German translation perplexity of
8.18 underlines particular difficulties in adaptation,
as substantiated by amplified linguistic complexity.
As Spanish and German topologically diverge, this
outcome spotlights the obstacles for conversion
across more disparate languages.

Italian translation returned a perplexity of 7.75,
underscoring reasonably effective adaptation de-
spite lower fluency compared to other counterparts.
This demonstrates capable inter-lingual transfer
learning for the language pair, albeit with some
decline in conversion quality.

Finally, the Portuguese translation perplexity of
4.61 reflects adept transformation from Spanish,
mirroring the performance benchmark set by En-
glish. The proximity between Spanish and Por-
tuguese facilitates smooth cross-lingual mapping,
resulting in harmonized coherence.

6 Discussion

This study explores the use of pre-trained multilin-
gual language models, including mBERT, XML-R,
and mT5, for the automatic detection of suicidal
texts in social media posts across six languages:
Spanish, English, German, Catalan, Portuguese,
and Italian. The results show mT5 achieving the
best performance overall, with F1 scores above

1https://huggingface.co/roberta-large
2https://huggingface.co/facebook/

xlm-roberta-xl

85%, highlighting capabilities for cross-lingual
transfer learning.

An interesting finding is that the relative gaps
between models remain remarkably stable across
languages. This implies that the inherent strengths
of each model transcend linguistic particularities.
While some languages are more complex, all ben-
efit from mT5’s architectural improvements over
BERT models.

Regarding limitations, direct extrapolation of
the results to other languages must be approached
cautiously, given the wide linguistic diversity and
potential impact of cultural nuances on interpreting
suicidal texts. Furthermore, the quality of transla-
tions and, consequently, the predictive model, is
inherently tied to the effectiveness of pre-trained
models, indicating a constant need for improve-
ments in this area.

While this study presents a promising model for
multilingual detection of suicidal texts, there are
several directions to extend and strengthen this line
of research. Some of these include: expanding lin-
guistic scope by incorporating a broader spectrum
of languages; enriching training data with more in-
stances and diversity of sources; using specialized
metrics to quantify the usefulness of the early detec-
tion model; and implementation of a user-friendly
interface enabling integration into healthcare set-
tings.

In summary, the focus on multilingual transla-
tion emerges as a crucial step in constructing an
effective predictive model for suicidal texts across
six languages. The identified conclusions and limi-
tations provide guidance for future developments,
emphasizing the need for linguistic and cultural
considerations.

7 Conclusion

In the pursuit of a predictive model for suicidal
texts in six languages, our exploration into multilin-
gual translation yields critical insights. We observe
that translations into English and Portuguese excel,
showcasing the ability to preserve intent and coher-
ence in sensitive contexts such as suicidal content.

Sensitivity to linguistic diversity emerges as a
pivotal element in this process. While synchroniza-
tion in translations into Catalan was acceptable,
adaptations into German and Italian posed chal-
lenges, underscoring the importance of considering
linguistic nuances in constructing a robust predic-
tive model. The versatility of multilingual models,
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especially mT5, proves to be a valuable resource in
this scenario. These models demonstrate a remark-
able ability to maintain the integrity of suicidal
content across diverse languages, providing a solid
foundation for building a multilingual predictive
model. Automated evaluation, though guided by
objective metrics such as perplexity, does not re-
place human assessment for sensitivity and seman-
tic fidelity in suicidal content. The implementation
of human evaluations in subsequent phases is es-
sential to ensure the appropriateness and ethical
considerations of the model.

In summary, our focus on multilingual transla-
tion emerges as a crucial step in constructing a
predictive model for suicidal texts in six languages.
The identified conclusions and limitations provide
guidance for future developments, emphasizing the
need for linguistic and cultural considerations, as
well as continuous improvements in pre-trained
models and human evaluations to achieve an effec-
tive and ethical model.

8 Ethical Considerations

There are a number of aspects to consider when
using pretrained language models to automatically
translate suicide related language, especially given
the sensitive nature of the data. Firstly, we have
to consider user privacy and be aware of the im-
pact online surveillance, collection of sensitive data
and people’s health. Furthermore, there are con-
cerns around linguistic, cultural and contextual
accuracy when automatically translating suicide-
related tweets, where there can be issues around
accurate translations and misrepresentation of cul-
tural or conceptual concepts. Finally,

9 Limitations and Future Work

Direct extrapolation of our results to other lan-
guages must be approached cautiously, given the
wide linguistic diversity and the potential impact
of cultural nuances on the interpretation of suicidal
texts. Furthermore, the quality of translations and,
consequently, the predictive model, is inherently
linked to the effectiveness of pre-trained models,
indicating a constant need for improvements in this
area.

While this study presents a promising model for
multilingual detection of suicidal ideation, there
are several directions to extend and strengthen this
line of research:

• Expansion of Linguistic Scope Incorporating

a broader spectrum of languages would be key
to achieving a globally impactful tool. Lan-
guages with limited use of digital technolo-
gies like Hindi, Arabic or Chinese pose chal-
lenges due to scarce representation in training
data. Techniques such as small-scale auto-
matic translation of annotated data and adap-
tation of models to new languages through
transfer learning could help bridge this gap.

• Enrichment of Training Data Having more
instances and diversity of sources in the ini-
tial Spanish dataset would enhance derived
models. Collecting content from platforms
like Reddit (Zirikly et al., 2019) and Face-
book (Ophir et al., 2020) with a higher preva-
lence of mental health themes could be bene-
ficial. Expanding labels to capture emotional
nuances, linguistic subtleties and a more gran-
ular view of suicide-realted content (e.g.: mov-
ing beyond binary classification) could also
contribute.

• Specialized Metrics To more precisely quan-
tify the utility of the early detection model,
metrics like average latency to high-risk posts
or rate of early false negatives should be in-
corporated. Establishing how these indicators
vary across dialectal and sociocultural differ-
ences is essential.

• Implementation for Healthcare Institutions
Developing a user-friendly interface for mod-
els that enables integration in healthcare set-
tings would ease the transition of this tech-
nology into real-world applications. Achiev-
ing integration with existing clinical record
systems and care workflows could further its
adoption.

Addressing these extensions would provide a
comprehensive system with superior accuracy,
broad multilingual reach and significant impact
on the timely detection and prevention of suicidal
behaviors through computing.
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Abstract

Multilingual proficiency presents a significant
challenge for large language models (LLMs).
English-centric models are usually suboptimal
in other languages, particularly those that are
linguistically distant from English. This per-
formance discrepancy mainly stems from the
imbalanced distribution of training data across
languages during pre-training and instruction
tuning stages. To address this problem, we pro-
pose a novel approach called CrossIn, which
utilizes a mixed composition of cross-lingual
instruction tuning data. Our method lever-
ages the compressed representation shared by
various languages to efficiently enhance the
model’s task-solving capabilities and multilin-
gual proficiency within a single process. In
addition, we introduce a multi-task and multi-
faceted benchmark to evaluate the effective-
ness of CrossIn. Experimental results demon-
strate that our method substantially improves
performance across tasks and languages, and
we provide extensive insights into the impact of
cross-lingual data volume and the integration
of translation data on enhancing multilingual
consistency and accuracy.1

1 Introduction

The advancement of large language models (LLMs)
like ChatGPT (Achiam et al., 2023) and Gemma
(Team et al., 2023) has been a game-changer in
the field of natural language processing (NLP),
revolutionizing tasks such as language genera-
tion and commonsense reasoning (Naveed et al.,
2024). Nevertheless, most state-of-the-art LLMs
are English-centric, and their performance on non-
English languages is usually suboptimal, especially
on languages that are dissimilar to English (Blevins
and Zettlemoyer, 2022; Mehrabi et al., 2022; Gao
et al., 2024). This challenge mainly stems from the
imbalanced distribution of multilingual data at both

1Our datasets and models will be released after the
anonymity period.

the pre-training and instruction tuning stages. The
exposure bias toward major languages results in an
imbalanced capability, where models excel in lan-
guages with plentiful data while under-performing
in those with limited resources (Dac Lai et al.,
2023; Feng et al., 2023). Bridging the language
gap is a fundamental step to unlock the full poten-
tial of these general-purpose models and ensure
that the benefits are accessible to people across the
linguistic spectrum (Zhu et al., 2023a).

Efforts to improve the multilingual capabili-
ties of English-centric LLMs have included con-
tinue pre-training using extensive language-specific
datasets. Yet, mastering languages through ad-
ditional pre-training could require vast amounts
of data and significant computational resources
(Workshop et al., 2022). On the other hand, despite
the limited proportion of non-English data at the
pre-training stage, their absolute volume builds a
solid knowledge base of various languages. In each
iteration, LLMs are exposed to samples in several
languages simultaneously, and the compressed rep-
resentation encourages models to share linguistic
features and generalize across different languages
(Workshop et al., 2022). However, this ability is
not fully retained through the use of datasets that
only include English in follow-up tuning steps.

In this work, we propose an efficient approach
based on a mixed composition of cross-lingual
instruction tuning data to exploit LLMs’ under-
lying multilingual capability, which particularly
improves the cross-lingual knowledge alignment
(Qi et al., 2023; Wang et al., 2023). Instruction
tuning is to boost the task solving capability of
pre-trained language backbones (Taori et al., 2023;
Luo et al., 2023; Touvron et al., 2023b). The task
and prompt diversity are crucial in both data prepa-
ration and the training process, and a small high-
quality set is sufficient to achieve state-of-the-art
zero-shot performance (Ouyang et al., 2022). How-
ever, the language diversity of instruction tuning
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is often overlooked in English-centric LLMs. We
thus aim to enrich instruction tuning from the lan-
guage perspective. Since all languages share the
compressed representation space, cross-lingual in-
struction tuning can efficiently boost the model’s
task-solving and multilingual capabilities within a
single process. Unlike previous work that involved
a multi-task setting by adding machine translation
and mixing monolingual samples of each language
(Zhu et al., 2023b), we integrate two languages at
the sample level and combine various languages at
the corpus level. Moreover, we compare various
mixing strategies to identify the impact of different
data formulations.

To extensively evaluate the cross-lingual knowl-
edge alignment (Qi et al., 2023; Wang et al.,
2023), we establish a benchmark of three tasks (i.e.,
reading comprehension, commonsense question-
answering, and logic reasoning). Consistency is
measured by analyzing an LLM’s responses to
the same question in different languages, and our
benchmark encompasses multiple ability aspects
and difficulty levels. Moreover, since exact match
and F1 score cannot precisely evaluate system out-
puts in the generative setting, we unify all three
tasks in a multiple-choice format for quantitative
and reproducible evaluation. The experimental re-
sults demonstrate that our mixed cross-lingual tun-
ing can significantly improve performance in all
aspects (up to 40% relative gain), followed by a
detailed analysis of the influence of data quantity
on language consistency and knowledge accuracy.

The main contributions of our research are:

• A Multi-faceted Benchmark. We present
a multi-lingual, multi-capability benchmark
for assessing the cross-lingual knowledge con-
sistency of language models. In particular,
we build a parallel multiple-choice version of
the XQuAD dataset (Artetxe et al., 2019) -
Cross-XQuAD for machine comprehension,
and combining it with commonsense QA and
logic reasoning.

• Mixed Cross-Lingual Instruction Tuning.
We introduce CrossIn, a cross-lingual in-
struction tuning approach aimed at aligning
knowledge across languages to stimulate the
model’s full multilingual capability after pre-
training. It offers a more efficient way of im-
proving the model’s performance in various
linguistic contexts.

• CrossIn Data Insights. We conduct exten-
sive experiments with representative LLMs
on three tasks, and show the effectiveness
of our proposed approach. We provide de-
tailed analysis to study the optimal amount of
cross-lingual data and the necessity of sample
translation in enhancing models’ cross-lingual
consistency.

2 Related Work

2.1 Multilingual Large Language Model

Multilingual Large Language Models (MLLMs)
have experienced significant advancements in re-
cent years. Recently, Qin et al. (2024), as a compre-
hensive review, summarizes various methodologies
for training MLLMs. BLOOM (Workshop et al.,
2022), Jais (Sengupta et al., 2023), and Sailor (Dou
et al., 2024) are representative models that target
improved multilingualism in the pretraining stage.
For fine-tuning, ChatGLM employs a reward model
trained under a multilingual setting (Zeng et al.,
2022), while the x-LLM utilizes a translated ver-
sion of the Alpaca dataset, combined with super-
vised translation data and instruction finetuning, to
enhance the model’s multilingual capabilities (Zhu
et al., 2023b).

Instruction tuning on English datasets can intro-
duce zero-shot capabilities in other languages as
well (Wei et al., 2022; Chung et al., 2022). Fur-
ther studies have explored the use of diverse train-
ing sets in multiple languages can improve cross-
lingual generalization, suggesting that incorporat-
ing data from various languages can significantly
enhance the model’s ability to generalize across lin-
guistic boundaries (Muennighoff et al., 2023; Kew
et al., 2023; Shaham et al., 2024). In our work, we
build upon these findings and focus on improving
multilingual consistency through targeted instruc-
tion finetuning. By refining the instruction process-
ing mechanism, we aim to enforce the alignment
across different languages to improve multilingual
capabilities.

2.2 Multilingual Evaluation Benchmark

Evaluating the multilingual capabilities of LLMs
is crucial for their global applicability, as it en-
sures that these models can understand and gen-
erate text effectively across different languages.
Benchmarks such as MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2021) have been
developed to access the general capability of the
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Context: 
The Panthers defense gave up just 308 
points, ranking sixth in the league, while 
also leading the NFL in interceptions with 
24 and boasting four Pro Bowl …

Question: 
How many points did the Panthers 
defense surrender?

Reference Answer: 
308

Metrics: 
(1) Exact Match
(2) F1 Score

Large Language 
Model

Biased 
Judgement

(a) Original XQuAD Dataset

Context: 
The Panthers defense gave up just 308 
points, ranking sixth in the league, while 
also leading the NFL in interceptions with 
24 and boasting four Pro Bowl …

Question: 
How many points did the Panthers 
defense surrender?

Choices:
(A) 308
(B) ?
(C) ?
(D) ?

Generate distractive choices 
& multilingual paralllism

Parallel Samples
(In multiple languages)

Choices: (in multiple languages)
(A) 24
(B) 308
(C) 309
(D) 405

Metrics: 
Multi-choice Question

Good for LLM 
evaluation & Cross-
Lingual Consistency

(b) Cross-XQuAD Dataset Creation

Figure 1: An illustration of the dataset construction process of the Cross-XQuAD dataset. The original XQuAD
dataset, although multilingual, is not adapted specifically to evaluate LLMs and their cross-lingual consistency.

LLMs in English. XQuAD (Artetxe et al., 2019)
and MLQA (Lewis et al., 2019) are popular extrac-
tive question-answering datasets that have been de-
veloped to evaluate the models’ multilingual perfor-
mance. However, they focus on language-specific
performance without considering the knowledge-
sharing capabilities. Recently, Cross-MMLU and
Cross-LogiQA (Wang et al., 2023) are proposed
to assess the multilingual capability of LLMs with
an emphasis on cross-lingual consistency. How-
ever, the number of samples is limited which could
generally lead to less stable evaluation results.

3 Cross-Lingual Consistency Benchmark

Since traditional multilingual evaluations often fail
to cater specifically to LLMs or overlook the assess-
ment of cross-lingual consistency in multilingual
contexts, in this section, we present a targeted mul-
tilingual evaluation benchmark for cross-lingual
knowledge alignment.

3.1 Datasets and Metrics

Even though there are multilingual evalua-
tion datasets with parallel samples including
MLQA (Lewis et al., 2019) and XQuAD (Artetxe
et al., 2019), they are tailored for supervised extrac-
tive question-answering tasks and are unsuitable
for less structured outputs of LLMs (Schuster et al.,
2023). Therefore, recently, two evaluation datasets
have been developed for multilingual evaluation
with cross-lingual consistency measures (Wang
et al., 2023). Specifically, Cross-MMLU and Cross-
LogiQA are designed to use multiple-choice ques-
tions, presenting parallel samples to assess the
knowledge alignment capability of LLMs. These
datasets focus on commonsense question answer-
ing and logical reasoning. However, as they are

crafted by humans, the number of parallel samples
they offer is relatively limited due to the high cost
of human labor involved. This limitation could lead
to less robust evaluation results.

Considering this, in our work, we enhance the
cross-lingual consistency evaluation benchmark by
introducing another task type: reading comprehen-
sion. Furthermore, we utilize existing high-quality
parallel datasets to automatically generate new ones
that are tailored for LLM evaluation. Table 1 sum-
marizes the complete benchmark.

For evaluation metrics, we leverage the same
concept as presented in Wang et al. (2023). In ad-
dition to assessing the overall accuracy of each lan-
guage, we also integrate cross-lingual consistency
metrics, measured by “Consistency” and “AC3”.
The consistency score is designed to determine
whether the model provides consistent responses
to parallel questions across different languages. A
higher consistency score suggests that LLMs can
apply common knowledge across languages and
deliver uniform responses, regardless of correct-
ness. Specifically, for the Cross-XQuAD dataset
that spans four languages, the multilingual consis-
tency metric is defined as

M{l1,l2,...,ls} =

∑N
i=1 1{al1i = al2i = ... = alsi }

N
(1)

where alsi is the answer for sample index i from
language s. Then, the consistency is computed as:

Consistencys =

∑
{l1,l2,...,ls}∈C(s,gi)

M{l1,l2,...,ls}
Cs
4

(2)
Similar to Wang et al. (2023), we use s = 3 as

the default tolerant for consistency metrics, where
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Dataset MCQs Number of Samples Supported Language Consistency Metric
MLQA (Lewis et al., 2019) ✗ 5,500 (36×) 7 - Eng, Zho, Spa, Vie, ... NA
XQuAD (Artetxe et al., 2019) ✗ 1,190 (7.9×) 10 - Eng, Zho, Spa, Vie, ... NA
Cross-MMLU (Wang et al., 2023) ✓ 150 (1×) 7 - Eng, Zho, Spa, Vie, ... ✓

Cross-LogiQA (Wang et al., 2023) ✓ 176 (1.2×) 7 - Eng, Zho, Spa, Vie, ... ✓

Cross-XQuAD (ours) ✓ 1,190 (7.9×) 4 - Eng, Zho, Spa, Vie ✓

Table 1: A list of multilingual datasets. Multi-choice questions (MCQs) are more suitable for quantitative evaluation
of large language models and evaluation for multilingual consistency. Traditional metrics such as the F1 score or
Exact Match for extractive question answering can introduce unintended biases in evaluating large language models.

the consistency between any three languages is
computed. AC3 enhances the traditional accu-
racy metric by incorporating consistency, offering
a more comprehensive evaluation. This approach
is adopted because relying solely on consistency or
accuracy does not yield a robust assessment.

AC3s = 2 · Accuracy · Consistencys
Accuracy + Consistencys

(3)

By converting the datasets into MCQ (Multiple
Choice Question) format, we can better quantify
the model’s ability to select the correct answer from
a set of options, thereby offering a clearer measure
of its understanding and reasoning capabilities.

3.2 Cross-XQuAD Construction
Figure 1 indicates the process of constructing the
Cross-XQuAD dataset from the original XQuAD
dataset. It involves three steps, 1) English MCQ
construction with distractive choices, 2) Parallel
MCQ construction, and 3) Post-processing and
quality check.

First, the original ground-truth answer from the
XQuAD dataset can directly be used as the correc-
tion choice. As the XQuAD is for an extractive
question-answer task, we extract the incorrect op-
tions from the provided context corpus as much as
possible. Otherwise, the solution would be highly
trivial with simple matching techniques. To achieve
this, we prompt ChatGPT-3.5 to get the other three
choices as shown in Figure 1b.

Second, using the prepared English sample as
a base, we prompt the generation of equivalent
samples in the other languages. We discovered that
direct translation without specific context can result
in deviated interpretations due to polysemy, poten-
tially leading to a biased evaluation. To counter
this, we prompt the model with the English sample
alongside its contextual counterpart in the target
language to generate new samples. This approach
has resulted in samples that are highly aligned
across multiple languages.

Third, although LLMs can perform as a reason-
able automated method for creating parallel sam-
ples (Li et al., 2023), we found that human inter-
vention is essential to ensure higher accuracy. Con-
sequently, each constructed sample undergoes a
round of human review to confirm its integrity.

Following the above procedure, we construct the
Cross-XQuAD dataset with 1,190 parallel samples
in four languages which results in 4,760 samples in
total. It is by far the largest multilingual evaluation
dataset with cross-lingual consistency assessment
capabilities.

4 CrossIn Method

To address the imbalance across languages in
English-centric LLMs pre-training and fine tun-
ing, we explore strategies to enhance multilingual
proficiency through cross-lingual instruction tun-
ing. Typically, instruction tuning relies on mono-
lingual training samples (e.g., English) (Zhu et al.,
2023a), which limits the potential of massive mul-
tilingual exposure at the pre-training stage. There-
fore, we aim to enrich instruction tuning from the
language perspective. Since all languages share
the compressed representation space, cross-lingual
instruction tuning can efficiently boost the model’s
task-solving and multilingual capabilities within a
single process. Specifically, we propose CrossIn
approach to mix language compositions at the sam-
ple level to enforce the information flow across
languages. We hypothesize that our method can
further boost multilingual performance by encour-
aging language-level generalization.

The training data can be divided into three main
aspects: Base, CrossIn, Trans.

• Base: This part includes the foundational in-
struction tuning datasets, where the model is
relying on to learn all basic capabilities. Given
that English datasets are the most resource-
rich and of the highest quality, we focus
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Type Instruction Output

Original Sample Explain what a ”food desert” is and why they are a problem. A ”food desert” is an area with little or no access to afford-
able, healthy food options....

CrossInen2x Explain what a ”food desert” is and why they are a problem. “食物沙漠” 是一个几乎没有或根本没有负担得起的健
康食品选择的地区...

CrossInx2en 解释什么是“食物沙漠”，以及为什么它们是一个问题 A ”food desert” is an area with little or no access to afford-
able, healthy food options....

CrossInx2x 解释什么是“食物沙漠”，以及为什么它们是一个问题 Un ”desierto alimentario” es un área con poco o ningún
(zho-spa) acceso a opciones de alimentos saludables y asequibles...

CrossInx2x Explain what a ”food desert” is and why they are a problem. Un ”desierto alimentario” es un área con poco o ningún
(eng-spa) acceso a opciones de alimentos saludables y asequibles...

CrossInx2x Explique qué es un ”desierto alimentario” y por qué son un “食物沙漠”是一个几乎没有或根本没有负担得起的健
(spa-zho) problema. 康食品选择的地区...

Translation Translate the following sentence into English.
解释什么是“食物沙漠”，以及为什么它们是一个问题

Explain what a ”food desert” is and why they are a problem.

Table 2: One example from the Alpaca dataset. It is further transformed into cross-lingual instruction tuning datasets
and translation tasks.

on using common English instruction tuning
datasets.

• CrossIn: It comprises cross-lingual instruc-
tion tuning datasets, where instruction and
output are featured in two different lan-
guages. The dataset aims to align represen-
tations across languages, thus enforcing the
knowledge-sharing ability of LLMs.

• Trans: It consists of translation pairs for in-
structions. We hypothesize that if the model
concurrently learns these translation tasks, it
could facilitate the transfer of knowledge be-
tween languages.

For Base, we leverage existing datasets, we cre-
ate the CrossIn and Trans datasets, where we use
the Alpaca (Taori et al., 2023) dataset as the source.
Examples are shown in Table 2.

For CrossIn dataset, we create three variants as
the following recipes:

• CrossInen2x: Instructions are provided in En-
glish, and we choose the output language ran-
domly. Given the rich prior knowledge avail-
able in English, this approach aims to transfer
English knowledge to other languages.

• CrossInx2en: Instruction language is chosen
randomly, and output is fixed in English. This
approach aims to unify multilingual instruc-
tions into responses centered around English.

• CrossInx2x: The languages for both the in-
struction and the output are selected randomly.
This approach seeks to facilitate bi-directional
alignment across all languages.

Algorithm 1 CrossInx2x with translation
S ← Total number of samples
L ← {”English”, ”Spainish”, ”Chinese”,

”Vietnamese”}
D ← Seed Parallel Instructions Dataset
C ← ∅
T ← ∅
tp ← Translation Prompt
for i← 1 to S do

s← Random sample from D
lin, lot ← Random sample from L
C ← C ∪ (D[lin][s],D[lot][s])
lt ← Random sample from L
T ← T ∪ (tp, D[lt][s], D[“English”][s])

end for

Previous work shows that incorporating sample
translation helps map English to other languages,
allowing the model to generalize English knowl-
edge in a broader space (Zhu et al., 2023b). For
an extensive comparison, we also investigate how
adding a separate translation task might enhance
the multilingual abilities of LLMs, compared with
using cross-lingual instruction tuning alone. More
specifically, aside from the CrossIn data, we add
a direct translation task of instructions from En-
glish to other languages. The influence on model
performance of additional instruction translation is
discussed in Section 5.3.

Algorithm 1 illustrates the complete algorithm to
create CrossInx2x with translation dataset, where
S is the desired number of samples to be added
with the Base. C, T , lin indicate CrossIn, Trans
and the sampled language, respectively.
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Models Cross-XQuAD Cross-MMLU Cross-LogiQA
Acc Consis AC3 Acc Consis AC3 Acc Consis AC3

General LLMs
ChatGPT-3.5 90.6 83.7 87.0 66.8 51.8 58.4 53.3 40.5 46.0
LLaMA-2-7B-Chat (Touvron et al., 2023b) 74.9 67.5 71.1 40.1 42.0 41.1 36.8 43.5 39.9
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) 84.6 72.2 77.9 49.0 26.2 34.1 46.0 38.5 41.9
LLaMA-7B (Touvron et al., 2023a) 40.3 21.5 28.0 29.8 27.8 28.8 27.6 23.0 25.1
m-LLaMA-7B (Zhu et al., 2023b) 46.8 41.1 43.8 26.7 22.3 24.3 28.1 22.0 24.7
Base Model: Gemma-2B (Team et al., 2024)
Tuning w/ Alpaca 42.0 49.7 45.5 36.0 59.8 45.0 28.3 63.8 39.2
Tuning w/ Platypus 60.8 55.8 58.2 36.5 29.7 32.7 36.4 47.9 41.3
CrossInen2x 60.1 62.8 61.5 39.2 43.0 41.0 39.5 37.8 38.6
CrossInx2en 54.2 64.7 59.0 41.2 57.8 48.1 36.8 48.3 41.8
CrossInx2x 53.3 64.3 58.3 37.0 54.5 44.1 39.6 46.2 42.6
Base Model: Mistral-7B-v0.1 (Jiang et al., 2023)
Tuning w/ Alpaca 62.2 52.9 57.2 36.2 43.5 39.5 35.7 33.8 34.7
Tuning w/ Platypus 61.1 33.2 43.0 38.8 20.2 26.5 47.9 29.8 36.8
CrossInen2x 74.9 64.0 69.0 41.0 41.5 41.2 44.6 40.1 42.2
CrossInx2en 77.4 63.8 69.9 34.8 47.2 40.1 45.3 42.5 43.8
CrossInx2x 78.6 67.9 72.9 41.0 42.3 41.7 48.9 48.3 48.6

Table 3: Experimental results on three cross-lingual consistency datasets: Cross-XQuAD, Cross-MMLU, Cross-
LogiQA. Three metrics presented are Accuracy (ACC), Consistency (Consis), and AC3 as introduced in Section 3.

5 Experiments

5.1 Experimental Setting

In our experiments, we selected four languages:
English, Chinese, Vietnamese, and Spanish across
all three datasets. We utilized two representative
open LLM as base model: Mistral-7B-v0.1 (Jiang
et al., 2023) and Gemma-2B (Team et al., 2024).
For base models, we employed the Platypus (Lee
et al., 2023) corpus as the Base dataset for instruc-
tion tuning, since previous work shows that it can
enable models’ higher diverse and robust general-
ization capabilities than the Alpaca dataset.

For the CrossIn instruction tuning data, we uti-
lize the Alpaca (Taori et al., 2023) corpus as the
seed dataset. This dataset is expanded into a mul-
tilingual format to four languages using an off-
the-shelf translation engine, producing a total of
(52k×4) samples. From the enriched datasets, both
the CrossIn and Trans parts can be formulated in
a variant number of samples. While the Alpaca
dataset lacks the complex problem-solving capa-
bilities of the Base set from Platypus, it contains
English instructions without complex elements like
coding and math, which results in a higher trans-
lation quality. Meantime, this setup allows us to
investigate whether a dataset of simple instructions
can adequately support effective knowledge align-
ment across languages.

In model training, we leverage LoRA (Hu et al.,
2022) with rank = 64 as a parameter-efficient
way to train LLMs. For fair comparison, we fine-
tune base models with either the Platypus or Al-
paca dataset with the same set of hyperparam-
eters. Besides, following standard benchmarks,
we also compared several representative general-
purpose LLMs including ChatGPT-3.5, LLaMA-2-
7B-Chat, Mistral-7B-Instruct-v0.2, m-LLaMA-7B
and its base model, LLaMA-7B.

5.2 Main Results and Analysis

Table 3 shows the benchmark results of current gen-
eral LLMs and models tuned with Alpaca, Platypus
and different CrossIn variants. Our findings can
be summarized as follows.
English-centric LLMs do not perform well on
our multi-lingual benchmark. First, we evaluate
the performance of representative LLMs using our
benchmarks and observed that ChatGPT-3.5 ex-
hibits outstanding performance across all three test-
sets, indicating strong multilingual capabilities and
consistency. For open-source models, we observe
that models after instruction tuning (e.g.,LLaMA-
2-7B-Chat, Mistral-7B-Instruct-v0.2) significantly
outperform the non-tuned models (e.g., LLaMA-7B,
m-LLaMA-7B) on all fronts, while their accuracy
and cross-lingual consistency lag behind that of
ChatGPT-3.5. Moreover, m-LLaMA-7B demon-
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Figure 2: Consistency score between languages on
Cross-XQuAD with CrossInx2x method

strated some improvements over LLaMA-7B in
the Cross-XQuAD dataset, but it only managed
to achieve similar results on the Cross-MMLU and
Cross-LogiQA. This suggests that a purely mono-
lingual data mix may not be adequate for training
models on complex multilingual tasks, highlighting
the importance of our proposed approach.
English-centric instruction tuning is limited. We
analyzed the performance of base models fine-
tuned on different original instruction datasets (i.e.,
Alpaca and Platypus). Our findings indicate that
models exhibit distinct characteristics depending
on the instruction tuning corpus. Fine-tuning with
Platypus results in higher accuracy, potentially due
to the diversity of tasks in the dataset. Conversely,
models fine-tuned with Alpaca shows a higher con-
sistency across most benchmark datasets, albeit
with marginally lower accuracy. These observa-
tions suggest that Alpaca may be less effective than
Platypus in augmenting LLMs with task-solving
and reasoning. In addition, fusing a wide range of
knowledge in English could potentially lead to a
forgetting of information in other languages, thus
affect the consistency. This results show a trade-off
between accuracy and consistency from fine-tuning
on different English-centric instruction tuning cor-
pora. We aim to bridge the gap of both datasets,
thereby enhancing both accuracy and consistency.
CrossIn is simple but effective. We further re-
view the results from our CrossIn instruction tun-
ing method, which leverages the strengths of both
the English-centric Platypus and the diverse Mul-
tilingual Alpaca datasets. By implementing the
CrossIn augmentation, we successfully raised the
AC3 score by 30% on the Cross-XQuAD bench-
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Figure 3: Results of different cross-lingual instruction
tuning methods compared with baseline.

mark and by about 12% on both the Cross-MMLU
and Cross-LogiQA testsets. This improvement was
achieved using the CrossInx2x approach with the
Mistral-7B-v0.1 as the foundational model. En-
hancements were evident in the model’s accuracy
and consistency across various languages, con-
tributing to the higher AC3 scores. Our findings
highlight the effectiveness of the CrossIn method
in enriching a model’s performance on multilin-
gual tasks. By starting with a task-diverse, strong
instruction set from the Platypus dataset and in-
tegrating simpler, language-varied data from Al-
paca, we crafted a cross-lingual knowledge base
that significantly improve accuracy and consistency
in multilingual understanding.
Language discrepancy affects consistency. We
investigate the consistency scores across all pairs
of languages. As shown in Figure 2, Spanish and
English exhibit the highest consistency, potentially
due to their linguistic similarities, among all other
language pairs. On the other hand, Chinese and
Vietnamese have the lowest correlation, which may
be attributed to their completely distinct charac-
ter sets. Apart from the linguistic discrepancies,
this could also stem from language bias during the
pre-training phase of language models. When con-
sidering the consistency score between English and
other languages, Vietnamese, typically categorized
as a low-resource language in pre-training, shows
the least consistency with English. This points to
the importance of diversifying the data used in train-
ing language models to ensure fair and effective
language representation, particularly for languages
that are typically categorized as low-resource.

5.3 Ablation Study
We conduct three comprehensive ablation studies
to systematically assess the effects of various data
formations, the integration of translation data, and
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Figure 4: Comparison of AC3 score of adding transla-
tion data in cross-lingual instruction tuning.

the influence of different alignment dataset sizes on
the performance of our models, aiming to identify
key factors that enhance or inhibit their effective-
ness.

Data Formulation Comparison. Figure 3 shows
the AC3 scores from three tests when the lan-
guage backbone is the Mistral-7B-v0.1. The re-
sults make it clear that methods designed for cross-
lingual instructions work better than the basic
method, which only uses English-centric instruc-
tion tuning data from Platypus or Alpaca. In par-
ticular, the CrossInx2x method does much bet-
ter than the CrossInen2x and CrossInx2en meth-
ods. This suggests that fully mixing multiple lan-
guages (CrossInx2x) can make the most of what
the Mistral-7B-v0.1 model offers by effectively
using data from different languages. The mixed
composition in training examples seems to help the
model understand and apply knowledge from one
language to another, leading to more accurate and
consistent results.

Efficacy of Translation Data. Figure 4 compares
the performance of the CrossInx2x method with
the CrossInx2x T strategy, which adds translations
to the Alpaca samples (as described in Algorithm
1). The experimental results indicate that addi-
tional translation pairs does not bring performance
gains. We speculate that this is because tasks in-
cluded in our benchmark focus on understanding
and reasoning, and the cross-lingual instruction
tuning approach stimulate both of them under a
multilingual setting. Additionally, the translations
used here may be too basic, especially compared
to larger datasets like WikiMatrix. This suggests
that improving multilingual knowledge alignment
may be better achieved through a mixed-language
approach at the sample level rather than by incor-
porating simple translation data.
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Figure 5: Comparison of AC3 score by adding different
numbers of CrossIn data. Base model: Mistral-7B-v0.1

Essential Cross-Lingual Data Quantities. Fig-
ure 5 shows the AC3 score of the LLMs with differ-
ent quantity of cross-lingual alignment data. It can
be shown that adding 5000 alignment data could
already achieve a good result of cross-lingual con-
sistency, there are not much improvement trend
if we add more data. The observation that only a
small amount of cross-lingual alignment data is re-
quired to achieve satisfactory consistency in LLMs
can be attributed to its efficient learning mechanism.
This characteristic allows the model to quickly as-
similate and generalize from limited data, making
it particularly adept at few-shot learning scenarios.
Additionally, the model’s pretraining on diverse lin-
guistic corpora might have already equipped it with
a foundational understanding of various languages,
thereby reducing the need for extensive alignment
data to bridge linguistic gaps. This efficient use
of data not only demonstrates the model’s robust-
ness but also highlights its practicality in situations
where data availability is constrained.

6 Conclusion

In this paper, we presented a study on improving
cross-lingual knowledge alignment of multilingual
large language models, and contributed to both
evaluation benchmarks and methodologies. We
built a machine comprehension dataset that is a ro-
bust resource for extensive multilingual evaluation,
emphasizing cross-lingual consistency in compen-
sation with previous datasets. Our cross-lingual
instruction tuning method CrossIn brought signif-
icant improvements in knowledge accuracy and
consistency across languages, highlighting the po-
tential of efficient tuning to create more robust mul-
tilingual large language models.
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Limitations

Our approach depends on the availability of high-
quality translation and cross-lingual data, which
may not be accessible for all languages. Address-
ing these data availability challenges is essential
for further research on enhancing multilingual con-
sistency in large language models.

In this study, we did not examine the impact of
our cross-lingual data formulation on the pretrain-
ing stage of large language models. Pre-training is
crucial as it significantly shapes the model’s founda-
tional knowledge and capabilities. Considering the
larger scale of pretraining compared to fine-tuning,
exploring whether our method could improve the
efficiency and effectiveness of pretraining multilin-
gual language models is a vital direction for future
research. However, conducting such an ablation
study on the pre-training stage is computationally
demanding and may not be feasible with limited
resources.
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A Appendix

A.1 Prompt for Building Cross-XQuAD Data

Figure 6: Prompt For Generating English Choice

Figure 7: Prompt to Translate English Choice

A.2 Fine-tuning Parameters

Hyperparameter Value

learning rate 1e-4
batch size 16
epochs 1
lora rank 64
lora alpha 128
lora trainable p proj, k proj, v proj, o proj,

gate proj, down proj, up proj
modules to save embed tokens, lm head
lora dropout 0.05
warmup ratio 0.03
weight decay 0
optimizer Adam
bf16 True

Table 4: Fine-tuning Hyperparameters
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Abstract

With an evergrowing number of LLMs report-
ing superlative performance for English, their
ability to perform equitably for different di-
alects of English (i.e., dialect robustness) needs
to be ascertained. Specifically, we use English
language (US English or Indian English) con-
versations between humans who play the word-
guessing game of ‘taboo‘. We formulate two
evaluative tasks: target word prediction (TWP)
(i.e., predict the masked target word in a conver-
sation) and target word selection (TWS) (i.e.,
select the most likely masked target word in a
conversation, from among a set of candidate
words). Extending MD3, an existing dialectic
dataset of taboo-playing conversations, we in-
troduce M-MD3, a target-word-masked version
of MD3 with the en-US and en-IN subsets. We
create two subsets: en-MV (where en-US is
transformed to include dialectal information)
and en-TR (where dialectal information is re-
moved from en-IN). We evaluate three multi-
lingual LLMs–one open-source (Llama3) and
two closed-source (GPT-4/3.5). LLMs perform
significantly better for US English than Indian
English for both TWP and TWS tasks, for all
settings, exhibiting marginalisation against the
Indian dialect of English. While GPT-based
models perform the best, the comparatively
smaller models work more equitably after fine-
tuning. Our evaluation methodology exhibits
a novel and reproducible way to examine at-
tributes of language models using pre-existing
dialogue datasets with language varieties. Di-
alect being an artifact of one’s culture, this pa-
per demonstrates the gap in the performance of
multilingual LLMs for communities that do not
use a mainstream dialect.

1 Introduction

Large language models (LLMs)1 based on Trans-
formers (Vaswani et al., 2017) are the state-of-

1We use ‘language models’ and ‘large language mod-
els/LLMs’ interchangeably in this paper.

Figure 1: Illustration of the two tasks: Target
word prediction (TWP) and Target word selection
(TWS). and are the describer and the guesser re-
spectively in a word-guessing game of taboo. and

refer to Indian English and US English respectively.

the-art in natural language processing (NLP), of-
ten reporting superlative performance on several
NLP tasks (Zhao et al., 2023). These models pre-
dominantly use English language data in their pre-
training corpus. However, being a widely spoken
language, English takes multiple forms in different
parts of the world. These forms, called dialects
or national varieties of English, collectively con-
stitute the World Englishes (Bolton, 2012). While
research papers introducing LLMs report perfor-
mance on English language datasets, recent works
highlight the performance gap between US English
and other dialects of English for several natural
language processing tasks (Joshi et al., 2024).

Our paper examines cultural considerations of
evaluating LLMs through the prism of dialect
robustness via conversation understanding. The
choice of conversation understanding as a domain
for evaluation emerges from the fact that dialectal
features are most visible in free-flowing conver-
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sations (Negro and Vietti, 2006). Therefore, we
investigate the research question:

“In comparison with US English, how ef-
fectively can LLMs understand conversa-
tions between speakers of other national
varieties of English?”

To address the research question, we use a pre-
existing dataset– MD3 (Eisenstein et al., 2023)
that consists of manually transcribed dialogues be-
tween pairs of human participants where each pair
speaks either Indian English or US English. The
participants engage in a focused conversation: they
play the word-guessing game based on the game
of ‘Taboo’ (Wikipedia, 2023). In the game, a de-
scriber must get a guesser to identify a target word
but must not use a set of related words known as
restricted words while describing the target word.
Using this dataset of dialectal dialogues, we intro-
duce two tasks to evaluate the dialect-robustness of
LLMs to understand conversations. They are: (a)
Given an input conversation with the target word
masked, can the LLM predict the target word? (re-
ferred to as target word prediction) (b) Given an
input conversation with the target word masked
along with a set of candidate target words, can the
LLM select the correct target word? (referred to
as target word selection). Our approach of mask-
ing the target word is similar to Dey and Desarkar
(2023), who show that masked word prediction may
correlate with automatic dialogue evaluation met-
rics. Figure 1 shows an example of the two tasks,
where the language model predicts ‘Justin Bieber’
for target word prediction, and selects ‘microphone’
among the set of options for target word selection2.
For the two tasks, we extend MD3 to create a target-
word-Masked Multi-Dialect Dataset of Dialogues
(M-MD3)3. M-MD3 consists of (a) conversations
between Indian English speakers (en-IN), and con-
versations between US English speakers (en-US),
(b) en-US conversations transformed into en-IN
using rule-based perturbations (en-MV), (c) en-
IN with dialectal information removed (en-TR).
We evaluate the performance of three SOTA large
language models (LLMs), one open-source and
two closed-source, employing zero-shot prompting

2We run experiments on both the tasks for both US and
Indian English conversations. While the examples show ex-
pected output, the LLM may or may not produce the same in
the case of our experiments. That is the crux of the evaluation.

3M-MD3 dataset and the related code will be made pub-
licly available at ANONYMOUS.

on both pre-trained and fine-tuned models (where
available). Our evaluation methodology derives
from past work that evaluates LLMs by provid-
ing a set of task-specific examples (Wang et al.,
2023). Of particular relevance is the work by Cha-
lamalasetti et al. (2023), who generate word game
conversations using LLMs and evaluate their abil-
ity to predict the target word. The contributions of
our work are:

• We create M-MD3, an extension of MD3, that
deals with two novel evaluative tasks for di-
alect robustness: target word prediction and
target word selection.

• Our evaluation demonstrates a degraded per-
formance in the case of Indian English as
compared to US English for all models, sup-
porting existing social disparities between US
and Indian culture in the LLM representa-
tions (Khandelwal et al., 2024).

• A comprehensive error analysis to identify
specific conditions under which fine-tuning
enhances the model’s performance on Indian
English conversations.

Since several LLMs have been deployed as pub-
licly available dialogue agents4, it is imperative
that they can understand the conversations of users
belonging to diverse English-speaking subgroups.
In the case of our paper, this refers to dialectal vari-
ations, considering them as a proxy to culture. The
rest of the paper is organized as follows. Section 2
introduces our evaluation methodology. The ex-
periment setup and results are in Sections 3 and 4
respectively.

2 Methodology

We present our method step-by-step, with a detailed
overview of our evaluation methodology described
in Figure 2. We select two subsets available in
MD3: en-IN and en-US, and filter out the conver-
sations where the guesser could not identify the
target word. We extend MD3 to include two addi-
tional sets of conversations—en-MV and en-TR,
and mask the target words in all four subsets to cre-
ate M-MD3. We ensure that the mask token always
appears at the end of the conversation, warranting
the use of auto-regressive models. This is done

4ChatGPT https://chat.openai.com/; Accessed on
9th April 2024.
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Figure 2: Steps for evaluation of dialect robustness.

by pruning the conversation to the turn where the
guesser utters the target word5.

Transforming text in en-US to other dialectal
English text has been explored for low-resource
settings (Held et al., 2023; Xiao et al., 2023; Liu
et al., 2023). To evaluate the efficacy of syntheti-
cally transformed dialogues, we extend the dataset
of dialectal dialogues to include two additional sets
of conversations– en-MV and en-TR.

en-MV We use Multi-VALUE (Ziems et al.,
2023) to transform en-US conversations into en-
IN conversations. We call this set of conversations
created by rule-based transformations en-MV.

en-TR We prompt GPT-4 Turbo Preview(GPT-
4; OpenAI et al. 2024) to remove dialectal informa-
tion from en-IN. The resultant set of conversations
is known as en-TR. The prompt6 used to generate
such conversations is given below:

“Normalise the conversation. Remove all
exaggerations and dialectal information.
Return a neutral response.”

2.1 Extending MD3
The use of GPT-4 to transform en-IN conversations
sometimes leads to the generation of conversation
summaries rather than transformed conversations7.
Due to the varying lengths of speaker turns, trans-
forming en-US conversations using Multi-VALUE
occasionally fails to output a result. Such failed
transformations are excluded from both the sub-
sets of transformed (en-MV, en-TR) conversations,
leading to fewer conversations in en-MV and en-
TR as compared to en-US and en-IN, respectively,
as shown in Tables 1 and 2.

2.2 Analysis
Table 1 reports some of the constructional statistics
of M-MD3. For each subset, it reports the aver-
age number of dialogue turns per conversation, the

5Details on the masking method with examples are pro-
vided in Appendix A.

6The forms are experimentally determined using a few test
examples.

7More details with examples are discussed in Appendix B.

Figure 3: M-MD3 as an extension of MD3: (a) Creation
of en-MV and en-TR, and (b) Creation of target-word-
masked conversations.

average word count for the dialogues uttered by
both the describer and the guesser, and the number
of conversations with single-word versus multiple-
word reference target words. The target words
‘microphone’ and ‘Justin Bieber’ in Figure 1 are ex-
amples of single-word and multiple-word reference
target words, respectively.

We notice a higher number of average turns and
words spoken in en-IN conversations compared to
en-US conversations. This is due to the en-US
speakers being more familiar with the target word
compared to en-IN speakers, leading to shorter
gameplay time (Eisenstein et al., 2023). The trend
is also carried over to the transformed conversa-
tions in en-MV (derived from en-US) and en-TR
(derived from en-IN).

2.3 Task Definition

As shown in Figure 3, we mask the target word
in the conversations from all four subsets. The
target word occurs in the last dialogue turn of the
conversation, which is spoken by the guesser8. As a

8This always holds because of the way we process the
conversations.
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Subset Avg. turns Avg. words Single Multiple

en-US 4.1 42.1 308 106
en-IN 6.8 57.4 153 59

en-MV 4.9 35.2 245 87
en-TR 6.3 42.7 121 50

Table 1: Constructional Statistics of M-MD3. Single
and Multiple refer to the number of conversations with
single-word and multiple-word reference targets, respec-
tively.

result, we formulate two tasks where the expected
output is to fill the correct word at the masked
position:

• Target Word Prediction (TWP): Given a
conversation with the target word masked, pre-
dict the word.

• Target Word Selection (TWS): Given a con-
versation with the target word masked and
a set of candidate target words, select one
among the candidate set.

In the case of TWP, the LLM may generate
any word within its learned vocabulary, with the
expected output being the reference target word.
In the case of TWS, we provide the LLM with a
masked conversation and a set of all target words
in the M-MD3 corpus. The LLM must then select
the most likely target word.

We then use prompting on three LLMs to per-
form both tasks (TWP and TWS). As LLMs, we
choose models that have been optimised to follow
natural language instructions. In our case, the in-
struction is to either predict the masked target word
or select a word from candidate words. Specifically,
we use one open-source model, namely, Llama 3
70B Chat (LLAMA-3; Grattafiori et al. 2024), and
two closed-source models, namely, GPT-4 and GPT-
3.5 Turbo 0125 (GPT-3.5; Ouyang et al. 2024).

3 Experiment Setup

We report the performance on pre-trained and fine-
tuned versions of multilingual LLMs using zero-
shot prompting. Fine-tuning is always done ‘in-
dialect’ in our case, although there is no reason to
believe that cross-dialect fine-tuning is not possi-
ble.

3.1 Model Parameters

Experiments on GPT-4 and GPT-3.5 are conducted
using OpenAI’s API9. GPT-3.5 is fine-tuned for
5 epochs, separately for every subset. We select
top_p as 0.2 to restrict variability in output genera-
tion.

LLAMA-3 is fine-tuned for 20 epochs, with a
batch size of 16, Paged 8-bit AdamW (Dettmers
et al., 2022) as the optimiser and a learning rate of
2e-4. We use QLoRA adaptors, targeting all linear
layers, as recommended by Dettmers et al. (2024).
All experiments on LLAMA-3 were performed us-
ing two A100 GPUs.

3.2 Metrics

We report our results on two metrics: accuracy
and similarity. Accuracy is the proportion of con-
versations where the LLM generated the correct
target word. This is a strict metric in that it re-
quires the LLM to generate an exact match to the
reference target word. In the case of TWP, the
LLM will choose from all the words within its
vocabulary, while in the case of TWS, the LLM
will choose from the set of candidate target words.
Therefore, it is trivial that the accuracy for TWS
is expected to be higher than that for TWP. Accu-
racy metric penalizes models even if the generated
target word partially matches with the reference tar-
get word in case of multi-word reference target as
described in Section 2.2. As similarity, we report
the cosine similarity between the Sentence-BERT
embeddings (Reimers and Gurevych, 2019) of the
reference target word and the generated target word.
This allows for similar but inexact words generated
by the LLM to be acceptable to the similarity score.

3.3 Experiments

We perform experiments on both the tasks (TWP
and TWS) using all models({pre-trained and fine-
tuned} ˆ {GPT-4, GPT-3.5, LLAMA-3 }). All re-
sults are reported only on the test split of each
subset of conversations. All fine-tuned models are
fine-tuned on the training and validation set using
instruction fine-tuning. GPT-4 could not be fine-
tuned because doing so is restricted by OpenAI
at the time of writing this paper. The statistics
of Train, Valid, and Test splits of each subset of
M-MD3 are reported in Table 2.

9OpenAI API https://platform.openai.com/docs/
api-reference; Accessed on 18th April 2024.
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Subset Train Valid Test

en-US 62 41 311
en-IN 31 21 160

en-MV 49 33 250
en-TR 23 17 131

Table 2: Statistics of M-MD3.

4 Results

In this section, we compare the performance of
three LLMs both quantitatively and qualitatively.
Note that the same test split is used to evaluate both
pre-trained and fine-tuned versions, ensuring that
the results are comparable.

4.1 Quantitative Results

Table 3 shows the results of our experiments on
each task specified in Section 2.3. We analyse the
results as follows.

en-US versus en-IN The focus of this paper is to
evaluate dialect robustness by comparing the per-
formance on en-US and en-IN. All LLMs perform
consistently better on en-US as compared to en-IN
for all configurations. For example, in the case of
LLAMA-3 and TWP, the similarity scores on the
fine-tuned model are 78.0 for en-US and 66.3 for
en-IN, with the drop in performance of 11.7. Even
for all three models, en-US outperforms en-IN on
zero-shot performance using the pre-trained model.
From all results, it is clearly understood that, on av-
erage, the LLMs understand the US English dialect
better than the Indian English dialect. Only consid-
ering the pre-training setting, GPT-4 outperforms
other models for both en-US and en-IN. However,
fine-tuning improves the performance of LLAMA-
3 on en-IN, achieving better results on both tasks
compared to GPT-based models. Interestingly, for
LLAMA-3, the performance improvement after fine-
tuning on en-IN is greater compared to fine-tuning
on en-US (represented by ∆).

Impact of transforming conversations As dis-
cussed in section 2.1, we introduced two synthet-
ically transformed subsets, en-MV and en-TR, to
assess the importance of dialectal features in LLMs’
understanding of conversations. Table 3 shows that,
on pre-trained models, en-TR conversations have
better performance compared to original en-IN con-
versations. This suggests that after removing the
dialectal information from en-IN, the resulting en-

TR conversations are close to the distribution of the
dialect that the LLM understands. This behaviour
is better reflected in GPT-3.5, potentially, because
the LLM has a poor understanding of en-IN as
compared to the other two LLMs. Additionally,
fine-tuning on en-TR conversations does not im-
prove the task performances in comparison to that
on en-IN. This supports the hypothesis that the re-
moval of dialectal information brings the resulting
conversation closer to the dialectal distribution that
LLMs understand than the original dialect.

In the case of en-MV, the task performances are
consistently lower compared to en-US. For exam-
ple, in the case of GPT-3.5 and TWS, the similarity
scores on the fine-tuned model are 80.8 for en-US
and 71.5 for en-MV. This degraded performance
shows that the rule-based transformation into en-
IN from en-US reduced the understanding capacity
of LLMs for the resulting conversations, further
strengthening our hypothesis that LLMs perform
well for US English dialects compared to any other
varieties, similar to findings of Ryan et al. (2024).

Shorter turns versus Longer turns A trend
appears between the performances of models on
each subset of conversations and the constructional
properties of these conversations discussed in Sec-
tion 2.2. Models report their best performances
on the subset with the smallest number of aver-
age turns in a conversation (en-US), and report the
worst performance on the subset with the highest
number of average turns in a conversation (en-IN).

TWP versus TWS We now compare the perfor-
mances of TWP and TWS. As expected, the simi-
larity and accuracy are higher in the case of TWS
compared to TWP for all three models, with one
exception: the pre-training performance of GPT-
3.5 on en-MV, where TWP slightly outperforms
TWS. Note that, for pre-trained LLAMA-3, the ac-
curacy on en-IN is 43.8 for TWP and 56.9 for TWS.
Across all configurations, fine-tuning consistently
improves the performance of both TWP and TWS.
GPT-4 performs best (only for pre-trained models)
for both TWP and TWS tasks for all subsets.

Model Comparison It can be easily observed
from Table 3 that the GPT-4 outperforms the other
two LLMs in the pre-training setting. Interestingly,
for TWS, GPT-4 pre-training performances are bet-
ter than fine-tuning performances of GPT-3.5 and
LLAMA-3 in most of the cases. Also, GPT-4 per-
forms almost equally well for each subset of M-
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Model Subset
TWP TWS

Similarity Accuracy Similarity Accuracy

PT FT ∆ PT FT ∆ PT FT ∆ PT FT ∆

GPT-4

en-US 77.4 - - 67.8 - - 85.7 - - 78.8 - -
en-IN 63.0 - - 45.6 - - 79.0 - - 72.5 - -

en-MV 75.6 - - 60.0 - - 83.6 - - 74.4 - -
en-TR 62.8 - - 45.8 - - 83.4 - - 77.1 - -

δ -14.4 - - -22.0 - - -6.7 - - -6.3 - -

GPT-3.5

en-US 66.3 72.2 5.9 52.7 59.1 6.4 66.4 80.8 14.4 50.8 71.3 20.5
en-IN 53.2 59.1 5.9 34.4 40.0 5.6 61.9 70.7 8.8 47.5 60.6 13.1

en-MV 57.6 71.3 13.7 40.0 54.4 14.4 52.4 71.5 19.1 31.6 57.6 26.0
en-TR 59.4 61.0 1.6 39.7 41.2 1.5 70.7 73.0 2.3 57.3 60.3 3.0

δ -13.1 -13.1 - -18.3 -19.1 - -4.5 -10.1 - -21.0 -16.2 -

LLAMA-3

en-US 70.8 78.0 7.2 60.5 65.3 4.8 78.0 81.8 3.8 67.5 74.6 7.1
en-IN 59.8 66.3 6.5 43.8 54.4 10.6 68.8 80.8 12.0 56.9 74.4 17.5

en-MV 68.6 73.8 5.2 54.0 61.6 7.6 72.3 77.6 5.3 58.8 67.2 8.4
en-TR 60.7 57.5 -3.2 45.8 42.7 -3.1 70.8 79.5 8.7 60.3 72.5 12.2

δ -11.0 -11.7 - -16.7 -10.9 - -9.2 -1.8 - -10.6 -0.2 -

Table 3: Performance on the two tasks: TWP and TWS. PT/FT: Pre-trained/Fine-tuned. δ is the difference in
performance between en-IN and en-US (en-IN minus en-US). ∆ is the difference in performance between FT and
PT. The best performance by a model is represented with bold numbers. The best performance for a subset of
conversations is represented with underlined numbers.

MD3. This shows that GPT-4 and LLAMA-3 are
more inclusive for different dialectal variations of
English in the pre-training and fine-tuning setting,
respectively.

Pre-training versus Fine-tuning Although the
pre-training performances of GPT-4 are superlative,
Table 3 shows that the fine-tuning also improves
the performance of GPT-3.5 and LLAMA-3 across
both tasks and four subsets. Fine-tuning is more ef-
fective for en-US than en-IN in the case of GPT-3.5,
whereas LLAMA-3 shows the opposite trend. For
GPT-3.5, the most improvement due to fine-tuning
is seen when the models are fine-tuned on en-MV,
while LLAMA-3 shows the highest improvement
when fine-tuned on en-IN.

4.2 Error Analysis

From Test set of each conversation subset, we ran-
domly select 30 conversations that are mislabeled
by GPT-4 and LLAMA-3, and manually analyse er-
rors among all model variants across all subsets of
conversations. We summarise the six error cate-
gories10 in Table 4. The error types are:

10Additonal examples for each error category are in Ap-
pendix C.

Ambigous Descriptions (AD) This error type is
observed when descriptions lack specificity (given
the situational constraint on the describer), lead-
ing to multiple potential answers. For the example
target word–‘engine,’ the description provided is–
‘What we find in our. cars. in the front part?’.
Although these descriptions provide enough infor-
mation to guide a human guesser to the right an-
swer, they are often too vague to guide the LLM to
a singular, correct interpretation.

Wrong Descriptions (WD) These errors occur
when the guesser guesses the target word even be-
fore the describer can finish the description com-
pletely. In the case of the target word ‘surname,’
the model infers ‘parent’ when the description pro-
vided is–‘beside your. uh. what is your elder? Uh
what is’. While human guessers might use their
cognitive bias to guess correctly without the com-
plete description, LLMs lack the ability to under-
stand the target word from such a description.

Broken down description of prompt word (BDD)
This error occurs when the describer breaks down
the target word into subwords and attempts to ex-
plain each separately. Generally, such descriptions
involve longer turns. The guesser is then expected
to piece together these fragments to deduce the
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Error Type Config
GPT-4 LLAMA-3

en-US en-IN en-MV en-TR en-US en-IN en-MV en-TR

AD
PT 18 (5) 13 (3) 13 (6) 14 (6) 10 (6) 16 (10) 18 (15) 11 (7)
FT - (-) - (-) - (-) - (-) 7 (6) 9 (4) 13 (13) 11 (6)

WD
PT 4 (2) 4 (4) - (-) 3 (3) 3 (2) 5 (5) - (-) 3 (3)
FT - (-) - (-) - (-) - (-) 2 (2) 5 (4) - (-) 3 (2)

BDD
PT 3 (2) 16 (5) - (-) 7 (3) - (-) 2 (1) - (-) 3 (2)
FT - (-) - (-) - (-) - (-) - (-) 0 (0) - (-) 2 (3)

CC
PT 6 (2) 5 (2) 12 (5) 4 (2) 4 (2) 5 (4) 5 (3) 2 (1)
FT - (-) - (-) - (-) - (-) 2 (1) 4 (2) 3 (2) 2 (0)

PF
PT 6 (2) 2 (0) 7 (4) 4 (0) 14 (8) 3 (1) 9 (5) 4 (1)
FT - (-) - (-) - (-) - (-) 7 (5) 1 (1) 5 (4) 3 (0)

ERR
PT - (-) - (-) 6 (1) - (-) - (-) - (-) 4 (3) - (-)
FT - (-) - (-) - (-) - (-) - (-) - (-) 3 (1) - (-)

ř PT 37 (13) 40 (14) 38 (16) 32 (14) 31 (18) 31 (21) 40 (29) 23 (14)
FT - (-) - (-) - (-) - (-) 18 (13) 19 (11) 27 (21) 21 (11)

Table 4: Count of errors of GPT-4 and LLAMA-3 for each subset. PT/FT: Pre-trained/Fine-tuned. ‘X (Y)’ indicates
that there are X errors in TWP and Y errors in TWS.

ř
is the sum of errors tagged in the sampled erroneous

conversations by a model on a subset across all error types.

original word, as in the case of the target word ‘Bil-
lie Holiday,’ the describer individually describes
the subwords ‘Billie’ and ‘Holiday’. In such cases,
LLMs sometimes latch onto the descriptions per-
taining to later subwords, predicting a partially cor-
rect target word.

Shared Cultural Context (CC) These errors
arise when the human players use culturally shared
notions in a conversation, often due to the de-
scriber’s lack of familiarity with the target word.
For example, an Indian describer explains the word
‘idli’ using examples of breakfast items and then
asks the guesser to infer ‘Adele’. The model is
unable to understand this happening in the conver-
sation.

Public Figure (PF) These errors pertain to inac-
curate predictions generated by the model when
the descriptions are about a well-known public fig-
ure. For example, the describer describes the target
word ’Mike Tyson’ as ‘Big guy that punched people
out and he had a little bit of a lisp,’ but the model
generates ‘darth’.

Fallback Error (ERR) While efforts were made
to classify every mislabeled conversation into an
error category, few generated target words were
found to be inexact or inaccurate, even with apt
descriptions in the conversations. For example,
the target word–‘Rose’ and the description–‘This
are the types of that’s often given valentine day

plant.’, the model generates ‘Gift’. This example
description mentions the word plant which should
have guided the model to a more specific target
word than Gift.

The error types AD, CC, and PF test the model’s
ability to predict the target word based on descrip-
tions influenced by the describer’s dialect, shared
notions with the guesser, and perceived notions
about the target word. Also, some of the conver-
sations fall into multiple error categories except
in the case of conversations in ERR (which is a
mutually exclusive label).

Table 4 presents the error cases in ‘X (Y)’ which
indicates that there are X errors in TWP and Y
errors in TWS for the corresponding configuration.
The benefit of TWS providing options for the target
word is seen in AD, where the alleviation is almost
uniform across all dialects. The presence of direct
or indirect references to the prompt word helps the
LLM towards a plausible answer, in turn making
it easier for them to choose an option. However,
this error reduction does not extend to CC, which
LLMs are unable to detect.

Fine-tuning helps to reduce the errors of AD
category more for conversations of en-IN dialect
compared to en-US. However, after removing the
dialectal information, the conversations are insen-
sitive to fine-tuning for the AD error cases. Addi-
tionally, fine-tuning helps to decrease errors in the
PF category. As expected, it does not significantly
reduce errors in the WD category.
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5 Related Work

Research in dialect robustness stems from the
need for language technologies to be equitable and
not reinforce any negative sentiments against a spe-
cific linguistic subgroup (Blodgett et al., 2020).
LLMs perform poorly on several downstream tasks
(such as the tasks in the GLUE benchmark) in-
volving dialects other than mainstream US En-
glish (Joshi et al., 2024; Faisal et al., 2024).

Similar to our work, the evaluation of lan-
guage understanding ability of LLMs has been ex-
plored using typical conversation understanding
tasks (Chen et al., 2022) like conversation sum-
marisation (Gliwa et al., 2019; Chen et al., 2021),
conversation completion (Sai et al., 2020; Ueyama
and Kano, 2023), or NLU tasks (Faisal et al.,
2024). Other approaches involve conversation-
based question-answering tasks that also evaluate
the reasoning abilities of LLMs (Sun et al., 2019;
Qin et al., 2021). Tasks like mask-filling were
used to evaluate LLM-generated responses, more
specifically Dey and Desarkar (2023) do so by mak-
ing RoBERTa predict masked keyword utterances
when given a context of dialogue history along with
conditions like persona, topic, and facts. Different
from standard language understanding tasks, Cha-
lamalasetti et al. (2023) presents a novel method
to evaluate the ability of LLMs to act as ‘situa-
tional’ language understanding agents (Schlangen,
2023). They do so by assigning roles to LLMs and
generate dialogues resembling word games such
as taboo, and test the language generating and in-
struction following abilities of LLMs based on the
quality of game-play leading to successful target
word prediction.

Although we propose a similar approach to eval-
uation by utilising conversations of such a word
game, our work differs from theirs in two ways:
(a) they use LLM-generated conversations while
we rely on an existing dataset of conversations; (b)
they do not employ dialects in their conversations
while the dataset we use contains information about
the dialects of the human speakers.

6 Conclusion

Although superlative performances have been re-
ported on LLMs in recent times, recent work shows
the performance gap between US English and other
dialects of English. Our paper presents a first-of-
its-kind evaluation of the multilingual LLMs for
their robustness to minority language varieties, us-

ing their ability to predict target words in game-
playing conversations. We use a dataset of target-
word-masked conversations between US English
speakers and those between Indian English speak-
ers playing a game of taboo. We evaluate pre-
trained and fine-tuned versions of one open-source
and two closed-source models, on two tasks: target
word prediction (TWP) and target word selection
(TWS). Our results show that the LLMs indeed
perform better for en-US as compared to en-IN
on both tasks, with the average performance being
higher by 12.66 and 17.4 on similarity and accu-
racy scores across all configurations. This shows
that the LLMs, although multilingual, marginalise
or discriminate against speakers of the Indian di-
alect. We also observe that pre-trained models
report a degraded performance on conversations
created using both rule-based (en-MV) and LLM-
based (en-TR) transformations, as compared to
their source conversations (en-US and en-IN re-
spectively). However, fine-tuning on en-MV yields
a greater improvement in the task performances,
as compared to that on en-TR. This shows that the
transformations that introduce dialectal informa-
tion about a national variety help in improving the
dialect robustness of LLMs more than the transfor-
mations that remove the said dialectal information.
Finally, our error analysis demonstrates that, while
most errors are mitigated by providing options for
masked target words (TWS; in both pre-trained and
fine-tuned variants), multilingual LLMs struggle to
interpret target words based on the shared cultural
context between speakers.

Our extension M-MD3 is a dataset for TWP and
TWS based on MD3, consisting of four subsets: en-
US, en-IN, en-MV, and en-TR. The dataset opens
opportunities for future evaluations of dialect ro-
bustness using similar conversation-based tasks.
Our evaluation methodology can also be scaled
up and applied to other existing dialogue and dis-
course datasets, to evaluate the ability of LLMs on
properties other than dialect robustness.

Limitations

The original MD3 paper states that their dataset
may be dominated by Western entities to some
degree. Therefore, it is possible that Indian speak-
ers faced difficulties with the terms. Having said
that, the instances selected for our dataset are the
ones where the Indian players guessed the word
correctly. We have not performed a detailed quali-
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tative analysis of these conversations, except for a
cursory sanity check. We also assume that the di-
alect of English from each locale is homogeneous.
Assuming that en-IN is the English spoken in every
region of India is an unrealistic generalization of
the diversity of dialects of English. In terms of
model fine-tuning, our paper also does not cover
the impact of quantization and different fine-tuning
(including cross-dialect) techniques on the task.

Ethics Statement

We use a publicly available dataset of conversations
consisting of human players engaged in a game of
taboo. The topics discussed in the dataset are fairly
general and are unlikely to cause distress. The error
analysis was performed by one of the authors of the
paper. The AI-transformed (en-TR) conversations
may contain biased output, arising due to inherent
properties of GPT-based models.
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A Dataset Construction

Table 5 describes the example conversations from extended MD3 and their corresponding masked versions
from M-MD3. We mask the turn where the guesser utters the target word to help with formulating our
downstream tasks. We mask the target word by finding the exact match in the conversation as shown
in the conversations from Table 5. In case of conversations where an exact match is not found (such as
planets), we find the utterance that is most similar to the target word using the similarity score11. The rest
of the conversation is then pruned to make the masked target word (represented by ‘[MASK]’) the last
token in the conversation.

Target
Word en-IN Masked en-IN

Fisherman

Describer: Uh. What do you call if
we, what will be there in the water?

Describer: Uh. What do you call if
we, what will be there in the water?

Guesser: Fishes Guesser: Fishes
Describer: Who will catch that? Describer: Who will catch that?
Guesser: Fisherman. Guesser: [MASK]

Target
Word en-US Masked en-US

Planet
Describer: These are hard words. um
Okay. So there’s. the Sun and the
Moon and all the rest of them.

Describer: These are hard words. um
Okay. So there’s. the Sun and the
Moon and all the rest of them.

Guesser: And all the planets? Guesser: [MASK]
(Describer: Yes.)

Table 5: Masking conversations from the extended MD3 to create M-MD3. The text such as this represents
the target word utterance by the guesser which is masked (represented by, [MASK] in the M-MD3 version of the
conversation. The rest of the original conversation is pruned as represented text in parentheses.

B Transformation Issues

We present examples of transformation issues faced while creating en-TR in Table 6. We create en-TR by
prompting12 GPT-4 to remove exaggerations and dialectal information from en-IN conversations. Table 7
presents examples of similar issues faced while creating en-MV using Multi-VALUE. As mentioned in
Tables 6 and 7, a ‘typical’ transformed conversation maintains the semantic meaning but only differs
from the original conversation grammatically. A ‘bad’ example deviates largely from the expected output.
An ‘erroneous’ example is a result of Multi-VALUE not being able to transform a conversation from
en-US. Both ‘bad’ and ‘erroneous’ examples are excluded from the final set of conversations used in our
evaluation.

C Errors

Table 8 describes additional examples for all identified error types13. As mentioned, each conversation
can be classified under multiple error types. For example, the conversation about the target word–‘Ryan
Reynolds’ is classified as CC, but can also be classified as PF.

11Described in Section 3.2 of the main paper.
12The exact prompt can be found in Section 2 of the main paper.
13Defined in Section 4.2 of the main paper.
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Type en-IN en-TR

Typical

Describer: (Uh). What do you
call if we, what will be there in the
water?

Describer: (∅) What do you call
the creatures in the water?

Guesser: Fish(es) Guesser: Fish(∅).
Describer: Who will catch that? Describer: Who catches them?
Guesser: Fisherman. Guesser: Fishermen.

Bad

Describer: There. is a. there is a
character in a movie The character being described is from a

well-known movie and is known for the line
“I am still gorgeous.” This character is similar
to those found in Marvel movies and has a
very muscular physique, which is achieved
through scientific injections that cause his
body to grow. The character being guessed is
Captain America.

Guesser: um
Describer: It’s a very famous movie
and it’s a very. where is a where you
can see famous dialogue called I am
still gorgeous
Guesser: uh. ok. uh
Describer: character name. compare
like Marvel movie
Guesser: So. uh
Describer: very muscular body gives
scientifically. injections
Guesser: ok
Describer: His body will grow
Guesser: uh Captain America

Table 6: Example transformations of en-IN to en-TR. We utilise GPT-4 to generate the response. The text in
parentheses refers to the omission/removal of certain filler and exaggerated words, and the text such as this, refers
to the words or sentences that were rephrased to convey the original meaning.

Type en-US en-MV

Typical
Describer: Perfect. Oh! (We) earn
this. We go to our jobs.

Describer: Perfect. Oh! (∅) [are]
earn[ing] this. We [are] go[ing] to our
jobs.

Guesser: Money Guesser: Money

Error

Describer: This person. is in. oh
films. It’s a man. He’s um. famous
for a fine show in the ’80s.

None

Guesser: Um. what else is he in?
Describer: He’s in a lot of things.
I think he’s kind of short. Some
people think that he looks nice but I
don’t. Mhm. Mish Mission Impossible.
Mission Impossible.
Guesser: Tom Cruise

Table 7: Example transformations of en-US to en-MV. We utilise GPT-4 to generate the response. The text in
parentheses refers to the omission/removal of words, and the text such as [this], refers to the dialectal features
added using Multi-VALUE.
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Type Target Word Conversation Model
Prediction

AD
Fisherman Describer: Okay. Okay. A. guy um wants to um okay. Guy catching

something in the water.
Fish

Guesser: [MASK]

Mike Tyson Describer: Big guy that punched people out and he had a little bit of
a lisp.

Darth Wader

Guesser: [MASK]

WD
Atlantic Ocean

Describer: One of the. of the of world.

Kanyakumari

Guesser: Of the seventh wonder of the world. Taj mahal? Is it regarding
sea?
Describer: No no no the. Towards the bottom of India.
Guesser: Is it regarding
Describer: what we have?
Guesser: [MASK]

Beg Describer: Um so if you don’t have any money uh you may stand on the
corner.

Panhandle

Guesser: [MASK]

BDD

Russian
Language

Describer: Ok. Ah Largest continent in the world

Russian

Guesser: Ok.
Describer: Ah like area wise. Which country?
Guesser: Largest. vast area. vast area? Russia but.
Describer: We need to add N over there at the end.
Guesser: Russian
Describer: We speak
Guesser: What they speak?
Describer: Yeah. Ok.
Guesser: [MASK]

Cold War

Describer: This is a two-word term. The first word is a common illness
that causes a runny nose. War
Guesser: Cold.
Describer: Yes that’s the first word. The second word refers to a
conflict between two countries.
Guesser: [MASK]

CC
Ryan Reynolds

Describer: It is like. One of the. Pen name. which we used in school
school days.

Flair

Guesser: Cello point pen. Fine Grip
Describer: No no no
Guesser: Reynolds
Describer: Uh yeah yeah
Guesser: This is a second word or first word.
Describer: Yeah this is second word
Guesser: First word is. Name
Describer:Yeah name related to the same
Guesser: [MASK]

Mark
Wahlberg

Describer: Okay. Um. He was the original. of the Funky Bunch. But then
he stopped music.

Marky

Guesser: [MASK]

PF

Steve Jobs

Describer: Ok. He is a famous person and he is a. a. for. what we call?
Um now it is a. Its. giving competition to Android. what we call?

SteveGuesser: ok. so he is the fond ok sorry
Describer: he is a founder of so and so company. Its a U. S. company
Guesser: so it is giving competition to Android means Google ok.. So
Describer: and he is the founder of that company
Guesser: [MASK]

Kanye West

Describer: All right.

ClintGuesser: How do you wanna skip that one
Describer: All right. Now um. This guy he um. He just bought a ranch
in Wyoming.
Guesser: [MASK]

ERR Podium Describer: Okay um. uh. well I isn’t sure I’m not sure but uh letting
are seeing. Well it’s like preacher are churching. I am standing behind
this. uh. in in used for speaker.

Pulpit

Guesser: [MASK]

Table 8: Example conversations (‘Conversation’) for each error type (‘Type’) along with the reference target word
(‘Target Word’) and the generated target word (‘Model Prediction’). All model predictions are generated using the
pre-trained variants of GPT-4 and LLAMA-3.
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Abstract

Recommendation systems, for documents,
have become tools for finding relevant con-
tent on the Web. However, these systems
have limitations when it comes to recommend-
ing documents in languages different from the
query language, which means they might over-
look resources in non-native languages. This
research focuses on representing documents
across languages by using Transformer Lever-
aged Document Representations (TLDRs) that
are mapped to a cross-lingual domain. Four
multilingual pre-trained transformer models
(mBERT, mT5 XLM RoBERTa, ErnieM) were
evaluated using three mapping methods across
20 language pairs representing combinations
of five selected languages of the European
Union. Metrics like Mate Retrieval Rate and
Reciprocal Rank were used to measure the ef-
fectiveness of mapped TLDRs compared to
non-mapped ones. The results highlight the
power of cross-lingual representations achieved
through pre-trained transformers and mapping
approaches suggesting a promising direction
for expanding beyond language connections,
between two specific languages.

1 Introduction

The rapid expansion of online information from di-
verse sources and the growing multilingual nature
of the web underscore the escalating significance
of information retrieval (IR) and recommender sys-
tems (RS). Today’s web is no longer limited to a
single language, but is increasingly rich in multiple
languages, mirroring the multilingual capacities of
its global users (Steichen et al., 2014; Tashu et al.,
2023). This diversity highlights the urgent need for
cross-lingual recommender systems. Traditional
recommender systems often prioritize content in
a single language, sidelining a wealth of multilin-
gual documents that may hold valuable insights.
This gap leads to the emergence of cross-language
information access, where recommender systems

suggest items in different languages based on user
queries (Lops et al., 2010; Narducci et al., 2016;
Salamon et al., 2021).

Machine Learning and Deep Learning, which
have significantly impacted language representa-
tion and processing, are pivotal to enhancing infor-
mation retrieval and recommender systems, espe-
cially in the realm of document recommendation
(Tashu et al., 2023; Feng et al., 2022). With these
advancements, documents ranging from historical
texts and scientific papers to legal ones can be rec-
ommended more accurately. However, current rec-
ommender systems falter when content is available
in various languages, often recommending docu-
ments in only the query language. In multinational
contexts such as the European Union, such limita-
tions can hinder effective policy formation.

There are two main strategies to address this gap:
on the one hand, one can translate the query into
multiple target languages or develop a cross-lingual
representation space for documents. While this can
be effective, this approach is fraught with chal-
lenges, including the need for large-scale data, the
computational expense of training, and potential
loss in translation, especially in domains like law
that require precision. On the other hand, cross-
lingual representations, which focus on creating
shared embedding spaces for documents across lan-
guages, are the focal point of this study (Tashu
et al., 2023). By employing mapping-aligned doc-
ument embeddings and comparing their similarity
with the query, it offers a computationally cheaper
solution without the need for extensive fine-tuning
of pre-trained large language models.

The rest of the paper is organized as follows.
Section 2 presents the related works. The proposed
methodology is presented in section 3. Section 4
presents the experimental setting and the datasets
used in this work. The experimental results will
be presented in Section 5, while the results are
discussed in Section 6. Finally, the conclusions
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will be presented in section 7.

2 Related work

The work towards generating inter-lingual and mul-
tilingual representations, which can encapsulate
information across multiple languages in a uni-
fied form, has gained substantial attention in re-
cent years. This interest spans both word-level
and document-level representations. Early obser-
vations, such as those introduced by (Mikolov
et al., 2013), identified that word embedding spaces
across languages possess structural similarities.
These insights led to the development of linear
mappings from one language embedding space
to another, utilizing parallel vocabularies. Sub-
sequent works (Lample et al., 2018; Smith et al.,
2017; Xing et al., 2015), have aimed to refine these
cross-lingual word embeddings, mainly through
modifications in space alignment methods or re-
trieval techniques. Techniques like averaging word
vectors (Litschko et al., 2018) or leveraging cross-
lingual knowledge bases like Wikipedia (Potthast
et al., 2008) or BabelNet (Franco-Salvador et al.,
2014) have been used to learn document-level
cross-lingual representation. A notable method-
ology in this domain is the cross-lingual semantic
indexing (CL-LSI) (Deerwester et al., 1990; Saad
et al., 2014), which extends the well-known latent
semantic indexing (LSI) to encapsulate multiple
languages through the singular value decomposi-
tion of concatenated monolingual document-term
matrices.

An emerging strategy in both word-level,
sentence-level and document-level research is the
use of neural network architectures. One of the
pioneer works in this direction was the work by
(Schwenk and Douze, 2017) where they used a
deep neural network to directly encode long text
passages in a language-independent manner. The
work by (Artetxe and Schwenk, 2019) used a
multilingual auto-encoder to generate language-
independent sentence embeddings. Recently, pre-
trained models such as BERT (Devlin et al., 2019)
have changed the landscape of cross-lingual repre-
sentation research. These models have enabled the
generation of sentence encoders on multilingual un-
labeled corpora without the need for parallel data
(Conneau et al., 2020; Feng et al., 2022; Goswami
et al., 2021; Litschko et al., 2022). Concurrently,
certain studies have leveraged pre-trained multi-
lingual transformers for cross-lingual information

retrieval (IR). The work by (Shi et al., 2020) com-
bined mBERT with Google Translate in their in-
formation retrieval pipeline, while Litschko et al.
(2022) utilized mBERT and XLM for the same
purpose, emphasizing the need for fine-tuning for
efficient and effective document-level results. Col-
lectively, these studies underscore the potential of
transformers in cross-lingual information retrieval,
paving the way for alternative methodologies such
as mapping over fine-tuning, as explored in the cur-
rent investigation. While these approaches have
shown promise, the study herein differentiates it-
self by presenting a methodology that uses map-
ping methods to create inter-lingual representations.
The novelty of this work primarily lies in the use
of mapping methods to align monolingual repre-
sentations obtained separately for each language
from pre-trained large language models, to produce
inter-lingual document-level representations.

3 Methods

In this section, we will introduce the different large
language models used in this study and the map-
ping approaches used to learn interlingual represen-
tation from the pre-trained large language models.

3.1 Transformers

Transformers, introduced by Vaswani et al. (2017)
have transformed the landscape of natural language
processing (NLP). Instead of relying heavily on re-
current or convolutional layers, transformers lever-
age multiple attention heads to weigh the signifi-
cance of different parts of an input sequence dif-
ferently, allowing for parallel processing and the
capture of long-range dependencies in data. There
exist a plethora of variations within the transformer
architecture. In the following sections, we will
discuss the specific variants of transformer-based
large language models used in the context of this
study.

3.1.1 mBERT
Multilingual BERT is an extension of the Bidirec-
tional Encoder Representation from Transformers
(BERT) that was introduced by Devlin et al. (De-
vlin et al., 2019). BERT stands out as a pre-trained
model, having undergone training on vast volumes
of unlabelled data, primarily focusing on two pre-
training objectives:

• Masked Language Modelling (MLM): This
objective requires the model to predict masked
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portions of the provided input. Specifically,
15% of the training data tokens undergo mask-
ing. Of these masked tokens, 80% are substi-
tuted with the "[MASK]" placeholder, 10%
are replaced with a random token, and the
remaining 10% are left unaltered.

• Next Sentence Prediction (NSP): BERT’s
versatility allows it to manage tasks that in-
volve pairs of sentences, which may or may
not exhibit contextual coherence. During its
training phase, BERT was supplied with sen-
tence pairs where 50% of the pairs were con-
textually sequential from the training dataset,
while the remaining 50% constituted random,
unrelated sentences.

BERT was originally pre-trained on a strictly
monolingual English corpus. Recognizing the
limitations of such a unilingual approach, there
emerged a demand for a model with broader lin-
guistic capabilities. In response, the Multilingual
BERT (mBERT) (Devlin et al., 2019), was concep-
tualized. This iteration extends the foundational
principles of BERT, accommodating text from a
diverse array of 104 languages.

3.1.2 mT5
Multilingual(Xue et al., 2020) Text-to-Text Trans-
fer Transformer (mT5) is an encoder-decoder
model pre-trained on 101 languages, closely based
on the original T5 model from (Raffel et al., 2019).
It has been pre-trained on an objective similar to
MLM, called MLM span-corruption, where con-
secutive tokens from the input are masked from the
model during pre-training.

mT5 is highly specialised for text-to-text tasks
such as machine translation and text generation,
however, it can also be used as an encoder model
only, which was done for this project. Like BERT,
the maximum amount of tokens that were used was
512, with an embedding dimensionality of 768,
corresponding to the "base" version.

3.1.3 XLM-RoBERTa
The Cross-Lingual Modelling for Robustly Opti-
mised BERT, colloquially termed XLM-RoBERTa,
stands as a notable iteration of pre-trained multi-
lingual transformers. Introduced by Conneau et al.
(2019), this model is an evolution of RoBERTa
(Liu et al., 2019). Diverging from conventional
methodologies, XLM-RoBERTa eschews both the
Next Sentence Prediction (NSP) and translation

objectives, concentrating exclusively on Masked
Language Modelling (MLM). The key innovation
lies in refining the training procedure and extending
the training duration, measures that synergistically
enhance model performance. Adapted to cater to
100 languages, XLM-RoBERTa can function ef-
fectively as an encoder-only model. For the pur-
poses of this research, the "base" variant of XLM-
RoBERTa was deployed, accommodating a max-
imum of 512 tokens and featuring an embedding
dimensionality of 768.

3.1.4 ErnieM
The Multilingual Ernie (ErnieM) (Ouyang et al.,
2021) represents a distinguished pre-trained mul-
tilingual transformer. Drawing inspiration from
the XLM-RoBERTa, ErnieM’s hallmark feature
lies in its capacity to synchronize linguistic rep-
resentations across its embedded languages. This
harmonization is operationalized through a cross-
lingual semantic alignment, juxtaposing parallel
data with its monolingual counterpart. In the spirit
of achieving this, the authors put forth two pre-
training objectives:

• Cross-Attention MLM (CAMLM): A strategy
devised to cohesively align the semantic rep-
resentation of parallel data across the entire
linguistic spectrum.

• Back-Translation MLM (BTMLM): This ob-
jective embarks on aligning cross-lingual se-
mantics with monolingual contexts. Through
back-translation, it facilitates the generation
of novel linguistic tokens from monolin-
gual corpora, and subsequently acquaints the
model with their multilingual semantic align-
ment.

Supplemented by the translation modelling lan-
guage task (an initiative akin to MLM but marked
by the amalgamation of sequences from an array
of languages) and the Multilingual MLM (char-
acterized by masking tokens transcending diverse
languages), these objectives jointly constitute the
pre-training paradigm of ErnieM. Maintaining con-
sistency, this study harnesses the "base" version of
ErnieM, with a stipulated threshold of 512 tokens
and an embedding dimensionality set at 768.

The models selected for this investigation inher-
ently embrace a multilingual ethos, underpinned
by two pivotal reasons: Firstly, the monolingual
iterations of these models have not ubiquitously
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undergone training across the selected quintet of
languages earmarked for this research. More crit-
ically, the inherent overlap in the models’ embed-
ding space across languages posits a fertile ground
to evaluate the potential of leveraging ready-made
multilingual models sans the requisite of supple-
mentary mapping or precision-tuning. To draw an
illustrative parallel, juxtaposing disparate models
of analogous frameworks, each tailored to indi-
vidual languages (e.g., BERT vis-à-vis its Gallic
analogue), might yield embeddings that, owing to
divergent training trajectories, manifest disparities
too profound to be semantically reconciled.

3.2 Mapping approaches

Given two monolingual document collections,
Dx = {dx,1, . . . , dx,n} in language x and Dy =
{dy,1, . . . , dy,n} in language y . To embark on a nu-
anced analysis of these documents, it is imperative
first to learn or extract the embedding for each doc-
ument. To achieve this, we employ the pre-trained
large language models introduced in section 3 sub-
section 3.1. Notwithstanding, it’s worth noting that
any representation learning algorithm that embeds
the document sets Dx and Dy into vectors within
the space Rk can be used.

From the language models, we ob-
tain sets of vectors, respectively, defined
as Cx = {d̂x,1, . . . , d̂x,n} ⊂ Rk and
Cy = {d̂y,1, . . . , d̂y,n} ⊂ Rk. Conceptually,
Cx and Cy can be interpreted as "Conceptual
Vector Spaces", encapsulating broader linguistic
and thematic abstractions inherent to the original
documents. Nevertheless, a salient point to
recognize is that even if vectors within Cx and
Cy encapsulate analogous concepts transversal to
languages, the representation schema might vary.
Consequently, a mere direct juxtaposition of d̂x,k
and d̂y,kmight not manifest the underlying content
congruencies.

All the mapping methods used in this study are
adopted from the works of Tashu et al.(Tashu et al.,
2023). In the upcoming section, we will present a
summary of three different mappings where more
details on each of the methods can be found in
(Lenz et al., 2021; Tashu et al., 2023).

3.2.1 Linear concept approximation (LCA)
The motivation is to directly embed the test docu-
ments into the space spanned by the training doc-
uments in the semantic space using linear least
squares (Salamon et al., 2021). This is based

on the assumption that the vector space spanned
by the parallel training documents is the same in
their respective language. Therefore, the coordi-
nates of the test documents in that span would
be a good language-independent representation
of these documents. Using the representation ob-
tained from the large language models presented
in section 3, we can derive low-dimensional repre-
sentations of each document within Rk. Multiple
documents can be concatenated into matrices. If
there are n documents available in both languages,
we can create the representation/concept matrices
Cx = XT ∈ Rn×k and Cy = Y T ∈ Rn×k in
which every column is a concept in its respective
language.

3.2.2 Linear Concept Compression (LCC)
The motivation behind LCC is to find mappings
into an inter-lingual space, ECx, Cy, such that the
comparison of Cx(d̂x,k), Cy(d̂y,k), provides a mea-
sure of content similarity. For two monolingual
representations, we want to find their inter-lingual
representations, which encode the same informa-
tion as the different monolingual spaces do. More
precisely, for a given document d and its repre-
sentations in each respective language, d̂x,k and
d̂y,k, we want to find mappings Cx and Cy, re-
spectively, such that Cx(d̂x,k) = Cy(d̂y,k) and the
information of d̂x,k and d̂y,k is preserved. The intu-
ition is to train an Encoder-Decoder approach. The
purpose of the Encoder is to encode monolingual
representations in a language-independent space.
The purpose of the Decoder is to reconstruct the
monolingual representations of multiple languages
from that encoding(Lenz, 2021).

3.2.3 Neural Concept Approximation (NCA)
In contrast to conventional approaches where map-
pings are directly derived from given vectors,
Cx and Cy, the proposed methodology leverages
a Neural Network to approximate these vectors.
Specifically, a Feed Forward Neural Network
(FFNN). Two distinct models were trained: one
mapping from the source language to the target lan-
guage, and the other in the reverse direction (Tashu
et al., 2023).

Both models were defined in the same manner: 1
layer of 500 neurons, using the Exponential Linear
Unit (ELU), with the Huber objective function, for
a maximum of 250 epochs with the implementation
of early stopping and a learning rate of 5·10−4. The
network’s architecture consists of 3 total layers, one
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input layer with dimensionality d (the dimension
of a given document), followed by the hidden layer
(with dimensionality d× 500), and the output layer
with dimensionality 500× d.

4 Experiment

4.1 Data

The JRC-Acquis corpus (Steinberger et al., 2006)
was used for this project because of its character-
istics. It is a publicly available, sentence-aligned
corpus consisting of the 22 official languages of the
European Union (EU), containing legal documents
pertaining to EU matters from 1958 to 2006. Since
this study dealt with language pairs, only five lan-
guages were used, those being English, Romanian,
Dutch, German, and French, for a total of 20 or-
dered pairs (i.e. English→ French and French→
English are treated as a different pair). Since the
documents for each language were not aligned, it
was necessary to perform a secondary alignment
for the five chosen languages such that documents
were shared across the subset, resulting in 6, 538
unique documents. There were also some issues
at the character level of some non-English docu-
ments from the initial dataset. For instseveralber
of French documents presented corrupted letters,
meaning that letters with diacritics were instead
displayed in XML format (e.g. "é" displayed as
"%eacute"). A preprocessing step was as such in-
troduced to replace these corrupted variants with
their original form and to remove any additional
white space from the documents. The documents,
at the same time, were converted from XML to a
standard string format to be used by the models. In
this study, 60% was used for the training set, 20%
for the validation set and 20% for the test set.

4.2 Embeddings

It is necessary to represent the documents in a con-
tinuous manner to be able to apply any mapping
approach. This was achieved by passing all doc-
uments, in each language, through the tokenizer
and model modules of the previously discussed
transformer models.

An input text undergoes several processing steps
while passing through the tokenizer: it is truncated
or padded to the maximum length allowed by the
models (N = 512 tokens), after which the tokens
are converted to internal ID representations stored
in the vocabulary of the model, and for which the
attention mask is computed. The latter part allows

the model to look only at the relevant tokens in
the sequence, ignoring padding tokens. Since this
study only deals with the embeddings of the models
and not their decoded outputs, the final hidden state
from the encoder part of the models is extracted.
The model computed the embedding for each token,
and as such, documents are now represented as
512× 768 matrices, while it is necessary to obtain
a vector of size 768. This was solved by performing
a global pooling operation on all of the outputted
states, where tokens that were not ignored by the
attention mask were averaged together. As such,
documents are now represented by vectors with
dimensionality 768, to be used in the following
section.

4.3 Evaluation metrics

Two evaluation metrics were used to compute the
performance of the mapping approaches:

• Mate Retrieval Rate: the retrieval rate of the
most symmetric document; this metric eval-
uates how similar two documents are - the
query and retrieved document. If the retrieved
document is the same as the query document,
that is called a mate retrieval. It is defined as:

MR(d) = argmax Sd · TT
d

S(d, d′) =

{
1 d = d′

0 d ̸= d′

(1)

where S is the similarity between 2 documents
d and d′, and MR is the mate retrieval for a
given document d in the source S and target
language T . It can be said that a mate retrieval
is successful if d and d′ are the same. The
equations in 1 can be combined to compute
the mate retrieval rate for all documents (D),
as seen in equation 2:

RetrievalRate =
1

|D|

|D|∑

d=1

S(d,MR(d)) (2)

• Mean Reciprocal Rank: this represents how
high-ranked documents are, based on a simi-
larity measure. This has been achieved using
cosine similarity, defined below:

C(d1, d2) =
d1 · d2
∥d1∥ · ∥d2∥

(3)
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where the numerator represents the inner prod-
uct of the vector representations of documents
d1 and d2, and the denominator is the mag-
nitude product of the two vectors. If the two
documents are similar to each other, their co-
sine will be closer to 1 and will be closer to
−1 if they are not similar. This equation can
be used to obtain the cosine matrix similarity
of all documents.

Furthermore, the rank r of a document can
be defined as its cosine similarity compared
to other documents obtained from the matrix
cosine similarity. If it is most similar to itself
in the target language, then its rank will be 1.
Finally, these components can be combined to
form the mean reciprocal rank:

ReciprocalRank =
1

|D|

|D|∑

d=1

1

rd
(4)

5 Results

The performance of the mapped (or not) embed-
dings was measured using the evaluation metrics
defined in the previous section. Due to the large
number of results that were obtained (640 total
results across four transformer models, three map-
ping methods and no mapping, for 20 language
pairs, for each evaluation metric), the final results
have been averaged across models and language
pairs. As such, Figures 1 and 2 only present their
average evaluation metric for all dimensions. Both
figures showcase significant results when compar-
ing mapped and non-mapped embeddings. How-
ever, there is also a significant difference between
embeddings mapped using NCA and embeddings
mapped with the other methods.

The best mapping method across both evalua-
tion metrics was LCA (Retrieval Rate = 0.937,
Reciprocal Rank = 0.958), while the worst map-
ping method was NCA (Retrieval Rate = 0.609,
Reciprocal Rank = 0.696). Still, all meth-
ods performed significantly better than the non-
mapped embeddings (Retrieval Rate = 0.201,
Reciprocal Rank = 0.279). Table 1 presents the
results across all language pairs for both metrics,
broken down for each transformer model and map-
ping method, and additionally the results obtained
by Tashu et al. (2023). Using the same mapping
approaches, mBERT embeddings mapped using
LCA outperform all other models and mapping
combinations, including those from the mentioned

Model Mapping MRRank MRtRate

mBERT

None 0.2 0.115
LCA* 0.975 0.963
LCC 0.973 0.959
NCA 0.84 0.781

mT5

None 0.466 0.37
LCA* 0.947 0.922
LCC 0.936 0.907
NCA 0.814 0.756

XLM-RoBERTa

None 0.114 0.057
LCA 0.948 0.925
LCC* 0.951 0.928
NCA 0.617 0.499

ErnieM

None 0.443 0.355
LCA* 0.965 0.949
LCC 0.962 0.946
NCA 0.742 0.67

Table 1: Mean Reciprocal Rank (MRRank) and Mate
Retrieval Rate (MRtRate).

Figure 1: Line plot of the average Mate Retrieval Rate
across dimensions for all language pairs and models,
using LCA, LCC, NCA, and no mapping.

paper, across both metrics (RetrievalRate = 0.963,
ReciprocalRank = 0.975).

6 Discussion

From our results, it becomes evident that Trans-
former Leveraged embeddings combined with map-
ping methods markedly outperform non-mapped
embeddings across all models, as delineated in
Table 1. These Leveraged embeddings, in all in-
stances, show significant superiority compared to
the non-mapped variants. This underscores that em-
ploying an off-the-shelf model devoid of enhance-
ments (e.g., fine-tuning, mapping) results in subpar
outcomes, irrespective of the model’s type. Figures
1 and 2 further substantiate this, demonstrating that
mapped embeddings consistently outpace their non-
mapped counterparts across all metrics. Within
this context, the NCA mapping method displayed
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Figure 2: Line plot of the average Mean Reciprocal
Rank across dimensions for all language pairs and mod-
els, using LCA, LCC, NCA, and no mapping.

the favourableorable performance, overshadowing
only the non-mapped embeddings. This could be
attributable to the network’s architectural design,
potentially falling short in capturing the nuanced
similarities between documents to establish an ef-
fective mapping.

An examination of Table 1 reveals mBERT’s
dominance over other transformer models across
all mapping strategies. Notably, when paired
with LCA and LCC-mapped embeddings, mBERT
eclipsed all other embedding and mapping combi-
nations as referenced by (Tashu et al., 2023). This
superior performance may be credited to the exten-
sive data mBERT trained on, complemented by its
pre-training tasks.

Interestingly, both ErnieM and mT5, when
aligned with non-mapped embeddings, showcased
better performance than their transformer coun-
terparts under identical conditions. The under-
lying reason might be traced back to the distinc-
tive training data and methodologies employed by
these models. In contrast to mBERT and XLM-
RoBERT, which utilize MLM (and additionally
NSP for mBERT), ErnieM incorporates a broader
spectrum of pre-training objectives geared towards
cross-lingual alignment. This distinction could elu-
cidate the superior performance of its non-mapped
embeddings. mT5’s commendable performance
can be attributed to its foundational design, being
inherently an encoder-decoder model, though this
project exclusively utilized its encoding facet.

In general, our study highlights the efficacy of
Transformer Leveraged embeddings when syner-
gized with mapping techniques, resulting in a no-
ticeable performance leap over non-mapped embed-
dings. This aligns with the findings of (Litschko
et al., 2022), which accentuate that standalone
out-of-the-box models, without refinements or

supplementary techniques, are generally less effi-
cient. However, diverging from their study, our
research underscores that optimal performance
doesn’t solely hinge on model fine-tuning. In the
realm of IR, integrating mapping techniques can
be equally potent in driving commendable results.

7 Conclusion

Document recommendation stands at the forefront
of Information Retrieval (IR) systems. Within rec-
ommendation frameworks, it efficiently suggests
pertinent documents in alignment with a user’s
query. In our research, we delved into the possibili-
ties of crafting cross-lingual representations by har-
nessing embeddings from pre-existing multilingual
transformers in conjunction with mapping strate-
gies. Using embeddings from these pre-trained
multilingual transformers allows for document rep-
resentation without requiring further training or
intricate processing. Nonetheless, our research il-
luminated that solely depending on the raw em-
beddings from the transformers fell short in terms
of efficacy. A notable enhancement in results was
witnessed when the embeddings were synergized
with mapping techniques such as LCA, LCC, and
NCA. The languages incorporated within our study
hold considerable prominence across various lin-
guistic tasks. Consequently, the adopted models
and mapping techniques have the potential to foster
efficient representations by mapping low-resource
languages onto those that are more abundantly rep-
resented. It beckons further exploration into how
these mapping techniques perform when applied to
low-resource languages. Future research might not
restrict itself to merely language pairs, as was the
focus of this study, but could expand to encompass
language tuples—translating from a single source
language to multiple target languages. Achieving
this might necessitate refining the present mapping
methodologies, introducing supplementary steps,
or pioneering entirely novel methods. The code of
this project is publicly available on GitHub.
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Abstract

Building large language models (LLMs) for
non-English languages involves leveraging ex-
tensively trained English models through con-
tinued pre-training on the target language cor-
pora. This approach harnesses the rich se-
mantic knowledge embedded in English mod-
els, allowing superior performance compared
to training from scratch. However, tokeniz-
ers not optimized for the target language may
make inefficiencies in training. We propose
Vocabulary Replacement Continued Pretrain-
ing (VRCP), a method that optimizes the to-
kenizer for the target language by replacing
unique (solely available) vocabulary from the
source tokenizer while maintaining the overall
vocabulary size. This approach preserves the
semantic knowledge of the source model while
enhancing token efficiency and performance for
the target language. We evaluated VRCP using
the Llama-2 model on Japanese and Chinese
corpora. The results show that VRCP matches
the performance of vocabulary expansion meth-
ods on benchmarks and achieves superior per-
formance in summarization tasks. Additionally,
VRCP provides an optimized tokenizer that bal-
ances token efficiency, task performance, and
GPU memory footprint, making it particularly
suitable for resource-constrained environments.

1 Introduction

Recent advancements in large language mod-
els (LLMs) based on transformer architectures
(Vaswani et al., 2017) have brought significant
progress to the field of NLP. Models such as GPT-4
(OpenAI et al., 2023) and Llama-2 (Touvron et al.,
2023) have predominantly been trained on exten-
sive English corpora, leaving a gap in the availabil-
ity of models optimized for non-English languages.
This disparity is due to the relative scarcity of high-
quality, large-scale corpora for many non-English
languages compared to English. Consequently, this
limits the potential improvements based on the scal-
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Figure 1: Illustration of VRCP: The English Optimized
Tokenizer (left) replaces low-frequency English vocabu-
lary with high-frequency Japanese vocabulary to create
the Japanese Optimized Tokenizer (right). This retains
common vocabulary while optimizing for Japanese.

ing laws (Kaplan et al., 2020) of language models
for these languages.

One promising approach to developing models
specialized for non-English languages involves con-
tinued pretraining of extensively pretrained models
on the target language corpora (Yong et al., 2023;
Wang et al., 2020; Pfeiffer et al., 2021). This ap-
proach leverages the semantic knowledge and intel-
ligence of the English-based models, enabling high
performance even with relatively small amounts
of target language corpora. This approach, akin to
DAPT (domain-adaptive pre-training) (Gururan-
gan et al., 2020), allows for the incorporation of
new linguistic characteristics while retaining the
established knowledge base.

However, this approach presents significant chal-
lenges. The vocabulary of tokenizers used in
English-based model is optimized for efficient to-
kenizing of English texts. When applied to texts
in target languages, these tokenizers often segment
the text into excessively small units. This leads
to a considerable reduction in the length of se-
quences that can be processed in the same batch,
thereby increasing the training time for the target

48



language data and significantly decreasing training
efficiency. This inefficiency is particularly problem-
atic in scenarios involving Retrieval-Augmented
Generation (RAG), where language models need
to process long texts as prompts for seq2seq tasks,
e.g., summarization (Lewis et al., 2021). Given the
inherent limitations in sequence length imposed
by transformer architectures, using a tokenizer that
inefficiently for the target language restricts the
amount of text that can be included in the prompt.
Even when a model supports very long sequence
lengths, the computational complexity increases at
an O(n2) rate with the sequence length (Vaswani
et al., 2017), leading to poor computational effi-
ciency.

Additionally, languages with non-alphabetic
scripts, such as Japanese and Chinese, often en-
counter issues with frequent out-of-vocabulary
words or characters being fragmented at the byte
level (Rust et al., 2021).

To address these inefficiencies, a previous ap-
proach is to expand the tokenizer’s vocabulary with
tokens relevant to the target language, reducing
the number of tokens needed to represent the same
text (Wang et al., 2020; Yao et al., 2021; Liu et al.,
2020; Wang et al., 2019; Minixhofer et al., 2022).
However, this method inadvertently increases the
parameter count of the embedding layer of the
model and, consequently, a lager memory footprint.

Maintaining a constant vocabulary size while op-
timizing for target languages is crucial for prevent-
ing an increase in model parameters and controlling
memory consumption. This is particularly impor-
tant for smaller models, where the embedding layer
represents a significant portion of the overall model
size. For instance, in models like Qwen-2 (0.5B
and 1.5B), embedding tying is used to prevent an
increase in model size (Yang et al., 2024). More-
over, works on machine translation models have
shown that embedding tying can reduce model size
while maintaining performance (Press and Wolf,
2017). Additionally, increasing the size of the
embedding layer exacerbates communication over-
head during distributed training, as highlighted in
studies by (Acun et al.). Maintaining a constant
vocabulary size allows us to mitigate these issues
and improve training efficiency.

We propose a novel method, Vocabulary Re-
placement Continued Pretraining (VRCP), to en-
hance token efficiency for the target language in
continued pretraining while maintaining the vocab-
ulary size. Our method involves constructing a new

tokenizer tailored to the target language and sub-
stituting unique (solely available) vocabulary from
the source tokenizer with vocabulary from the tar-
get language. This enables continued pretraining
that leverages the semantic knowledge of the ex-
isting model while improving token efficiency. As
illustrated in Figure 1, VRCP is a simple method
whereby low-frequency words from the target lan-
guage corpus within the source tokenizer are re-
placed with high-frequency words from the same
target language corpus.

We evaluated VRCP through experiments on
Japanese and Chinese texts. The results demon-
strated that VRPC matches the token efficiency and
task performance of expanding vocabulary meth-
ods. By not increasing the model size, VRCP also
prevents any additional GPU memory footprint.
Notably, for summarization tasks, VRCP showed
superior performance compared to previous meth-
ods. This indicates its suitability for use cases such
as RAG.

Our main contributions are as follows:

• We propose a method, VRCP, to enhance to-
ken efficiency for the target language in con-
tinued pretraining while maintaining the vo-
cabulary size.

• Through experiments with Japanese and Chi-
nese, we demonstrated that VRCP can achieve
token efficiency and task performance compa-
rable to vocabulary expanding methods while
maintain vocabulary size.

• We showed that VRCP improves summariza-
tion task performance, making it ideal for use
cases such as RAG.

2 Formulization

2.1 Tokenizer Definition
A tokenizer performs two primary tasks: segment-
ing a text into tokens and mapping these tokens to
unique IDs using its vocabulary V .

First, the segmentation function S processes
a text text and produces a sequence of tokens
{t1, t2, . . . , tn}, where each token ti belongs to
V :

S(text, V ) = {t1, t2, . . . , tn} (1)

Then, the mapping function M assigns each to-
ken ti an ID idi within the range {0, 1, . . . , |V | −
1}:

M(ti, V ) = idi (2)
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2.2 Embedding Definition
Each token ID idi is associated with an embedding
vector from the embedding matrix E. This matrix
E is of size |V | × d, where |V | is the vocabulary
size and d is the dimensionality of the embedding
vectors. For a token ti, its embedding vector e⃗idi is
obtained by mapping ti to its ID idi using M , and
then retrieving the corresponding vector from E:

e⃗idi = E[M(ti, V )] (3)

2.3 Vocabulary Expansion Method
To expand the vocabulary of a source tokenizer, a
new vocabulary V ′ is constructed from the target
language corpus. This new vocabulary V ′ is com-
bined with the original vocabulary V to form an
expanded vocabulary:

Vnew = V ∪ V ′ (4)

For each new token v′i in V ′, its embed-
ding e⃗idv′

i

is computed by taking the arithmetic
mean of the embeddings of its segmented sub-
tokens. Specifically, if v′i is segmented into
{t1, t2, . . . , tn}, we first map these tokens to their
IDs {id1, id2, . . . , idn} using M , and then retrieve
their embeddings e⃗id1 , e⃗id2 , . . . , e⃗idn from E. The
new embedding vector e⃗idv′

i

is calculated as the
arithmetic mean of these vectors:

e⃗idv′
i

=
1

n

n∑

j=1

e⃗idj (5)

These new embeddings are then added to the
original embedding matrix E, resulting in an up-
dated matrix:

E′ =

{
e⃗id if id ∈ V

e⃗idv′
i

if v′i ∈ V ′ (6)

3 Proposed Method: VRCP

Our proposed method, Vocabulary Replacement
Continued Pretraining (VRCP), consists of four
main components: Vocabulary Construction, Vo-
cabulary Replacement, Embedding Replacement,
and Continued Pretraining.

3.1 Vocabulary Construction
The first step of VRCP is to construct a new vocab-
ulary specialized for the target language. We define
the vocabulary size to be equal to that of the source
tokenizer and develop the tokenizer using a corpus

that combines both the target language and English.
Including English corpus ensures that common vo-
cabulary between the target language and English
is retained, which helps in effectively utilizing the
semantic knowledge of the source model.

3.2 Vocabulary Replacement

Next, we replace the unique vocabulary of the
source vocabulary V with those from the con-
structed vocabulary V ′. This process retains the
token ID mappings for the common vocabulary be-
tween V and V ′, enabling the model to leverage its
knowledge of source model effectively.

The process is carried out using the following
steps and equations:

1. Identifying Common Vocabulary:

Identify the common vocabulary between the
source vocabulary V and the constructed vo-
cabulary V ′ by taking their intersection:

Vcom = V ∩ V ′ (7)

2. Identifying Unique Vocabulary:

Determine the unique vocabulary in V ′ that
are not present in V by taking the difference:

V ′
uni = V ′ \ V (8)

3. Constructing the New Vocabulary:

Form the new vocabulary Vnew by combining
the common vocabulary Vcom and the unique
vocabulary from V ′, V ′

uni:

Vnew = Vcom ∪ V ′
uni (9)

To preserve the integrity of token IDs, for any
vocabulary vcom ∈ Vcom, the token ID in the new
vocabulary Vnew remains the same:

M(vcom, Vnew) = M(vcom, V ) (10)

This equality holds because vcom is a part of the
common vocabulary Vcom and thus its token ID
does not change with the new vocabulary Vnew. By
preserving these mappings, the model retains its
knowledge associated with the shared tokens, en-
abling effective utilization of existing knowledge
while adapting to new language nuances.
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Figure 2: VRCP Process: Source vocabulary V and target vocabulary V ′ are used to create a new vocabulary Vnew.
Common tokens Vcom are retained, while unique tokens Vuni from V are replaced with unique tokens V ′

uni from V ′.

3.3 Embedding Replacement

Replacing the vocabulary alone does not ensure
that the embedding vectors for the unique vocabu-
lary V ′ (V ′

uni) align with the embeddings E. This is
because the unique vocabulary v′i ∈ V ′

uni have em-
bedding vectors e⃗idv′

i

that may not fit well with the
source embedding space. To address this, we need
to replace these embeddings to maintain semantic
consistency. Specifically, the following relation
holds:

1. Token Segmentation and ID Mapping:

For each token v′i in the constructed vocabu-
lary V ′, use the source tokenizer S and the
vocabulary V to segment v′i and map it to a
sequence of token IDs {id1, id2, . . . , idn}:

{id1, id2, . . . , idn} = M(S(v′i, V ), V )
(11)

where each idj corresponds to the token tj in
the vocabulary V .

2. Retrieving Source Embedding Vectors:

Retrieve the corresponding embedding vec-
tors e⃗idj from the source embedding matrix E

for each token ID idj :

e⃗idj = E[idj ] (12)

3. Calculating the Arithmetic Mean Embed-
ding Vector:

Compute the arithmetic mean of the embed-
ding vectors e⃗idj for all sub-tokens tj and cre-
ate the embedding vector e⃗idv′

i

for the con-

structed vocabulary v′i:

e⃗idv′
i

=
1

n

n∑

j=1

e⃗idj (13)

4. Updating the Embedding Matrix:

After calculating the embedding vectors e⃗idv′
i

for the constructed vocabulary V ′, update the
source embedding matrix E to form the new
embedding matrix E′:

E′ =

{
e⃗id if id ∈ V

e⃗idv′
i

if v′i ∈ V ′
uni

(14)

This update ensures that the new embedding
matrix E′ remains semantically consistent
with the existing embedding matrix E.
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3.4 Continued Pretraining

In VRCP, the continued pretraining process primar-
ily utilizes the target language corpus. However, to
enhance the stability and effectiveness of training,
we include a small portion of English corpus, align-
ing with the Domain-Adaptive Pretraining (DAPT)
(Gururangan et al., 2020) strategy.

This inclusion follows approach of DAPT, where
maintaining a minor amount of English data helps
to mitigate the risk of catastrophic forgetting and
prevents abrupt changes in the data distribution
from destabilizing the model adaptation process.

4 Experiments

We evaluated the effectiveness of our proposed
method using experiments with Japanese and Chi-
nese corpora.

We evaluated the methods based on three key
aspects:

• Token Efficiently (Target/English)

– We evaluated each method by tokenizing
the test data and measuring the average
character length per token (Length Per
Token, LPT) of the resulting token se-
quence.

• Task performance (Target/English)

– We evaluated the models trained with
each tokenizer method on benchmark
tasks to assess their performance.

• GPU Memory Footprint

– We measured the average GPU memory
footprint per device in training.

4.1 Setup

Preparation of Corpora: We prepared mixed cor-
pora of the target language and English for both
Japanese and Chinese, ensuring a balanced ratio of
6:5 between the target language and English. The
details of the corpora used are as follows:

• Japanese: Wikipedia (Japanese), CC100
Conneau et al. (2020) (Japanese), Wikipedia
(English)

• Chinese: NLP Chinese Corpus (Xu, 2019)
(Baike, News, Wikipedia), Wikipedia (En-
glish)

Construction of Tokenizer: We built a tok-
enizer with 32,000 words (V ′) using SentencePiece
(Kudo and Richardson, 2018) and BPE (charac-
ter_coverage=0.9995, Byte Fallback=True) from
the mixed corpus of the target language and En-
glish, prepared as described in the previous sec-
tion. Subsequently, we applied VRCP to replace
the unique vocabulary (Vuni) from the Llama-2 to-
kenizer with the unique vocabulary (V ′

uni) derived
from the vocabulary constructed using this mixed
corpus.

To evaluate the effectiveness of VRCP, we com-
pared it against three other tokenizer approaches:

• V ∪ V ′ (|V ′| = 16k): In this approach,
we expanded the Llama-2 tokenizer (V ) by
adding 16,000 vocabulary constructed exclu-
sively from a corpus in the target language.

• V ∪ V ′ (|V ′| = 32k): In this approach,
we expanded the Llama-2 tokenizer (V ) by
adding 32,000 vocabulary constructed exclu-
sively from a corpus in the target language,
similar to the previous approach.

• Unchanged Llama-2 tokenizer (V ): In this
approach, we used the Llama-2 tokenizer as-
is, without any replacements or additions.

Continued Pretraining: We conducted further
pretraining of Llama-2-7B using a mixed corpus
consisting of both the target language and English.
For this process, we used the same types of corpora
as those used for the construction of Tokenizer, but
with a different sampling strategy. Specifically, the
ratio of English data in the training dataset was
adjusted to under 5%. We describe the detailed
training settings in the appendix.

4.1.1 Result and Discussion on Token
Efficiency

VRCP significantly improved token efficiency for
both Japanese and Chinese compared to the Llama-
2 tokenizer, achieving approximately 2.2 times bet-
ter efficiency for Japanese and 1.8 times better for
Chinese. This is a major achievement of our study,
particularly because we impose a constraint of not
expanding the vocabulary size (see Tables 1 and 2
for detailed efficiency metrics).

When comparing VRCP to the vocabulary ex-
pansion method with |V ′| = 16, 000 and |V ′| =
32, 000, we find that VRCP includes more tar-
get language vocabulary. Although VRCP shows
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Table 1: Tokenization Efficiency for Japanese

Methods
Vocab

Size

JA

Vocab

Size

Common

Vocab

Size

EN

LPT

JA

LPT

Vcom ∪ V ′
uni

(VRCP)
32,000 15,293 12,137 3.740 1.838

V ∪ V ′

(|V ′| = 16k)
46,312 14,553 32,000 3.738 1.883

V ∪ V ′

(|V ′| = 32k)
61,701 29,273 32,000 3.758 2.081

Llama 2 32,000 837 32,000 3.523 0.851

Table 2: Tokenization Efficiency for Chinese

Methods
Vocab

Size

ZH

Vocab

Size

Common

Vocab

Size

EN

LPT

ZH

LPT

Vcom ∪ V ′
uni

(VRCP)
32,000 13,476 12,756 3.767 1.257

V ∪ V ′

(|V ′| = 16k)
46,073 14,065 32,000 3.767 1.445

V ∪ V ′

(|V ′| = 32k)
61,191 28,284 32,000 3.736 1.580

Llama 2 32,000 700 32,000 3.523 0.705

slightly lower token efficiency compared to the vo-
cabulary expansion methods, the Length Per Token
(LPT) is almost equivalent or better, especially for
English. Even with |V ′| = 32, 000, the improve-
ment in LPT is not significantly greater compared
to the efficiency improvement observed when re-
placing the unique vocabulary in the Llama-2 to-
kenizer with VRCP’s vocabulary (refer to Table 1
and Table 2).

Overall, we emphasize that substantial improve-
ment of VRCP on token efficiency for the target
languages, achieved without expanding the vocab-
ulary size, remains highly competitive against vo-
cabulary expansion methods. This suggests that
excluding non-target languages from the tokenizer
enhances tokenization efficiency for both the target
language and English, providing a balanced and ef-
ficient approach for multilingual tokenization (see
Tables 1 and 2 for a summary of results).

4.2 Evaluation of Task Performance

We evaluated the performance on benchmark
tasks using models pretrained with each tokenizer
method:

• English: ARC, HellaSwag, MMLU, XLSum-

EN

• Japanese: JCommonsenseQA, JSQuAD, NI-
ILC, XLSum-JA

• Chinese: C-Eval, CMMLU, CMRC, XLSum-
ZH

4.2.1 Discussion on Task Performance for
Japanese and Chinese

Japanese: Overall, the Unchanged method showed
the highest average performance across tasks (see
Table 3). This may be explained by the fact that
the Llama-2 model has been extensively trained
with its tokenizer on a vast amount of data, op-
timizing the model for this tokenizer. This phe-
nomenon has also been reported in previous studies.
However, when excluding the Unchanged method,
VRCP demonstrated the best performance among
the methods tested.

In particular, in summarization tasks, VRCP sig-
nificantly improved performance compared to the
Unchanged method (see Table 3). This improve-
ment was especially notable in the version of VRCP
without embedding replacement, which performed
better than the vocabulary expansion methods. In
fact, the more we expanded the total vocabulary
size, the lower the performance tended to be. This
may be because modifying the embedding vectors
for vocabulary expansion can negatively impact
text generation tasks. Even if the initial values
of the embeddings do not align perfectly with the
meaning of the vocabulary, it has been shown that
maintaining these initial embeddings can be advan-
tageous for text generation tasks.

Regarding English tasks, VRCP showed slightly
lower performance compared to the vocabulary ex-
pansion methods. However, the decrease in perfor-
mance was not severe enough to suggest a break-
down of the model. Notably, the decrease in per-
formance for English summarization tasks was less
pronounced than for other tasks. This indicates
that the extensive training of Llama-2 has made
the model robust to some changes in the tokenizer,
especially for text generation tasks, e.g., summa-
rization (see Table 3 for performance metrics).

Chinese: Similar trends were observed for Chi-
nese tasks. VRCP performed best in summariza-
tion tasks, with particularly strong results in the
version without embedding replacement. The pat-
tern of performance decreasing as the vocabulary
size expanded was also noted in Chinese, indicating
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Table 3: Performance for Different Methods (Japanese)

Type Method EN JA GPU Memory
Footprint (GB)Avg. XLSum-EN Avg. XLSum-JA

Vocab
Replace
(VRCP)

Vcom ∪ V ′
uni .627 .900 .672 .734 52.78

Vcom ∪ V ′
uni

(Without Embed Replace) .617 .897 .637 .737 52.78

Vocab
Expand

(Previous)

V ∪ V ′

(|V ′| = 16k) .643 .901 .668 .736 54.57

V ∪ V ′

(|V ′| = 32k) .640 .901 .658 .717 56.16

Unchanged
(Baseline) V .626 .900 .691 .712 52.78

Vanilla Llama 2-7B .670 .905 .591 .690 N/A

Table 4: Performance for Different Methods (Chinese)

Type Method EN ZH GPU Memory
Footprint (GB)Avg. XLSum-EN Avg. XLSum-ZH

Vocab
Replace
(VRCP)

Vcom ∪ V ′
uni .622 .902 .507 .625 52.78

Vcom ∪ V ′
uni

(Without Embed Replace) .616 .902 .502 .652 52.78

Vocab
Expand

(Previous)

V ∪ V ′

(|V ′| = 16k) .639 .902 .493 .605 54.51

V ∪ V ′

(|V ′| = 32k) .642 .901 .488 .596 57.35

Unchanged
(Baseline) V .633 .900 .483 .553 52.78

Vanilla Llama 2-7B .670 .905 .499 .619 N/A

that expanding the vocabulary may reduce perfor-
mance, similar to what was seen with Japanese
tasks. Additionally, the slightly lower performance
in English tasks when using VRCP was observed
in both Japanese and Chinese settings, but again,
the decrease was not severe enough to compromise
the model’s effectiveness (see Table 4 for detailed
results).

Summary of Task Performance: The experi-
ments indicate that the vocabulary size in the target
language does not necessarily impact performance.
Both VRCP and the vocabulary expansion meth-
ods showed similar average scores across tasks.
This suggests that expanding the vocabulary is not
always essential to achieve high performance. In-
stead, the approach of VRCP, which involves re-
placing unique vocabulary without expanding the
total vocabulary size, remains competitive and ef-
fective, especially in text generation tasks. Addi-
tionally, VRCP’s improvement in English summa-
rization tasks supports the benefit of vocabulary
replacement for task performance in the target lan-

guage as well as in English (see Tables 3 and 4 for
task performance comparisons).

4.3 Evaluation of GPU Memory Footprint

We evaluated the GPU memory footprint of each
method in experiments with Japanese and Chi-
nese. VRCP maintains the same vocabulary size
as the Llama-2 model, ensuring a consistent GPU
memory footprint. This indicates its effectiveness
in resource-constrained environments without the
need for extensive vocabulary expansion (refer to
Table 3 and Table 4 for memory footprint details).

Vocabulary expansion methods increased mem-
ory footprint. Specifically, as the vocabulary size in-
creased, the GPU footprint increased linearly. This
result indicates that extensive vocabulary expan-
sions may not be efficient or necessary for improv-
ing performance (see Figure 3 for a visual represen-
tation of the linear increase in memory footprint).

As shown in Figure 3, even though increasing the
vocabulary size does not significantly improve the
Length Per Token (LPT), the GPU memory foot-
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print continues to increase linearly. This demon-
strates that increasing vocabulary size leads to a
predictable linear increase in memory footprint,
without a corresponding substantial improvement
in tokenization efficiency.
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Figure 3: Relationship between vocabulary size, LPT,
and GPU memory footprint.

5 Related Works

Several studies have explored enhancing model per-
formance for low-resource languages by expand-
ing vocabulary and embedding layers in continued
pretraining. For example, Wang et al. (2020) and
Pfeiffer et al. (2021) expanded the vocabulary and
embedding layers for mBERT (Pires et al., 2019),
which improved performance by incorporating low-
resource language corpora. These methods typi-
cally involve expanding the vocabulary size, which
increases the number of model parameters and the
GPU memory footprint. This is because expand-
ing the vocabulary requires adding corresponding
embedding vectors. In decoder-only models like
Llama-2 (Touvron et al., 2023), embeddings must
be placed both after the input and before the out-
put. Therefore, expanding the vocabulary by Nnew
tokens with an embedding dimension of D results
in an increase of 2×D×Nnewmodel parameters. In
contrast, our proposed method maintains the source
vocabulary size by focusing on vocabulary replace-
ment. This preserves the semantic knowledge of
the source model while optimizing for the target
language.

Limisiewicz et al. (2023) highlight the signifi-
cant impact of tokenization on multilingual models,
especially the importance of language-specific to-
ken coverage for word-level tasks. Their study
provides guidelines for selecting tokenizers before
expensive model pre-training.

Our research aligns with these insights by ad-
dressing the optimization of tokenizers for multi-
lingual models without expanding the vocabulary
size. This is particularly beneficial in resource-
constrained environments. We provide an alterna-
tive strategy that leverages source model knowl-
edge while adapting to the target language, comple-
menting the guidelines suggested by Limisiewicz
et al. (2023).

6 Conclusion

We introduced Vocabulary Replacement Continued
Pretraining (VRCP), a method that optimizes tok-
enizers for non-English languages without increas-
ing vocabulary size. VRCP replaces low-frequency
English tokens with high-frequency target language
tokens, leveraging the semantic knowledge of En-
glish models while enhancing token efficiency for
the target language.

Our experiments with Japanese and Chinese cor-
pora demonstrated that VRCP matches the perfor-
mance of traditional vocabulary expansion methods
and excels in tasks requiring text generation, such
as summarization. This improved performance in
generation tasks suggests that VRCP can be effec-
tively applied to language models integrated into
retrieval-augmented generation (RAG) frameworks,
where generating coherent and contextually accu-
rate summaries is critical. Additionally, VRCP
avoids additional GPU memory costs by maintain-
ing the original vocabulary size, making it suitable
for resource-constrained environments.

Limitations

One limitation of our work is its language speci-
ficity. Our experiments were conducted only on
Japanese and Chinese, meaning that the findings
may not necessarily generalize to other languages.
Since each language has unique characteristics, ap-
plying VRCP to other languages may require fur-
ther adjustments and validation.

Additionally, while VRCP aims to prevent an
increase in GPU memory consumption by main-
taining a constant vocabulary size, modern dis-
tributed training techniques already provide effi-
cient memory management solutions. Frameworks
like TensorParallel, PipelineParallel (Narayanan
et al., 2021), and ZeRO (Rajbhandari et al., 2020))
offer alternative or complementary strategies for
managing resource constraints in large-scale model
training.
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A Training Settings and
Hyperparameters

In our experiments, we used the same settings and
hyperparameters for continued pretraining across
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all configurations, including VRCP, Vocabulary Ex-
pansion and Unchanged models (see Table 5).

Table 5: Training Hyperparameters

Hyperparameter Value

Global Batch Size (GBS) 256
Sequence Length 4096
Learning Rate (LR) 7.5e-5
Warmup Ratio 0.05
Weight Decay 0.1

DeepSpeed ZeRO Stage
(Rajbhandari et al., 2020)

2

AllGather Bucket Size 7e8
Reduce Bucket Size 7e8

GPU
NVIDIA H100

(80GB)
Number of GPUs 8

B Corpora Details

We used different corpora for Japanese and Chinese
pretraining, as detailed in Table 6 and Table 7.

Table 6: Japanese Corpora Details

Corpus Size (MB)

Wikipedia (Japanese) 3,178.95
CC100 (Japanese) 10,405.93
Wikipedia (English) 374.87

Table 7: Chinese Corpora Details

Corpus Size (MB)

Wikipedia (Chinese) 1,115.09
Baike 1,186.11
News 5,837.07
Wikipedia (English) 374.87

C Evaluation Tasks

We evaluated the models on various benchmark
tasks for Japanese, Chinese, and English. Each
task focuses on different aspects of language under-
standing and generation, as summarized in Table 8,
Table 9, and Table 10.

For the Japanese evaluation, we utilized
the JCommonsenseQA, JSQuAD, NIILC, and
XLSum-JA datasets.

Table 8: Japanese Evaluation Tasks

Task Shots Metric

JCommonsenseQA 4 Exact Match (EM)
JSQuAD 4 Character-level F1
NIILC 4 Character-level F1
XLSum-JA 1 BERTScore

Table 9: Chinese Evaluation Tasks

Task Shots Metric

C-Eval 4 Accuracy
CMMLU 4 Accuracy
CMRC 4 Accuracy
XLSum-ZH 1 BERTScore

Table 10: English Evaluation Tasks

Task Shots Metric

ARC 25 Normalized Accuracy
HellaSwag 10 Normalized Accuracy
MMLU 5 Accuracy
XLSum-EN 1 BERTScore

• JCommonsenseQA evaluates common sense
reasoning abilities in Japanese. This dataset
is part of the JGLUE benchmark and provides
questions that require the model to use back-
ground knowledge to choose the correct an-
swer from multiple choices (Kurihara et al.,
2022).

• JSQuAD is a question-answering task also
included in the JGLUE benchmark. It focuses
on extracting answers from provided contexts
based on Japanese text (Kurihara et al., 2022).

• NIILC (National Institute of Informatics
Large-scale Encyclopedia Corpus) presents
open-ended questions, where the model must
generate answers using knowledge embed-
ded within the model. This task assesses
the model’s encyclopedic knowledge and its
ability to produce accurate responses (Sekine,
2003).

• XLSum-JA is a summarization task that re-
quires the model to generate concise sum-
maries from Japanese news articles (Hasan
et al., 2021).

For evaluating Chinese language capabilities, we
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used the C-Eval, CMMLU, CMRC, and XLSum-
ZH datasets.

• C-Eval includes tasks for reading comprehen-
sion, text generation, and reasoning based on
various domains of knowledge, such as litera-
ture, history, science, and technology (Huang
et al., 2023).

• CMMLU (Massive Multitask Language Un-
derstanding in Chinese) encompasses a set
of tasks across multiple domains, including
comprehension, text generation, classification,
translation, and dialogue (Li et al., 2024).

• CMRC (Chinese Machine Reading Compre-
hension) focuses on question-answering by
extracting answers from given contexts (Cui
et al., 2019).

• XLSum-ZH is the Chinese counterpart of the
summarization task for news articles, where
the model generates brief summaries from
longer articles (Hasan et al., 2021).

The evaluation for English language tasks was
conducted using the ARC, HellaSwag, MMLU,
and XLSum-EN datasets, which test various as-
pects of knowledge and reasoning:

• ARC (AI2 Reasoning Challenge) is designed
to assess middle school level science rea-
soning abilities. The dataset includes ques-
tions that require the model to apply scientific
knowledge and reasoning skills to select the
correct answer from multiple choices (Chollet,
2019).

• HellaSwag measures ability of the models to
perform contextual and common sense reason-
ing (Zellers et al., 2019).

• MMLU (Massive Multitask Language Under-
standing) covers a wide range of knowledge
domains and evaluates the model’s capability
to apply this knowledge in answering ques-
tions accurately (Hendrycks et al., 2021).

• XLSum-EN is the English version of the sum-
marization task, where the model must create
concise summaries from news articles (Hasan
et al., 2021).
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