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Abstract

This paper investigates the extent to which pre-
trained German BERT encodes knowledge of
noun compound semantics. We comprehen-
sively vary combinations of target tokens, lay-
ers, and cased vs. uncased models, and eval-
uate them by predicting the compositionality
of 868 gold standard compounds. Looking at
representational patterns within the transformer
architecture, we observe trends comparable to
equivalent prior work on English, with compo-
sitionality information most easily recoverable
in the early layers. However, our strongest
results clearly lag behind those reported for
English, suggesting an inherently more diffi-
cult task in German. This may be due to the
higher productivity of compounding in German
than in English and the associated increase in
constituent-level ambiguity, including in our
target compound set.

1 Introduction

Noun compounds – such as music festival and ivory
tower in English; Obstsaft ‘fruit juice’ and Sün-
denbock ‘scapegoat’ (lit. ‘sin buck’) in German –
comprise a productive class of expressions char-
acterized by variable degrees of compositionality,
i.e., relatedness of the individual constituents to
the overall meaning of the compound. The ubiqui-
tousness of noun compounds has motivated a long
line of research modeling different aspects of their
meanings (Ó Séaghdha, 2007; Mitchell and Lap-
ata, 2008; Reddy et al., 2011; Schulte im Walde
et al., 2016; Cordeiro et al., 2019, i.a.), while more
recent work has specifically drawn on their seman-
tically challenging nature to examine the linguistic
knowledge encoded in transformer-based language
models.

For instance, Garcia et al. (2021a) question
BERT’s ability to represent compositionality sim-
ilarly to humans based on comparisons of com-
pounds in context vs. in isolation. On a more spe-

cific level, Garcia et al. (2021b) find a lower qual-
ity of BERT representations for non-compositional
compounds. Focusing on semantic relations of
noun compounds, Rambelli et al. (2024) highlight
strong performance variability across large lan-
guage models as well as difficulties in generalizing
to novel compounds, also noted in other related
work (Li et al., 2022; Coil and Shwartz, 2023).

Further studies have attempted to explain these
patterns by zooming into the model architecture,
but without always reaching a consensus. As an
example, Miletić and Schulte im Walde (2023) pre-
dict the compositionality of open (space-separated)
English noun compounds, achieving the best re-
sults with embeddings from early transformer lay-
ers. Buijtelaar and Pezzelle (2023) similarly pre-
dict the semantic transparency of closed (ortho-
graphically joined) English noun compounds, but
their best results use embeddings from later layers.
Contradictory findings such as these still preclude
broader generalizations; they are compounded by a
limited understanding of cross-lingual trends given
a near-exclusive focus on English in prior work
(Miletić and Schulte im Walde, 2024).

Moving beyond that focus, we probe BERT via
compositionality prediction of 868 German noun-
noun compounds (Schulte im Walde et al., 2016).
We replicate our setup from Miletić and Schulte
im Walde (2023) for strict comparability with our
prior results on English, but we introduce a sce-
nario which is more challenging in several key re-
spects: the closed spelling of German compounds
limits constituent-level information in pretraining;
the higher productivity of compounding in German
(Berg et al., 2012) entails more diverse usage con-
texts and thereby may hinder learning; and as a
result of the higher productivity, the ambiguity of
individual constituents may also increase – includ-
ing within constituent family sets (i.e., compounds
which share one constituent) included in our gold
standard data – and further challenge the models.



We provide a two-fold contribution. (i) Compar-
ing all configurations, we broadly find that repre-
sentational patterns generalize cross-lingually,
in particular the relevance of constituent–context
comparisons and the recoverability of composi-
tionality information in early transformer layers.
(ii) Looking at the best configurations, we find that
BERT’s performance on German clearly lags
behind English, which may indicate an inherently
more challenging task in German. On a more spe-
cific level, this trend may reflect the higher produc-
tivity of compounding in German and the related
distinctiveness of gold standard information in the
two languages. More generally, our study extends
a very limited body of prior work (Falk et al., 2021;
Jenkins et al., 2023) on German multiword expres-
sions in transformer models.

2 Data

Gold standard compounds. We rely on the
GhoSt-NN dataset of 868 German noun-noun com-
pounds annotated for compositionality, i.e., mean-
ing contributions of the constituents to the over-
all compound meaning (Schulte im Walde et al.,
2016). The targets in the dataset were selected
starting from a seed set of 45 compounds bal-
anced for modifier productivity and head ambi-
guity, and then adding further compounds which
contain a modifier or a head already present in the
seed set. By design, the dataset therefore includes
constituent family sets, i.e., groups of compounds
sharing a constituent. For example, it contains
15 compounds with the head Kette ‘chain’, such
as Bergkette ‘mountain chain’, Hotelkette ‘hotel
chain’, and Halskette ‘necklace’ (lit. ‘neck chain’).
Overall, the dataset contains 550 unique modifiers,
of which 129 appear more than once; and 279
unique heads, of which 70 appear more than once.

For a given compound–constituent pair, expert
annotators were asked to provide a rating from 1
(definitely semantically opaque) to 6 (definitely se-
mantically transparent). The averaged final ratings
subsume between 5 and 13 individual judgments.
Sample items are shown in Table 1.

Corpus. We use the well-established DECOW
corpus (Schäfer and Bildhauer, 2012; Schäfer,
2015) with ≈ 11.6 billion tokens of web-crawled
text. For each compound from the gold standard,
we extract all occurrences from the corpus. In
preprocessing, we deterministically split the com-
pound into its constituents by replacing it with

Compound Modif. Head M H
Erbsensuppe Erbse Suppe 5.3 5.3
pea soup pea soup

Kirchspiel Kirche Spiel 4.4 3.1
parish church game

Eifersucht Eifer Sucht 2.0 2.1
jealousy zeal addiction

Table 1: Sample compounds and compositionality rat-
ings for the modifier (M) and the head (H).

the modifier and head provided in the gold stan-
dard. This is done to constrain the output of the
pretrained tokenizer used by the BERT models we
deploy: it could otherwise split target compounds
into subword fragments which are not morpholog-
ically motivated (cf. Jenkins et al., 2023), which
would preclude us from analyzing the model’s abil-
ity to represent the actual constituents.

3 Experimental Setup

We assess the compositionality information en-
coded in pretrained BERT via the task of unsu-
pervised compositionality prediction. We follow
the well-established framing of this problem as a
ranking task, where a model’s ability to represent
compound semantics is evaluated by predicting
the degrees of compositionality for a set of com-
pounds and correlating those predictions with gold-
standard compositionality ratings. Replicating the
experimental setup we introduced in Miletić and
Schulte im Walde (2023) for English, we experi-
ment with a wide range of BERT-derived composi-
tionality estimates. We evaluate each experimental
configuration by calculating Spearman’s rank cor-
relation coefficient between the predicted degrees
of compositionality (based on the cosine score, see
below) and the gold-standard compositionality rat-
ings for both modifiers and heads.

BERT models. We use the base German BERT
model released by DBMDZ1 (12 layers, 768 dimen-
sions). We expand the English setup by comparing
the cased and uncased versions of the model given
the strong relevance of capitalization for German
(nouns are systematically capitalized). We do not
fine-tune the model since our primary aim is to as-
sess the linguistic knowledge it inherently encodes
rather than optimize it on the target task.

1https://huggingface.co/dbmdz/
bert-base-german-cased

https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased


For a given compound, we feed each corpus ex-
ample into the model individually. For each token
in the sentence, this yields an embedding corre-
sponding to each layer in the model architecture;
we retain all these embeddings. We then estimate
compositionality by comparing pairs of target em-
beddings in different ways.

Target embeddings. We use the following target
embeddings: modif, corresponding to the modi-
fier token; head, corresponding to the head token;
comp, the average of modif and head; cont, cor-
responding to the sentence context, i.e., the aver-
age of all tokens except for modif, head, [CLS]
and [SEP]; cls, corresponding to the [CLS] token
which we assume to capture the meaning of the
whole sentence. If the modifier or the head token
is split into subwords by BERT’s tokenizer, we
average over those subwords.

Layers. We investigate all available layers, i.e.,
the input embedding layer and 12 hidden state out-
puts. We experiment with all spans of adjacent
layers, ranging from a single layer in isolation to
the full range of 13 layers, for a total of 91 unique
combinations. When combining embeddings from
multiple layers, we average over them.

Compositionality estimates. We predict compo-
sitionality in two ways. (i) Direct estimates cor-
respond to the cosine score for a pair of target
embeddings (e.g., modif and comp) from a given
layer span. We test all pairs of target embeddings.
(ii) Composite estimates use previously proposed
composition functions (Reddy et al., 2011) to com-
bine head and modif predictions obtained with one
of the three other target embeddings: comp, cont,
and cls. For example, starting from the cosines for
(modif, comp) and (head, comp), we calculate ADD
as the sum of the two; MULT as the product of the
two; and COMB as the sum of ADD and MULT.

Other settings. In order to constrain the exper-
imental space, we only vary the parameters dis-
cussed thus far, which we previously found to have
a strong effect on model performance in English.
We fix the remaining parameters from our setup in
Miletić and Schulte im Walde (2023): as pooling
function, we use averaging over vectors; we model
100 sentences per compound without controlling
for sentence length; and we use token-level esti-
mates, i.e., we compute compositionality estimates
for each sentence individually and then average
those estimates to obtain a compound-level value.

Model Layer Emb. ρ

Modif. uncased 4–4 mod, cont 0.332
uncased 3–4 mod, cont 0.319
uncased 3–5 mod, cont 0.317
uncased 4–5 mod, cont 0.313
uncased 3–3 mod, cont 0.309

Head cased 1–1 head, cont 0.433
cased 1–2 head, cont 0.411
cased 0–3 head, cont 0.402
cased 1–3 head, cont 0.397
cased 0–2 head, cont 0.393

Table 2: Best-performing experimental configurations
for modifier and head compositionality predictions.

Prior approach Modif. Head

Schulte im Walde et al. (2016) 0.490 0.590
LMI vectors; same data

Miletić and Schulte im Walde (2023) 0.553 0.645
same method; English data

Table 3: Best results reported in prior work.

4 Results

4.1 Best parameter constellations

We begin by identifying the best-performing con-
stellations of experimental parameters (Table 2).
Our strongest results are weak-to-moderate corre-
lations with gold standard compositionality ratings:
ρ = 0.332 for modifiers and 0.433 for heads. But
the full set of experimental configurations covers a
very broad performance range, reaching negative
correlations in the weakest cases (ρ = −0.159 for
modifiers and −0.234 for heads), which confirms
that compositionality information is not equally
accessible across the BERT architecture. Fur-
thermore, modifier and head predictions are only
weakly correlated with one another (ρ = 0.334),
i.e., the two constituents’ respective contributions
to the compound meaning are best captured by
rather different representational information.

Looking at prior work (Table 3), the higher per-
formance for head than modifier predictions aligns
with previously reported trends. However, our high-
est results are around ≈ 0.2 ρ behind the count-
based cooccurrence approach deployed by Schulte
im Walde et al. (2016) on the same German dataset.
We also observed a comparable lag of BERT be-
hind simpler vector space approaches for English
(Miletić and Schulte im Walde, 2023) with a setup
that we replicate here. But our performance on



mod head comp cont cls

Modif. mod 0.170 0.174 0.332 0.266
head 0.170 0.130 0.019 0.024
comp 0.174 0.130 0.154 0.113
cont 0.332 0.019 0.154 0.123
cls 0.266 0.024 0.113 0.123

Head mod 0.327 0.202 0.178 0.084
head 0.327 0.290 0.433 0.246
comp 0.202 0.290 0.318 0.149
cont 0.178 0.433 0.318 0.096
cls 0.084 0.246 0.149 0.096

Table 4: Best individual results obtained using direct
comparisons of pairs of embeddings for modifier predic-
tions (top) and head predictions (bottom). Bold values
are best in a column; shaded values are best overall.

German also lags behind our prior results for En-
glish despite a strictly comparable experiment. As
suggested above, this trend is consistent with an
inherently higher difficulty of compositionality pre-
diction in German. Its more challenging nature
could be more specifically due to the higher produc-
tivity of compounding in German than in English,
which may exacerbate constituent-level ambiguity,
including within the GhoSt-NN dataset given its
reliance on constituent family sets.

As for the effect of individual experimen-
tal parameters, Table 2 indicates differences be-
tween modifier and head predictions regarding
the strongest models (uncased vs. cased, respec-
tively) and layers (mid-range vs. early layers, re-
spectively). In both cases, the use of embeddings
corresponding to the target structure (modifier and
head, respectively) in combination with the em-
bedding of the context yields the highest results.
Taking a closer look at the interdependency of mod-
ifier/head representations and the corresponding
predictions, we additionally break down the results
across all pairs of target embeddings (Table 4). This
further confirms the central importance of repre-
sentational information corresponding to the con-
stituent of interest, closely reflecting prior findings
for English (Miletić and Schulte im Walde, 2023).

4.2 Cased vs. uncased models
Regarding differences between BERT models,
modifier predictions are better under experimental
configurations using the uncased version (median
ρ = 0.060 vs. 0.073); by contrast, head predictions
benefit from the cased version (median ρ = 0.201
vs. 0.165). Looking at the predictions obtained
with the cased and uncased model across all exper-

Figure 1: Mean performance across contiguous spans of
layers, defined by the start layer (x-axis) and end layer
(y-axis). Left: uncased model; right: cased model. Top:
modifier predictions; bottom: head predictions.

imental settings, we find that they are themselves
strongly correlated with one another, for modifiers
(ρ = 0.768) as well as heads (ρ = 0.901). In other
words, the patterns captured by the two model ver-
sions are affected by the underlying properties of
representational information (embeddings and lay-
ers) in a similar – but not identical – way.

To further understand these interactions, we com-
pute correlations between predictions obtained by
the cased vs. uncased model in subsets of experi-
mental settings. (i) We first do this for each of 91
layer combinations. By keeping the layers fixed,
we assess model sensitivity to compositionality es-
timates. We find strong mean correlations for mod-
ifiers (0.736 ± 0.111) and heads (0.915 ± 0.055).
(ii) We then compute the correlations for each of
19 compositionality estimates. By keeping the
estimates fixed, we assess model sensitivity to
layer combinations. We find moderate mean cor-
relations for modifiers (0.432± 0.264) and heads
(0.494±0.213). These results indicate that compo-
sitionality information captured by the uncased vs.
cased model is rather similar across compositional-
ity estimates; and rather different across layers.

4.3 Layers

We now examine mean prediction performance for
different layer spans to gain further insight into the
transformer architecture (Figure 1). For modifier
predictions, the best results are on average obtained



in the lower range of layers, with the single highest
mean result on layer 1 in isolation (ρ = 0.110).
Similar performance is obtained by other layer
spans – including very broad ones – which start
from the earliest layers. By contrast, later layers
yield clearly lower results, including layers that are
often used in lexical semantic tasks (e.g., layers
9–12, ρ = 0.036; and layer 12 in isolation, which
obtains the single lowest mean ρ = −0.004).

Head predictions exhibit comparatively more
variance and rather different trends. Like for modi-
fiers, the single best mean results is on layer 1 in
isolation (ρ = 0.199). However, the next range of
performance is occupied by spans limited to the
very early layers (0–2) and the later layers (7–12),
and quite distinctly not very broad spans starting
from the earliest layers. The lowest mean result is
obtained by input layer 0 in isolation (ρ = 0.108).

These findings broadly align with good perfor-
mance of lower layers we reported for English in
Miletić and Schulte im Walde (2023), but we find
stronger differences between head and modifier
predictions. Some of these interact with the choice
of uncased vs. cased model; we report the differ-
ences between the two models for each layer span
in Appendix A, and summarize the trends below.
The uncased model obtains better performance (by
≈ 0.05 ρ) in the early-to-mid range (layers 3–5,
especially for heads) and in the later range (layers
9–12, especially for modifiers). Put differently, it
benefits from stronger contextualization (i.e., pro-
cessing in more layers), whose disambiguating ef-
fect may be relevant given the loss of information
inherent in case folding. The cased model yields
gains especially for head predictions, and most
clearly in the very early layers (up to 0.08 ρ). We
hypothesize that capturing the nominal nature of a
constituent – reflected by capitalization in German,
which is preserved by the cased model – is more
important for heads given their dominant role in
the morphosyntactic constituency of compounds.

5 Conclusion

We investigated the extent to which pretrained Ger-
man BERT encodes the knowledge of noun com-
pound semantics. We systematically varied repre-
sentational information (across target tokens, lay-
ers, and cased vs. uncased models) to predict the
degrees of compositionality of 868 noun-noun com-
pounds. Our best result (ρ = 0.433) lags behind
equivalent prior work on English – suggesting a

more challenging nature of the task in German –
but we also confirm previously reported patterns of
model processing such as the importance of early
layers. Our insights more generally illustrate the
key importance of cross-lingual extensions of prob-
ing studies to languages other than English.

Limitations

We note several limitations of our work. (i) Our
study provides a direct cross-lingual comparison
with prior results obtained on English, but it is
limited to only one other language – German –
which also belongs the Germanic family and ex-
hibits relatively similar patterns of multiword ex-
pression formation. Typologically more distant
languages with stronger structural differences (e.g.,
Romance languages with a preference for N–Prep–
N rather than N–N structures) could provide a fur-
ther cross-lingual validation of the reported pat-
terns. (ii) We only consider noun compounds, but
other categories of multiword expressions (e.g.,
particle verbs) may exhibit different processing
patterns in the transformer architecture. (iii) We
compare the cased and uncased versions of a sin-
gle German BERT model. Other variations such
as German models using different pretraining data
or parameter sizes, as well as comparisons with
multilingual models, could provide further insights.
(iv) We compare BERT performance on English
and German based on a strictly comparable ex-
perimental setup for both languages. However,
we use language-specific (and therefore different)
gold standard compositionality ratings. While the
datasets on which we rely are well-established for
each language and define the annotation task in a
comparable way, they follow different strategies of
selecting target items, which may affect some of
the reported trends. For a recent discussion of such
effects, see Schulte im Walde (2024).
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A Layer performance

Figure 2: Layer-wise difference in cased vs. uncased model performance. Positive values: better performance of
the cased model. Negative values: better performance of the uncased model.
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