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Abstract

Experts in various fields routinely perform
methodical writing tasks to plan, organize, and
report their work. From a clinician writing a
differential diagnosis for a patient, to a teacher
writing a lesson plan for students, these
tasks are pervasive, requiring to methodically
generate structured long-form output for
a given input. We develop a typology of
methodical tasks structured in the form
of a task objective, procedure, input, and
output, and introduce DoLoMiTes, a novel
benchmark with specifications for 519 such
tasks elicited from hundreds of experts from
across 25 fields. Our benchmark further
contains specific instantiations of methodical
tasks with concrete input and output examples
(1,857 in total) which we obtain by collecting
expert revisions of up to 10 model-generated
examples of each task. We use these examples
to evaluate contemporary language models,
highlighting that automating methodical
tasks is a challenging long-form generation
problem, as it requires performing complex
inferences, while drawing upon the given con-
text as well as domain knowledge. Our dataset
is available at https://dolomites
-benchmark.github.io/.

1 Introduction

Experts in various fields regularly use writing as a
means for planning, organizing, and sharing their
work. For instance, a teacher might draft a lesson
plan for what they would like to teach in their
next class, and a lawyer might draft a patent appli-
cation for an invention. Experts generally follow
a consistent and methodical approach to conduct
these writing tasks. In the lesson plan example, a
teacher would know the lesson objectives, format,
and profile of the class, and would produce a plan

∗ Work done at Google DeepMind.

with the topics to be covered and activities to im-
prove learning. Importantly, the teacher follows
a systematic procedure to write this lesson plan,
using their expertise and what they know about
the current context (e.g., the class profile).

Across fields, from law to visual arts and en-
gineering, experts accomplish on a regular basis
such methodical tasks, i.e., writing tasks which
loosely follow a standard template for what is
usually given as input and what is required from
the output. These tasks often follow a structured
and consistent procedure as they are performed
regularly and tend to be fairly time-consuming,
taking from a few hours to several days (see
Figure 2). As large language models (LMs) be-
come more capable and widely accessible to a
more sophisticated set of users (Owens, 2023;
Mollick and Mollick, 2023; Lee et al., 2023;
Birhane et al., 2023; Mollick and Mollick, 2023;
Frankenreiter and Nyarko, 2022; Demszky et al.,
2023; Wang et al., 2023), they hold great potential
for assisting experts with methodical writing tasks,
increasing their efficiency and allowing them to
focus on complex problem-solving activities (Noy
and Zhang, 2023).

Given their potential for assisting experts, it
would be beneficial to evaluate language models
on a realistic set of methodical writing tasks. How-
ever, we currently do not have benchmarks that
contain a typology of such tasks. The most natural
source for such data would be query logs (Nguyen
et al., 2016; Kwiatkowski et al., 2019) or chat
histories (Zhao et al., 2023). However, these data
sources do not specifically reflect domain-specific
use cases and do not allow us to study specific use
cases in a controlled manner.

In this work, we bridge this gap by eliciting
519 methodical task descriptions (see a few ex-
amples in Figure 1) from 266 experts across 25
different fields (Section 3.1). These writing tasks
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Figure 1: A sample of methodical tasks from law, biology and medicine in DOLOMITES. Each task in DOLOMITES

follows a standard template, containing a task objective, task procedure, additional notes about the task, and
finally, input sections that are usually expected for the task, and output sections that need to be produced as part
of the task. These tasks are instantiated with examples that represent plausible inputs and outputs for the task
(Section 3.4).

Figure 2: DOLOMITES contains descriptions of 519 me-
thodical tasks elicited from domain experts across
various fields. We instantiate these tasks with examples
that contain plausible inputs and outputs, formulating a
challenging long-form generation problem that requires
domain expertise and structured problem-solving.

are formatted in a standard way, with a task pro-
cedure, input, and output. Further analysis with
an independent group of experts reveals that they
are indeed plausible (∼76% of them are likely to
be conducted by an expert on a regular basis) and

most experts (∼63%) would find it useful if they
could use a capable AI model as a writing assistant
(Section 3.3). Our tasks serve as the first collection
of realistic use cases of experts spanning multiple
domains.

To evaluate the ability of existing models to
assist experts with these tasks, we collect examples
(see Figure 2), where we instantiate each task
with plausible inputs and outputs (Section 3.4).
Examples are created semi-automatically: We first
retrieve Web documents that could potentially
serve as samples of the task, and then generate
an example using a language model based on the
retrieved web documents. These examples are then
significantly post-edited by the same experts (who
contributed the task) for improving adherence to
the task description, factual correctness, and level
of detail.

We use our benchmark, called DOLOMITES

(short for Domain-Specific Long-Form Method-
ical Tasks), to evaluate current models in their
ability to generate accurate and detailed outputs
(Section 4). We formulate the modeling problem
as long-form generation, where models are pro-
vided the task description and the example input
and asked to generate the example output. Our
experiments reveal that there is significant head-
room in improving performance on methodical
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tasks (Section 5) which are inherently difficult (re-
quiring reasoning skills and domain-knowledge),
and in terms of improving automatic evaluation of
long-form text. In addition to well-known short-
comings (Schluter, 2017; Krishna et al., 2021),
conventional metrics are not designed to capture
expert knowledge.

We hope that DOLOMITES can serve as a reference
for domain-specific use cases of language models
and provide a means for evaluating future models.
We release our dataset and code at https://
dolomites-benchmark.github.io.

2 Problem Formulation

In this section, we first describe the types of writ-
ing tasks considered in this work. We refer to these
tasks as methodical writing tasks due to two prop-
erties that are common to their execution. Firstly,
each task requires structured problem-solving,
where the task follows a specific order where each
step logically flows from the previous ones. For
instance, in the Medicine task in Figure 1, the task
requires producing an assessment of the patient,
then a plan of care and finally a full evaluation
of the patient. Secondly, every task usually fol-
lows a consistent execution across inputs, where
there is a standard specification of the input, the
output and the procedure for the task. In the same
Medicine task, given a patient’s subjective and
objective data, the task structure and procedure
would mostly stay consistent across patients.

To elicit descriptions of tasks from experts,
we operationalize our definition of a methodical
task into a standard template (see Figure 1 for
examples). We require that every task contains a
brief task objective, a task procedure walking a
beginner through how this task is conducted, input
and output sections, which include information
that is typically given, and information that needs
to be generated. Both input and output sections are
formatted in the form of section titles and section
descriptions. Finally, we collect additional notes
about the task, which can include best practices
or common mistakes, and missing context that is
important when conducting the task.

We further expect our tasks to meet the follow-
ing criteria: (1) they are purely textual and do
not involve other modalities in the input or output;
(2) they require domain expertise and can only
be completed by an expert; (3) they do not require
use of specific equipment or software, with the

exception of searching the Web; (4) they are fre-
quent, routinely performed by an expert at least
once every few months; and (5) time-consuming,
taking a significant but not indefinite amount of
time to complete (e.g., from a half hour to a few
days, but not several months).

Aside from task descriptions, our dataset con-
tains specific instantiations of methodical tasks
(see Figure 2). We create examples by populat-
ing descriptions like those shown in Figure 1
with plausible input and output sections (see
Section 3.4).

3 DOLOMITES: Data Curation

3.1 Task Collection
In our data curation process, we first collect a
typology of realistic tasks that span multiple fields.
These tasks are not meant to be exhaustive, but
instead represent realistic use cases across fields.

Participants. We recruit 266 participants from
the Prolific crowdsourcing platform. We recruit
experts from 25 different fields, shown in Table 1,
aiming for a broad coverage across disciplines.
Participants qualify as experts if they have for-
mal education in the field, and at least 3 years
of work experience. Additional details about
the participants’ backgrounds are provided in
Appendix A.

Annotation Task. We ask each annotator to
provide descriptions of two writing tasks they
routinely perform in their profession subject to
the criteria listed in Section 2. For each task,
annotators are asked to fill in predefined fields
(task objective, procedure, input and output sec-
tions, additional notes), the same way as shown
in Figure 1. We ask annotators to give thorough
descriptions as if they are teaching a novice how
to perform each task. Instructions and interface
screenshots are in Appendix A.

3.2 Task Analysis
After collecting the initial set of tasks, we filter
them manually to ensure they meet the criteria out-
lined in Section 2, and obtain a total of 519 tasks.
We find that there are very few tasks from a field
that are highly similar.

Table 1 provides the number of tasks across
fields and the task objective of a sample task
from each field. Most fields have at least 20 tasks,
with some exceptions, where we were not able to
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Field Sample Task Objective
Anthropology (8) A survey to examine specific cultural practices, rituals, and societal norms within a cultural group or community
Architecture (20) Developing a construction phasing plan for a building project
Biology (21) Developing a protocol for a toxicity assay
Business (26) Write a section of a non-financial report for a client, focusing on a company’s environmental and social activities
Chemistry (21) To write a retrosynthesis scheme/plan for a specific target molecule
Economics (17) Reviewing investment options for advising companies
Education (23) To create a lesson plan for a school class
Engineering (22) To write the instructions for conducting a radioactive experiment.
Environmental Sci (23) Writing the life cycle assessment of a system, product or process
Geography (20) Analyzing the environmental and social impacts of illegal mining activities in a specific region
History (22) Summarize and analyze a specific medieval legal code
Hospitality (21) Adapt existing recipes to cater to various dietary preferences
Journalism (20) Write a news story based on an interview
Law (38) Drafting a petition to challenge a decision
Linguistics (20) Carry out a short literature review of a given problem in linguistics
Literature (20) To write a research proposal for a presentation at a literary research conference
Mathematics (15) Writing an experimental setup suitable for testing a research hypothesis in applied mathematics
Medicine (24) Writing a list of potential radiotherapy regimens for a cancer patient
Music (23) Writing lyrics for a game’s soundtrack
Philosophy (13) Provide ethical recommendations for patient/doctor cases
Physics (21) Design specifications for a pump or turbine system
Political Sci (20) Redline a management measure / legislative policy
Psychology (21) Writing a study protocol of a neuroimaging research project
Sociology (20) Analyzing responses from sociological interviews to identify themes relevant to the research question
Visual Arts (20) The objective of this task is to write a catalog entry for an art exhibition

Table 1: Fields represented in DOLOMITES, with number of tasks in parentheses and a sample task from
each field.

recruit as many experts. Across tasks, there are
an average of ∼2.78 sections in the input and
∼2.82 sections in the output. Collectively, tasks
in DOLOMITES are cognitively demanding and ver-
satile in the types of reasoning they require. For
instance, a diagnostic task in medicine requires in-
ductive reasoning to go from particular symptoms
to a general diagnosis. Whereas, in legal analysis,
deductive reasoning is required to reason about
how laws are interpreted in a specific case and
analogical reasoning is needed as lawyers com-
pare current cases with precedents. Similarly, in
software application design, abstract reasoning is
important while creativity is necessary for certain
tasks in the visual arts. While it is hard to de-
scribe the type of reasoning required for all tasks,
every methodical task essentially involves ana-
lyzing the input, making inferences based on the
input and domain-specific knowledge, and finally,
providing a justification in writing.

3.3 Task Validation and Societal
Implications

We validate our collection of tasks by consult-
ing an independent group of experts. Specifically,
we collect Likert ratings for each task from three

experts on the following axes (the precise descrip-
tion for each item on the scale is provided in
Appendix A):

• Representativeness: How likely is this task
to be conducted by an expert in your field?

• Complexity: How would you rate the
complexity of this task?

• Time Required: How much time is typically
required to complete this task?

• Usefulness: Would you or other experts find
it useful if an AI system were to propose
initial outputs for this task (which may be
lacking), that can be validated and improved
by experts?

The questions above are motivated by prior
work showing that AI writing assistants could
significantly benefit the productivity of experts
(Eloundou et al., 2024; Noy and Zhang, 2023;
Dell’Acqua et al., 2023). Beyond productivity,
we were additionally interested in expert opinions
about the societal implications of using language
models as writing assistants. Hence, for each task,
we elicit answers to the following questions which
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Figure 3: We conducted validation of methodical tasks in the DOLOMITES task collection by consulting an
independent group of 3 experts from the field to which the task belongs. Here we show the Likert distributions of
their ratings across various axes of importance. The question associated with each axis is listed in Section 3.3.

require a free-text response in addition to a Likert
rating.

• Anonymity Required: Is it important to
ensure anonymity of any individuals or or-
ganizations if an AI system is used for
conducting this task?

• Biased Outcomes: Could relying on au-
tomatically generated outputs for this task
result in biased or potentially harmful
decisions for certain groups of people?

• Ethical Considerations: Are there ethical
considerations (e.g., privacy, copyright is-
sues) associated with the use of AI systems
for this task?

• Workforce Impact: Could partial automa-
tion of this task have an impact on the
workforce in the short term?

• Accessibility Requirements: Would the use
of AI tools for this task require mak-
ing exceptional considerations to ensure
accessibility?

The main outcomes of our validation study are
presented in Figure 3. We find that the tasks
collected in DOLOMITES are ecologically valid,
i.e., they are likely (∼76%) to be conducted
by field experts. Most of them are of medium
or high complexity, requiring moderate (a few

years of experience) or substantial (several years
of experience) expertise. While they are complex
tasks, judgments about time taken reveal that most
(∼61%) would take an expert from 1 hour to 7
days to complete. This degree of difficulty sug-
gests that it is conceivable for language models
to be useful assistants for these tasks. Finally, an
overwhelming majority of experts would be inter-
ested (∼62%) or open to trying (∼32%) to use a
language model that proposes initial outputs for
the task.

With regard to the societal implications of lan-
guage model use, the need for anonymity emerged
as a concern for a significant number of tasks
(∼58%). In fields like medicine, psychology,
and law, experts emphasized the importance of
protecting patient/client confidentiality. Similarly,
experts felt strongly that proprietary information
and trade secrets should be kept private in fields
like business. Experts further thought that using
language model responses without careful pe-
rusal can result in biased outcomes (∼56% of
tasks) which could affect marginalized or un-
derrepresented groups. They also raised various
ethical concerns relating to copyright issues, pri-
vacy issues and stifling of human creativity due to
over-reliance on AI.

Many experts (∼43%) recognized that partial
automation of writing tasks is likely to impact the
workforce in the short term, potentially leading to
changes in job roles or skill requirements. At the
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Figure 4: Here, we outline the method for constructing examples of tasks in DOLOMITES. Using the task objective
for a task, we first generate more specific queries to search for relevant web documents, where we constrain our
search to authoritative domain names for the task. Using a set of retrieved evidence passages and the complete
task description, we then generate an example of the task that fits the task structure using a language model. This
example is then post-edited by the same expert who provided the task (further described in Section 3.4.2).

same time, they were optimistic that this would
improve productivity and bring positive changes
to the nature of the work. It is important to ensure
that users of all backgrounds and capabilities have
equal access to language models. A significant
number of tasks (∼40%) were rated as requiring
exceptional considerations to be made for ensur-
ing accessibility to all users. Across fields, experts
highlighted that while language models as writ-
ing assistants can improve productivity, human
oversight is important for responsible use of these
technologies.

3.4 Example Collection
To evaluate language model capabilities in assist-
ing experts with their tasks, we create examples
of input and output sections with concrete de-
tails. We adopt a human-in-the-loop methodology,
where initial examples are generated by a model,
which are then post-edited by the same expert who
provided the task. We describe this process below.

3.4.1 Retrieval-Augmented Generation
We believe that samples of methodical tasks are
partially available in documents on the Web.
Hence, we retrieve relevant documents for each
task and generate examples by prompting models
with passages from these documents as context.
This process is depicted in Figure 4 and explained
below.

Query Formulation. Given a task description,
we first need to find more specific queries that
could potentially result in relevant Web docu-
ments. For example, for writing a catalog entry for
an art exhibition, search queries like ‘‘renaissance
art exhibition catalog entry’’ or ‘‘picasso guernica
catalog entry’’ are likely to result in documents

that contain examples of the task. To generate
search queries, we prompt Bard (Manyika and
Hsiao, 2023) (with 1 exemplar) with the task ob-
jective and instruct it to generate more specific
queries that can help find Web documents which
contain demonstrations of the task (Table 11 in
Appendix B). We generate 10 search queries for
each task and restrict search to reliable and author-
itative sources. These are collected by prompting
Bard (with 1 exemplar) with the task objective
to generate URLs to domain names which will
be useful to find real examples for the given task
(Table 12 in Appendix B).

Evidence Collection. Using each search query,
we gather the top-10 documents from Google
search restricted to relevant domains with the
site: operator in the query. Documents are then
split into passages of 4,000 characters with a 100
character sliding window.

Conditional Generation. Having gathered ev-
idence which may contain task demonstrations,
we generate examples by prompting models with
this evidence. We explore a multi-document set-
ting, where passages are sampled from multiple
documents and a single document setting, where
passages are sampled from a single document as
we found that the appropriate choice depends on
the task.1 Passages are reranked using an in-house
reranker and the top-5 passages are provided as
context, along with the task description, to a large
language model (Gemini-Ultra (Team, 2023) and
Bard in our case), which is asked to generate an

1For instance, a task that requires drafting a legal opinion
might benefit from multiple relevant documents whereas a
single document might be sufficient for writing the catalog
entry for an artwork.
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Figure 5: Expert judgments of original examples along three dimensions: task structure followed (whether the
example includes all the input and output sections from the task description), level of detail (whether the example
shows a detailed and concrete sample of the task), and factual correctness (whether the example is factually
correct).

example of the task (Table 13 in Appendix B). Not
all information mentioned in the task description
is required to be present in the context and the
model is allowed to infill content to construct an
example. We generate up to 10 examples for each
task.

3.4.2 Expert Post-Editing

Even though they are based on retrieved Web
documents, model-generated examples could have
many issues. They may not adhere to the struc-
ture specified in the task description, they may
contain factual inconsistencies or inaccuracies,
lack in depth, or be vague. To remedy these is-
sues, we present the examples to the same experts
who wrote the tasks for post-editing. They are
asked to choose the most plausible example out
of four variants, and use single or multi-document
evidence.

Prior to post-editing, experts are asked to label
examples according to three criteria on a Likert
scale: adherence to task structure, factual correct-
ness, and level of detail. They are also shown
1) the evidence passages for the example and 2) a
critique (generated using Gemini-Ultra with the
prompt in Appendix B, Table 14) that may not be
comprehensive, to aid them in identifying issues
with the example. The critique is provided to make
post-editing more efficient. They are required to
fix any valid issues they recognize in the exam-
ple as well as any valid issues identified by the
critique.

3.4.3 Example Quality Analysis

Automatic Analysis. Expert judgments of au-
tomatically generated examples are shown in
Figure 5. We find that the majority of exam-
ples already follow the task structure (∼85%) and

Figure 6: Histogram of (a) word-level edit distance be-
tween original and post-edited example and (b) cosine
similarities based on n-grams in post-edited examples
and evidence used as context.

Avg Length Avg section
presence %(↑)

Flesch-Kincaid
Grade Level (↑)

original 388.98 92.81 11.69
post-edited 590.24 97.67 13.46

Table 2: Statistics of the original and post-edited
examples in DOLOMITES.

most of them are probably or definitely correct.
However, a large number of examples are lack-
ing in depth and detail. We show a histogram of
the word-level edit distance between all tokens in
the original and edited example in Figure 6a and
relevant statistics of the original and post-edited
examples in Table 2. The histogram suggests that
on average, there are significant changes made to
the original examples during post-editing. Since
most experts judge that examples are lacking in
depth, the edited examples are expectedly much
longer on average. The edited examples also ad-
here better to the task description (on average,
97.67% sections in the task description are found
in the edited examples compared to 92.81% in
the original examples). We analyzed a random
set of 100 examples and labeled each example
with the type(s) of edits it contained. We found
broadly the following types of edits: fact ad-
dition (88%), fact deletion (20%), fact update
(65%), stylistic rewrites (76%), and reorganization
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(23%). These edit types are described further
in Appendix A. Finally, we compute readability
scores of the examples as a noisy approximation
of the complexity and level of detail in the text, us-
ing the Flesch-Kincaid Grade Level test (Kincaid
et al., 1975). Higher readability values indicate
that a piece of text requires more formal edu-
cation and expertise to understand. We find that
post-edited examples have higher scores, possibly
indicating higher level of technical depth.

Data Contamination Analysis. Examples in
DOLOMITES are created by conditioning on pas-
sages from Web documents. We do not require
these documents to contain complete examples of
the task, and models are allowed to infill infor-
mation to create an example. However, if these
documents are seen by models during large-scale
pretraining, it might be difficult to conduct a clean
evaluation. We examine whether this is the case
by computing the similarity of the post-edited ex-
amples to the evidence passages provided during
generation. Figure 6b plots the cosine similarity
between the n-grams found in the post-edited ex-
amples and evidence used as context. As can be
seen, similarity to retrieved passages is fairly low
in most examples, which suggests a low risk of
memorization due to pretraining.

In addition, we check directly if text in our ex-
amples can be found in large pretraining corpora.
We use an open-source toolkit called WIMBD
(Elazar et al., 2024) to measure the presence of
text in generated examples in two large pretraining
corpora: C4 (Raffel et al., 2020) (364 million doc-
uments) and Dolma (Soldaini et al., 2024) (5,245
million documents). These corpora are widely
used to train large language models (Raffel et al.,
2020; Dodge et al., 2021; Chowdhery et al., 2023;
Groeneveld et al., 2024). We follow prior work
from Chowdhery et al. (2023) and determine an
example as contaminated if 70% of all possible
8-grams in the example were seen at least once
in the pretraining corpus. Conducting this pro-
cess for a random sample of 100 examples in
DOLOMITES, we find that none of the examples are
contaminated.

4 Experiments

4.1 Setup and Models

We create a development-test split for DOLOMITES,
with 820 examples in the development (dev) set

and 1,037 examples in the test set. There are
172 seen tasks with examples in both dev and test
and 99 unseen tasks with examples only in the
test set.

For evaluation, we considered multiple perfor-
mant models from various companies as well
as open-source models. In all cases, we fa-
vored instruction-tuned variants because of their
better performance on other benchmarks. Specif-
ically, we report experiments with Claude-3
Opus (Anthropic), Command-R-Plus (Cohere,
2024), Gemini-1.5-Pro and Gemini-1.5-0409
(Team, 2024) and Gemini-Pro (Team, 2023),
GPT-3.5-Turbo and GPT-4 (OpenAI, 2023),
Mixtral-8×7B and Mixtral-8×22B (Jiang et al.,
2024) and Mistral-Large (Mistral, 2024), and
OLMo-7B-Instruct (Groeneveld et al., 2024). In
all cases, we prompt models with the task de-
scription, the input sections corresponding to an
example, and instruct them to generate the output
sections for the example, in a zero-shot manner.
Hyperparameters, prompts, and model identifiers
are in Appendix B.

4.2 Automatic Evaluation

4.2.1 LM-based Evaluation

LM-based Pairwise Evaluation. We consider
two modes of LM-based evaluation: pairwise
evaluation and fine-grained absolute evaluation
(illustrated in Figure 7). Language models are be-
ing increasingly used as evaluators ((Chiang and
Lee, 2023), and our primary evaluation also in-
volves using LMs as evaluators. However, recent
work points out that LM judgments can be mis-
leading and biased (Shen et al., 2023; Wang et al.,
2024; Zheng et al., 2023; Panickssery et al., 2024).
We use multiple language models as judges to
give preferences for a pair of model outputs. While
this does not alleviate the problem of biased LM
judgments, we believe it is slightly more reliable
since we are not biased by a single model’s judg-
ments. In all comparisons, we use one of the
strongest models, GPT-4, as the base comparison
model. We sample outputs on the test set from
a candidate model and GPT-4 (randomizing their
order in the prompt) and ask the evaluator model
to judge which output is better and provide a justi-
fication. We consider three models as evaluators:
GPT-4, Claude-3 Opus, and Gemini-1.5-0409. The
win rate is computed by summing up the number
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Figure 7: Automatic evaluation protocol for DOLOMITES, involving two modes of evaluation: pairwise evaluation
of two candidate outputs and fine-grained absolute evaluation of a candidate output on our proposed axes.

of wins for a candidate model plus half the num-
ber of ties.

LM-based Fine-Grained Evaluation. In addi-
tion to preference judgments, we evaluate models
on five finer grained aspects of response qual-
ity: task adherence, factual correctness, depth,
completeness, and coherence.2 We use GPT-4
to collect absolute ratings (on a scale of 1–5)
of individual model responses on each of these
aspects.

4.2.2 Other Evaluation Metrics

Round-Trip Factual Consistency. We also
measure the extent to which statements in the
model output are consistent with statements in
the reference output. We compute 1) forward en-
tailment considering a reference section as the
premise and the corresponding model section as
the hypothesis and 2) reverse entailment consid-
ering a model output section as the premise and
the corresponding reference section as the hypoth-
esis. Scores are aggregated over all sections and
examples. These metrics loosely capture the no-
tions of precision and recall, we also report the
harmonic mean of the two. We use the TRUE
model (Honovich et al., 2022) to predict entail-
ment scores (ranging from 0 to 1) and report 95%
confidence intervals. Note that this metric has
weaknesses, as it assumes that there is a single
valid reference for each example, which may not
be true for many examples in DOLOMITES.

2These aspects of response quality are defined in Table 17.

Conventional Metrics. Prior work has recog-
nized that conventional metrics for text generation
are lacking in various ways (Liu et al., 2016;
Novikova et al., 2017; Krishna et al., 2021). Nev-
ertheless, for completeness, we report results with
ROUGE-L (Lin, 2004) and BLEURT (Sellam
et al., 2020). In addition, we report the aver-
age output length and average section presence
(i.e., the percentage of output sections speci-
fied in the task that are present in the generated
output, averaged across all examples) as a mea-
sure of instruction-following capabilities. Note
that the average length of reference outputs is
341.42 tokens.

5 Results and Discussion

Human Evaluation. To evaluate the reliability
of automatic metrics, we measure how well the
above automatic evaluation measures correlate
with human judgments. Specifically, we sample
200 pairs of model outputs, where each pair comes
from two randomly chosen models. We (the au-
thors) then label which model output is better (or
if they are tied) according to their task adher-
ence, factual correctness, and depth.3 On these
200 pairs, we also get automatic preference judg-
ments from all the evaluation measures discussed
in Section 4.2 (we convert float scores for two
outputs into binary judgments). The percentage
agreements between human labels (with and with-
out pairs with ties) and all evaluation measures

3Human agreement between two annotators was found to
be 75% on 100 examples when including ties.
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Avg Avg Section nli nli nliModel
Length Presence %

BLEURT ROUGE-L
(forward) (reverse) (h-mean)

Claude-3 Opus 417.41 91.53 0.4156 0.2395 0.3584[0.34,0.38] 0.3769[0.36,0.40] 0.3674
Command-R-Plus 440.44 92.92 0.4068 0.2134 0.3926[0.37,0.41] 0.3623[0.34,0.38] 0.3768
Gemini-1.5-Pro 349.27 95.25 0.4136 0.2371 0.4065[0.39,0.42] 0.3846[0.37,0.40] 0.3952
Gemini-1.5-0409 361.87 95.74 0.4068 0.2361 0.3994[0.38,0.42] 0.3984[0.38,0.42] 0.3989
Gemini-Pro 269.68 93.61 0.4124 0.2280 0.3415[0.32,0.36] 0.3090[0.29,0.33] 0.3244
GPT-3.5-Turbo 240.89 88.98 0.4276 0.2309 0.3854[0.37,0.40] 0.2949[0.28,0.31] 0.3341
GPT-4 407.35 95.46 0.4155 0.2271 0.3934[0.38,0.41] 0.3993[0.38,0.42] 0.3963
Mistral-Large 327.12 92.61 0.4158 0.2390 0.3524[0.33,0.37] 0.3523[0.33,0.37] 0.3523
Mixtral-8×22B 339.16 95.16 0.4212 0.2450 0.3951[0.38,0.41] 0.3583[0.34,0.37] 0.3758
Mixtral-8×7B 386.61 88.39 0.4098 0.2266 0.3290[0.31,0.35] 0.3097[0.29,0.33] 0.3191
OLMo-7B-Instruct 784.22 74.02 0.3905 0.1752 0.1929[0.18,0.21] 0.1721[0.16,0.19] 0.1819

Table 3: Results on the DOLOMITES test set with standard metrics and factual consistency using NLI
models. We report 95% confidence intervals along with the average NLI scores.

Figure 8: Percentage agreement of automatic evaluation
measures with human labels. Pairwise judgments from
Claude-3 Opus have the highest correlation with human
labels.

are in Figure 8. In summary, we find that
LM-based evaluation measures have the high-
est correlations with human judgments, fol-
lowed by the NLI measures and then ROUGE-L
and BLEURT. We note that an evaluator that al-
ways picks the longer output also has reasonable
agreement rates.

We first report overall statistics of model re-
sponses and scores using conventional metrics in
Table 3. Based on the average section presence,
we note that models are largely effective at gen-
erating almost all relevant output sections from
the task description. A few models (GPT-4 and
Gemini-1.5-0409) excel more at following this
instruction. Based on the NLI scores, we note
that the nli (reverse) scores are on average lower
than nli (forward), which suggests that generated
outputs contain statements not entailed by the
reference, e.g., because they are inaccurate or ir-
relevant. We observe that Gemini-1.5-0409 and
GPT-4 produce more information that is factu-
ally consistent with the reference, while Claude-3
and Command-R-Plus are also performant. Once
again, we note that reference-based metrics gener-
ally penalize outputs which are valid but different
from the reference, and there might not just be

Model GPT-4 Claude-3 Opus Gemini-1.5-0409
Claude-3 Opus 48.1 52.7 49.6
Command-R-Plus 34.4 45.8 38.7
Gemini-1.5-Pro 41.1 46.1 51.0
Gemini-1.5-0409 42.9 55.4 60.9
Gemini-Pro 17.6 21.0 22.1
GPT-3.5-Turbo 12.2 11.5 12.4
GPT-4 50.0 50.0 50.0
Mistral-Large 27.2 28.8 26.7
Mixtral-8×22B 21.6 25.1 17.6
Mixtral-8×7B 17.8 23.5 15.6
OLMo-7B-Instruct 4.2 5.5 3.3

Table 4: Model win rates (±3) against
GPT-4 on the DOLOMITES test set using three
LM-based autoraters (GPT-4, Claude-3 Opus, and
Gemini-1.5-PP). GPT-4’s win rate is 50% since it
is the base comparison model. Note that pairwise
judgments from Claude-3 Opus have the highest
correlation with human judgments.

a single reference for some of these examples,
especially when the task is more subjective.

Pairwise LM Evaluation Results. We show
the win rates according to different LM evalu-
ators in Table 4. Based on these win rates, we
note that a few models such as Claude-3 Opus,
Gemini-1.5-Pro, and Gemini-1.5-0409 prove to be
comparable to GPT-4. We also report win rates
with a length penalty for longer outputs in Table 7
and the overall rankings do not change.

Fine-Grained LM Evaluation Results. Fi-
nally, we show ratings of models according
to finer-grained aspects of response quality in
Table 5. The overall conclusions are roughly sim-
ilar, i.e., Gemini-1.5-0409, Claude-3 Opus, and
GPT-4 have the highest ratings across axes. Across
the axes considered in our rubric, models strug-
gle most with the level of technical depth of the
generated text.
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Model Task
Adherence

Factual
Correctness Depth Completeness Coherence Average Rating

Claude-3 Opus 4.57 4.73 4.36 4.54 4.84 4.61
Command-R-Plus 4.36 4.57 4.17 4.35 4.73 4.44
Gemini-1.5-Pro 4.41 4.70 4.21 4.38 4.82 4.50
Gemini-1.5-0409 4.49 4.71 4.30 4.46 4.83 4.56
Gemini-Pro 3.95 4.24 3.62 3.87 4.43 4.02
GPT-3.5-Turbo 3.90 4.34 3.37 3.73 4.36 3.94
Mistral-Large 4.38 4.59 3.98 4.31 4.72 4.40
Mixtral-8×22B 4.23 4.47 3.83 4.18 4.60 4.26
Mixtral-8×7B 3.99 4.23 3.64 3.94 4.36 4.03
OLMo-7B-Instruct 2.59 3.04 2.62 2.61 2.95 2.76

Table 5: Results on the DOLOMITES test set along fine-grained aspects of response quality. All ratings are
performed on a scale of 1-5 by GPT-4-Turbo-Preview and we report average ratings across all examples
(all average ratings were found to be statistically different from the best model’s average ratings, which
is in this case, Claude-3 Opus).

Figure 9: Heatmap of average ratings aggregated
by field for Claude-3 Opus, Gemini-1.5-0409, and
Command-R-Plus.

Results by Field. Figure 9 illustrates how model
performance fluctuates across fields; we show
average ratings based on the fine-grained LM eval-
uation for Claude-3 Opus, Gemini-1.5-0409, and
Command-R-Plus. Across models, we find that a
few fields have significantly lower average rat-
ings: Education, Sociology, and Chemistry. Tasks
from a subset of these fields are sometimes sub-
jective (e.g., Create a lesson plan to teach STEM

Figure 10: Heatmap of average ratings of Claude-3
Opus aggregated by length (in tokens) of reference
output.

educators, Write a summary of findings about the
conclusions of a sociology book), which can make
them hard to evaluate. In other cases, outputs
can be lacking technical depth for tasks which
require more domain expertise (e.g., Drafting a
experimental protocol for a chemical synthesis
procedure.). On the other hand, tasks in fields
such as Literature, History, and Journalism have
higher average ratings, some of which focus on
factual reporting and narratives that may be easier
to reason about.

Results by Length. Next, we evaluate whether
output length is correlated with performance.
Specifically, we show average ratings based on
the fine-grained LM evaluation for Claude-3 Opus
split into bins by length of the reference outputs.
Scores stratified by length bins are shown in
Figure 10. We find that examples which require
longer outputs are significantly harder for models,
supported by the fact that examples with longer
outputs have lower average scores.
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Error Analysis. We analyze generated
outputs from 3 high-performing models
(Gemini-1.5-0409, GPT-4, and Claude-3 Opus)
for examples where average ratings of responses
are lowest. Broadly, we observe the following
patterns:

• Lacking depth (Table 8): Writing technical
documents requires depth and focus, which
was sometimes found to be lacking. For ex-
ample, concrete statistical results and method
details were absent from a task on writing up
a report on an experimental study in clinical
psychology.

• Verbosity (Table 9): A common characteris-
tic of some model outputs was their verbosity.
Common patterns included defining jargon
when not necessary, and generating many
filler statements that do not introduce new
information.

• Missing information (Table 10): There were
a few cases where a single output section
required multiple pieces of information, but
the model entirely missed producing a subset
of them.

6 Related Work

Domain-Specific NLP Benchmarks. The use
of language technologies in domain-specific
scenarios has the potential to help experts.
Prior work has evaluated models through
domain-specific benchmarks for standard tasks
like QA (Hendrycks et al., 2021; Malaviya
et al., 2024) and summarization (Hayashi et al.,
2021). Many benchmarks have been proposed
for specific fields (Rein et al., 2024; Xia et al.,
2024), including law (Shen et al., 2022; Niklaus
et al., 2023; Guha et al., 2024) and medicine
(Tsatsaronis et al., 2015; Pampari et al., 2018;
Jin et al., 2019, 2021; Fleming et al., 2024).

A notable difference between this line of work
and DOLOMITES is the task formulation (i.e., QA vs
methodical tasks). QA involves addressing a spe-
cific information need in response to a query while
conducting methodical tasks requires following
a structured and consistent procedure, involving
multiple steps, to complete a goal-oriented task.

Naturalistic Evaluation. Evaluation that is
grounded in realistic use cases, is important for re-
liable benchmarking (Rolnick et al., 2024). Prior
efforts on creating NLP benchmarks which are
representative of real user needs use query logs
(Nguyen et al., 2016; Kwiatkowski et al., 2019)
and chat histories (Lin et al., 2024). While these
benchmarks are useful for evaluating responses to
generic user queries, they do not allow us to study
their abilities in assisting with domain-specific
tasks in an isolated manner. For instance, Ouyang
et al. (2023) find that user requests in chat his-
tories often involve ‘‘planning’’ and ‘‘design’’,
but these are largely ignored in benchmarks.
Our work fills this gap by presenting a typol-
ogy of domain-specific tasks grounded in realistic
scenarios.

Language Models as Writing Assistants. Re-
cent work has investigated the potential of
language models to act as writing assistants
for domain experts (Calderwood et al., 2020;
Lee et al., 2022; Gero et al., 2022; Li et al.,
2024). While there is favorable evidence that they
can improve productivity of experts (Noy and
Zhang, 2023), their usage has broader societal
consequences, including potential impact on the
workforce (Eloundou et al., 2024). We analyze a
subset of these societal implications relevant for
our methodical tasks in Section 3.

7 Discussion

As part of DOLOMITES, we present various data
artifacts that can be used to study the abilities of
language models in assisting domain experts with
writing tasks. We outline these artifacts and their
intended use below.

Task Collection. We present a collection of 519
writing tasks spanning 25 fields that is represen-
tative of work undertaken by domain experts on
a regular basis. We believe this is the first collec-
tion of tasks built with input from domain experts
about scenarios in which language models can be
useful to them. These tasks can be used to identify
applications of LMs in various fields and to cater
model development to ecologically valid tasks.

Task Validation Labels. We conduct an inde-
pendent assessment of the validity of the tasks and
the societal implications of using LMs as writing
assistants for these tasks. We believe that these
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validation labels can be useful to study the practi-
cal benefits of using LMs as writing assistants for
these tasks and to select tasks that are representa-
tive of real-world use. Labels concerning societal
implications can enable researchers to take into ac-
count important considerations such as anonymity
of user data, bias in decision making, accessibility
requirements, etc, when considering deployment
of language models for assisting experts.

Task Examples. Finally, we present examples
of tasks that are semi-automatically generated by
seeking input from the same experts who pro-
vided the tasks. The examples of tasks are meant
to represent concrete and plausible instances of the
task, so that models can be evaluated on the tasks.
To conduct such an evaluation, models are re-
quired to generate the output of an example given
the task description and the example input. In
Section 4.2.1, we present results on DOLOMITES us-
ing LM-based evaluators as well as other metrics.
We find that LM-based evaluators correlate best
with human judgments and propose future work
to consider the following modes of evaluation on
DOLOMITES:

1. Pairwise preference judgments for overall
response quality: Pairwise evaluations from
models (especially from Claude-3 Opus)
have moderately high agreement with hu-
man labels (67% with ties, 77% without ties)
that are better than other evaluation metrics.
These can be used to get an estimate of
overall model abilities.

2. Finer-grained LM evaluation for absolute
judgments on given axes: In Section 5, we
present fine-grained evaluation on axes that
are important for our tasks. We propose future
work to conduct finer-grained evaluations on
the same axes to gather better insights about
the strengths and weaknesses of models.

We believe that as LM-based evaluators im-
prove, we will be able to more accurately evaluate
outputs for examples in DOLOMITES.

8 Conclusion

We introduce DOLOMITES, a benchmark that is
closely tied to realistic use cases of domain ex-
perts. The generalization of these use cases as

methodical tasks provides a way to study ca-
pabilities of language models across tasks and
domains. We consider a scenario where AI sys-
tems can act as tools for experts to amplify their
problem-solving capabilities (Engelbart, 2023)
and perform their tasks more efficiently. We ver-
ify that our tasks are representative across fields
and that human oversight is necessary if language
models propose initial outputs for these tasks.
Evaluation of a broad range of contemporary lan-
guage models suggests that there is a large room
for models to improve on generating outputs for
our tasks.

Future directions are many and varied. The
tasks in DOLOMITES constitute a mere sample from
25 fields in English language. We hope to further
expand the set of tasks to cover a wider range
of scenarios and languages. We could also con-
sider tasks that involve modalities other than text
in input or output, and multi-turn settings, where
models continually improve their outputs through
feedback and revision. On the modeling front, we
will consider sophisticated generation techniques
such as the one proposed by Narayan et al. (2023),
that first generate a plan of the output and then fill
in different sections, potentially with attributions
to sources (Fierro et al., 2024). Our experimental
results revealed that automatic evaluation of gen-
erated text is particularly challenging. Our data
contains a single reference output for an exam-
ple input and does not model diverse perspectives
of experts and the innate subjectivity of tasks
(Ganguli et al., 2023). While conventional metrics
do not account for this subjectivity, it is unclear if
LM-based evaluators innately capture this subjec-
tivity. More research is needed to ensure language
model responses are given credit for alternative,
but valid responses.
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Cercas Curry, and Verena Rieser. 2017.
Why we need new evaluation metrics for

NLG. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natu-
ral Language Processing, pages 2241–2252,
Copenhagen, Denmark. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/D17-1238

Shakked Noy and Whitney Zhang. 2023. Exper-
imental evidence on the productivity effects
of generative artificial intelligence. Science,
381(6654):187–192.https://doi.org/10
.1126/science.adh2586, PubMed:
37440646

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774v6.

Siru Ouyang, Shuohang Wang, Yang Liu,
Ming Zhong, Yizhu Jiao, Dan Iter, Reid
Pryzant, Chenguang Zhu, Heng Ji, and Jiawei
Han. 2023. The shifted and the overlooked:
A task-oriented investigation of user-GPT
interactions. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural
Language Processing, pages 2375–2393, Sin-
gapore. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2023.emnlp-main.146

Brian Owens. 2023. How nature readers are us-
ing chatgpt. Nature. https://doi.org/10
.1038/d41586-023-00500-8

Anusri Pampari, Preethi Raghavan, Jennifer
Liang, and Jian Peng. 2018. emrQA: A large
corpus for question answering on electronic
medical records. In Proceedings of the 2018
Conference on Empirical Methods in Natu-
ral Language Processing, pages 2357–2368,
Brussels, Belgium. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D18-1258

Arjun Panickssery, Samuel R. Bowman, and Shi
Feng. 2024. Llm evaluators recognize and
favor their own generations. arXiv preprint
arXiv:2404.13076v1.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien

17

https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/2024.naacl-long.167
https://doi.org/10.18653/v1/2024.naacl-long.167
https://doi.org/10.2139/ssrn.4391243
https://doi.org/10.1162/tacl_a_00583
https://doi.org/10.1162/tacl_a_00583
https://doi.org/10.18653/v1/2023.findings-emnlp.200
https://doi.org/10.18653/v1/2023.findings-emnlp.200
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.1126/science.adh2586
https://doi.org/10.1126/science.adh2586
https://pubmed.ncbi.nlm.nih.gov/37440646
https://doi.org/10.18653/v1/2023.emnlp-main.146
https://doi.org/10.18653/v1/2023.emnlp-main.146
https://doi.org/10.1038/d41586-023-00500-8
https://doi.org/10.1038/d41586-023-00500-8
https://doi.org/10.18653/v1/D18-1258
https://doi.org/10.18653/v1/D18-1258


Dirani, Julian Michael, and Samuel R. Bowman.
2024. GPQA: A graduate-level google-proof
q&a benchmark. In First Conference on
Language Modeling.

David Rolnick, Alan Aspuru-Guzik, Sara Beery,
Bistra Dilkina, Priya L. Donti, Marzyeh
Ghassemi, Hannah Kerner, Claire Monteleoni,
Esther Rolf, Milind Tambe, and Adam White.
2024. Position: Application-driven innovation
in machine learning. In Proceedings of the
41st International Conference on Machine
Learning, volume 235 of Proceedings of Ma-
chine Learning Research, pages 42707–42718.
PMLR.

Natalie Schluter. 2017. The limits of auto-
matic summarisation according to ROUGE.
In Proceedings of the 15th Conference of
the European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, pages 41–45, Valencia, Spain. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/E17-2007

Thibault Sellam, Dipanjan Das, and Ankur
Parikh. 2020. BLEURT: Learning robust met-
rics for text generation. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 7881–7892,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.704

Chenhui Shen, Liying Cheng, Xuan-Phi
Nguyen, Yang You, and Lidong Bing.
2023. Large language models are not
yet human-level evaluators for abstrac-
tive summarization. In Findings of the
Association for Computational Linguistics:
EMNLP 2023, pages 4215–4233, Singa-
pore. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2023.findings-emnlp.278

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan
Dahlberg, Margo Schlanger, and Doug
Downey. 2022. Multi-lexsum: Real-world sum-
maries of civil rights lawsuits at multiple
granularities. Advances in Neural Information
Processing Systems, 35:13158–13173.

Luca Soldaini, Rodney Kinney, Akshita Bhagia,
Dustin Schwenk, David Atkinson, Russell
Authur, Ben Bogin, Khyathi Chandu,

Jennifer Dumas, Yanai Elazar, Valentin
Hofmann, Ananya Jha, Sachin Kumar, Li Lucy,
Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew Peters,
Abhilasha Ravichander, Kyle Richardson,
Zejiang Shen, Emma Strubell, Nishant
Subramani, Oyvind Tafjord, Evan Walsh,
Luke Zettlemoyer, Noah Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse
Dodge, and Kyle Lo. 2024. Dolma: An
open corpus of three trillion tokens for
language model pretraining research. In Pro-
ceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15725–15788,
Bangkok, Thailand. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2024.acl-long.840

Gemini Team. 2023. Gemini: A family of highly
capable multimodal models. arXiv preprint
arXiv:2312.11805v4.

Gemini Team. 2024. Gemini 1.5: Unlocking mul-
timodal understanding across millions of tokens
of context. arXiv preprint arXiv:2403.05530v4.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias
Zschunke, Michael R. Alvers, Dirk
Weissenborn, Anastasia Krithara, Sergios
Petridis, Dimitris Polychronopoulos, et al.
2015. An overview of the bioasq large-scale
biomedical semantic indexing and ques-
tion answering competition. BMC Bioinfor-
matics, 16(1):1–28. https://doi.org/10
.1186/s12859-015-0564-6, PubMed:
25925131

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao
Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea
Deac, et al. 2023. Scientific discovery
in the age of artificial intelligence. Nature,
620(7972):47–60. https://doi.org/10
.1038/s41586-023-06221-2, PubMed:
37532811

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai,
Dawei Zhu, Binghuai Lin, Yunbo Cao,
Lingpeng Kong, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2024. Large language models
are not fair evaluators. In Proceedings of
the 62nd Annual Meeting of the Association

18

https://doi.org/10.18653/v1/E17-2007
https://doi.org/10.18653/v1/E17-2007
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2023.findings-emnlp.278
https://doi.org/10.18653/v1/2023.findings-emnlp.278
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://pubmed.ncbi.nlm.nih.gov/25925131
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1038/s41586-023-06221-2
https://pubmed.ncbi.nlm.nih.gov/37532811


for Computational Linguistics (Volume 1: Long
Papers), pages 9440–9450, Bangkok, Thai-
land. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2024.acl-long.511

Congying Xia, Chen Xing, Jiangshu Du, Xinyi
Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and
Caiming Xiong. 2024. FOFO: A benchmark
to evaluate LLMs’ format-following capability.
In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 680–699,
Bangkok, Thailand. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2024.acl-long.40

Wenting Zhao, Xiang Ren, Jack Hessel, Claire
Cardie, Yejin Choi, and Yuntian Deng. 2023.
(inthe) wildchat: 570k chatgpt interaction logs
in the wild. In The Twelfth International
Conference on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng,
Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric
Xing, Hao Zhang, Joseph E. Gonzalez, and
Ion Stoica. 2023. Judging LLM-as-a-judge with
MT-bench and chatbot arena. In Thirty-seventh
Conference on Neural Information Processing
Systems Datasets and Benchmarks Track.

A Annotation Details

Participants. We recruited 266 participants for
our study from Prolific. Participants were required
to be fluent in English, and came from 25 differ-
ent countries, across Africa, Europe, and North
and South America. In terms of their background,
participants were required to have an undergrad-
uate degree and 3 years of work experience in
their respective field. These requirements were
first enforced through Prolific’s audience filters,
followed by a screening where participants were

asked to self-report their educational qualifica-
tions and work experience. They each provided
two tasks, so for each field, we recruited half the
number of the participants as the number of tasks
reported in Table 1. Lastly, they were required to
have at least 50 prior approved submissions and
an approval rate of over 99%. Participants were
informed that their provided data will be used to
evaluate large language models in realistic scenar-
ios. We obtained prior consent from all annotators
before recruiting them for all studies.

Setup. Annotators were paid $20 per hour for
their work. For task collection, we allocated 40
minutes to write two tasks, and for task validation,
we allocated 15 minutes per task. For post-editing
examples, we allocated 20 minutes per example.

Edit Types. In a random sample of 100 exam-
ples, we found the following types of edits were
made to the examples:

• Fact Addition (88%): Addition of new
statements to the example.

• Fact Deletion (20%): Removing statements
from the example.

• Fact Update (65%): Updating existing state-
ments with further elaboration of details, or
adding of new numbers or references.

• Stylistic Rewrites (76%): Simplification,
paraphrasing, or improving grammar,
spelling or tone of text.

• Reorganization (23%): Restructuring of sen-
tences, paragraphs, or sections in the
example, which may be done to fit the task
description.

Annotation Interface Screenshots. We show
screenshots of the annotation interfaces presented
to annotators for task validation and example
post-editing in Figures 11 and 12, respectively.

19

https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.40
https://doi.org/10.18653/v1/2024.acl-long.40


B Experimental Details

Models. The specific identifiers for the mod-
els evaluated in this work are given in Table 6.
Open-source models were obtained from the Hug-
gingFace model hub, while proprietary models
were obtained through the organizations’ official
APIs.

Generation Configurations. In all generation
tasks, we set the temperature for generation to
be 0.1. For both example generation and model
evaluation, we sampled a maximum of 4,096 to-
kens (or the maximum sequence length of the
model).

Prompts. We provide the prompts used for var-
ious components of our work. The prompts used
for example creation are given in Tables 11–13.
The prompt used to generate the critique shown
to annotators is shown in Table 14. The prompt
used to generate outputs from candidate models is
shown in Table 15. Finally, the prompt used for
generating LM-based judgments for evaluation
are shown in Tables 16 and 17.

Model Name Identifier

Claude-3 Opus claude-3-opus-20240229
Command-R-Plus command-r-plus
Gemini-1.5-Pro4 gemini-1.5-pro-latest
Gemini-1.5-04095 gemini-1.5-pro-preview-0409
Gemini-Pro gemini-pro
GPT-3.5-Turbo gpt-3.5-turbo
GPT-4 gpt-4-turbo-preview
Mistral-Large mistral-large-latest
Mixtral-8×22B Mixtral-8×22B-Instruct-v0.1
Mixtral-8×7B Mixtral-8×7B-v0.1
OLMo-7B-Instruct OLMo-7B-Instruct

Table 6: List of models used in our experiments
and their identifiers.

Model GPT-4 Claude-3 Opus Gemini-1.5-0409

Claude-3 Opus 47.6 52.1 49.1
Command-R-Plus 33.4 44.4 37.5
Gemini-1.5-Pro 43.2 48.4 53.6
Gemini-1.5-0409 44.6 57.6 63.4
Gemini-Pro 19.8 23.6 25.0
GPT-3.5-Turbo 14.1 13.3 14.4
GPT-4 50.0 50.0 50.0
Mistral-Large 29.4 31.1 28.8
Mixtral-8×22B 22.9 26.6 18.7
Mixtral-8×7B 18.2 24.0 15.9
OLMo-7B-Instruct 2.7 3.5 3.0

Table 7: Model win rate (±3) against GPT-4
on the DOLOMITES benchmark using three
LM-based autoraters (GPT-4, Claude-3 Opus, and
Gemini-1.5-PP), with a length penalty.

4Accessed from https://aistudio.google.com
/app.

5Accessed from https://console.cloud
.google.com/vertex-ai/generative.
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Table 8: Sample response showcasing lack of detail in the generated output.
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Figure 11: Interface shown to annotators for task validation.
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Figure 12: Interface shown to annotators for example post-editing.
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Table 9: Sample response showcasing verbosity in the generated output (note the Analysis and Verdict
sections).
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Table 10: Sample response showcasing missing information in the generated output (note the Funding
Application section).
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Table 11: Prompt used for generating specific search queries for a task.

Table 12: Prompt used for searching for authoritative domain names for a task.
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Table 13: Prompt used for generating initial examples for a task.

Table 14: Prompt used for generating critiques for model-generated examples.
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Table 15: Prompt used for generating outputs from candidate models for evaluation.

Table 16: Prompt used for generating LM-based judgments.
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Table 17: Prompt used for generating LM-based judgments.
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