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Abstract

Transformers trained on natural language data
have been shown to exhibit hierarchical gen-
eralization without explicitly encoding any
structural bias. In this work, we investigate
sources of inductive bias in transformer mod-
els and their training that could cause such
preference for hierarchical generalization.
We extensively experiment with transformers
trained on five synthetic, controlled datasets
using several training objectives and show that,
while objectives such as sequence-to-sequence
modeling, classification, etc., often fail to lead
to hierarchical generalization, the language
modeling objective consistently leads to trans-
formers generalizing hierarchically. We then
study how different generalization behaviors
emerge during the training by conducting prun-
ing experiments that reveal the joint existence
of subnetworks within the model implement-
ing different generalizations. Finally, we take a
Bayesian perspective to understand transform-
ers’ preference for hierarchical generalization:
We establish a correlation between whether
transformers generalize hierarchically on a
dataset and if the simplest explanation of
that dataset is provided by a hierarchical
grammar compared to regular grammars ex-
hibiting linear generalization. Overall, our
work presents new insights on the origins of
hierarchical generalization in transformers and
provides a theoretical framework for studying
generalization in language models.

1 Introduction

Natural language is structured hierarchically:
Words are grouped into phrases or constituents,
which can be further grouped to form higher-level
phrases up to the full sentence. How well do neu-
ral networks trained on language data learn this
hierarchical structure has been a subject of great

interest (Tenney et al., 2019; Peters et al., 2018;
Lin et al., 2019; Wu et al., 2020). A useful tool to
understand the model- and dataset-specific prop-
erties that results in aforementioned phenomenon
is the test for hierarchical generalization, i.e., eval-
uating the capability of a model to generalize to
novel syntactic forms, which were unseen during
training. A classic problem to test for hierarchical
generalization is question formation, where given
a declarative sentence, e.g., My walrus does move
the dogs that do wait., the task is to transform it
into a question: Does my walrus move the dogs
that do wait? The task is accomplished by moving
one auxiliary verb to the front. The correct choice
to move does in this example (rather than do),
is predicted both by a hierarchical rule based on
the phrase-structure syntax of the sentence, and
by a linear rule that prescribes moving the first
auxiliary.

Hence, as a test for hierarchical generalization,
we can ask: For neural networks trained from
scratch on data consistent with both hierarchical
and linear rules (ambiguous data), do they learn to
generalize hierarchically or do they learn a linear
rule? This question has been well studied in past
work for different neural network architectures
and it has been shown that RNN and transformer
architectures, which lack explicit tree-structure
encoding, fail to generalize hierarchically (Frank
and Mathis, 2007; McCoy et al., 2018, 2020; Petty
and Frank, 2021; Mueller et al., 2022). However,
Murty et al. (2023) showed that, surprisingly,
when trained for a long time after attaining perfect
training accuracy, transformers do start to gener-
alize hierarchically, and named this phenomenon
Structural Grokking.

In this work, we ask: Why do transformers
show hierarchical generalization, despite lack-
ing architectural biases towards hierarchical
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structure? We first explore if the choice of train-
ing objective can influence hierarchical generali-
zation in transformers. Specifically, we consider
five objectives—language modeling, sequence-to-
sequence modeling, prefix language modeling, se-
quence classification and cloze completion—and
study the generalization behavior of transformers
trained from scratch1 under five synthetic, con-
trolled settings following prior work—English
question formation (as described above), Ger-
man question formation (Mueller et al., 2022),
tense-reinflection (McCoy et al., 2020), passiviza-
tion (Mueller et al., 2022), and simple agreement,
a task that we construct. We find that only the
language modeling objective consistently obtains
strong hierarchical generalization, while the other
objectives often fail, implicating language mod-
eling objective as a source of bias towards hier-
archical generalization.

Further, to understand how hierarchical struc-
ture is learned and represented during training, we
propose two new attention head pruning strategies
to discover subnetworks corresponding to differ-
ent generalizations. We find that both hierarchical
and linear types of generalizations can be discov-
ered as subnetworks in the trained model, and
these subnetworks continue to coexist over the
course of training, despite the overall model per-
forming closer to one kind of generalization over
the other.

Finally, we attempt to explain why language
modeling results in a preference towards hier-
archical structure using the Bayesian framework
from Perfors et al. (2011). Specifically, we con-
sider generative probabilistic grammars (PCFGs)
to model the simple agreement task data by con-
structing hierarchical grammars consistent with
the hierarchical rule as well as regular grammars
consistent with the linear rule. We then compare
their posterior probabilities to understand which
grammar has a better trade-off for the goodness
of fit (given by the likelihood) and simplicity
(given by the prior on grammars). Our anal-
ysis reveals a correlation between transformer
LMs generalizing hierarchically and hierarchi-
cal grammars having higher posterior, compared

1Since our aim is to understand hierarchical generalization
in transformers in isolation, following prior work (e.g., Murty
et al., 2023), we train transformer models from scratch,
without any pretraining, eliminating the possibility of these
models having any hierarchical bias due to pretraining on
language data (Mueller et al., 2022).

with regular grammars, thereby providing a po-
tential explanation to transformers’ preference to-
wards hierarchical generalization.

Our contributions can be summarized as:

1. We show that language modeling train-
ing objective acts as a source of inductive
bias towards hierarchical generalization in
transformers.

2. We show that when trained on ambiguous
data, transformer LMs learn multiple rules
to perform the task that are encoded as sub-
networks, which once formed continue to
co-exist throughout training.

3. Our Bayesian analysis suggests that trans-
formers generalize hierarchically because
the hierarchical grammars that fit the data
are often ‘‘simpler’’ compared to regular
grammars.

To our knowledge, the present work is the
first to show that language modeling objective is
a source of inductive bias for hierarchical gen-
eralization and to use the Bayesian perspective
to explain hierarchical generalization in language
models.

2 Background

Hierarchical Generalization. Hierarchical gener-
alization is a form of systematic generalization,
where, given instances generated from a hierar-
chical grammar, we evaluate the capability of a
model to generalize to unseen syntactic forms.
For example, consider the task of converting a
declarative English sentence to a question:

1. (a) Input: My walrus does move the dogs
that do wait .

(b) Output: Does my walrus move the dogs
that do wait ?

Notice that the task can be accomplished by
moving one auxiliary verb to the front of the sen-
tence. For sentences with two auxiliaries like 1a,
as English speakers we know that the auxiliary to
move is the one associated with the head verb in
the sentence (i.e., does, which is associated with
move, not do, which is associated with wait).
Modeling this rule requires understanding the
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Task Examples

QF
(German)

unsere Papageien können meinen Papagei,
der gewartet hat , akzeptieren .
→ können unsere Papageien meinen Papagei,
der gewartet hat , akzeptieren ?
ihr Molch, der gegessen hat , kann lächeln .

→ kann ihr Molch, der gegessen hat , lächeln ?

Passivization

some tyrannosaurus entertained your quail behind
your newt .
→ your quail behind your newt was entertained by
some tyrannosaurus .
the zebra upon the yak confused your orangutans .

→ your orangutans were confused

by the zebra upon the yak .

Tense
reinflection

my zebra by the yak swam .
→ my zebra by the yak swims .
my zebras by the yak swam .

→ my zebras by the yak swim .
Simple
Agreement

my zebra by the yak → swims
my zebras by the yak → swim

Table 1: Examples from the different tasks we
study, highlight indicates examples in the gen-
eralization set.

phrase structure of the language. We call this
the Hierarchical Rule. One can alternatively con-
sider a much simpler explanation, the Linear Rule:
moving the first auxiliary in the sentence to the be-
ginning. However, if we consider sentences with
a different syntax (relative clause attached to sub-
ject instead of object) like the example below:

2. (a) Input: My walrus who doesn’t sing does
move .

(b) Linear rule output: Doesn’t my walrus
who sing does move ?

(c) Hierarchical rule output: Does my
walrus who doesn’t sing move ?

In this case, using the linear rule will result
in an ungrammatical sentence, i.e., outputting 2b
instead of 2c. We study the following question in
our work: Consider neural networks trained from
scratch on data consistent with both hierarchical
and linear rules (like Example 1). When presented
with sentences such as 2a do they generalize
hierarchically (predicting 2c) or linearly (predict-
ing 2b)?

Tasks and Datasets. In our study, we consider
five tasks, including the question formation task
above. Examples from all the tasks are provided
in Table 1. All the tasks follow a common recipe:

The training dataset has examples that are consis-
tent with both hierarchical and linear rules. For
evaluation, two variants of the test data are con-
sidered: an in-distribution test set, which follows
the same distribution as the training data (i.e., also
ambiguous with respect to the correct rule); and
a generalization test set, which consists of exam-
ples which are only consistent with the hierarchi-
cal rule.

For Question Formation, we use the dataset
from McCoy et al. (2020). We also experiment
with Question Formation in German with the
dataset from Mueller et al. (2022). The dataset here
consists of sentences with the modals können/kann
(can) or auxiliaries haben/hat (have/has), together
with infinitival or past participle main verbs as
appropriate, which can be moved to the front
similar to English to form questions. We also
consider Passivization from Mueller et al. (2022),
where the task is to transform a sentence in active
voice to passive, and Tense Reinflection (McCoy
et al., 2020), which involves converting a sentence
in past tense to present. Finally, we introduce a
simplified version of the tense reinflection task,
which we name Simple Agreement. Unlike others,
simple agreement is a single-sentence task where
only the present-tense sentences from the tense-
inflection are considered. In this task, we evaluate
the model’s ability to generate the correct inflec-
tion of the main verb based on the context. Here,
the hierarchical rule requires the verb to agree
with the hierarchically determined subject and the
linear rule requires it to agree with the most re-
cent noun in the sequence. Our motivation for
introducing this new task is that it is much more
straightforward to construct probabilistic gram-
mars for single-sentence tasks, while for sentence-
transformation tasks like question formation, it
can be non-trivial. We make use of the underly-
ing probabilistic grammars heavily in §5, where
we try to provide a Bayesian interpretation of hi-
erarchical generalization in language models.

For all tasks involving transformation of in-
puts (i.e., all except simple agreement), the data-
sets also include input identity pairs. For example,
for question formation, the dataset is augmented
with declarative-declarative pairs. Importantly,
the identity pairs in the training data also include
input sentences whose corresponding outputs
would disambiguate the data, i.e., are only sat-
isfied by the hierarchical rule, although, such out-
puts are not present in the training data and hence
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the transformation task remains ambiguous. This
choice was made in McCoy et al. (2020) (and
others) to familiarize the model with at least the
input sentences for which the outputs remain un-
observed. We provide full details of all the data-
sets in Appendix §A.2.

For all tasks excluding simple agreement, there
are 100k training examples (50k transformation
and 50k identity pairs) and 1k and 10k exam-
ples in in-distribution and generalization test sets,
respectively. For simple agreement, we gener-
ate 50k training examples (and 1k/10k for test
datasets).

Evaluation Metrics. Following prior work
(McCoy et al., 2020; Mueller et al., 2024), for
evaluating question formation (both English and
German) we consider the first-word accuracy,
i.e., given the declarative sentence as the in-
put, evaluate whether the model predicts correct
auxiliary for the first word in the generated ques-
tion. For passivization, we evaluate using the
object noun accuracy, which measures whether
the correct noun was moved to the subject po-
sition. Finally, for tense-reinflection and simple-
agreement, we consider main-verb accuracy, by
evaluating if the main-verb (in the present tense)
has the correct inflection, i.e., appropriately sin-
gular or plural based on the context. When eval-
uated on the in-distribution test set we denote it
as in-distribution accuracy and generalization ac-
curacy for the generalization test set.

3 How the Training Objective Influences
Hierarchical Generalization

Prior work by McCoy et al. (2020), Petty and
Frank (2021), and Mueller et al. (2022) used
sequence-to-sequence training objective to train
encoder-decoder models and found that RNNs and
transformers do not exhibit hierarchical general-
ization. More recently, Murty et al. (2023) used
a language modeling objective to train decoder-
only transformers, which they found did gen-
eralize when trained for a sufficiently large
number of epochs. To our best knowledge, this
distinction about the choice of objective func-
tion has not been called out by prior work.
Hence we conduct a systematic study to under-
stand what effect the training objective has on
hierarchical generalization.

3.1 Training Objectives

We consider the following five training objectives:

Language Modeling. Given a sequence of to-
kens, the language modeling objective trains the
model to predict each token in a sequence given
the preceding tokens. The model is optimized to
minimize the negative log-likelihood of the se-
quences in the training data. For transformers, the
language modeling objective is typically associ-
ated with decoder-only models like GPT (Brown
et al., 2020). For the question formation task
and the declarative-question pair from the Intro-
duction, if s = 〈s1, s2, . . . , s21〉 = 〈my, walrus,
does, move, the, dogs, that, do, wait, ., quest,
does, my, walrus, move, the, dogs, that, do, wait,
?〉, the cross-entropy loss is computed over s1
through s21, each given the preceding tokens:
− log p(s) = −

∑21
i=2 log p(si | s1, . . . , si−1).

Sequence-to-sequence Modeling. The
sequence-to-sequence (seq2seq) modeling objec-
tive (Sutskever et al., 2014), is used to train the
model to generate a target sequence (〈s12, . . . ,
s21〉 in the above example) given an input
sequence (〈s1, . . . , s11〉). This objective, which
includes only the terms from i = 12 to 21 in
equation above, is typically associated with an
encoder-decoder model as used in the original
transformer architecture (Vaswani et al., 2017).
Note that the seq2seq objective is more suited for
tasks with an explicit input and output (like ques-
tion formation and tense inflection), but is not
suitable for the simple agreement task. Hence, we
skip the seq2seq objective for simple agreement.

Prefix Language Modeling. In this objective
(Dong et al., 2019), we again generate the output
text given the input (or ‘‘prefix’’), but we use a
single transformer decoder instead of an encoder-
decoder model. Unlike the original language
modeling objective, here the loss is only computed
over the output text and does not include the pre-
fix. One modification that we make to how the
prefix-LM objective is typically used, is that we
use a causal mask for the prefix tokens as well
instead of having bi-directional attention over the
prefix tokens, since we found the latter to perform
subpar (we compare the two in detail in §3.3).

Sequence Classification. Here the model is
trained to map the entire sequence to a discrete
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label. For example, for question formation the
model is given the input declarative sentence and
trained to predict the correct auxiliary from the set
of auxiliary verbs (do, does, don’t, doesn’t) that
should occur at the start of the question, i.e., a
four-way classification task.

Cloze Completion. Here, the model is given a
sequence of tokens with some tokens masked and
trained to predict the masked tokens. For example,
for the question formation task, we consider the
declarative-interrogative pair and mask out tokens
in the interrogative sentence at all positions where
the auxiliaries could be present. Note that this
objective is similar to masked language modeling
as in Devlin et al. (2019); however, instead of
masking tokens randomly, we mask the specific
tokens as described above.2 For the passivization
task, we do not evaluate the cloze completion
objective, because (unlike other tasks) the output
sequence is significantly different from the input,
which makes defining the masking strategy in this
case non-trivial. Please refer to §A.3.1 for details
of each objective for all five tasks.

3.2 Experimental Setup

We train transformer models from scratch with
8 heads and embedding dimension 512 for all
experiments. Following Murty et al. (2023), for
question formation and tense reinflection, we train
transformer models with 6 layers and 4 layers,
respectively, for all objectives excluding seq2seq.
For the remaining tasks, we use 6-layer trans-
former encoder/decoder layers depending on the
training objective. For the seq2seq objective, we
use a 6-layer encoder/6-layer decoder model for
all tasks. We use the Adam optimizer (Kingma
and Ba, 2015) for training the model with a learn-
ing rate of 0.0001, following Murty et al. (2023)
and use batch size of 8, training the model for
300k steps (24 epochs) for all tasks excluding
simple agreement, which we train for 200k steps
(32 epochs).

Baselines. By design of the test datasets, a
model following the linear rule will obtain 100%
in-distribution and 0% generalization accuracy.
Only a model consistent with the hierarchical
rule will obtain 100% accuracy on both test sets
for all tasks.

2Our initial experiments with random-masking resulted
in subpar performance, even on in-distribution test sets.

Figure 1: Effect of training objective on hierarchical
generalization in transformers. The error bars corre-
spond to the standard errors across 5 seeds.

3.3 Results

We compare the five objectives for the five tasks
and show the results in Figure 1. Notice that while
all the objectives almost always obtain close to
100% accuracy on the in-distribution test sets,
there is much variation in the generalization ac-
curacy. Particularly, we observe that only the
language modeling objective consistently obtains
high generalization accuracy on all five tasks,
while models trained with other objectives often
struggle. While seq2seq and prefix LM perform
well on tense reinflection and passivization, re-
spectively, they perform much worse on the other
tasks. Thus, the choice of the objective is likely
the reason behind the discrepancy in the results of
Murty et al. (2023) and of Petty and Frank (2021)
and Mueller et al. (2022).

We note that while the LM objective consis-
tently achieves high generalization performance,
it is not perfect as in the case of question for-
mation and tense reinflection, where its average
performance is roughly 76%. Recall that these
reported numbers are averaged across 5 seeds.
For all the tasks we find that there are seeds for
which LMs achieve 100% generalization accu-
racy, which apart from the two exceptions dis-
cussed above, is not the case for other objectives.
Interestingly, we observe (in Figure 1) that trans-
former LMs on average perform better on Ger-
man question formation than the English version
of the same task. We suspect this might be be-
cause the grammar used for generating the German
dataset is structurally richer than the English gram-
mar, as it also consists of both infinitival and past
participle forms of the main verbs, while only in-
finitival forms are included in the English version.
As noted in McCoy et al. (2018), presence of rich
hierarchical cues in the data can aid in hierarchi-
cal generalization.
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Robustness of Negative Results. We next
check how robust are our negative results for non-
language modeling objectives not exhibiting hi-
erarchical generalization across different choices
of hyperparameters. We consider model depth
∈ {2, 4, 6, 8, 10, 12, 16}, number of attention
heads per layer ∈ {2, 4, 8, 16, 32}, and embed-
ding dimension ∈ {64, 128, 256, 512, 1024} for
all the four non-LM objectives. We vary one
hyperparameter at a time while keeping the other
two fixed to the default values. Additionally, for
prefix-LM we consider both the variants with
causal attention and bidirectional attention (the
original formulation from Dong et al. [2019]) on
the input tokens, as we find this choice to in-
fluence the model’s generalization capabilities.
We provide results for the question formation
task across different hyperparameter settings in
Appendix Figure 4. As we can, see none of the
hyperparameter settings results in matching the
generalization performance of language modeling
objective, which was 76% on average. The clos-
est we get is 60% average generalization perfor-
mance for prefix-LM with causal attention when
using 12 layers, where 3 out of 5 seeds do end up
with perfect generalization (not the case with any
other objectives where none of the seeds succeed).
We find this phenomenon to also hold for ques-
tion formation German and passivization tasks
(Figure 5 in Appendix), where seq2seq, prefix-LM
(with bidirectional attention), classification, and
cloze completion objectives fail to exhibit hierar-
chical generalization. However, for these tasks we
do see prefix-LM with causal attention to perform
on-par with language modeling. Overall, our re-
sults still show the most consistent trend for hi-
erarchical generalization when using language
modeling objective, and only using prefix-LM
with causal attention, which is the most similar to
language modeling out of all the objectives we
study, to perform on par for some hyperparameter
settings (typically with larger depth). The only dif-
ference between LM objective and prefix-LM ob-
jective with causal attention is the computation of
loss over all tokens for the former, while only for
the output tokens for the latter. Our results suggest
that modeling loss over partial number of tokens
in the sequence (e.g., only the output tokens and
not the inputs) might be sufficient for hierarchi-
cal generalization in some cases as long as we per-
form autoregressive modeling. We leave further
examination of this phenomenon for future work.

Takeaways. Overall, our experiments indicate
language modeling as a source of inductive bias
for the models to generalize hierarchically. As for
why that might the case we do a more in-depth
investigation in §5.

4 Discovering Subnetworks with
Different Generalization Behaviors

The results from Murty et al. (2023) show that
the transformer LMs obtain perfect in-domain
accuracy much earlier during training, while gen-
eralization comes later. This suggests that the
model might be implementing something like the
linear rule early in training and eventually gen-
eralizes to the hierarchical rule. In this section,
we explore whether these rules are implemented
as subnetworks in the model and ask how these
subnetworks evolve over the course of training.

Finding Subnetworks. Following Merrill et al.
(2023), we use pruning to find the existence of
subnetworks corresponding to different general-
izations. In particular, we use the attention head
pruning method from Voita et al. (2019), which
introduces learnable gates for each attention head
of a trained transformer model. Pruning is then
performed by training these learnable gates while
freezing the original model parameters, to min-
imize negative log-likelihood objective, but also
adding an L0-penalty as regularization to ensure
sparsity. Since the L0-norm is nondifferentiable,
a stochastic relaxation is used, which consid-
ers the gates as random variables drawn from
head-specific hard concrete distributions (Louizos
et al., 2018).

After completion of pruning, all gates are either
fully open or closed, and a closed gate implies that
the output of the corresponding head is zeroed-out
in the computation of multi-head self-attention.
Thus the pruning procedure does not modify any
weights of the original model and merely performs
subset selection on attention heads of the model.
To find subnetworks consistent with different gen-
eralizations (linear-rule and hierarchical rule) we
introduce three pruning strategies which differ in
the data used for pruning:

1. Train-prune uses the original ambiguous
training dataset to prune the attention heads.
The subnetwork thus found is likely to be a
compressed version of the full model.
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2. Gen-prune uses a small fraction of the gener-
alization set (1%) to prune the attention heads.
If successful, this would yield a subnetwork
consistent with hierarchical generalization—
obtaining close to 100% generalization
accuracy.

3. Train\Gen-prune involves minimizing the
(negative log-likelihood) loss on the training
data and maximizing it for the (1%) general-
ization data. In this case, successful pruning
should yield a subnetwork that exhibits gen
eralization consistent with the linear rule,
i.e., obtains 0% generalization accuracy but
obtains 100% in-distribution accuracy.

Experimental Setup. For pruning, we use a
learning rate of 0.05, the L0 penalty coefficient as
0.015, and train for 10k steps, which we found to
work well across different pruning settings. We
report the experiments for the question forma-
tion task and discuss the others in Appendix §A.4
(Figures 6, 7), for which we also obtain consis-
tent results. Since we are interested in discovering
subnetworks implementing hierarchical and lin-
ear rules, while pruning, we only use the negative
log-likelihood of the first auxiliary in the ques-
tion for computing the loss. To ensure that the
discovered subnetworks are not just a by-product
of the pruning procedure, we consider control
groups, which are obtained by pruning randomly
initialized networks.

Results. In Figure 2, we show the effect of dif-
ferent pruning methods on an intermediate model
checkpoint, which does not yet generalize hierar-
chically. After Train-prune, roughly 80% heads
of the full model are removed and in-distribution
performance is conserved, though there is a drop in
generalization performance (30% to 23%). After
Gen-prune, we are able to find a subnetwork that
achieves 100% generalization accuracy. This is
striking, because the full network performed much
worse. After Train\Gen-prune, we find a sub-
network that achieves 0% generalization accuracy
while having 100% in-distribution performance;
this subnetwork is behaviorally equivalent to the
linear rule. Hence, these pruning experiments re-
veal the existence of subnetworks implementing
different generalization behaviors. For the con-
trol groups, we find all three pruning methods
to be unsuccessful obtaining 25% (i.e., random
performance) on both the in-distribution and gen-

Figure 2: Pruning a transformer LM trained for 15000
steps using the three methods. Dark blocks mean the
head is pruned and light means it is kept.

eralization test sets, providing further evidence
that these subnetworks are not introduced by the
pruning methods, and behaviors akin to the two
rules are implemented within the language model.

We also analyze how these subnetworks evolve
over the course of training and, interestingly, we
find that once formed, these subnetworks continue
to coexist over the course of training (Appendix
Figure 8). This is true even when the behavior of
the aggregate model becomes closer to the hierar-
chical rule with training; the competing linear-rule
subnetwork does not really disappear. We hypoth-
esize that the ambiguous training data (with two
plausible generalizations, linear and hierarchical)
is the reason for the existence of the subnetworks
with very different generalization behaviors. To
evaluate this hypothesis, we consider the case
where the model is trained with disambiguated
data—we augment the ambiguous training dataset
with examples that are only consistent with the
hierarchical rule and find the subnetwork corre-
sponding to linear rule to disappear in this case
(check Appendix Figures 8, 9 for details).

Effect of Head Capacity. We next investigate
what effect the number of attention heads in the
network has towards the presence of the two
subnetworks. In addition to our original models
trained with 8 heads per layer, we also train mod-
els with 16 heads, 4 heads, and 1 head and analyze
the training dynamics using the same procedure
as above. For models with 16 and 4 heads per
layer (Figures 10a and 10b in the Appendix) we
find results consistent with the 8 heads case—i.e.,
the two heads form early during the training and
continue to co-exist throughout the training. In-
terestingly, for 1 head per layer case (Figure 10c
in the Appendix), we find that both Gen-prune
and Train\Gen-prune on average (across the
5 seeds) fail to discover their respective subnet-
works. This is particularly noteworthy, because
the full model with 1 head on average gets better
generalization performance than the 4 heads per
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layer model (0.7 for the former and 0.6 for the
latter). Characterizing the behavior of the 1 head
model remains an open question as we didn’t find
evidence of either of the two presupposed general-
izations, which we leave for future work. Overall,
these results show that the head capacity, i.e., the
number of attention heads, might be crucial for the
development of the subnetworks corresponding to
distinct generalization behaviors.

5 A Bayesian Perspective on Hierarchical
Generalization in Transformer LMs

A useful tool for understanding generalization in
neural networks has been ‘‘the simplicity bias’’,
the inductive bias towards simpler functions
(De Palma et al., 2019) has been suggested as
an explanation for why neural networks tend to
generalize instead of overfitting the training data
(Valle-Perez et al., 2019). Can we explain through
‘‘simplicity’’ the preference of the model towards
hierarchical generalization over linear? Our main
argument is that, when considering transformers
trained with the language modeling objective, be-
cause the underlying data-generation process to be
modeled produces each token in the full sequence,
modeling the dependencies between the tokens
hierarchically as opposed to learning a linear rule
for each dependency might be simpler.3 We lever-
age the Bayesian framework of Perfors et al.
(2011), utilizing generative grammars to model
data-generation processes corresponding to the
hierarchical and linear rules, and operationalize
the notion of simplicity and goodness of fit us-
ing the posterior probabilities of the grammars
given the observed data. We then show a corre-
lation between transformers’ generalizing hier-
archically and the training dataset being better
explained using a hierarchical grammar than a
grammar modeling the linear rule according to the
posterior criterion.

5.1 Background

Operationalizing the Notion of Simplicity.
Occam’s Razor principle states that when two
hypotheses explain the data equally well, the sim-
pler one of the two is likely to be the correct
one. This notion is mathematically formalized
in Solomonoff’s theory of inductive inference

3Such an argument is implicit in the field of theoretical
syntax where hierarchical representations are rife.

(Solomonoff, 1964) using a Bayesian approach
by computing the posterior probabilities of the
competing hypotheses and selecting the one with
higher posterior, p(h | D) ∝ p(D | h)·p(h). Here,
p(D | h) denotes the likelihood of the observed
data D based on the hypothesis h, i.e., how well
h fits the data D. p(h) denotes the prior probabil-
ity of h, which in Solomonoff’s theory assigned
higher values for simpler hypotheses h. Hence, by
computing the posterior p(h | D), Bayesian infer-
ence balances the tradeoff between the goodness
of fit of a hypothesis (likelihood) and its simplicity
(prior)—‘‘Bayesian Occam’s Razor’’.

Probabilistic Grammars. Since our training
objective is language modeling, we need to con-
sider hypotheses that generate the entire sequence
of tokens as represented in the training data. Fol-
lowing Perfors et al. (2011), we use generative
grammars to model the data-generation process
for language generation. For the purposes of this
work we consider probabilistic context-free gram-
mars (PCFGs) that can be represented using a
5-tuple, i.e., G = {V,Σ, R, S,Θ}. Here, V de-
notes the set of nonterminal symbols that form
phrases or constituents in a sentence, Σ denotes
the set of terminal symbols or words in the sen-
tences, R ∈ V × {V ∪ Σ}∗ denotes the set of
production rules mapping phrases to sub-phrases
or words, S ∈ V is the start symbol that rep-
resents the whole sentence, and Θ denotes the
probabilities on the production rules given each
non-terminal. PCFGs are typically used to model
the hierarchical phrase structure of a language. We
can also apply some constraints to the form of pro-
duction rules in R to obtain special cases (subsets)
of CFGs. For example, regular grammars form a
subset of CFGs whose production rules can be put
into a right-linear form: A → bC, where A and C
are nonterminal symbols and b is a terminal.

We can view the data-generation process for
dataset D using the probabilistic grammar G, and
compute the posterior p(G | D) to measure the
simplicity and goodness of fit of a grammar G.

5.2 Method

We now give an overview of how we apply the
Bayesian approach discussed above to understand
hierarchical generalization in transformer LMs.
We start by constructing a PCFG to model the hi-
erarchical rule (denoted CFG) and a regular gram-
mar (Reg) that generates data based on the linear
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rule. We then generate data using both grammars –
DCFG from CFG and DReg from Reg. The in-
tersection of the two datasets, DCFG ∩ DReg,
contains ambiguous examples consistent with both
the linear rule and hierarchical rule. We will use
this as our training corpus Dtrain. We then compute
the posterior probabilities for both CFG and Reg
given Dtrain and select the one with the higher pos-
terior: G∗ = argmaxG∈{CFG,Reg} p(G | Dtrain).
We then train a transformer language model on
Dtrain, and check if it generalizes according to
G∗. Specifically, if G∗ = CFG, does the trans-
former follow the hierarchical rule, and if G∗ =
Reg, does the transformer follow the linear rule?
The selection of G∗ is intended to simulate ‘‘ide-
alized’’ Bayesian learning, and check to what ex-
tent the transformer’s learning behavior matches
G∗ across different scenarios. Below, we provide
details of each of the steps.

Task. For this study we consider the simple
agreement task, as constructing hierarchical and
linear grammars for its data is straightforward.4

Constructing Grammars. Following Perfors
et al. (2011), we hand-construct the CFG and
regular grammars. The CFG is constructed so that
each verb agrees with the hierarchically connected
subject, while the regular grammar is constructed
to follow the linear rule (verb agrees with the
most recent noun). The constructed grammars are
assigned uniform probabilities for the production
rules, i.e., given a nonterminal, all productions
are equally likely. For CFGs, we use Chomsky
Normal Form for productions: Each production
rule is of the form A → BC or A → a, where
A,B,C are nonterminals and a is a terminal sym-
bol. Similarly, for the regular grammar Reg, we
use the right-linear form for every rule: A → bC
or A → a. Like Perfors et al. (2011), we also
adopt a type-based approach for constructing the
grammars: Terminal symbols Σ instead of being
the word tokens (e.g., walrus, sing) are syntactic
categories (e.g., singular-noun, intransitive-verb,
etc.), so that we can use these grammars to
strictly model abstract syntactic structures and
not vocabulary-type frequencies, and it also gives

4Question formation and tense reinflection involve pairs
of sentences, where the second sentence is a transformed
version of the first. Such sentence pairs would likely require
more complex frameworks like synchronous grammars (Aho
and Ullman, 1969), which we leave to future work.

us a manageable number of possible generations
by the grammars.

For both context-free and regular grammars we
generate two variants, depending on the diversity
of the sentence types generated by them:

Small Grammars CFG-S and Reg-S: Here
we construct CFG and regular grammars that only
generate 18 sentence types. Recall that a sentence
type is a sequence of syntactic categories, e.g.,
sentences like The walrus sings can be repre-
sented by sentence type determiner singular-noun
intransitive-verb. The hand-constructed CFG-S
has 15 nonterminals and 21 production rules and
Reg-S has 14 nonterminals and 22 production
rules. Out of the 18 sentence types generated by
both the grammars, 12 are common between the
two (ambiguous) and 6 remaining in CFG-S that
are only consistent with the hierarchical rule and
6 only consistent with linear rule in Reg-S.

Large Grammars CFG-L and Reg-L. Here,
we consider larger grammars, which can generate
much more diverse sentence types—180 sentence
types. The major difference here is that these
grammars are allowed to generate relative clauses
with both the subject or object in the sentence.
CFG-L has 25 nonterminals and 38 productions,
while Reg-L has 41 nonterminals and 63 produc-
tions. Note that based on these numbers alone it
is evident that we need much more complex reg-
ular grammars to generate diverse sentence types.
Out of the 180 sentence types generated by each
grammar, 120 are common between the two.

Generating Datasets. We generate the sentence
types from each of the 4 grammars—DCFG-S,
DReg-S, DCFG-L, and DReg-L. As mentioned
before, the training dataset is constructed by con-
sidering the sentence types common between the
CFG and corresponding regular grammar. We
have Dtrain−S = DCFG-S ∩ DReg-S for the small
grammars, and Dtrain−L = DCFG-L ∩ DReg-L for
the larger ones. Note that these are the datasets
of sentence-types, and transformers are trained
on sentences. To generate sentences from these
corpora of sentence types, we repeatedly sample
sentence types, and replace the syntactic cate-
gories with the allowed tokens for that category
(e.g., determiner can be replaced with the, our, my,
etc.). Using this procedure we generate a corpus
of 50k sentences from Dtrain−S and 50k sentences
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from Dtrain−L. To simplify the notation, we de-
note training data for transformers by Dtrain−S and
Dtrain−L as well.

The generalization test sets are generated by
considering the sentence types that are unique to
a specific grammar. For example, we can have the
test setDHier

test−S = DCFG-S\DReg-S, which contains
sentence types that are unique toDCFG-S and hence
only consistent with the hierarchical rule and not
the linear rule. Similarly, DLin

test−S = DReg-S \
DCFG-S, consists of sentence types consistent only
with the linear rule. We can equivalently define
DHier

test−L and DLin
test−L. While talking about the two

datasets in general and not specifically about the
small (S) or large (L) variants, we just use the
notation DHier

test and DLin
test .

Computing the Posterior for Each Grammar.
Now that we have the four grammars constructed,
we can compute the posteriors for the grammars
given the corresponding training datasets. Note
that, since we are only interested in comparing
the posteriors of CFG and regular grammars, we
can estimate the posterior by computing the like-
lihood and prior and taking product of the two,
i.e., p(G | D) ∝ p(D | G) p(G). Recall that
the prior probability of a grammar can be com-
puted by calculating the probability of each of the
choices that goes into defining that grammar:
p(G) = p(|V |)

∏|V |
k=1 p(Pk) p(θk)

∏Pk
i=1 p(Rk,i).

Here, |V | is the number of nonterminals, Pk is
the number of productions from the kth nontermi-
nal with the probabilities of each production given
by θk ∈ [0, 1]Pk , and Rk,i denotes the right hand
side of the ith production rule from the kth non-
terminal. Following Perfors et al. (2011), we use a
geometric prior on p(|V |) and p(Pk), flat Dirichlet
prior on θk, and compute Rk,i depending on the
nature of the production rule. We provide detailed
computations of the prior in Appendix §A.5.1.

The likelihood p(D | G), measures the prob-
ability that the dataset D is generated from the
grammarG. Form sentence types in the datasetD,
the likelihood is given by p(D | G) =

∏m
i=1 p(Si |

G), where Si’s denote the sentence types in D.
p(Si | G) is computed by taking product of the
probabilities of production rules used to derive
Si using G (including adding the probabilities
when multiple parses are possible for Si). Note
that computing p(Si | G) requires estimating the
production probabilities θk from each nontermi-
nal. We use the Inside-Outside algorithm (Baker,

1979) to obtain an approximate maximum likeli-
hood estimate of the production probabilities on
the dataset D.

Other Choices of Grammars. Given our gen-
erated training datasets (Dtrain−S,Dtrain−L), there
can be grammars other than the four we con-
structed that can generate these datasets. In
their analysis, Perfors et al. (2011) also consider
two subsets of the regular grammars: Flat and
One-state. Flat grammars have production rules
which are the list of memorized sentences, i.e., of
the form S → a1a2 · · · an. Here a′is are terminal
symbols and there are no nonterminals other than
S. One-state grammars are equivalent to finite
state automata with a single state and hence per-
mit any terminal symbol to follow any other. We
also include these two grammars in our analysis.

Further, even among the class of context-free
and regular grammars, there might exist gram-
mars with better posteriors on the training datasets
Dtrain−S and Dtrain−L than the ones that we
hand-construct. To remedy this, we also experi-
ment with applying local search on our constructed
grammars, using Bayesian model merging (BMM)
(Stolcke and Omohundro, 1994) to minimize the
grammars while improving the posterior on the
respective training datasets.

Explaining Generalization in Transformers.
Recall that our goal has been to quantify the
notion of simplicity of the two competing hy-
potheses (hierarchical and linear rule), which are
consistent with the training data used to train
transformer-based LMs. Our aim is to check
whether the trained transformer LM exhibits gen-
eralization consistent with choosing the simpler
(i.e., larger posterior) grammar. We evaluate this
by comparing the negative log-likelihood (NLL)
assigned by the transformer LM to the test sets
corresponding to the two generalizations. For ex-
ample, for the transformer model trained using
data derived from Dtrain−L, we evaluate its NLL
(averaged over all examples) on the generalization
test sets derived from the two grammars DHier

test−L

and DLin
test−L, and check if it assigns a lower NLL

to the test data coming from the grammar with
higher posterior. For a more intuitive metric, we
also compute the main-verb accuracy from §3.1.

5.3 Results
Comparing Posteriors. The log-probabilities
for all the hand-constructed grammars on the two
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Grammar
Dtrain−L (120 types) Dtrain−S (12 types)

log-Prior log-Likelihood log-Posterior log-Prior log-Likelihood log-Posterior

CFG −367 −639 −1006 −169 −34 −203

Reg −619 −616 −1235 −190 −30 −220

Flat −4567 −574 −5141 −281 −30 −311

One-State −58 −2297 −2355 −51 −121 −172

Table 2: Comparing the log-probabilities for the
grammars given Dtrain−L and Dtrain−S.

datasets is provided in Table 2. On both datasets,
the one-state grammar gets the highest prior,
which is expected as it is the simplest grammar that
we study, but also has the lowest log-likelihood.
The flat grammars fit both the datasets the best
and have the highest log-likelihood, which is also
expected since a flat grammar memorizes the
training data, but it comes at a cost of increased
complexity as indicated by the lowest prior.

For the high diversity dataset Dtrain−L, we ob-
serve that the CFG best balances the tradeoff
between the simplicity and goodness of fit, ob-
taining the highest posterior. This shows why it
would be more beneficial to model this dataset
using a hierarchical phrase structured grammar
than a linear grammar. However, when we con-
sider the low-diversity dataset Dtrain−S, while the
CFG still obtains a better posterior than the reg-
ular grammar, it is the one-state grammar obtains
the highest posterior out of all the grammars. This
is consistent with the findings of Perfors et al.
(2011), who found that for small corpora, one-state
grammars often obtain higher posteriors than the
context-free and regular grammars. In such cases,
learning the distribution of syntactic category se-
quences, without abstract nonterminals, wins out
on the Bayesian criterion.

We obtain consistent findings with some subtle
differences for the grammars minimized us-
ing the BMM algorithm, which we detail in
Appendix §A.5.2 and Table 3.

Sensitivity to Prior. Since choosing the prior is
subjective and can influence results, we conduct a
sensitivity analysis by varying the parameters of
the geometric distributions used to define p(|V |)
and p(Pk). We consider 49 different combina-
tions of these parameters and find the results
from Table 2 to hold for all choices (Appendix
Figure 11).

Performance of Transformer-based LMs. We
train the transformer-based LMs on the two
datasets (Dtrain−L,Dtrain−S) and evaluate their

Figure 3: Performance of transformer models trained
on the Dtrain−L and Dtrain−S datasets.

generalization based on the DHier
test and DLin

test test
sets. We use the same experimental setup as dis-
cussed in §3.2. In Figure 3a, we see for the models
trained on the low-diversity dataset Dtrain−S that
the model obtains similar negative log-likelihood
values on both test sets, implying that the model
has no preference for generalizing according to
the linear rule or the hierarchical rule. For this
dataset, neither the CFG nor the regular grammar
were optimal in terms of the posterior probabili-
ties, so we observe that the transformer’s learning
behavior is consistent with the ‘‘idealized’’ setup
above. For the models trained on the Dtrain−L

dataset, however, we see that the model learns
to generalize hierarchically, with the NLL on the
DHier

test test set being significantly lower than that
on the DLin

test test set.
We see these findings reflected on the

main-verb accuracy metric as well (Figure 3b),
where the model trained on the Dtrain−L dataset
obtains close to 100%, while the one trained on
the Dtrain−S dataset obtains close to 50% general-
ization accuracy, again showing no preference for
a hierarchical or linear rule. We also verify that
these results are not just a by-product of the choice
of hyperparameters, and train transformer models
with different number of layers on the Dtrain−S

dataset, and in none of the cases did we observe
the models exhibiting preference for hierarchical
generalization (see results in Appendix Figure 12).

Takeaways. Our results indicate that when
transformers-based LMs are trained on data that
can be generated from multiple grammars with
different complexities, they exhibit generalization
behavior consistent with the simplest grammar.
Under tested conditions, we find that when the
data is syntactically diverse, a hierarchical gram-
mar not only fits the data well but also is simpler
compared to the regular grammars with linear

131



agreements (in agreement with Perfors et al.,
2011). In contrast, for low diversity data, we
find that a non-hierarchical grammar gets higher
posterior and transformers trained on such data
do not exhibit any preference for hierarchical
generalization.

Limitations. David Marr’s famous three levels
of analysis of an information processing system
(e.g., human brain or AI) includes the compu-
tational level, where we consider what does an
ideal solution to the problem that the system is
solving looks like; algorithmic level, what al-
gorithm might solve the problem in question;
and implementation level, where we study how
the representation and algorithm are implemented
physically (Marr, 1982). In our work we only
focused on the computational level analysis, i.e.,
understanding the behavior of transformer LMs in
terms of an ideal (Bayesian) learner. Our results
only provide a correlation between transformers
generalizing hierarchically and training data being
explained more effectively (based on the posterior
criterion) by a hierarchical grammar than a regular
grammar, showing an agreement with the idealised
learner. However, we do not make any claim about
the algorithmic and implementation level details
in transformer LMs—i.e., whether these models
internally learn the underlying grammars. There
is some evidence in prior work showing trans-
former LMs to learn the probabilistic grammars
when trained on data generated from them, e.g.,
Allen-Zhu and Li (2023), show transformer LMs
internally learning the underlying PCFG when
trained on data generated from the same. While
this provides some encouraging support for our
Bayesian interpretation, further investigation of
the internal mechanisms of transformer LMs un-
der our experimental setup is needed to establish
a causal connection, which we leave to explore in
future work.

6 Conclusion

In our work, we studied when and why trans-
formers exhibit hierarchical generalization when
trained on an otherwise ambiguous data consistent
with both linear and hierarchical rules. There are
multiple directions that can be explored in the fu-
ture. While our results suggest language modeling
as a source of hierarchical bias, it still remains
unclear why hierarchical generalization is delayed

(i.e., grokking). While the experiments concern-
ing our Bayesian interpretation only involved the
simple agreement tasks for which it was possible
to construct CFGs, in future it would be interesting
to explore methods to model the simplicity and
goodness of fit for competing hypotheses for tasks
involving transformation of an input sentence to
output sentence. While we show a correlation be-
tween the Bayesian interpretation and the behavior
of transformer LMs, future work can also look at
establishing a causal connection between the two.
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A Appendix

A.1 Code and Datasets
We release our code and datasets for public use:
https://github.com/kabirahuja2431
/transformers-hg.

A.2 Tasks and Datasets
Below we provide the details of the five tasks.

1. Question Formation. As described above,
the task is to transform a declarative sentence into
a question. We use the dataset from McCoy et al.
(2020) for this task, which was constructed from a
context-free grammar (CFG) with three sentence
types varying in the existence and position of the
relative clause (RC) in the sentence: (i) no RC, e.g.,
sentence The walrus does sing; (ii) RC attached to
the object, e.g., sentence 1a; and (iii) RC attached
to the subject, e.g., sentence 2a. The training data
includes (i) declarative-question pairs where the
task is to take a declarative sentence and generate
a question as output and (ii) identity pairs where
the task requires copying an input declarative
sentence. The declarative-question pairs in the
training set only contain sentences without any
RC or with RC attached to the object. Importantly,
the identity pairs in the training data also include
sentences with RC on the subject, to expose the
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Figure 4: Robustness of negative results for non-language modeling objectives across different hyperparameter
setting for the question formation task. For each experiment, we vary one hyperparameter while keeping the other
two fixed to default values, i.e., 6 layers, 8 heads, and 512 embedding dimension. Note that the language modeling
objective achieves an average generalization accuracy of 0.76 with the default hyperparameters.

Grammar
Dtrain−L (120 types) Dtrain−S (12 types)

log-Prior log-Likelihood log-Posterior log-Prior log-Likelihood log-Posterior
CFG∗ −345 −639 −984 −112 −42 −155∗

Reg∗ −393 −658 −1051 −125 −34 −159
Flat −4567 −574 −5141 −281 −30 −311
One-State −58 −2297 −2355 −51 −121 −172

Table 3: Comparing the log-probabilities for each of the 4 grammars after performing BMM on the
CFG and Reg grammars given the training datasets Dtrain−L and Dtrain−S. The superscript ∗ symbol
on log-posterior for CFG∗ on Dtrain−S indicates that while the results show highest posterior for this
grammar, after minimization the grammar no longer models the hierarchical rule and starts to also
generate sentence types consistent with the linear rule.

model to sentences of this type (McCoy et al.,
2020). During training a token quest or decl
is added to specify whether to perform question
formation or the copy task. Following past work
(e.g., Murty et al., 2023), we evaluate the model
on the first-word accuracy—given the declarative
sentence as the input, evaluate whether the model
predicts correct auxiliary for the first word in the
generated question.

2. Question Formation (German). This is the
same task as above, but the sentences are in
German instead of English. We use the dataset
from Mueller et al. (2022), consisting of sentences
with the modals können/kann (can) or auxiliaries
haben/hat (have/has), together with infinitival or
past participle main verbs as appropriate, which
can be moved to the front similar to English
to form questions. The dataset construction and
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Figure 5: Robustness of negative results for non-language modeling objectives across different model depths for
question formation German and passivization tasks. Note that the language modeling objective achieves roughly an
average generalization accuracy of 1.0 with the default hyperparameters. We omit plots for heads and embedding
dimension in interest of space, but we obtain consistent results with what we observe here.

evaluation metrics remain identical to the English
version.

3. Passivization. The task here is to transform
an active sentence to passive. We use the dataset
from Müller et al. (2022) and similar to question
formation, active-passive pairs in the training data
are ambiguous—compatible with both rules: the
hierarchical rule which involves identifying the
object in the sentence and moving it to the front,
and the linear rule that moves the second noun in
the sentence to front. Such sentences correspond
to ones without a prepositional phrase (PP) or with
a PP on the object. For generalization, the model
is evaluated on sentences with PP on the subject,
for which only hierarchical rule is applicable. The
training data here also is augmented with identity
active-active pairs which consist of sentences of all
the three types. For evaluation, following Mueller
et al. (2022), we consider object noun accuracy,
which measures whether the correct noun was
moved to the subject position.

4. Tense Reinflection. In this task, we are given
a sentence in the past tense, and the task is to

transform it into present tense. While performing
the transformation to present tense, the model
has to figure out from the context whether each
verb should be singular or plural (-s suffix) in the
present tense. In this case, the hierarchical rule
requires each verb to agree with the hierarchically
determined subject and the linear rule requires
a verb to agree with the most recent noun in the
sequence. We use the same dataset as McCoy et al.
(2020), where, similar to question formation, the
training dataset contains tense reinflection pairs
(past-present) that are consistent with both rules,
and identity pairs (past-past) for copying. The
models are evaluated using main-verb accuracy,
which is calculated as the fraction of examples in
the test set for which the generated present tense
sentence has the correct main verb.

5. Simple Agreement. We also introduce a
simplified version of the tense reinflection
task. Unlike others, simple agreement is a
single-sentence task where only the present-tense
sentences from the tense-inflection are consid-
ered. In this task, we evaluate the model’s ability
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to generate the correct inflection of the verb at the
end of the sentence. The hierarchical and linear
rules are defined in the same way as tense rein-
flection. For evaluation, since from the context it
is no longer clear what should be the correct verb,
we use main-verb contrastive accuracy, which is
calculated by considering each sentence in the test
dataset (e.g., my zebra by the yaks swims), forming
the prefix (my zebra by the yaks) and checking
if the model assigns the higher probability to the
correct inflection of the main verb in the original
sentence (swims vs. swim).

A.3 Training Objectives and
Hierarchical Generalization

A.3.1 Details About Training Objectives
Here we detail the input-output structure for all
objectives concerning the five tasks that we study.

Language Modeling. As discussed in the main
text, for the question formation task we simply
consider the sequence s as declarative-question
pair (or declarative-declarative pair for copy task),
e.g., s = {my,walrus, · · · ,quest, does, · · · ,
move, ?}. Similarly, for passivization it is the
active-passive sentence pair (or active-active);
for tense reinflection it is the pair of past and
present tense sentence (or past-past), and for
simple agreement it is simply the single input
sentence.

Sequence-to-sequence Modeling and Prefix
Language Modeling. The inputs for the two
objectives are the declarative sentence (or active
sentence for passivization and past tense sentence
for tense reinflection) and the outputs sequences
are the corresponding questions (or passive sen-
tence/present tense sentence depending on the
task). Note that all four tasks allow identity pairs,
hence the outputs can be the same as the inputs
when decl token is provided at the end of the
input. One modification that we make to how the
prefix-LM objective is typically used is that we
use a causal mask for the prefix tokens as well
instead of having bi-directional attention over the
prefix tokens, since we found the latter to per-
form subpar in our initial experiments (unstable
in-distribution performance).

Sequence Classification. For question forma-
tion, the input is the declarative sentence, and
the output is the four possible auxiliary to-
kens, {do, does, don′t, doesn′t} for English and

{können, kann, haben, hat} for German. For pas-
sivization task, the input is the sentence in active
voice and the output is the subject of the passive
sentence, which can be any of the 26 nouns in
the datasets vocabulary. For tense reinflection, the
input is the sentence in past tense and the output
is the present tense form of the main-verb in the
input sentence (18 classes corresponding to the
verbs in dataset). For simple agreement, the input
is the sequence of tokens until the main verb and
the model needs to predict the main-verb as a
multi-label (across vocabulary of 18 verbs) classi-
fication task. The classification head for all tasks
excluding tense reinflection, is attached to the last
token in the sequence. For tense reinflection it is
attached to the main-verb in the input sentence as
otherwise the linear-rule which uses the noun most
recent to the main-verb might not be appropriate.
We also use causal mask for all tasks, as we found
the models to perform better on in-distribution
test set in our initial experiments when using it.
Also, note that due to the nature of the objective,
identity pairs are not supported.

Cloze Completion. For the question formation
task, we consider the declarative-interrogative pair
and mask out tokens in the interrogative sentence
at all positions where the auxiliaries could be
present. Specifically, we have mask tokens where
i) the auxiliary is present in the interrogative sen-
tence or ii) the auxiliary was present in the original
declarative sentence. The model is trained to pre-
dict the correct auxiliary at the right positions and
<EMPTY> if an auxiliary is not present at a par-
ticular position. Similarly, for tense reinflection,
we consider the past-present sentence pair, mask
out all the verbs in the present tense sentence and
train the model to predict the right form of the
verbs. In the simple agreement task, we consider
only the present tense sentence, mask out all the
verbs and train the model to predict them. Here
also we found using causal mask helps in better
in-distribution performance and hence use it in all
our experiments.

A.4 Pruning for Tasks Other than
Question Formation

In the main paper under §4 our results on the
discovery of subnetworks with different general-
ization performances were performed on question
formation task. Here, we provide the results
for tense reinflection and simple agreement. For
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Figure 6: Tracking training dynamics w.r.t. to the three pruning methods for tense reinflection task.

Figure 7: Tracking training dynamics w.r.t. to the three pruning methods for simple agreement task.

tense-reinflection, we slightly modify the pruning
procedure. Since, for tense reinflection, we need to
generate the entire present tense sequence to check
if the predicted main verb is in the correct form,
we compute the loss over all output tokens during
pruning unlike question formation, where only
the loss on the first auxiliary in the question was
computed. Due to this, for Train\Gen-prune
training becomes highly unstable as the procedure
involves minimizing training and maximizing
the test loss. Hence, we propose an alternate
Train\Gen-prune procedure for this task, where
we generate a ‘‘linear-rule’’ version of the general-
ization set, where the sentence pairs are generated
in such a way that they are only consistent with
the linear-rule. Note that this can be done by
simply taking a past tense sentence in the gen-
eralization set and flipping the inflection of the
main-verb based on the agreement with the most
recent noun preceding the verb. Note that similar
toGen-prune, here also we only use 1% of the total
data from the ‘‘linear-rule’’ generalization set for
pruning to avoid the possibility of overfiting. For
simple agreement the procedure remains same as
question formation, with the only difference that
the loss is computed on the main-verb in this case
during pruning instead of the auxiliary. Pruning
results for the two tasks are provided in Figures 6

and 7. We find results consistent with our findings
for question formation task here as well, where
the ‘‘linear-rule’’ and ‘‘hierarchical-rule’’ subnet-
works can be found using pruning and continue to
co-exist over the course of training.

A.5 Grammar Details

A.5.1 Prior Computation
The prior probability of a grammar can be com-
puted by calculating the probability of each of the
choices that goes into defining that grammar:

p(G) = p(|V |)
|V |∏

k=1

p(Pk) p(θk)

Pk∏

i=1

p(Rk,i). (1)

Here, |V | is the number of nonterminals, Pk

is the number of productions from the kth non-
terminal with the probabilities of each production
given by θk ∈ [0, 1]Pk , and Rk,i denotes the right
hand side of the ith production rule from the kth
nonterminal. Following Perfors et al. (2011), we
use a geometric prior on p(|V |) and p(Pk), flat
Dirichlet prior on θk, and compute Rk,i depending
on the nature of the production rule.

Recall that the geometric distribution is given
by p(n; p) = (1− p)n−1p, where p is a parameter
of the geometric distribution, often interpreted as
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Figure 8: Tracking training dynamics with respect to the three pruning methods’s subnetworks and the full
network. (a) and (b): in-distribution and generalization accuracies of the LMs trained on the original ambiguous
question formation data after pruning using the three methods, (c): generalization accuracy after pruning the model
trained on disambiguated data. For models trained with original data, we can discover sub-networks consistent
with hierarchical rule as well as the linear rule, indicated by the 0% generalization performance and 100%
in-distribution performance for Train\Gen-prune curve, and 100% accuracy on both test sets for Gen-prune
curve, roughly after 9k training steps. On the other hand, for the models trained with disambiguated data, linear
rule subnetwork is not found (indicated by the curve corresponding to Train\Gen-prune never approaching 0%
generalization accuracy). Note that disambiguated data was constructed by augmented original training dataset
with 10k additional examples which are only consistent with the hierarchical rule.

Figure 9: Training dynamics of transformer LM trained with question-formation data which is disambiguated with
examples consistent only with the linear rule (by augmenting 10k such examples to the original 100k ambiguous
examples). As can be seen, the full network in this case after a few thousand steps plateaus at 0% generalization
performance, which is expected since only the linear rule is applicable to the entire dataset. Further, evenGen-prune
in this case fails to find subnetworks with 100% in-distribution as well as 100% generalization performance.
While further during training, Gen-prune does find subnetworks with higher generalization performance, the
in-distribution performance at these points is very low, meaning the subnetwork isn’t actually consistent with the
hierarchical rule.

the probability of success, and a geometric distri-
bution models the probability of success after n
trials. Hence, choosing a geometric prior penalizes
the grammars with a large number of nontermi-
nals (|V |) and productions per nonterminal (Pk).
In our experiments we use p = 0.5, following
Perfors et al. (2011), but we conduct a sensitivity
analysis on the choice of this parameter. For θk,
we use a flat (i.e., α = 1) Dirichlet prior, a popular
choice for modeling probabilities for categorical
distributions (K − 1 simplex). Note that since the
Dirichlet is a continuous distribution, the proba-
bility of any specific θk is zero and we use the
discrete relaxation from (Perfors et al., 2011) to
model p(θk). The probability of the production

rule p(Rk,i), depends on the type of grammar.
For CFGs, since we consider them in CNF, the
production rules are of the form A → BC or
A → a, hence the probability of the right hand
side can be given by, p(Rk,i) =

1
2

1
|V |21(|Rk,i| =

2) + 1
2

1
|Σ|1(|Rk,i| = 1). Since the regular gram-

mars are in the right linear form i.e., productions
of the form A → bC or A → a, we can compute
p(Rk,i) =

1
2

1
|Σ|

1
|V |1(|Rk,i| = 2) + 1

2
1
|Σ|1(|Rk,i| =

1). One might notice that we are missing the prob-
ability of number of terminal symbols p(Σ) in the
prior equation. We ignore this because both the
CFG and regular grammars have the same number
of terminals in our experiments, and since we are
interested in just comparing the probabilities, the
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Figure 10: Effect of head capacity on the presence of hierarchical and linear generalization subnetworks. Runs are
averaged over 5 seeds.

inclusion or exclusion of p(Σ) doesn’t make a
difference.5

A.5.2 Local Search Using Bayesian
Model Merging

The hand-constructed grammars that we consider
in our study might not be optimal in terms of
the posterior given the training data. For exam-
ple, there might be some redundant production
rules or non-terminals, which can be removed
by merging two or more non-terminals. We use
the Bayesian model merging (BMM) algorithm
from Stolcke and Omohundro (1994) and Perfors
et al. (2011) to perform a local search for gram-
mars with higher posteriors starting from the
hand-constructed ones. The algorithm works as
follows: We start from the initial grammar and
iterate over all possible merges. A merge involves
replacing two non-terminal symbol by a single
new non-terminal and adding two new produc-
tions mapping the new non-terminal to the older
ones. For example, for production rules A → BC,
A → BD, we can merge C and D to F , resulting
the new production rules: A → BF , F → C,
and F → D. For each merge, we thus obtain
a new grammar, and compute its posterior. We
then select the grammar with the highest posterior
(greedy search) and repeat the procedure with this
new grammar. If no merge results in a grammar
with higher posterior than the initial grammar,
we terminate the search. We denote the context
free grammars after merge as CFG∗ (CFG-S∗ and
CFG-L∗) and regular grammars as Reg∗ (Reg-S∗

and Reg-L∗).
An important detail to note here is that while

performing the merging algorithm, we use the

5One might also notice that p(G) allows some probability
for generating the same rule more than once; it ‘‘leaks’’
probability mass. No prior literature, to our knowledge, sug-
gests that this should pose a problem to our analysis.

ambiguous corpus Dtrain−L or Dtrain−S for com-
puting the posteriors and hence searching the right
set of merges. The final grammar obtain while it
should assign high likelihood to the ambiguous
training data, might no longer be consistent with
the held out sentence types, e.g., DHier

test or DLin
test ,

and hence the final grammars obtained might not
strictly model the linear or hierarchical rules. To
check if such a situation arises in our case, we
compare the set of all generations from a grammar
before and after merging. If the two are same, it
implies that the grammar continues to be consis-
tent with both the ambiguous and unambiguous
sentence types, and hence obey the linear or order
rule of the original hand-constructed grammar.
We find that for CFG-S, after applying the merg-
ing algorithm, the grammar obtained is no longer
consistent with just the hierarchical rule and starts
to also generate sentence types consistent with the
linear rule. This implies that for the low-diversity
data case, even using a CFG it is better to
avoid modeling the hierarchical rule given the
ambiguous data. For CFG-L, the grammar re-
mains consistent with the hierarchical rule even
after merging.

The log-probabilities after applying BMM al-
gorithm are provided in Table 3. For the Dtrain−L

dataset, we find that our results remain consis-
tent with those for hand-constructed grammars
in Table 2: CFG-L∗ obtains a lower posterior
than Reg-L∗. On the other hand for the Dtrain−S

dataset, CFG-S∗ ends up with a higher poste-
rior than the One-State grammar. However,
as noted above after minimization CFG-S∗ is no
longer consistent with the hierarchical rule, i.e.,
doesn’t generate sentences where verbs only agree
with the hierarchically connected nouns. Hence,
our observations that for the lower-diversity case,
modeling the hierarchical rule is not optimal ac-
cording the posterior criterion, remains consistent
here as well.
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Figure 11: Sensitivity analysis on varying the geometric distribution parameter p|V | for p(|V |) and pPk
for p(Pk).

We plot the difference between the log-posterior of the CFG and the other grammar with the highest posterior,
which is One-State for Dtrain−S and Reg-L (or Reg-L∗ for BMM minimized case) for Dtrain−L. The values in
the heatmaps correspond to the sign of the difference between the posteriors (1 for positive and −1 for negative). A
positive sign implies that the CFG has the higher posterior than the alternate grammar and negative sign implies
otherwise. For each of these combinations, we find that for Dtrain−S case, consistent with Table 2 the CFG-S
always obtain a lower posterior compared to the One-State grammar. Similarly for the CFG-L and Reg-L, the
findings are also consistent across all 49 combinations i.e., CFG-L always obtain a higher posterior than Reg-L.
This holds for the BMM minimized grammars as well, where for Dtrain−L case CFG-L always obtain a higher
posterior than Reg-L. Note that since after minimization on the smaller grammars (CFG-S and Reg-S), we are
left with no grammar obeying the hierarchical rule, we skip sensitivity analysis for that case.

Figure 12: Do transformer models trained on Dtrain−S ever show hierarchical generalization? We vary the depth
of the transformer-LM (number of decoder layers) and find in no case, transformer exhibiting hierarchical
generalization. Interestingly, for smaller depths, we see the models generalizing according order rule, indicated
by lower NLL on DLin

test than DHier
test and a main-verb accuracy of roughly around 0%/ when transformer depth is

2. For depths greater than 4, we observe starts to show no preference for either the linear or hierarchical rule.

141


	Introduction
	Background
	How the Training Objective Influences Hierarchical Generalization
	Training Objectives
	Experimental Setup
	Results

	Discovering Subnetworks with Different Generalization Behaviors
	A Bayesian Perspective on Hierarchical Generalization in Transformer LMs
	Background
	Method
	Results

	Conclusion
	Appendix
	Code and Datasets
	Tasks and Datasets
	Training Objectives and Hierarchical Generalization
	Details About Training Objectives

	Pruning for Tasks Other than Question Formation
	Grammar Details
	Prior Computation
	Local Search Using Bayesian Model Merging



