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Abstract

We investigate the effect of terminology in-
jection for terminology-constrained transla-
tion in a low-resource language variety, with
a particular focus on off-the-shelf instruction-
tuned Large Language Models (LLMs). We
compare a total of 9 models: 4 instruction-
tuned LLMs from the Tower and EuroLLM
suites, which have been specifically trained
for translation-related tasks; 2 generic open-
weight LLMs (LLaMA-8B and Mistral-7B); 3
Neural Machine Translation (NMT) systems
(an adapted version of MarianMT and Mod-
ernMT with and without the glossary func-
tion). To this end, we release LeglSTyr, a
manually curated test set of 2,000 Italian sen-
tences from the legal domain, paired with
source Italian terms and target terms in the
South Tyrolean standard variety of German.
We select only real-world sources and design
constraints on length, syntactic clarity, and
referential coherence to ensure high quality.
LegISTyr includes a homonym subset, which
challenges systems on the selection of the cor-
rect homonym where sense disambiguation is
deducible from the context. Results show
that while generic LLMs achieve the highest
raw term insertion rates (approximately 64%),
translation-specialized LLMs deliver superior
fluency (A COMET up to 0.04), reduce incor-
rect homonym selection by half, and generate
more controllable output. We posit that mod-
els trained on translation-related data are better
able to focus on source-side information, pro-
ducing more coherent translations.

1 Introduction

While Neural Machine Translation (NMT) adap-
tation has demonstrated benefits from incorporat-
ing domain-specific terms (Farajian et al. 2018), it

has yet to ensure consistent and unambiguous ter-
minology enforcement. The delicate trade-off be-
tween the continuous expansion of parallel train-
ing corpora and the enforcement of lexical choices
without hampering fluency further complicates
cross-lingual alignment of terminologically rele-
vant tokens (Alkhouli et al. 2018; Ferrando et al.
2022; Stefanik et al. 2023). This failure has even
raised questions on the cost-effectiveness of main-
taining termbases for M T purposes (Knowles et al.
2023). Terminology compliance has attracted no-
table interest and lead to the organization of shared
MT tasks (Bawden et al. 2019; Alam et al. 2021b;
Semenov et al. 2023).

Terminology compliance is a crucial quality as-
pect in high-stakes domains, such as the legal do-
main. Terminology mistakes in legal translation
can have serious consequences (Mattila 2018), in-
cluding legal disputes and infringement of basic
linguistic and human rights (e.g., through incor-
rect use of critical terminology during interpreta-
tion in criminal trials). Furthermore, every legal
system has its own specific set of rules and con-
ceptual structures. Legal terminology expresses
such specificities and is therefore always bound to
a specific legal system (Gambaro and Sacco 2024).
This system-boundness of legal terminology often
results in conceptual incongruency between legal
systems, even between legal systems sharing the
same language. Consequently, correct terminol-
ogy usage in languages with more than one recog-
nized legal variety like Arabic, English, Spanish
etc., pose notable translation challenges. In addi-
tion, the quality of MT in the legal domain hinges
not so much on the language combination as on the
legal subdomain (Quinci and Pontrandolfo 2023).
Our experiments focus on South Tyrolean Ger-



man, a minor standard variety of German spoken
in Northern Italy that is used by the local public
administration bodies and on legal terms from a
range of different legal subdomains.

Researchers have addressed terminology en-
forcement using both NMT systems and Large
Language Models (LLMs). In 2024, two new
LLM suites specifically trained on translation-
related tasks (TT LLMs) were released to the
public (Tower and EuroLLM suites); yet to our
knowledge their capabilities have not been ade-
quately investigated thus far. To bridge the gap, we
evaluate the instruction-following performances
of these open models in terminology injection,
comparing their term accuracy rate and overall
translation quality against general-purpose LLMs
as well as to adapted NMT models and their base-
line. We also assess which models produce the
most structured and clean outputs for easier down-
stream processing.

To this end, we curate LegISTyrl, a test set
comprising over 2,000 sentences from the legal
domain in Italian. Each instance is annotated
with both Italian source and South Tyrolean tar-
get terms, plus variants used in other German-
speaking legal systems whenever available. We
select the sentences from termbase contexts and
other real-world sources while enforcing con-
straints on length, syntactic clarity, and referential
coherence. The test set covers the usage of each
term in multiple contexts. It also features a sub-
set on the challenge of disambiguation between
homonyms where the correct sense is deducible
from the domain or context of use.

2 Background

2.1 Challenges of legal translation in South
Tyrol

While the task of terminology injection presents
an already serious challenge for highly resourced
languages, difficulties grow when considering mi-
nor varieties of pluricentric languages (Clyne
1991). Such varieties often lack labeled datasets
and resources in internationally standardized for-
mat (Lakew et al. 2020), and are under-represented
in generic training corpora due to the sheer
size of text produced by the respective speakers
(Zampieri et al. 2020). This leads to dominant
forms obfuscating diatopic variants (Koehn and
Knowles 2017). The implication in statistical MT
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is that the stronger signal from numerically domi-
nant varieties will tend to override terms from mi-
nority ones.

The situation of a minor variety used in the le-
gal domain can be exemplified by South Tyrolean
German. This is a standard variety of German
(Ammon et al. 2016) used by about 300,000 mem-
bers of the German language minority in Italy. In
South Tyrol, German is a co-official language next
to Italian. South Tyrolean German differs from
other German varieties in various minor grammat-
ical and lexical aspects, but most notably concern-
ing food and legal vocabulary. Some of these dif-
ferences are unlikely to affect terminology (e.g.
the use of sein vs haben as an auxiliary for some
verbs of position), others might (e.g. differences in
grammatical gender like Kataster, cadastre, gen-
erally being masculine in South Tyrol and other
Southern German areas but neuter in Germany).

In South Tyrol, there is a process of terminology
standardization in place whereby the mandatory
terminology for the local legal and administrative
texts is being validated by a Terminology Com-
mission (Chiocchetti 2021). The infringement of
local terminology requirements may result in hin-
dered clarity of government-citizen communica-
tions and in the denial of linguistic minority rights
related to clear and consistent communication in
the minority language (South Tyrolean German).

An analysis of machine-translated normative
texts from Italian into South Tyrolean German
has highlighted that terminology is the second
most common type of mistake after mistransla-
tions (De Camillis and Chiocchetti 2024). This
can happen by effect of interference from most
represented legal systems.

We also observe that Italian multiword terms
(e.g., decreto legislativo, legislative decree; de-
creto ingiuntivo, payment order; decreto di con-
danna, penalty order, etc.) tend to be shortened
to their headword within texts (i.e., to decreto)
creating homonymous short forms. Context is
needed for correct disambiguation when translat-
ing into German (i.e., choosing between geset-
zesvertretendes Dekret, legislative decree; Mahn-
dekret, payment order and Strafbefehl, penalty or-
der), especially since there is a less pronounced
tendency to reduce multiword terms or compounds
to their headword in German. The notable pres-
ence of homonyms deriving from ellipsis of part
of the term in Italian legal texts poses an issue
of (domain) disambiguation in the correct selec-



tion of the target term in German. Disambigua-
tion is relevant even in cases where there is no
shortening of a longer term (e.g. procedura con-
corsuale means ’bankruptcy proceedings’ in in-
solvency law, in German Insolvenzverfahren, but
’open competitive employment procedure’ in ad-
ministrative law and should be translated with
Wettbewerbsverfahren).

To evaluate translation quality into South Ty-
rolean German, we release LegISTyr, a highly cu-
rated test set (see 4.1). We use the test set to ex-
plore the success of different techniques aimed at
terminology injection when translating from Ital-
ian into a minor standard variety of German, viz.
South Tyrolean German.

2.2 Aligning LLMs to translation tasks

While LLMs have shown the capability to perform
targeted translation tasks without task-specific
training (Vilar et al. 2023; Hendy et al. 2023),
top-notch performances are still bottlenecked to
proprietary, large-scale models, which makes their
adoption in low-resource environments exces-
sively expensive. Another pitfall of generic LLMs
is their tendency to exhibit undesired behavior,
such as verbosity — the generation of explanatory
text in addition to the proper translation (Briakou
et al. 2024).

One line of research has sought to imbue
text with the core features of translation tasks
through in-context learning (ICL), prompting a
generic model with exemplars in a predefined for-
mat (Brown et al. 2020). Despite being largely
resource-efficient and effective in cross-lingual
transfer for under-resourced languages (Zhu et al.
2024b; Zhu et al. 2024a), drawbacks still per-
sist. In actuality, prompt design seems to be a
hardly manageable strategy, as minimal permuta-
tions result in heavy performance volatility (Lei-
dinger et al. 2023; Sclar et al. 2024; Weber et al.
2023), unreasonable templates give rise to accept-
able outputs (Zhu et al. 2024b) and targeted ex-
emplar selection for the prompt only has a lim-
ited impact (Zhang et al. 2023). In addition, ICL
proves ever more effective as the scale of the
model in use grows (Min et al. 2022). Overcom-
ing these limitations might be possible by leverag-
ing pre-trained, lightweight models specialized in
translation-related tasks in order to attain compa-
rable performances to larger models (Zeng et al.
2024).

Instruction tuning (IT) (Wei et al. 2022) consists

of fine-tuning an existing model on instruction-
output pairs, aligning next-token prediction with
task-specific objectives to enhance adherence to
user instructions (Zhang et al. 2024). As a matter
of fact, (Zhou et al., 2023) (2023) highlight that
a model’s core knowledge is acquired during pre-
training, while fine-tuning mainly influences inter-
action modalities and output format. This effect is
further amplified when LLMs are pre-trained on
multilingual corpora (Briakou et al. 2023), where
alignment with downstream translation objectives
begins at the initial training stage (Sia et al. 2024).

2.3 Terminology injection approaches

Researchers have explored diverse techniques to
inject terminology and ensure exact term render-
ing.

In NMT models, relevant terminology can be
marked at inference time by inserting inline term
labels in the source, target, or both. This can
be achieved either by replacing all terms in
source and target with a placeholder (Dinu et al.
2019; Bergmanis and Pinnis 2021; Michon et al.
2020), which sacrifices semantic information, or
by adding the target term to the source sentence
(code-switching) (Song et al. 2019; Ailem et al.
2021). Variations of this approach include addi-
tional lemmatization or grammatical editing for
increased fluency (Bergmanis and Pinnis 2021;
Pham et al. 2021) as well as changes in the lo-
cation of the label (Jon et al. 2021; Turcan et al.
2022). However, consistently predicting the term
equivalent during training has proven challenging,
particularly under more complex circumstances
than those in experiment conditions (e.g., with
more than one target term per sentence). This has
resulted in the introduction of hard constraints —
i.e. forced insertion of the term in the target sen-
tence — that are in turn affected by fluency and
grammatical issues (Post et al. 2019; Chen et al.
2020).

Other attempts directly act on the decoder be-
haviour. The decoder is the component that gener-
ates the target translation by sequentially predict-
ing the next token, given the encoded representa-
tion of the source text and the incrementally gen-
erated output. One focus lies on the development
of decoding algorithms which enforce the desired
term (Molchanov et al. 2021; Hauhio and Friberg
2024) or exclude unsuitable terms from the search
space (Bogoychev and Chen 2023). Despite their
potential, these methods increase computational



time and resource demands. Additionally, they fail
to address issues such as incorrect morphological
inflections and unintentional repetition of termi-
nology (Dinu et al. 2019).

With the surge in the use of Large Language
Models, prompt formulation has made it possible
to exert greater control over features of the out-
put, including “specific dialect” (Garcia and Firat
2022) and terminology injection. Initial experi-
ments provided prompts augmented with glossary
(Moslem et al. 2023a; Moslem et al. 2023b) and
dictionary (Ghazvininejad et al. 2023) entries, also
following an instruction tuning (Kim et al. 2024),
where the retrieved target terms are injected in the
prompt. Another strategy relies on post-editing
existing translations (Bogoychev and Chen 2023;
Chen et al. 2024; Liu et al. 2025, Sabo et al. 2024),
which can be included within the wider concept of
translation refinement (Feng et al. 2024; Koneru
et al. 2024; Xu et al. 2024). This technique em-
ploys iterative prompting to adjust the generated
translation until the terminological constraint is
complied with.

3 Experimental target and limitations

In light of these insights, we evaluate off-the-shelf
models that have undergone both pre-training (Eu-
roLLM) and supervised fine-tuning (Tower) on
translation tasks without additional adaptation to
custom data. However, by deliberately excluding
any modification to the model’s hidden states rep-
resentation, we restrict our investigation to the ef-
fect of terminology injection — particularly for
terms likely under-represented during pre-training
— on output fluency and decoding behavior under
soft constraint conditions. This design choice may
limit the performance upper bound for producing
fully coherent South Tyrolean text, as some of the
most effective approaches for handling language
varieties often involve large-scale pre-training or
continued training (Tejaswi et al. 2024; Nag et al.
2024), for machine translation (Kumar et al. 2021;
Sousa et al. 2025) and evaluation tasks (Sun et al.
2023; Aepli et al. 2023) alike.

4 Methodology

4.1 Dataset curation — The LegISTyr
Dataset

General principles

To make a fully comprehensive assessment of the
models’ term recognition, we impose stylistic and

textual criteria in the collection of the test set sen-
tences. We choose exemplars with a minimum of 8
and a maximum of 50 words, ignoring titles, trun-
cated excerpts, captions, contents of tables and in-
dexes, and bullet lists. All sentences are copied
or adapted (e.g., shortened) from existing sources,
including the contexts from bistro. The examples
showcase the term of interest in different posi-
tions of the sentence with the possible variations
in number but not in gender, as this would require
a gender-specific equivalent in German and add a
further layer of complexity. Subject and object are
well defined, added manually when they are im-
plicit, which is a common feature in Italian. Un-
resolvable co-reference relationships or ambigu-
ous anaphoric references may appear in some ex-
emplars but never affect the term. Parenthetical
statements within brackets or dashes have been re-
moved while maintaining the typical style of Ital-
ian legal language, which tends to use appositions
and parenthetical material between commas.

Terms can be simple terms (e.g., cittadinanza,
citizenship; frode, fraud) or complex terms (e.g.,
decreto ministeriale, Ministerial Decree; capacita
di intendere e di volere, full possession of mental
faculties). Most are nouns or noun phrases, with
the exception of one collocation (d’ufficio, ex of-
ficio), which has a standardized German transla-
tion in South Tyrol. Almost all selected terms are
available in bistro with their South Tyrolean vari-
ants and any terms used in other German-speaking
legal systems.

The content of LegISTyr is largely based on the
terminological data contained in the Information
System for Legal Terminology bistro® (Ralli and
Andreatta 2018). The latter collects the main legal
concepts of the Italian legal system with their des-
ignations in Italian and in South Tyrolean German
for use at the regional level, together with existing
German language designations for any equivalent
concepts from other legal systems that use German
as an official language (i.e., Austria, Switzerland
and Germany). bistro publishes over 13,000 fully-
fledged term entries pertaining to a wide range of
legal subdomains, for several legal systems (Italy,
Austria, Germany, Switzerland, EU law, interna-
tional law) and three languages (Italian, German,
Ladin). However, many contexts in bistro are
defining contexts, which are extremely useful to
complement conceptual information given in the

Zhttps://bistro.eurac.edu/



definitions but not always ideal to showcase a term
in its most frequent usages. In addition, we wanted
more than just one example (i.e., context) for each
selected term. We therefore complemented bistro
data with examples from legal texts and websites.
The test set also contains data from subdomains
that haven’t been fully published in bistro to date
(e.g. subsidised housing).

Dataset structure The dataset is divided into dif-
ferent sections:

 Standardized terminology: 250 sen-
tences covering different legal subdo-
mains (partly including but not limited
to the subdomains in the other subsets),
with 5 instances for each term with a
mandatory, standardized equivalent in
South Tyrolean German.

* Main terminology: 1,000 sentences
from 4 different legal subdomains
(criminal and criminal procedure law,
family law, subsidized housing, occupa-
tional health and safety) with 5 instances
for each term.

* Homonyms: 250 sentences with 5 term
instances for each of the two or three
sub-domains where the term is used.

Each entry comprises a source sentence, a
source term and a target term. Alongside
the main South Tyrolean term, other variants
expressing the same concept in South Tyrol
or in other German-speaking legal systems
are specified — when existent. This lets us
measure to what extent the interference from
more represented legal systems impacts term
translation. In Appendix A, the reader can
find an illustrative example of a test set en-
try. Each entry is designed to evaluate the in-
sertion of its corresponding designated target
term alone; occurrences of other terms from
the test set within the same sentence are dis-
regarded for evaluation.

Additionally, the dataset contains a subset
for abbreviated forms (i.e., acronyms, ini-
tialisms, and abbrevations), a frequent source
of mistakes in legal translation. There is
also a subset with strategies for gender-
inclusive writing (e.g. gender-neutral agen-
tives, split forms, terms with symbols and
neomorphemes) because local legislation de-
mands that legal and administrative texts be

possibly inclusive. Since these two sections
have not been used for this paper, we do not
give further details.

Consistency We recognize that a key requirement

for efficient terminology management is that
term rendering be consistent throughout the
entire document (Semenov and Bojar 2022).
While our evaluation is conducted at the seg-
ment level, we approximate terminology con-
sistency by designing a test set that includes
five same-domain usage contexts for each
term. This choice allows to evaluate over
longer stretches of running text and simulate
(insofar as possible) multiple occurrences in
a text. It also helps assess the behavior of
the model in the presence of domain-relevant
context information systematically.

Homonyms We analyze the homonyms subset

to monitor the circumstances when the no-
tion of unambiguity (i.e., avoiding one-to-
many translations) proposed in similar works
(Bogoychev and Chen 2023) has to be dis-
missed. While the statement that source
terms should be associated with one corre-
spondent only is generally valid, we put the
lens on homonymy to measure performances
on a linguistic phenomenon that has proven
extremely challenging to address. In these
cases, the variability on the target side of a
single surface-form source term is crucial to
refer to the correct concept.

4.2 Model selection

4.2.1 Generic LLMs
Llama we use the Llama-8B-Instruct model,

part of Meta AD’s suite of open-weight
transformer-based language models (Tou-
vron et al. 2023). The 8B variant offers a bal-
ance between model capacity and computa-
tional efficiency. It has also been chosen be-
cause it is one of the base models onto which
Tower suite models have been fine-tuned.

Mistral An open-weight model, Mistral-7B-

Instruct is another decoder-only transformer
architecture comparable to Llama in size. It
achieves efficient inference thanks to sliding
window attention and grouped-query atten-
tion (Jiang et al. 2023). It also serves as one
of the base models for one of the Tower-suite
fine-tuned models.



4.2.2 Translation-tuned LLMs

Tower (Alves et al. 2024) is a suite of multilin-
gual LL.Ms fine-tuned to translation-related
tasks. We test the two available configu-
rations: Tower-7B-Instruct and Tower-13B-
Instruct. The development of TOWER in-
volves a two-stage process. Initially, the
base model, TOWERBASE, undergoes con-
tinued pretraining upon the LLaMA-2 ar-
chitecture (Touvron et al. 2023) on a 20-
billion-token dataset comprising both mono-
lingual and parallel data.  Subsequently,
the model is fine-tuned using a curated
dataset, TOWERBLOCKS, which special-
izes the LLM for translation-related tasks.
We also test an updated version of the model
named Tower-Mistral-7B-Instruct (Rei et al.
2024) and based on Mistral-7b (Jiang et al.
2023).

EuroLLM (Martins et al. 2024) is a suite of open-
weight multilingual language models trained
from scratch and featuring all official EU lan-
guages. The models are trained on a fil-
tered corpus of assorted web data, code, par-
allel corpora, and domain-specific texts. A
byte-pair encoding (BPE) tokenizer is cre-
ated to handle linguistic diversity and ef-
ficient subword segmentation. Pre-training
is conducted with mixed multilingual objec-
tives, followed by instruction tuning to en-
hance zero-shot and few-shot task perfor-
mance. We test the configuration EuroLLM-
9B-Instruct.

4.2.3 Neural systems

ModernMT is accessed via its adaptive API for
enterprises with a licensed account. We use
the unidirectional glossary function upload-
ing all term pairs gathered in the test set
(indicated as ModernMT-glossary in Table
1) and compare it with its baseline perfor-
mances (ModernMT-baseline).

MarianMT We fine-tune the Italian to German
version of the Opus-MT model®, using the
MarianMT architecture (Junczys-Dowmunt
et al. 2018) through Hugging Face’s Trans-
formers library. The model was trained on
an in-house parallel corpus including LEXB
(Contarino 2021), MT@BZ (De Camillis

3https://huggingface.co/Helsinki-NLP/opus-mt-de-it

et al. 2023), CATEX (Gamper 1999) and
other internal translation memories — for
a total of 223,716 training instances. As
parameters, we use a batch size of 64, 15
epochs, a learning rate of 3e-4, and 5,000
warm-up steps. Mixed-precision is used. In
Table 1, it is indicated as MARIANMT-
adapted. We do not report the results of
the baseline model as its inadequacy for the
South Tyrolean variety has already been ex-
posed in Oliver et al. 2024.

4.3 Experimental setup

We interface with the models via the vLLM in-
ference framework®. Working with instruction-
tuned models, we utilize the chat method for text
generation® to make the best of their instruction-
following capabilities. ~The vLLM framework
automatically retrieves and applies the model’s
predefined chat template when processing chat-
formatted inputs.

Appendix B contains the prompt structure. In
the system message, we explain the task together
with the expected features of the output (language
variety and terminology awareness). The user
message consists solely of the source sentence,
enclosed within <> symbols, following the ap-
proach of Zhang et al. 2024 and Cettolo et al.
2024. This implicitly signals that the translation
should also be enclosed within these delimiters,
facilitating the exclusion of extraneous commen-
tary. Because Tower Suite models do not rely
on system messages for instructions due to their
structured text generation pipeline, we provide the
instruction and the appended source sentence in
the user message for this class of models only. For
the homonym set, all possible homonym transla-
tions are provided as options, without suggesting
the correct one.

As custom inference parameters, we set top-p to
0.95 and temperature to 0.2. Low temperature is
meant to limit output variability and ensure high-
confidence text coherence in a domain that is rich
in formulaic expressions and sensitive to mean-
ing corruption, while a relatively high top-p set-
ting allows potentially under-represented terms to
remain into the sampling space.

4https ://docs.vllm.ai/en/latest/
Shttps://docs.vllm.ai/en/latest/
models/generative_models.html
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4.4 Evaluation

Existing methods for measuring the enforcement
of terminology into the output vary depending
on the structure of available termbase resources,
though always relying on some form of exact-
match algorithm. While we acknowledge the limi-
tations of a naive matching approach, the lack of a
reference translation prevents us from implement-
ing the solutions suggested by Alam et al. 2021a.

Hence, we define our evaluation criteria as fol-
lows:

* Accuracy: The frequency with which the tar-
get term appears in the output. This metric
assesses whether the system has incorporated
the instructed term in any form.

* Fluency: The estimated extent to which the
term is used in a coherent, well-formed sen-
tence. This criterion evaluates the overall
linguistic fluency of the machine translation
output.

To measure accuracy, we design a custom
pipeline with two pre-processing steps. Given a
target term (TT) and a target sentence (TS), we
first apply lemmatization to all tokens in both
groups. We then use the SpaCy PhraseMatcher®
— which allows to match terminology lists from
provided text — to determine whether TT appears
in TS, returning a positive match if found. How-
ever, due to the high density and complexity of in-
flected forms in German, we observe the lemma-
tizer may occasionally struggle to identify the uni-
form lemma of inflected variants of complex terms
across TT and TS. Therefore, we apply the Char-
Split tool from Tuggener, 2016 to decompose all
tokens into their most probable subcomponents.
Lemmatization is then re-applied to these decom-
posed units, and the matching procedure from the
first step is repeated. We find this additional step
particularly beneficial to detect the cases of in-
ternal inflection within complex nouns. Subse-
quently, we adopt the same procedure for: alter-
native acceptable terms belonging to the South-
Tyrolean variety, variants used in other German-
speaking legal systems, and incorrect homonyms.

To assess fluency, we compute the COMET-
Kiwi-XL score (Rei et al., 2023), a reference-less
automatic machine translation quality estimation

®https://spacy.io/api/phrasematcher

metric. This allows us to evaluate the overall qual-
ity of the translated segment beyond mere termi-
nology injection. Following the holistic approach
proposed by Alam et al. 2021a, this evaluation en-
sures that the imposed terminological constraints
do not compromise the meaning of the generated
sentence.

5 Results

As it can be appreciated in Table 1, generic LLMs
(LLama and Mistral) achieve the highest term suc-
cess rate, outperforming other model paradigms
by at least 10 percentage points. However, this
should not be naively accepted at face value as
superior overall suitability. The well-documented
tension between terminological accuracy and out-
put fluency remains tangible. As the Comet-Kiwi-
XL scores highlight, TT LLMs achieve higher lev-
els of fluency at the system level. This diver-
gence may suggest that generic LLMs fall into
the patterns of hard-constrained decoding tech-
niques, where the insertion of low-probability to-
kens causes a cascading degradation of output flu-
ency by redistributing a lower probability mass
across the whole output. In contrast, TT LLMs
tend to insert the desired term only when its inclu-
sion aligns with a high-probability token predic-
tion, as determined primarily by the model’s pre-
trained hidden state representations, rather than
external prompt conditioning.

In addition, the magnitude of the COMET score
differential is non-trivial. According to Kocmi
et al. (2024)’s tool’, a 2-point delta in COMET-
Kiwi corresponds heuristically to a 95% agree-
ment rate with expert human judgments. This re-
sult reinforces the hypothesis that TT LLMs pri-
oritize fluent output more effectively than other
model paradigms.

Homonym set results point to this hypothesis
too. The difficulty of detecting the correct do-
main lowers overall term enforcement rates, with
the most pronounced decline observed in generic
LLMs, hence narrowing their performance lead.
Notably, generic LLMs exhibit a strong proneness
to inserting any of the provided terms, even when
contextual cues suggest otherwise. This results in
more than twice as many incorrect homonym se-
lections compared to TT LLMs — with critical
consequences on meaning comprehension.

It could be argued that this divergence may be

"https://kocmitom.github.io/MT-Thresholds/



‘ Accuracy ‘ Fluency

‘ Main + Standardized Terminology Homonyms ‘
Models Term Success Other Other Legal Correct Wrong Comet
Rate South Tyrol System Homonym Homonym Score
LLAMA 8B 64.5 1.68 3.10 44.8 21.2 0.6317
MISTRAL 7B 64.0 1.36 2.55 41.6 252 0.5983
TOWER 7B 39.2 1.84 10.0 37.2 10.4 0.6264
TOWER-MISTRAL 7B 43.6 2.40 7.64 34.0 11.6 0.6395
TOWER 13B 52.0 1.84 6.0 36.4 12.4 0.6534
EUROLLM 9B 46.5 3.28 8.72 36.8 7.6 0.6717
MMT-baseline 24.1 5.84 12.7 28.8 15.2 0.6693
MMT-glossary 51.3 1.70 4.80 324 26.4 0.6343
MARIANMT-adapted 49.5 4.53 3.7 34.8 14.0 0.5757

Table 1: Evaluation results according to accuracy and fluency criteria. The Main + Standardized Terminology
section reports performance on the Standardized Terminology and Main Terminology subsets of the test set, as
described in Section 4.1. Term Success Rate indicates the percentage of cases in which the exact instructed term
was correctly injected into the translation output. Other South Tyrol denotes the proportion of translations — out
of the sheer total — using an acceptable South Tyrolean variant instead of the specified term. Other Legal System
reflects the relative frequency — computed only on applicable cases — of a term from another major legal variety
of German being used in place of the target South Tyrolean form. The Homonyms section reports results on the
homonym subset. The Correct Homonym column shows the percentage of cases the correct homonym has been
inserted, while the Wrong Homonym column highlights the percentage of cases the erroneous homonym option has
been used in place of the correct one. Finally, under Fluency, the Comet Score column reports the system-level

evaluation scores performed with Comet-Kiwi-XL.

attributable to the different objectives of the re-
spective tuning procedures. Specific training of
TT LLMs on translation-specific tasks enables the
models to learn source-target text alignment pat-
terns, allowing its attention mechanisms to more
effectively focus on source-side information. The
higher learned attention to highly domain-relevant
context in the source sentence reduces the like-
lihood of incorrect term selection. In contrast,
instruction-tuning in generic LLMs often lacks ex-
plicit exposure to the parallel sentence structure
typical of translation tasks. Therefore, contextual
attention weights may end up excessively biased
towards less important parts of the prompt.

Additional insights emerge from the generation
of terms belonging to other major varieties of le-
gal German (OLS) or other valid alternatives for
South Tyrol (OST), in the cases where these were
measurable. The higher selection rate of OLS vari-
ants by TT LLMs may signal that prompting em-
beddings cannot alone redress the token proba-
bility imbalance in the output distribution, which
is presumably outmatched by major variant oc-
currences. However, we note that EuroLLM-9B
achieves the highest OST selection rate among
LLMs, despite these acceptable terms not being
explicitly elicited in the prompt. Given its pre-

training from scratch on European language cor-
pora, this result suggests that including regionally-
focused pre-training data may allow to better en-
code minor variant lexical forms.

Format-wise, Tower and EuroLLM have proven
to be most stable models, with all translations en-
closed in the desired delimiters and no signs of
verbosity. While LLama 8B struggles to follow
the requested format, spurious text remains a rare
occurrence. Eventually, Mistral 7B shows a con-
siderable amount of noise in the output, most no-
tably in verbosity proneness, output in English
language and repetition of parts of the prompt.

6 Discussion

The process of integrating LLMs into translation
workflows is still at an early stage, with a ma-
jor divide opening between the use of general-
purpose models — leveraging scale-driven emer-
gent capabilities — as opposed to models fine-
tuned through task-specific, specialized training.
While we register a higher overall success rate
for generic LLMs, we also suggest that mod-
els trained specifically on translation data show
greater promise to attend to the peculiar challenges
of context-sensitive translation. On the technical
side, future research should continue to explore



strategies for conditioning more reliable terminol-
ogy generation at decoding time.

Another promising direction involves exploit-
ing the contextual metadata available in Linguistic
Linked Data (LLD) resources (especially multilin-
gual examples of use of term entries) for contin-
ued pre-training or task-adaptive fine-tuning. In
this respect, while not having used terminology
data as LLD for terminology injection in this first
stage, we consider it a necessary follow-up step.
Terminological data in machine-readable formats
are likely to become crucial resources for termi-
nology injection in future. We have shown that
terminological data can be used to partly make up
for the lack of training data in minor language va-
rieties. Where training data from major varieties
risks overriding language use in minor varieties
and even leading to critical mistakes in high-stakes
domains like the legal domain, available termino-
logical resources could help to partially fill the
gap.

The training data used for NMT systems and
LLM models are skewed towards high-resource
world languages and language combinations con-
taining English. Further research is needed into
non-English language combinations, which are a
routine part of the work of many bodies with leg-
islative, administrative and judicial powers that af-
fect citizens daily lives. To name some examples
in Europe, there is translation from German into a
minor legal variety of Slovene in Austria for the
Slovene-speaking minority in Carinthia, transla-
tion from Croatian into a minor legal variety of
Italian in Croatia, translation from Finnish into a
minor variety of Swedish in Finland. All these and
other minority communities would profit from ef-
ficient strategies for adapting machine translation
to their specific varieties and/or from terminology
injection to fine-tune translation results.

7 Conclusion and limitations

We are aware of the limitations of our first exper-
iments. Although proprietary LLMs set the cur-
rent upper bound for performance, the opacity sur-
rounding their training data precludes any assess-
ment of whether results stem from explicit expo-
sure to translation tasks. This constraint limits our
ability to isolate and attribute observed advantages
to translation-specific (pre-)training, thereby con-
founding the validation of the research hypothesis.

From a linguistic perspective, our data illus-

trates phenomena that apply to the South Tyrolean
standard variety of German and to a non-English
language combination. To assess whether simi-
lar results would apply, for example, to the stan-
dard variety used by the German-speaking com-
munity in Belgium and to translation from Dutch
or French to another variety of German, we would
need targeted studies. The same holds true for
other minor (legal) varieties of major languages
(e.g., Swiss French, Chilean Spanish etc.) and the
language combinations that might be predominant
in other minor or minority variety contexts. A fur-
ther limitation consists in the lack of qualitative
analyses that could shed better light on the results,
which we are planning for the future.
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A Example of a test set entry

Per i videoterminalisti che non sono esposti a rischi aggiuntivi, ¢ prevista una

Source sentence . . . N . . o .
formazione di base di 4 ore pill 4 ore di formazione per il rischio specifico.

Source term ‘ videoterminalista
Target term ‘ Bildschirmarbeiter
Other terms from

South Tyrol Bildschirmverwender

Terms from other
legal systems

Bildschirmarbeitnehmer

Table 2: Example of an entry structure taken from the test set.

B Prompt Structure

"role": "system",

"content": "This is a translation task. Translate the
—following legal text from Italian into South-Tyrolean
—German. There are terminological constraints you must
—adhere to: {term_it} corresponds to {term_de}. You must
—output only the translated text without any explanation.
< This is the text to be translated into South-Tyrolean
—German:"

"role": "user",
"content": "<{source_sentence}>"

]

Listing 1: Prompt structure for the Standard Terminology set. For the homonym set, both possible homonyms are
provided as options, without suggesting the correct one.
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