@inproceedings{speranza-2025-inferring,
title = "Inferring Semantic Relations Between Terms with Large Language Models",
author = "Speranza, Giulia",
editor = "Gkirtzou, Katerina and
{\v{Z}}itnik, Slavko and
Gracia, Jorge and
Gromann, Dagmar and
di Buono, Maria Pia and
Monti, Johanna and
Ionov, Maxim",
booktitle = "Proceedings of the 5th Conference on Language, Data and Knowledge: TermTrends 2025",
month = sep,
year = "2025",
address = "Naples, Italy",
publisher = "Unior Press",
url = "https://aclanthology.org/2025.termtrends-1.3/",
pages = "25--30",
ISBN = "978-88-6719-334-9",
abstract = "The purpose of this paper is to investigate the ability of Large Language Models (LLMs) to identify relations among terms, with the goal of facilitating and accelerating the construction of thesauri and terminological resources. We investigate whether the use of LLMs in this context can provide a valuable initial set of relations, serving as a basis upon which professional terminologists can build, validate, and enrich domain-specific knowledge representations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="speranza-2025-inferring">
<titleInfo>
<title>Inferring Semantic Relations Between Terms with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Speranza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Conference on Language, Data and Knowledge: TermTrends 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katerina</namePart>
<namePart type="family">Gkirtzou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slavko</namePart>
<namePart type="family">Žitnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Gracia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dagmar</namePart>
<namePart type="family">Gromann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Pia</namePart>
<namePart type="family">di Buono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Ionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Unior Press</publisher>
<place>
<placeTerm type="text">Naples, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-88-6719-334-9</identifier>
</relatedItem>
<abstract>The purpose of this paper is to investigate the ability of Large Language Models (LLMs) to identify relations among terms, with the goal of facilitating and accelerating the construction of thesauri and terminological resources. We investigate whether the use of LLMs in this context can provide a valuable initial set of relations, serving as a basis upon which professional terminologists can build, validate, and enrich domain-specific knowledge representations.</abstract>
<identifier type="citekey">speranza-2025-inferring</identifier>
<location>
<url>https://aclanthology.org/2025.termtrends-1.3/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>25</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inferring Semantic Relations Between Terms with Large Language Models
%A Speranza, Giulia
%Y Gkirtzou, Katerina
%Y Žitnik, Slavko
%Y Gracia, Jorge
%Y Gromann, Dagmar
%Y di Buono, Maria Pia
%Y Monti, Johanna
%Y Ionov, Maxim
%S Proceedings of the 5th Conference on Language, Data and Knowledge: TermTrends 2025
%D 2025
%8 September
%I Unior Press
%C Naples, Italy
%@ 978-88-6719-334-9
%F speranza-2025-inferring
%X The purpose of this paper is to investigate the ability of Large Language Models (LLMs) to identify relations among terms, with the goal of facilitating and accelerating the construction of thesauri and terminological resources. We investigate whether the use of LLMs in this context can provide a valuable initial set of relations, serving as a basis upon which professional terminologists can build, validate, and enrich domain-specific knowledge representations.
%U https://aclanthology.org/2025.termtrends-1.3/
%P 25-30
Markdown (Informal)
[Inferring Semantic Relations Between Terms with Large Language Models](https://aclanthology.org/2025.termtrends-1.3/) (Speranza, termtrends 2025)
ACL