@inproceedings{kwack-etal-2025-theme,
title = "Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on {K}orean Tabular Data",
author = "Kwack, TaeYoon and
Kim, Jisoo and
Jung, Ki Yong and
Lee, DongGeon and
Park, Heesun",
editor = "Chang, Shuaichen and
Hulsebos, Madelon and
Liu, Qian and
Chen, Wenhu and
Sun, Huan",
booktitle = "Proceedings of the 4th Table Representation Learning Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.trl-1.1/",
doi = "10.18653/v1/2025.trl-1.1",
pages = "1--12",
ISBN = "979-8-89176-268-8",
abstract = "Tables are a primary medium for conveying critical information in administrative domains, yet their complexity hinders utilization by Large Language Models (LLMs). This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline, a novel approach designed to generate highly interpretable summaries from tabular data, with a specific focus on Korean administrative documents. Current table summarization methods often neglect the crucial aspect of human-friendly output. Tabular-TX addresses this by first employing a multi-step reasoning process to ensure deep table comprehension by LLMs, followed by a journalist persona prompting strategy for clear sentence generation. Crucially, it then structures the output into a Theme Part (an adverbial phrase) and an Explanation Part (a predicative clause), significantly enhancing readability. Our approach leverages in-context learning, obviating the need for extensive fine-tuning and associated labeled data or computational resources. Experimental results show that Tabular-TX effectively processes complex table structures and metadata, offering a robust and efficient solution for generating human-centric table summaries, especially in low-resource scenarios."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kwack-etal-2025-theme">
<titleInfo>
<title>Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">TaeYoon</namePart>
<namePart type="family">Kwack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jisoo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ki</namePart>
<namePart type="given">Yong</namePart>
<namePart type="family">Jung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DongGeon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heesun</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Table Representation Learning Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuaichen</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madelon</namePart>
<namePart type="family">Hulsebos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-268-8</identifier>
</relatedItem>
<abstract>Tables are a primary medium for conveying critical information in administrative domains, yet their complexity hinders utilization by Large Language Models (LLMs). This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline, a novel approach designed to generate highly interpretable summaries from tabular data, with a specific focus on Korean administrative documents. Current table summarization methods often neglect the crucial aspect of human-friendly output. Tabular-TX addresses this by first employing a multi-step reasoning process to ensure deep table comprehension by LLMs, followed by a journalist persona prompting strategy for clear sentence generation. Crucially, it then structures the output into a Theme Part (an adverbial phrase) and an Explanation Part (a predicative clause), significantly enhancing readability. Our approach leverages in-context learning, obviating the need for extensive fine-tuning and associated labeled data or computational resources. Experimental results show that Tabular-TX effectively processes complex table structures and metadata, offering a robust and efficient solution for generating human-centric table summaries, especially in low-resource scenarios.</abstract>
<identifier type="citekey">kwack-etal-2025-theme</identifier>
<identifier type="doi">10.18653/v1/2025.trl-1.1</identifier>
<location>
<url>https://aclanthology.org/2025.trl-1.1/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data
%A Kwack, TaeYoon
%A Kim, Jisoo
%A Jung, Ki Yong
%A Lee, DongGeon
%A Park, Heesun
%Y Chang, Shuaichen
%Y Hulsebos, Madelon
%Y Liu, Qian
%Y Chen, Wenhu
%Y Sun, Huan
%S Proceedings of the 4th Table Representation Learning Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-268-8
%F kwack-etal-2025-theme
%X Tables are a primary medium for conveying critical information in administrative domains, yet their complexity hinders utilization by Large Language Models (LLMs). This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline, a novel approach designed to generate highly interpretable summaries from tabular data, with a specific focus on Korean administrative documents. Current table summarization methods often neglect the crucial aspect of human-friendly output. Tabular-TX addresses this by first employing a multi-step reasoning process to ensure deep table comprehension by LLMs, followed by a journalist persona prompting strategy for clear sentence generation. Crucially, it then structures the output into a Theme Part (an adverbial phrase) and an Explanation Part (a predicative clause), significantly enhancing readability. Our approach leverages in-context learning, obviating the need for extensive fine-tuning and associated labeled data or computational resources. Experimental results show that Tabular-TX effectively processes complex table structures and metadata, offering a robust and efficient solution for generating human-centric table summaries, especially in low-resource scenarios.
%R 10.18653/v1/2025.trl-1.1
%U https://aclanthology.org/2025.trl-1.1/
%U https://doi.org/10.18653/v1/2025.trl-1.1
%P 1-12
Markdown (Informal)
[Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data](https://aclanthology.org/2025.trl-1.1/) (Kwack et al., TRL 2025)
ACL