@inproceedings{li-2025-retrieval,
title = "Retrieval-Augmented Forecasting with Tabular Time Series Data",
author = "Li, Zichao",
editor = "Chang, Shuaichen and
Hulsebos, Madelon and
Liu, Qian and
Chen, Wenhu and
Sun, Huan",
booktitle = "Proceedings of the 4th Table Representation Learning Workshop",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.trl-1.16/",
doi = "10.18653/v1/2025.trl-1.16",
pages = "192--199",
ISBN = "979-8-89176-268-8",
abstract = "This paper presents Retrieval-Augmented Forecasting (RAF), a novel framework for tabular time-series prediction that dynamically retrieves and integrates relevant historical table slices. RAF addresses three key limitations of existing methods: 1) schema rigidity through dynamic hashing of column metadata, 2) temporal myopia via cross-attention with learned decay, and 3) pipeline sub-optimality via end-to-end retriever-forecaster co-training. Experiments across macroeconomic (FRED-MD), financial (Yahoo Finance), and development (WorldBank) benchmarks demonstrate RAF{'}s superiority over six baselines, reducing sMAPE by 19.1-26.5{\%} while maintaining robustness to schema changes (+3.2{\%} sMAPE increase vs. +6.7-12.7{\%} for alternatives). The architecture{'}s computational overhead (1.8 vs. 1.2 hours/epoch vs. TFT) is justified by significant accuracy gains in critical scenarios like market shocks (61.7{\%} vs. 55.1{\%} directional accuracy)."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-2025-retrieval">
<titleInfo>
<title>Retrieval-Augmented Forecasting with Tabular Time Series Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zichao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Table Representation Learning Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuaichen</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madelon</namePart>
<namePart type="family">Hulsebos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-268-8</identifier>
</relatedItem>
<abstract>This paper presents Retrieval-Augmented Forecasting (RAF), a novel framework for tabular time-series prediction that dynamically retrieves and integrates relevant historical table slices. RAF addresses three key limitations of existing methods: 1) schema rigidity through dynamic hashing of column metadata, 2) temporal myopia via cross-attention with learned decay, and 3) pipeline sub-optimality via end-to-end retriever-forecaster co-training. Experiments across macroeconomic (FRED-MD), financial (Yahoo Finance), and development (WorldBank) benchmarks demonstrate RAF’s superiority over six baselines, reducing sMAPE by 19.1-26.5% while maintaining robustness to schema changes (+3.2% sMAPE increase vs. +6.7-12.7% for alternatives). The architecture’s computational overhead (1.8 vs. 1.2 hours/epoch vs. TFT) is justified by significant accuracy gains in critical scenarios like market shocks (61.7% vs. 55.1% directional accuracy).</abstract>
<identifier type="citekey">li-2025-retrieval</identifier>
<identifier type="doi">10.18653/v1/2025.trl-1.16</identifier>
<location>
<url>https://aclanthology.org/2025.trl-1.16/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>192</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval-Augmented Forecasting with Tabular Time Series Data
%A Li, Zichao
%Y Chang, Shuaichen
%Y Hulsebos, Madelon
%Y Liu, Qian
%Y Chen, Wenhu
%Y Sun, Huan
%S Proceedings of the 4th Table Representation Learning Workshop
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-268-8
%F li-2025-retrieval
%X This paper presents Retrieval-Augmented Forecasting (RAF), a novel framework for tabular time-series prediction that dynamically retrieves and integrates relevant historical table slices. RAF addresses three key limitations of existing methods: 1) schema rigidity through dynamic hashing of column metadata, 2) temporal myopia via cross-attention with learned decay, and 3) pipeline sub-optimality via end-to-end retriever-forecaster co-training. Experiments across macroeconomic (FRED-MD), financial (Yahoo Finance), and development (WorldBank) benchmarks demonstrate RAF’s superiority over six baselines, reducing sMAPE by 19.1-26.5% while maintaining robustness to schema changes (+3.2% sMAPE increase vs. +6.7-12.7% for alternatives). The architecture’s computational overhead (1.8 vs. 1.2 hours/epoch vs. TFT) is justified by significant accuracy gains in critical scenarios like market shocks (61.7% vs. 55.1% directional accuracy).
%R 10.18653/v1/2025.trl-1.16
%U https://aclanthology.org/2025.trl-1.16/
%U https://doi.org/10.18653/v1/2025.trl-1.16
%P 192-199
Markdown (Informal)
[Retrieval-Augmented Forecasting with Tabular Time Series Data](https://aclanthology.org/2025.trl-1.16/) (Li, TRL 2025)
ACL