@inproceedings{belem-etal-2025-readability,
title = "Readability Reconsidered A Cross-Dataset Analysis of Reference-Free Metrics",
author = "Belem, Catarina and
Glenn, Parker and
Samuel, Alfy and
Kumar, Anoop and
Liu, Daben",
editor = "Shardlow, Matthew and
Alva-Manchego, Fernando and
North, Kai and
Stodden, Regina and
Saggion, Horacio and
Khallaf, Nouran and
Hayakawa, Akio",
booktitle = "Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.tsar-1.4/",
doi = "10.18653/v1/2025.tsar-1.4",
pages = "47--69",
ISBN = "979-8-89176-176-6",
abstract = "Automatic readability assessment plays a key role in ensuring effective communication between humans and language models. Despite significant progress the field is hindered by inconsistent definitions of readability and measurements that rely on surface-level text properties. In this work we investigate the factors shaping human perceptions of readability through the analysis of 1.2k judgments finding that beyond surface-level cues information content and topic strongly shape text comprehensibility. Furthermore we evaluate 15 popular readability metrics across 5 datasets contrasting them with 5 more nuanced model-based metrics. Our results show that four model-based metrics consistently place among the top 4 in rank correlations with human judgments while the best performing traditional metric achieves an average rank of 7.8. These findings highlight a mismatch between current readability metrics and human perceptions pointing to model-based approaches as a more promising direction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="belem-etal-2025-readability">
<titleInfo>
<title>Readability Reconsidered A Cross-Dataset Analysis of Reference-Free Metrics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Catarina</namePart>
<namePart type="family">Belem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parker</namePart>
<namePart type="family">Glenn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alfy</namePart>
<namePart type="family">Samuel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daben</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Shardlow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Alva-Manchego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">North</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Stodden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Horacio</namePart>
<namePart type="family">Saggion</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nouran</namePart>
<namePart type="family">Khallaf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akio</namePart>
<namePart type="family">Hayakawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-176-6</identifier>
</relatedItem>
<abstract>Automatic readability assessment plays a key role in ensuring effective communication between humans and language models. Despite significant progress the field is hindered by inconsistent definitions of readability and measurements that rely on surface-level text properties. In this work we investigate the factors shaping human perceptions of readability through the analysis of 1.2k judgments finding that beyond surface-level cues information content and topic strongly shape text comprehensibility. Furthermore we evaluate 15 popular readability metrics across 5 datasets contrasting them with 5 more nuanced model-based metrics. Our results show that four model-based metrics consistently place among the top 4 in rank correlations with human judgments while the best performing traditional metric achieves an average rank of 7.8. These findings highlight a mismatch between current readability metrics and human perceptions pointing to model-based approaches as a more promising direction.</abstract>
<identifier type="citekey">belem-etal-2025-readability</identifier>
<identifier type="doi">10.18653/v1/2025.tsar-1.4</identifier>
<location>
<url>https://aclanthology.org/2025.tsar-1.4/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>47</start>
<end>69</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Readability Reconsidered A Cross-Dataset Analysis of Reference-Free Metrics
%A Belem, Catarina
%A Glenn, Parker
%A Samuel, Alfy
%A Kumar, Anoop
%A Liu, Daben
%Y Shardlow, Matthew
%Y Alva-Manchego, Fernando
%Y North, Kai
%Y Stodden, Regina
%Y Saggion, Horacio
%Y Khallaf, Nouran
%Y Hayakawa, Akio
%S Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-176-6
%F belem-etal-2025-readability
%X Automatic readability assessment plays a key role in ensuring effective communication between humans and language models. Despite significant progress the field is hindered by inconsistent definitions of readability and measurements that rely on surface-level text properties. In this work we investigate the factors shaping human perceptions of readability through the analysis of 1.2k judgments finding that beyond surface-level cues information content and topic strongly shape text comprehensibility. Furthermore we evaluate 15 popular readability metrics across 5 datasets contrasting them with 5 more nuanced model-based metrics. Our results show that four model-based metrics consistently place among the top 4 in rank correlations with human judgments while the best performing traditional metric achieves an average rank of 7.8. These findings highlight a mismatch between current readability metrics and human perceptions pointing to model-based approaches as a more promising direction.
%R 10.18653/v1/2025.tsar-1.4
%U https://aclanthology.org/2025.tsar-1.4/
%U https://doi.org/10.18653/v1/2025.tsar-1.4
%P 47-69
Markdown (Informal)
[Readability Reconsidered A Cross-Dataset Analysis of Reference-Free Metrics](https://aclanthology.org/2025.tsar-1.4/) (Belem et al., TSAR 2025)
ACL