@inproceedings{arias-russi-etal-2025-multi,
title = "A Multi-Agent Framework with Diagnostic Feedback for Iterative Plain Language Summary Generation from Cochrane Medical Abstracts",
author = "Arias Russi, Felipe and
Salazar Lara, Carolina and
Manrique, Ruben",
editor = "Shardlow, Matthew and
Alva-Manchego, Fernando and
North, Kai and
Stodden, Regina and
Saggion, Horacio and
Khallaf, Nouran and
Hayakawa, Akio",
booktitle = "Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.tsar-1.6/",
pages = "87--104",
ISBN = "979-8-89176-176-6",
abstract = "Plain Language Summaries PLS improve health literacy and enable informed healthcare decisions but writing them requires domain expertise and is time-consuming. Automated methods often prioritize efficiency over comprehension and medical documents unique simplification requirements challenge generic solutions. We present a multi-agent system for generating PLS using Cochrane PLS as proof of concept. The system uses specialized agents for information extraction writing diagnosis and evaluation integrating a medical glossary and statistical analyzer to guide revisions. We evaluated three architectural configurations on 100 Cochrane abstracts using six LLMs both proprietary and open-source. Results reveal model-dependent trade-offs between factuality and readability with the multi-agent approach showing improvements for smaller models and providing operational advantages in control and interpretability."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arias-russi-etal-2025-multi">
<titleInfo>
<title>A Multi-Agent Framework with Diagnostic Feedback for Iterative Plain Language Summary Generation from Cochrane Medical Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Felipe</namePart>
<namePart type="family">Arias Russi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Salazar Lara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruben</namePart>
<namePart type="family">Manrique</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Shardlow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Alva-Manchego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">North</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Stodden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Horacio</namePart>
<namePart type="family">Saggion</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nouran</namePart>
<namePart type="family">Khallaf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akio</namePart>
<namePart type="family">Hayakawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-176-6</identifier>
</relatedItem>
<abstract>Plain Language Summaries PLS improve health literacy and enable informed healthcare decisions but writing them requires domain expertise and is time-consuming. Automated methods often prioritize efficiency over comprehension and medical documents unique simplification requirements challenge generic solutions. We present a multi-agent system for generating PLS using Cochrane PLS as proof of concept. The system uses specialized agents for information extraction writing diagnosis and evaluation integrating a medical glossary and statistical analyzer to guide revisions. We evaluated three architectural configurations on 100 Cochrane abstracts using six LLMs both proprietary and open-source. Results reveal model-dependent trade-offs between factuality and readability with the multi-agent approach showing improvements for smaller models and providing operational advantages in control and interpretability.</abstract>
<identifier type="citekey">arias-russi-etal-2025-multi</identifier>
<location>
<url>https://aclanthology.org/2025.tsar-1.6/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>87</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-Agent Framework with Diagnostic Feedback for Iterative Plain Language Summary Generation from Cochrane Medical Abstracts
%A Arias Russi, Felipe
%A Salazar Lara, Carolina
%A Manrique, Ruben
%Y Shardlow, Matthew
%Y Alva-Manchego, Fernando
%Y North, Kai
%Y Stodden, Regina
%Y Saggion, Horacio
%Y Khallaf, Nouran
%Y Hayakawa, Akio
%S Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-176-6
%F arias-russi-etal-2025-multi
%X Plain Language Summaries PLS improve health literacy and enable informed healthcare decisions but writing them requires domain expertise and is time-consuming. Automated methods often prioritize efficiency over comprehension and medical documents unique simplification requirements challenge generic solutions. We present a multi-agent system for generating PLS using Cochrane PLS as proof of concept. The system uses specialized agents for information extraction writing diagnosis and evaluation integrating a medical glossary and statistical analyzer to guide revisions. We evaluated three architectural configurations on 100 Cochrane abstracts using six LLMs both proprietary and open-source. Results reveal model-dependent trade-offs between factuality and readability with the multi-agent approach showing improvements for smaller models and providing operational advantages in control and interpretability.
%U https://aclanthology.org/2025.tsar-1.6/
%P 87-104
Markdown (Informal)
[A Multi-Agent Framework with Diagnostic Feedback for Iterative Plain Language Summary Generation from Cochrane Medical Abstracts](https://aclanthology.org/2025.tsar-1.6/) (Arias Russi et al., TSAR 2025)
ACL