
Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 1–10
November 9, 2025 ©2025 Association for Computational Linguistics

Uncertainty-Driven Partial Diacritization for Arabic Text

Humaid Alblooshi, Artem Shelmanov, Hanan Aldarmaki
Department of Natural Language Processing

Mohamed Bin Zayed University of Artificial Intelligence, UAE
{Humaid.alblooshi, Artem.Shelmanov, Hanan.Aldarmaki}@mbzuai.ac.ae

Abstract

We propose an uncertainty-based approach to
Partial Diacritization (PD) for Arabic text. We
evaluate three uncertainty metrics for this task:
Softmax Response, BALD via MC-dropout,
and Mahalanobis Distance. We further intro-
duce a lightweight Confident Error Regularizer
to improve model calibration. Our preliminary
exploration illustrates possible ways to use un-
certainty estimation for selectively retaining
or discarding diacritics in Arabic text with an
analysis of performance in terms of correla-
tion with diacritic error rates. For instance, the
model can be used to detect words with high
diacritic error rates which tend to have higher
uncertainty scores at inference time. On the
Tashkeela dataset, the method maintains low
diacritic error rates while reducing the amount
of visible diacritics on the text by up to 50%
with thresholding-based retention.

1 Introduction

Arabic script relies on diacritics, commonly re-
ferred to in Arabic as Tashkeel (ÉJ
º�

������) to mark
short vowels, gemination, and other phonemic dis-
tinctions that may not be represented by the base
letters. Fully-diacritized text eliminates ambiguity
and supports precise pronunciation, which is help-
ful for applications such as text-to-speech (TTS)
synthesis, machine translation, and language learn-
ing (Mubarak et al., 2019; Lameris, 2021). How-
ever, when every letter carries its diacritic, the re-
sulting text becomes visually dense and can slow
down readers (ElNokrashy and AlKhamissi, 2024;
Roman and Pavard, 1987). Partial diacritization
can be employed to balance disambiguation and
readability and to optimize performance in down-
stream NLP applications.

State-of-the-art transformer-based diacritization
models can achieve diacritic error rates (DER) be-
low 2% on standard benchmarks (Assad et al.,
2024), but their performance may degrade in out-of-

domain data (Toyin et al., 2025a). These models of-
ten operate as “black boxes,” where model outputs
are accepted regardless of confidence scores. Their
outputs are often fully diacritized, which increases
visual complexity and can slow down reading speed
and reduce clarity. Furthermore, many diacritics
are redundant, particularly in common words where
pronunciation is intuitive or easily inferred. These
factors make Fully Diacritized (FD) text less prac-
tical for general application, motivating the need
for Partially Diacritized (PD) text in such settings.
Prior studies proposed computational approaches
that rely on heuristics and morphological analysis
to perform partial diacritization (Diab et al., 2007;
Alqahtani et al., 2019). Others have proposed neu-
ral networks (Fadel et al., 2019) with some success.
However, research on partial diacritization remains
limited, largely due to the difficulty of evaluating
performance; optimal partial diacritization is an
illusive concept with no standard evaluation frame-
work or metrics.

In this paper, we explore an uncertainty-driven
framework for PD and provide a preliminary in-
trinsic evaluation of this framework through error
analysis. We evaluate three uncertainty metrics:
Softmax Response, Bayesian Active Learning by
Disagreement (BALD) via Monte Carlo dropout,
and Mahalanobis distance in latent feature space.
At inference time, the predicted diacritic of each
character is compared with a chosen threshold θ.
We may keep the diacritic if the uncertainty score is
above or below said threshold, allowing for flexibil-
ity in application. To mitigate the well-known over-
confidence of deep networks on rare or ambiguous
inputs, we experiment with a lightweight, simpli-
fied Confident Error Regularizer (CER) that penal-
izes high-confidence mistakes during fine-tuning.
We summarize our contributions as follows:

• We propose and formalize the application of
per-character uncertainty metrics for PD and
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illustrate an intrinsic performance evaluation
of this framework using a recent state-of-the-
art neural diacritic restoration model.

• We propose an efficient calibration method
and apply it on our base diacritic restoration
model. We show that the approach improves
uncertainty estimation at the cost of lower ac-
curacy, while being computationally efficient.

• We discuss the potential downstream appli-
cations of such partial diacritization schemes
and highlight areas that need further analysis
and improvement.

2 Related Work

Early approaches to Arabic diacritization employed
hidden Markov models and morphological analyz-
ers such as MADA and MADAMIRA (Habash
et al., 2005), Habash and Rambow (2005), Habash
and Rambow (2007), achieving good accuracy by
leveraging lexical features and large amounts of
data. With the advent of neural networks, recur-
rent architectures and encoder–decoder transform-
ers improved DER to below 5%. The Character-
based Arabic Tashkeel Transformer (CATT) (?)
is one such innovation, achieving very good re-
sults on both its variants, encoder only (EO) and
encoder-decoder (ED).

Partial diacritization has been studied from lin-
guistic and machine learning perspectives with the
aim of improving both NLP systems as well as
improving text readability. Rule-based schemes
target case endings or homograph disambiguation,
while supervised methods train classifiers to decide
which positions to diacritize. Diab et al. (2007)
investigated the impact of various diacritization
schemes on Statistical Machine Translation (SMT)
from Arabic to English. The authors explored
different levels of partial diacritization and found
that partial diacritization could improve translation
quality by reducing ambiguity without significantly
increasing vocabulary size or out-of-vocabulary
rates. Alqahtani et al. (2016) demonstrated im-
provements in machine translation by employing
partial diacritization strategies targeting syntactic
clarity. Building on these findings, the authors
also employed selective diacritic restoration specif-
ically for homograph disambiguation (Alqahtani
et al., 2019). Fadel et al. (2019) further advanced
PD research by achieving state-of-the-art results
and seamless integration into machine translation

workflows. Qin et al. (2021) introduced regular-
ized decoding and adversarial training to improve
diacritization robustness and accuracy. Recently,
Elgamal et al. (2024) analyzed naturally occurring
instances of partial diacritics across diverse text
genres, creating practical datasets for enhanced
real-world applications.

Our contribution in relation to related work
Existing PD methods depend on heuristics or lin-
guistic context to identify words or characters for
partial diacritization. None of the existing ap-
proaches leverage model uncertainty estimation
techniques, which have been shown to be instru-
mental in other areas of application, such as com-
puter vision (Kendall and Gal, 2017), (Lee et al.,
2018), and machine translation (Pereyra et al.,
2017). In this paper, we introduce the application
of uncertainty estimation methods for Arabic dia-
critization and contribute a preliminary exploration
of uncertainty metrics and performance in terms
of diacritic error rates. Through this exploratory
analysis, we present a case for the potential of un-
certainty estimation as a viable computational ap-
proach towards partial diacritization.

3 Methodology

Our methodology for partial diacritization is to use
model uncertainty to guide the removal or retention
of diacritics based on target criteria. For example,
if we have a fully diacritized text and wish to mini-
mize the diacritics for improved readability, uncer-
tainty scores may be helpful in identifying which
diacritics to retain by keeping the ground truth di-
acritics in places with high model uncertainty. In
applications where a diacritic restoration model is
used directly to annotate undiacritized text, we may
wish to remove predicted diacritics with high uncer-
tainty and maintain low diacritic error rates in the
resulting text. Our methodology and preliminary
analysis enable both types of application by explor-
ing the relationship between uncertainty scores and
diacritic error rates. In the following sections, we
describe the base model, uncertainty metrics, and
the calibration scheme used to improve uncertainty
estimation for diacritic restoration.

3.1 Task Formulation and Diacritic
Restoration Models

Arabic diacritic restoration can be cast as a
sequence-labeling problem. Given an undiacritized
character sequence x = (x1, . . . , xn), we pre-
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dict a diacritic sequence y = (y1, . . . , yn), where
yi ∈ Vdiac (including a “no-diacritic” symbol) is a
label for xi.

We use a recent character-based transformer
model for diacritic restoration, CATT (?), which
supports both encoder-only and encoder-decoder
configurations. We primarily use the encoder-
decoder model in experiments, as it’s shown to per-
form better in ?. Both architectures are described
below.

Encoder-Only (EO) is a transformer encoder
θenc with a linear classification head for sequence
labeling with parameters Wcls and a bias term bcls.
Each position is classified independently condi-
tioned on the entire input:

h = Encoder(x; θenc) (1)

p(yi|x) = softmax(Wclshi + bcls) (2)

Encoder-Decoder (ED) is a full transformer ar-
chitecture with autoregressive decoding. We denote
the parameters of the decoder as θdec. We view the
task as monotonic character-to-diacritic translation
with the standard autoregressive factorization:

henc = Encoder(x; θenc) (3)

hdec = Decoder(y<i,henc; θdec) (4)

p(yi|x,y<i) = softmax(Wclshdec,i + bcls) (5)

P (y | x) =
n∏

i=1

P (yi | x, y1, . . . , yi−1) . (6)

3.2 Uncertainty Scores
We denote the model’s categorical probability out-
put at a given character position by p(y | x) and
all parameters of the model as θ. The Softmax
Response (SR) uncertainty is defined as:

USR(x) = 1−max
y

P (y|x, θ). (7)

Softmax Response, (Hendrycks and Gimpel,
2017) measures model confidence explicitly, and is
usually a simple baseline for alaetoric uncertainty:
the inherent ambiguity of a task due to noise or
multiple valid answers.

To capture epistemic uncertainty, we apply
Monte Carlo dropout at inference time over T
stochastic forward passes, obtaining distributions
pt(y | x) t = 1 . . . T . This score is the difference
between predictive entropy and expected entropy,
termed BALD (Bayesian Active Learning by Dis-
agreement) (Houlsby et al., 2011):

UBALD(x) = H[P (y|x, θ)]− Eq(θ)H[P (y|x, θ)]
(8)

where:
• H[P (y|x, θ)] is the total uncertainty (entropy

of the predictive distribution),
• Eq(θ)H[P (y|x, θ)] is the expected entropy

over the posterior distribution of the model pa-
rameters, capturing the irreducible (aleatoric)
uncertainty.

A higher BALD score indicates greater disagree-
ment among stochastic forward passes, meaning
the model lacks knowledge and would benefit from
additional training on similar samples.

Finally, Mahalanobis Distance (MD) (Lee
et al., 2018) is computed on the penultimate layer
features f(x) ∈ Rd, with a precomputed centroid
for the whole training set µ and a covariance matrix
Σ:

UMD(x) =
√
(f(x)− µ)TΣ−1(f(x)− µ). (9)

Higher MD values indicate that a sample may be
out-of-distribution, suggesting that the model has
not encountered similar instances during training.
For example, a rarely-used Arabic word or a for-
eign loanword transcribed in Arabic script could
have a high MD score. MD is a strong epistemic
uncertainty metric, since uncertainty in these in-
stances is due to complete lack of representation
rather than ambiguity.

3.3 Selective Diacritization
We propose uncertainty-based partial diacritization
as follows. At inference time, we compare the un-
certainty for each character position, U(x), against
a pre-defined threshold, τ . Depending on our ob-
jective, we can:

• Retain high confidence diacritics, where
U(x) < τ . This can be applied in settings
where automatic diacritic restoration is used
to annotate undiacritized text, and highly ac-
curate partial diacritization is preferred over
full diacritization.

• Retain low confidence diacritics, where
U(x) > τ . This can be used for applications
where ground truth diacritics are available,
and partial diacritics are sought to identify
ambiguous words; for instance, in reading ap-
plications to help casual readers disambiguate
difficult, ambiguous cases while maintaining
minimal diacritics overall to reduce cognitive
load. This approach could also be used to
identify which subset of diacritics to manually
annotate in an active learning framework.

3



By sweeping τ over [0, 1], we can trace a
DER–coverage curve that illustrates the trade-off
between error rate and annotation effort.

3.4 Calibration via Confident Error
Regularizer

Deep models often assign high confidence to in-
correct predictions, which could compromise the
application of uncertainty in PD as described
above. To address this, we augment the standard
cross-entropy loss LCE with a penalty on high-
confidence errors.

Xin et al. (2021) proposed the Confident Error
Regularizer (CER) to add a penalty for an instance
with a bigger loss than other instances and, at the
same time, bigger confidence:

LCER =
k∑

i,j=1

∆i,j I[ei > ej ] (10)

∆i,j =
(
max{0,max pci −max pcj}

)2 (11)

where k is the number of instances in a batch and
ei is an error of the i-th instance: ei is 1 if the
prediction of the classifier matches the true label,
and is 0 otherwise. pi and pj are the probabilities
of these specific datapoints. The authors evaluate
this type of regularization only in conjunction with
the SR baseline to good results. CER is based on
the principle that a well-calibrated model should
assign lower confidence to incorrect predictions
than to correct ones, and vice versa.

In our implementation, we adopt a simplified
version of the CER that maintains the core con-
cept while reducing computational complexity. In-
stead of using pairwise comparisons between all
instances in a batch as in the original formulation,
our approach directly penalizes high confidence on
incorrect predictions with high confidence only:

LCER =

∑n
i=1max(pi) · I[yi ̸= ŷi] ·mi∑n

i=1 I[yi ̸= ŷi] ·mi + ϵ
(12)

where n is the total number of tokens, max(pi) is
the maximum probability (confidence) for token
i, I[yi ̸= ŷi] is an indicator function that equals 1
when the prediction is incorrect and 0 otherwise,
mi is a mask to ignore padding tokens, and ϵ is a
small constant to avoid division by zero.

This regularization loss is then added to the task-
focused cross-entropy loss LCE. The additive total
loss function is then:

Ltotal = LCE + λLCER. (13)

with λ as a regularization strength hyperparameter.

4 Experiments

This section presents exploratory and experimental
analysis of our approach. We analyze the perfor-
mance of different uncertainty estimation methods,
with a particular focus on SR as our primary score,
a choice we justify below. We also evaluate the im-
pact of confidence calibration through CER, not to
be confused with Character Error Rate, with differ-
ent regularization strengths. The analysis addresses
several key aspects: the relationship between uncer-
tainty thresholds and diacritization coverage, error
rates at different thresholds of uncertainty, the ef-
fectiveness of uncertainty in identifying difficult
words, and the calibration quality of the model with
and without CER.

4.1 Datasets

The Tashkeela Corpus (Zerrouki and Balla,
2017) is the primary dataset usedfor training the
base CATT model. We use it for fine-tuning and
in-domain evaluation. The dataset contains over 75
million words of fully diacritized text, derived from
classical Arabic books, religious texts, and modern
Arabic educational material. We apply filtering to
remove lines with less than a 60% diacritization ra-
tio for finetuning. Since Tashkeela is a large dataset,
we only fine-tuned on 10% of the data, split into an
80/20 for fine-tuning and validation.

ArVoice (Toyin et al., 2025b) is a multi-speaker
Modern Standard Arabic (MSA) speech corpus
with fully diacritized text transcriptions, intended
for multi-speaker speech synthesis. The complete
corpus consists of a total of 83.52 hours of speech
across 11 voices. Since most of the ArVoice text
is derived from Tashkeela, we use only the ASC
subset, which is derived from the Arabic Speech
Corpus (Halabi, 2016). This serves as a challenging
out-of-domain test set.

4.2 Base Model without Regularization

To start the analysis, we will go over some stud-
ies on the base model itself to establish a few key
points and trends, then move on to the calibration
effect on key metrics, and what insights can be
pulled from those differences.

4.2.1 Relationship Between Uncertainty
Threshold and Diacritic Coverage

As we increase the threshold τ used to retain dia-
critics in the base model, we keep more diacritics,
in the case that we choose to keep the ones below
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Figure 1: Percentage of diacritics kept vs. uncertainty threshold for SR and BALD (left) and MD (right) using the
base model. Results are based on the Tashkeela test set. We plot MD separately due to the large difference in scale
compared to SR and BALD. Note:The percentage is calculated with the total ground truth diacritics as denominator.
The base model generates more than 100% of the diacritics due to insertion errors.

τ . We illustrate the relationship between uncer-
tainty thresholds and the percentage of diacritics
retained in Figure 1. Naturally, the figures follow a
cumulative pattern where all diacritics are kept at
the maximum uncertainty threshold.1 The figures
help identify the threshold values needed to retain
a specific percentage of diacritics.

4.2.2 Relationship Between Error Rate and
Diacritics Kept

While the previous section demonstrates how to se-
lect a threshold based on the percentage of desired
diacritics, a more practical approach is to select a
threshold based on optimal diacritic coverage and
error rates. Figure 2 shows the relationship be-
tween the percentage of diacritics retained using
the base model, and the resulting Diacritic Error
Rate (DER) for our three uncertainty estimation
metrics: SR, BALD, and MD. Fewer diacritics are
favorable in a practical reading setting, since there
is less visual noise to go through and less disam-
biguation needed. As such, keeping the smallest
number of diacritics possible while retaining the
lowest Diacritic Error Rate “DER” is desirable in
this context. We calculate DER relative to the num-
ber of total diacritics kept.

As the illustration does not rely on absolute
threshold value, we gain the advantage of visu-

1The model predicts more diacritics than the reference
ground truth, making the results go above 100% at the ex-
tremes due to insertions it makes.

alizing the three metrics in the same scale. In the
same figure, one can see that SR and BALD exhibit
similar trends, with a gradual increase in error rate
as more diacritics are kept. At 80% diacritization
coverage, both methods maintain a relatively low
error rate (approximately 2.5%, or 50% absolute
reduction in error rates) after removing 20% of dia-
critics that have high uncertainty in the base model.
In contrast, MD shows a sharper increase in error
rate, suggesting that it may be unsuitable for this
task. This indicates that the model’s confidence
(as measured by SR and BALD) is well correlated
with its accuracy, making it an effective guide for
partial diacritization. SR seems less prone to er-
rors than BALD, though not significantly. SR is
also much faster to compute than BALD in our
encoder-decoder diacritic restoration model since
MC dropout passes need to be computed for every
token the decoder generates, leading to huge com-
putational overhead. As such, SR will be chosen
as the main metric of focus in the remaining anal-
ysis due to its computational efficiency and good
correlation with error rates.

4.3 Confident Error Regularization

While the base model is shown to be effective at
identifying many errors through uncertainty scores,
effectively reducing error rates by 50% while main-
taining 80% of diacritics, we still have many in-
stances where the model uncertainty scores do
not track performance, especially in the out-of-
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Figure 2: Diacritic Error Rate vs. Percentage of Diacritics Kept on the Tashkeela test set for SR, BALD, and MD
metrics using the base model, keeping diacritics below threshold. Note: The percentage is calculated with the total
ground truth diacritics as denominator. The base model generates more than 100% of the diacritics due to insertion
errors.

domain test set. To address this calibration is-
sue, we applied CER with different regularization
strengths λ. We experimented with several val-
ues, selected through hyperparameter optimization
for confidence gaps and validation diacritic error
rate. The results below are shown using the out-of-
domain test set derived from ArVoice, where the
base error rate is above 10%.

4.3.1 Impact on DER
Diacritic error rate tends to increase with higher
regularization, as shown in Figure 3.

This increase is more significant for λ2.77, and
scales mostly linearly as λ values increase. λ0.644

shows moderate increase in DER, while improv-
ing model precision in detecting error-prone, high-
DER words, as discussed in the next section.

4.3.2 High-DER Words Precision/Recall
To quantify the model’s ability to identify ambigu-
ous words, we perform word-level analysis. We de-
fine a high-DER word as one with > 50% DER. We
then measure how well we can identify these high-
DER words using the model’s uncertainty scores.
We calculate the uncertainty score for a word as
the mean uncertainty of its characters. We then
sort the words in the test set from lowest to highest
uncertainty to define the uncertainty percentiles.
For instance, the 70th percentile is the word-level
uncertainty score where 70% of the words fall be-
low, and 30% of words are higher. The 30% high-

uncertainty words are the ones ‘detected’ by the
model. The exact calculations are shown in Ap-
pendix, section A.1.2.

Based on these definitions, we measure the preci-
sion and recall at different regularization strengths
λ and uncertainty percentiles2. Figure 4 presents
these metrics for several values of the regular-
ization parameter λ, along with the base model
(λ = 0). Overall, there is a clear trade-off be-
tween recall and precision. The base model tends
to achieve higher recall but suffers from very low
precision, indicating that it flags words with low
error rates as uncertain, and vice versa. In contrast,
the regularized models typically flag fewer words
overall, which results in smaller recall but precision
is higher than the baseline.

Notably, at very high thresholds (e.g., the 99th
or 100th percentile), both recall and precision drop,
likely because only a tiny fraction of words ex-
ceed these stringent uncertainty levels. A threshold
near the 90-95% range appears to offer a good bal-
ance between detecting enough erroneous words
while minimizing false positives. The exact choice
depends on whether higher precision or higher cov-
erage of erroneous words is the primary goal.

2Note that due to the distribution of the scores and the
skewed uncertainty values, the percentiles do not reflect ex-
actly the same number of detected words across models. For
instance, at the 70th percentile, the number of words below
the threshold may be less than 70%.
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Figure 3: DER calculations for the base and calibrated models across coverage levels. Keeping below threshold
diacritics. The results are based on the ArVoice test set. Note: The coverage is calculated with the total ground
truth diacritics as denominator. The base model generates more than 100% of the diacritics due to insertion errors.

Figure 4: Detection rate or recall (top) and precision
(bottom) of high-DER words at different uncertainty
percentiles using different regularizing strength values.
The results are based on the ArVoice test set.

5 Discussion and Conclusions

We explored the application of uncertainty estima-
tion for partial diacritization of Arabic text. We
experimented with various uncertainty estimation
methods, and established the suitability of Soft-
max Response for this task. The other two met-
rics we explored had some drawbacks that made
them less suitable for our task. While the Maha-
lanobis distance exhibited some correlation with
diacritic error rates, the effect is weaker than the
other two methods, resulting in higher error rates
at the same coverage points. BALD achieved sim-

ilar correlation to SR, but it is less suitable for
practical diacritc restoration models that involve
sequence labeling due to its higher computational
cost. Among the three metrics, SR provides opti-
mal performance and efficiency, making it suitable
for additional calibration and practical deployment.
However, our experiments show that better cali-
bration results in higher DER, so additional work
is needed to develop calibrated models that retain
base accuracy. Nevertheless, the calibrated model
shows potential for identifying ambiguous words,
which we define as words with high DER, in terms
of precision. This indicates that calibration may
still be useful for some target application, where
identifying ambiguous words with high precision
(albeit with low recall) is desired. This preliminary
analysis illustrates that additional work is needed
to identify suitable calibration methods that opti-
mize uncertainty estimation while maintaining the
performance of the base diacritic restoration model.

In terms of application, the SR-based approach is
straightforward to integrate into any neural-based
diacritic restoration model, and our experiments
show that we can reduce the relative DER in par-
tial diacritization with various coverage thresholds.
Such approach can be used in user-facing appli-
cations where automatic diacritization is used to
annotate undiacritized text, leading to a partially
diacritized text that is more accurate than the base-
line. However, such methods do not address the
issue of ambiguous words, which are likely to re-
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Table 1: Examples of Threshold-based Diacritic Selection at 20% Coverage (λ = 0.64)

Strategy Text
Ground Truth �é�
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main undiacritized under such schemes. For im-
proving readability, the same technique could be
used to reduce the total number of diacritics in
fully-diacritized text with ground-truth diacritics.
The words that are identified as high-uncertainty
could retain their diacritics, while diacritics on low-
uncertainty words can be dropped. Examples of
sentences and their partial diacritics using each of
these proposed schemes are shown in Table 1.

Our exploratory analysis provides a starting
point for such applications; further evaluation and
analysis are needed to verify the effectiveness of
such approaches in practical applications like read-
ability enhancement, machine translation, and text-
to-speech synthesis.

Limitations

We limited our analysis to one base diacritic restora-
tion model, CATT, which serves as a strong base-
line. Our analysis may be applicable to other mod-
els, but the experiments need to be replicated to
verify that. The work presented in this paper serves
as a preliminary exploration of uncertainty estima-
tion as applied to the task of diacritic restoration,
but it does not include sufficient analysis of the im-
pact of such methods on downstream applications.
Additional experiments are needed to explore the
applicability of the proposed technique in applica-
tions such as machine translation, text-to-speech
synthesis, or readability assessment. The choice of
uncertainty metrics was motivated mostly by sim-
plicity and convenience, and other metrics could
have been included in the analysis. The analysis
provided in this paper should be taken as a partial
exploration rather than the final word on the suit-
ability of uncertainty estimation metrics for partial
diacritization. Finally, the experiments show that
error calibration hurts model performance. We do
not provide a solution for this and leave any im-

provement on the proposed calibration method for
future work.
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A Appendix

A.1 Formulation of metrics
We use the following metrics to evaluate our mod-
els, categorized into diacritic-level and word-level
metrics:
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A.1.1 Diacritic-level Metrics
1. Diacritic Error Rate (DER): The percent-

age of incorrectly predicted diacritics over the
total:

DER =
|{d ∈ D|d̂ ̸= d}|

|D| × 100% (14)

Where:

• d is a given diacritic
• D is the set of all possible diacritics
• d̂ is a true label diacritic

This metric is computed using edit distance
calculations adapted for Arabic diacritics.
Any missing or deleted diacritics are not con-
sidered errors, since the goal is to remove as
many diacritics as possible while retaining
accurate predictions by the model.

2. Diacritization Coverage: Percentage of char-
acters or words that retain diacritics after par-
tial diacritization:

Coverage =
|{c ∈ C|HasDiac(c) = True}|

|C| ×100%

(15)
Where:

• c is a given character
• C is the set of all characters that can be

diacritized
• ’HasDiac’ is a function that returns True

when character c retains its diacritic after
thresholding, and False otherwise

Controlled by uncertainty threshold, Lower
coverage means more sparsely populated text
(fewer diacritics).

A.1.2 Word-level Metrics
1. High/Low DER Words: A heuristic defini-

tion of high-and low-DER words. Words with
Diacritic Error Rate (DER) exceeding 50% are
defined here to be able to see the model’s con-
sistency in capturing such error-prone words.
We define the set of high DER words as:

H = {w ∈ W|DER(w) > 0.5} (16)

And the set of low DER words as:

L = W \H = {w ∈ W|DER(w) ≤ 0.5}
(17)

The uncertainty of a word is calculated as the
mean uncertainty across all characters in the
word:

U(w) =
1

|w|

|w|∑

j=1

U(cj) (18)

Where:

• w represents any given word
• cj represents the j-th character in word
w

• U is the uncertainty of word w or char-
acter cj

• W is the set of words in total in the
dataset

2. Recall and precision:

Recall is the percentage of detected high-DER
words over their total amount, detected or not:

Recall =
|{w ∈ H|Detected(w) = True}|

|H|
(19)

Precision is the amount of the detected high-
DER words, over the total detected words by
the model:

Precision =
|{w ∈ H|Detected(w) = True}|
|{w ∈ W|Detected(w) = True}|

(20)

Effectively, recall shows us how good a model
is at catching problems in general, how much
it can actually cover of them in total, and pre-
cision shows us how accurately it can catch ac-
tual, legitimate ambiguous cases, rather than
flagging any given word overall as uncertain
with inflated scores
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