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Abstract

We propose a method for confidence estima-
tion in retrieval-augmented generation (RAG)
systems that aligns closely with the correct-
ness of large language model (LLM) outputs.
Confidence estimation is especially critical in
high-stakes domains such as finance and health-
care, where the cost of an incorrect answer out-
weighs that of not answering the question. Our
approach extends prior uncertainty quantifica-
tion methods by leveraging raw feed-forward
network (FFN) activations as auto-regressive
signals, avoiding the information loss inherent
in token logits and probabilities after projection
and softmax normalization. We model confi-
dence prediction as a sequence classification
task, and regularize training with a Huber loss
term to improve robustness against noisy su-
pervision. Applied in a real-world financial
industry customer-support setting with com-
plex knowledge bases, our method outperforms
strong baselines and maintains high accuracy
under strict latency constraints. Experiments on
Llama 3.1 8B model show that using activations
from only the 16th layer preserves accuracy
while reducing response latency. Our results
demonstrate that activation-based confidence
modeling offers a scalable, architecture-aware
path toward trustworthy RAG deployment.

1 Introduction

In high-stakes applications like financial customer
support, it is often more desirable and trustworthy
for a Retrieval Augmented Generation (RAG) sys-
tem to abstain from answering than to risk provid-
ing an incorrect response. Although not responding
to a query reduces the system’s immediate utility,
it is a necessary trade-off to ensure accuracy and
preserve user trust. The guiding principle is that
the reputational and financial cost of providing a
wrong answer is significantly higher than the cost
of not providing one. This challenge requires a
principle of abstention.

One way to achieve the abstention is to have a
confidence measure that correlates with correctness
of the response, and mask the response when the
confidence score is below a threshold. Uncertainty
of the model while generating the response is a
viable source of signal for building a confidence
measure.

To develop a practical solution, it is crucial to
identify the primary source of this uncertainty. In
highly regulated fields, the error is rarely due to
aleatoric uncertainty (randomness inherent in the
data), as knowledge bases are typically vetted by
legal and subject-matter experts. The more prob-
able source is epistemic uncertainty (the model’s
own lack of knowledge), which arises when the
model’s parametric knowledge, acquired during
pre-training or fine-tuning, conflicts with or misin-
terprets the provided context.

While existing approaches (Bakman et al., 2024;
Liu et al., 2024; Malinin and Gales, 2020; Kuhn
et al., 2023) to uncertainty estimation in retrieval-
augmented generation (RAG) have shown promise,
they often fall short when the target response is
long and narrative in nature. This challenge be-
comes especially pronounced in sensitive domains
such as finance, where queries can be ambiguous
or underspecified. For instance, a question like
"What is the deadline to make a payment on Card
Type A?" may retrieve multiple similar documents,
each corresponding to different subcategories of
the card type. In such cases, both the query and
the retrieved context exhibit ambiguity, which can
propagate through the RAG pipeline. Simply mea-
suring uncertainty based on generated response is
insufficient to ensure correctness.

Also, methods relying on sampling (Bakman
et al., 2024), are less practical at scale. These
techniques rely on generating a response multiple
times with slight variations to measure the model’s
consistency, a process that introduces prohibitive
computational costs and latency in a production en-
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Figure 1: Diagram of the proposed Retrieval Augmented Generation (RAG) with the confidence model. When a
user asked a question, the IR component retrieves related context from a database. The prompt is then constructed
and sent into a question and answering LLM. A confidence score would be generated by the confidence model and
being used to control whether or not to show the result to the user.

vironment. For RAG systems that must serve users
in real-time, such multi-generational approaches
are not a viable solution.

Uncertainty and correctness, while related, are
fundamentally distinct concepts (Liu et al., 2025).
A model’s low uncertainty in its output does not
necessarily imply correctness, just as a model may
generate a correct response with a high uncer-
tainty. This distinction becomes particularly salient
in retrieval-augmented generation (RAG) applica-
tions, where correctness often hinges on factual
grounding rather than surface-level fluency. Our
goal is to utilize the model’s internal uncertainty
signals to generate a confidence score that corre-
lates strongly with the correctness of the response
generated by an LLM.

We build our confidence model using the raw
activation signals inside the feedforward layers of
LLM which include the activations of knowledge
neurons (Azaria and Mitchell, 2023). Thus, our
model captures the relationship between the auto-
regressive properties of activations and inherent
uncertainty of the model in generating a response.
We propose a supervised framework to train a se-
quence classifier model and generate a confidence
score that correlates with response correctness.

Figure 1 illustrates the practical utility of inte-
grating a confidence model into our RAG pipeline.
The primary goal of the system is to provide users
with accurate answers. However, in cases where
there is insufficient epistemic or aleatoric knowl-
edge to reliably answer a question, the system’s
next best action is to abstain from answering. This
behavior is enabled by a controller that filters re-
sponses based on their confidence scores, allow-
ing the system to avoid potentially incorrect or
misleading outputs. This system is deployed in
production for large-scale use that achieves high

precision while maintaining an acceptable display
rate (defined as the ratio of response pass the con-
fidence filter to total responses generated by the
system). Experimental results show that our confi-
dence model outperforms multiple baselines, reach-
ing a precision of 0.95 with 70.1% display rate
(masking 29.9% of the total responses). Further-
more, when compared to ground truth, displayed
responses exhibit a significantly higher ROUGE
score than masked responses.

2 Related Work

Figure 2: Landscape of Uncertainty Quantification
Methods

Figure 2 shows the landscape of various uncer-
tainty quantification methods in LLMs. When map-
ping the landscape, they can be broadly grouped by
the strategies used to quantify the uncertainty.

Shrivastava et al. (2023) demonstrate that the
generation probabilities of weaker white-box mod-
els (that is, smaller models) can be used to esti-
mate the internal confidence levels of larger black-
box models. The approach involves zero-shot
generation using prompt variations based on dif-
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ferent instructions to infer the confidence of re-
sponses produced by the larger model. Duan et al.
(2023) and Kuhn et al. (2023) use semantic en-
tropy to reweight token-level importance, prioritiz-
ing content-bearing tokens while discounting filler
words. Their core intuition is that if semantically
important tokens are generated with high confi-
dence, the overall response is more likely to be
correct even if less important tokens exhibit lower
confidence.

Azaria and Mitchell (2023) show that the LLMs
internal parameters show tell-tale signs when gener-
ating text with uncertainty. When a model’s gener-
ation path falls into a speculative region, evidenced
by competition between two or more plausible next
tokens, its confidence is adversely affected. They
introduce small input perturbations to induce trajec-
tory shifts, and monitor corresponding changes in
token-generation activations and outputs. They la-
bel the speculative generation as lying, and propose
that activation patterns can shed light on this specu-
lative generation. This method requires white-box
access to the model to obtain token-level probabil-
ity traces.

Tian et al. (2023) have empirically shown that
LLM’s self generated confidence score while giv-
ing a response could be calibrated by sampling
over perturbed questions. Specifically, they show
that prompting a model to produce several answer
choices before giving its confidence scores helps
in calibration of verbalized probabilities.

In a related direction, Xiong et al. (2023) gen-
erate multiple variants of a prompt using diverse
prompting strategies such as Chain-of-Thought
(CoT), self-probing, and top-k sampling. They uti-
lize a separate LLM as a "judge model" to evaluate
each variant and assign a confidence score. Vari-
ations in these scores are then used to predict the
confidence of the target model’s original response.
Similarly, Han et al. (2024) proposed a confidence
measurement based on the perturbation of the ques-
tion. The variation in model’s answer generation
probabilities for various perturbations of the ques-
tion for the same context is used as a measure to
generate a verbalized confidence score.

Several recent studies adopt a classification-
based approach to estimate response plausibility,
offering a more computationally efficient alterna-
tive by avoiding multiple generations. For exam-
ple, HHEM (Bao et al., 2024) uses an entailment-
based model to measure the semantic coherence
between the input and the generated output. This

approach operates under black-box constraints, re-
quiring only the input-output pair from the target
LLM to assess the correctness of the response.

Other methods focus on linguistic cues as indi-
cators of ambiguity in LLM outputs. Mielke et al.
(2022) argue that model confidence does not always
correlate with correctness and show that linguistic
calibration of input prompts can significantly in-
fluence a model’s confidence. They introduce a
calibration score that helps generate more accurate
responses by aligning linguistic features with ex-
pected confidence levels. Their evaluations were
performed on factoid QA datasets, where there is a
zero-sum approach towards correctness. We argue
that when the parametric knowledge of the LLM
is mainly contributing to the style of the response,
and the key facts come from the input, confidence
can serve as an effective signal for correctness.

Our method draws inspiration from prior work
on activation-based knowledge tracing (Dai et al.,
2022), generation trajectory modeling (Azaria and
Mitchell, 2023), and importance-weighted token
probabilities (Bakman et al., 2024). Dai et al.
(2022) highlight how feedforward network (FFN)
activations encode key factual information, show-
ing that the activation of certain neurons is posi-
tively correlated with knowledge expression. Build-
ing on this insight, we treat FFN activations as
autoregressive signals and train a recurrent neu-
ral network (RNN) to predict the probability that
a model-generated response is correct. A score
closer to 1 indicates greater model confidence in
the response’s correctness.

3 Method

For a generated response sequence s of length L for
the given input x to a model M with parameters θ,
the probability of generating the sequence is given
as follows:

P (s | x; θ) =
L∏

l=1

P (sl | s<l, x; θ) (1)

To compare sequence probability across dif-
ferent lengths of generated output, previous ap-
proaches have normalized the score based on the
length of the response. The length-normalized
score, used in prior uncertainty estimation (UE)
methods (Malinin and Gales, 2020):

P̃ (s | x; θ) =

(
L∏

l=1

P (sl | s<l, x; θ)

)1/L

(2)
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Here all the tokens contribute are given equal
importance irrespective of the length of sequence.
The risk with this approach is that a single low-
probability unusual word can disproportionately
lower the overall sequence score, even if subse-
quent tokens have high probabilities.

Several of the methods that perform uncer-
tainty estimation taking token-logits perform sim-
ilar weighing and they have shown great results
in factoid question answering. These methods do
not scale for longer answers, where there are mul-
tiple sentences and few tokens don’t hold the key
to correctness. Also, multiple generations needed
to quantify the confidence score make them pro-
hibitively expensive in a large scale settings.

Figure 3: Motivation to use activations instead of token
probabilities.

Our goal is to estimate the correctness of the gen-
erated response in a single shot using uncertainty
estimation. We prefer using FF-layer activations
rather than token probabilities because token proba-
bilities are computed by applying the decoder head
(a linear projection) followed by a softmax trans-
formation. This projection compresses the rich
internal representation into a vocabulary space and
the softmax operation further distorts the signal by
normalizing it into a probability distribution (see
Figure 3), potentially obscuring fine-grained dif-
ferences in the model’s internal state. In contrast,
raw activations preserve the high-dimensional rep-
resentation prior to this compression, providing a
more direct view of the model’s internal dynamics
during response generation.

3.1 Our Confidence Model
Figure 4 shows a graphical representation of our
confidence model. To estimate the confidence
of a generated answer s of size L, we introduce
a lightweight, trainable probe that operates on
the internal representations of the Llama 3.1 8B
model. The process begins by providing a struc-
tured prompt to the LLM, which is formulated as a
sequence of tokens, x of size T + L+ 1, which is
a concatenation of the following: Instruction(xI ),
Question(xQ) and Context(xC) of size T tokens;

Answer(s) of size L tokens; and EOS token(xEOS)
of size 1. The complete input sequence is formally
represented as:

x = xI ⊕ xQ ⊕ xC ⊕ s⊕ xEOS (3)

where ⊕ denotes the concatenation operation.
During a single forward pass through the LLM,

we extract the hidden state activations from a spe-
cific transformer layer, ℓ. We investigate represen-
tations from two distinct depths within the network:
the final layer (ℓ = 32) and a middle layer (ℓ = 16).
This yields a full sequence of hidden state vectors

Hℓ = (h1
ℓ , . . . ,h

T+L+1
ℓ ) (4)

Each vector hℓ,k ∈ RdLLM corresponds to the
k-th input token, with size of LLM’s activation
dimension. From this complete set of activations,
we isolate only those corresponding to the tokens
of the candidate answer, which span from index
T +1 towards the final xEOS token. This forms the
input sequence, Sin, for our confidence estimation
module:

Sin = (hT+1
ℓ ,hT+2

ℓ , . . . ,hT+L+1
ℓ ) (5)

The extracted sequence Sin is then fed into a se-
quence classifier g(Sin), which is trained to model
the sequence of activations. The sequence classifier
with a classification head outputs a 2-dimensional
logit vector, z, such that the confidence score can
be computed as,

c = softmax(z)1 =
ez1

ez0 + ez1
(6)

Our goal is to estimate the confidence of the
model when generating an answer, with ulterior
goal of rejecting the generated answer if c falls
below a threshold of confidence. In this frame-
work, only the parameters of the sequence classi-
fier g(Sin) are trainable. We use a Long short-term
memory (LSTM) (Sutskever et al., 2014) as the
sequence classifier for the following experiments.

3.2 Model Training
Given that the retrieval stage of the pipeline may
introduce alethic knowledge gaps, the input context
provided to the LLM can be incomplete, or contain
contradictory information across the document re-
trieved. To address this, we introduce an explicit
regularizer based on Huber loss LHuber, which is
more robust to such noise (Patra et al., 2023). Un-
like just using only the Cross-Entropy loss LCE,
which can be highly sensitive to large deviations
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Figure 4: Confidence model based on the activations of large language models. Our method first feed the <Question,
Context, Response> pair in an LLM. We then extract the activations from the 32-th or 16-th layer, and feed the
activations into an LSTM and a classification head. The classification logit serves as the confidence score.

when predictions are far from the target, the Huber
loss based regularizer helps smoothen with a lin-
ear penalty for large errors. This property reduces
the influence by outliers arising from imperfect
retrieval.

Hδ(x) =

{
1
2x

2 for |x| ≤ δ

δ
(
|x| − 1

2δ
)

otherwise
(7)

where δ > 0 is a hyperparameter that controls
the transition point between the quadratic and linear
loss.

Using LCE loss with LHuber regularizer, we
learn to predict confidence score, which corre-
lates with the correctness. The higher the confi-
dence, the higher are the changes for the gener-
ated output to be correct. For a sampled minibatch
B = {(xj , yj)}|B|

j=1, the Huber loss term is calcu-
lated as:

LHuber = Hδ


 1

|B|

|B|∑

i=1

ci −
1

|B|

|B|∑

i=1

I(ŷi = yi)




(8)
where ci = max(ŷi) is the confidence of the predic-
tion for instance xi, and I(ŷi = yi) is the indicator
function for correct predictions.

The total loss function

LTotal = LCE + λLHuber (9)

where λ controls the strength of regularization.
In our modeling, several constraints arise nat-

urally from the real-time conditions under which
the system operates. The generated output must re-
main grounded in the input context provided within

the prompt. The output must adhere to predefined
stylistic or structural patterns required to present
certain types of information. At the end of genera-
tion, an explicit decision signal determines whether
the answer is shown to the user. This signal is
conditioned on multiple factors, including:

• Subject-matter-expert (SME) defined stan-
dards of correctness for the class of questions.

• The requirement that factual content be de-
rived from the input context, while stylistic
elements may rely on the model’s parametric
knowledge.

We conducted experiments on our proprietary
knowledge corpus consisting of procedures, rules,
and complex instructions to be followed to address
the various needs of support agents handling a large
volume of customer base. Our results indicate a
robust performance using our method compared to
the several SOTA UQ and hallucination identifica-
tion methods.

4 Experimentation

We have conducted experiments to identify the op-
timal masking ratio in order to maintain utility and
precision of the system.

4.1 Data

4.1.1 Disclosure on data
Due to the sensitive nature of the data, which
pertains to proprietary financial tools and inter-
nal knowledge resources used by service agents
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within a financial institution, we are unable to share
dataset details. This restriction is in place to ensure
compliance with internal data governance policies
and to protect confidential and regulated financial
information. We hope that the community under-
stands the importance of maintaining the integrity
and privacy of such sensitive operational data.

4.1.2 Features of our knowledge articles
We provide an overview of the population-level
characteristics of our dataset, which is derived from
a knowledge base composed of instructional arti-
cles designed to guide customer support agents in
using proprietary internal tools. These tools are
governed by strict procedural guidelines essential
for resolving customer issues. For instance, when
handling a customer inquiry about a specific trans-
action, agents must follow a prescribed sequence:
verifying the customer’s identity, obtaining consent
to access the account, identifying the relevant trans-
action, and initiating additional processes such as
flagging the transaction in cases of suspected fraud.

Figure 5(a) shows the hierarchical nature of the
documents. Our knowledge base is semi-structured
comprising heterogeneous documents with rich hi-
erarchical and content structures. These documents
may include deeply nested sections (e.g., sections,
subsections, sub-subsections), as well as complex
content types such as tables, bullet and numbered
lists, and embedded entities.

Each subsection article is treated as a separate
document. Each document is further chunked to be
efficiently indexed in a low latency store. Overall,
there are 8.5k documents and approximately 45k
chunks in the knowledge-base.

4.1.3 Features of the training data
Our system design incorporates a real-time feed-
back loop, as illustrated in Figure 5(b), where sup-
port agents interact with the RAG system and pro-
vide immediate feedback (e.g., thumbs-up/down)
on the usefulness of generated responses. Process-
ing thousands of these interactions daily, we draw
a stratified sample of both positive and negative
feedback instances, accounting for dimensions like
product type and line of business. For each sam-
pled case, we collect the query, generated answer,
retrieved context, and associated metadata for a
more rigorous offline evaluation.

This offline review is conducted by subject mat-
ter experts (SMEs) who assess each answer for
completeness, correctness, and truthfulness, ensur-

ing it is grounded in the provided context rather
than inferred from the model’s parametric knowl-
edge. SMEs may also refine responses to create
ideal, complete answers, as shown in the exam-
ple in Figure 5(c). This two-tiered approach of
combining real-time user signals with deep SME
validation allows us to build a high-quality labeled
dataset for training and evaluation, ensuring the
model aligns with domain-specific requirements
for accuracy and trustworthiness.

4.2 Information Retrieval
We perform retrieval using an open-search index
configured for K-nearest neighbor (KNN) retrieval
based on semantic similarity to the input query. In
addition to the query itself, we incorporate asso-
ciated metadata such as entitlements and access-
control filters specific to the agent submitting the
question, to ensure that the retrieved documents
adhere to the agent’s permissions.

In the context of this work, we do not explicitly
quantify retrieval errors. Instead, our focus lies in
modeling the generation process of the response.
We assume the retrieval step to be correct and treat
errors introduced during retrieval as alethic uncer-
tainty, while the knowledge encoded within the
model through pretraining and fine-tuning is con-
sidered epistemic. Our confidence model is de-
signed to map the relationship between the ques-
tion, the retrieved (alethic) knowledge, the model’s
internal (epistemic) knowledge, and the generated
response. This relationship is captured through pat-
terns in the model’s internal activations, treated as
auto-regressive signals.

We observe that this mapping cannot be ad-
equately modeled using a simple feedforward
(MLP) architecture, as it fails to capture the tem-
poral dependencies inherent in the generation pro-
cess. Therefore, we adopt a recurrent architecture
specifically, a lightweight Long Short-Term Mem-
ory (Hochreiter and Schmidhuber, 1997) (LSTM),
trained using LCE loss and LHuber regularizer loss.
The LSTM is trained on input sequences derived
from the activations of a selected layer, along with
carefully curated training data that aligns the acti-
vation patterns with response-level confidence.

4.3 Results
Our method achieves superior calibration of LLM
responses, maintaining high precision with min-
imal utility loss. As shown in Table 1, it
outperforms industry SOTA methods, Vectara
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Figure 5: Features of our Knowledge base. (a) Complex structure of our knowledge articles; (b) Process of SME
validated training data creation; (c) Example SME validated LLM Response

Method AUROC
Vectara 0.590
VectaraFT 0.634
Logitsbased 0.663
Our Modelno calib. 0.741
Our Modelwith calib. 0.772

Table 1: Comparing our approach to other baselines

Threshold P R
ROUGE-L

%Mask
Display Mask

Baseline (0.0) 0.90 1.00 0.62 N/A 0.0

0.1 0.94 0.89 0.64 0.54 14.4
0.2 0.94 0.83 0.64 0.56 20.4
0.3 0.94 0.80 0.64 0.57 22.9
0.4 0.94 0.76 0.64 0.57 26.4
0.5 0.95 0.73 0.65 0.57 29.9
0.6 0.95 0.69 0.66 0.56 34.8
0.7 0.96 0.65 0.66 0.57 38.6
0.8 0.96 0.60 0.66 0.58 44.0
0.9 0.97 0.52 0.67 0.58 52.0

Table 2: Our Confidence score model with calibration
helps achieve 0.95 precision while masking 29.9% of
the responses

IR Model
R@1 R@3 R@5 R@10 R@25

0.54 0.75 0.80 0.84 0.88

Table 3: Current recall(r) of the IR system, that helps in
creating the context for the RAG pipeline

Layer Context P R
ROUGE-L

%Mask
Display Mask

32 Full 0.95 0.73 0.65 0.57 29.9
32 Top 5 0.95 0.69 0.66 0.56 34.3
32 Top 3 0.96 0.63 0.66 0.57 40.5
32 Top 1 0.97 0.56 0.67 0.57 47.5

16 Full 0.97 0.73 0.64 0.58 31.3
16 Top 5 0.98 0.65 0.65 0.59 39.3
16 Top 3 0.98 0.60 0.66 0.58 44.8
16 Top 1 0.99 0.48 0.66 0.59 56.2

Table 4: Identifying the optimal setting to run confi-
dence model

(HHEM2.1) (Bao et al., 2024) and a logits-based
uncertainty model (Malinin and Gales, 2020). We
obtain further performance gains by caliberating
with LHuber as a regularizer.

Table 2 reports confidence thresholds that op-
timize precision while keeping the masking rate
low. Although an ideal mask rate is 0%, realistic
applications must tolerate some masking due to
noise in LLM inputs. In our setup, the retrieval
stage achieves a strong recall@10 > 0.8 (Table 3),
yet residual alethic knowledge gaps in retrieval can
affect downstream generation.

We experimented with varying input context
sizes, selecting the top k documents (k ∈
{1, 3, 5, 7 (full)}), and with partial-layer activation
extraction from Llama 3.1 8B (layer 16 or layer
32) (AI@Meta, 2024). As shown in Table 4, us-
ing activations from only the 16th layer yields per-
formance on par with the full-layer setup while
maintaining a reasonable mask rate.

Latency analysis (Table 5) confirms that input
context size is a dominant factor; larger contexts
increase response time, highlighting a trade-off be-
tween context size and system responsiveness. In
the production system, the confidence model is de-
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Framework Layer Context Avg. ms P99

Hugging Face
32

Full 221 387
Top 5 179 329
Top 3 137 286
Top 1 100 252

16 Full 139 278

vLLM
32

Full 206 354
Top 5 161 304
Top 3 125 269
Top 1 88 241

16 Full 127 267

Table 5: Latency of the confidence model using various
context sizes, Avg. time is calculated across 3 runs of
the same input.

ployed with vLLM (Kwon et al., 2023), and overall
the same trend appears there as well.

5 Discussion

In this work, we present an approach for construct-
ing a confidence score that aligns with the cor-
rectness of responses generated by large language
models (LLMs). Such a measure is particularly
critical in high-stakes domains such as finance and
healthcare, where the cost of an incorrect response
far exceeds that of withholding a response. Our
method extends prior works in uncertainty quantifi-
cation (UQ) (Malinin and Gales, 2020; Bao et al.,
2024) by leveraging model activation patterns to
predict correctness more robustly.

Figure 3 illustrates our motivation for using raw
activation signals from the feed-forward network
(FFN) layers as auto-regressive features, rather than
token logits or probabilities. Token probabilities
are obtained after a linear projection and softmax
transformation. The projection step reduces di-
mensionality, discarding non-vocabulary-aligned
features, while the softmax normalization saturates
probability values, erasing scale information and
compressing relative differences. Using activations
directly, we retain the full representational capacity
of the internal state of the model.

Our application setting involves customer sup-
port agents consulting a proprietary knowledge
base to resolve customer queries using specialized
internal tools. The knowledge base contains docu-
ments vetted across multiple dimensions, including
risk and legal compliance, making factual errors
in the content highly unlikely. However, strict per-
missions govern which documents an agent can
access. Figure 5(a) shows the complexity of doc-
ument formats and fine-grained entitlements that

impact retrieval and downstream generation.
We model confidence estimation as a classifica-

tion problem over sequences of activations. Specif-
ically, we employ a lightweight recurrent neural
network (LSTM) that consumes FFN activations
as auto-regressive signals. The classification logit
from the LSTM head serves as the confidence score
(see Figure 4). To enhance robustness against noisy
supervision, we introduce a Huber loss regular-
izer LHuber alongside the cross-entropy loss LCE.
The Huber loss’s ability to behave quadratically for
small errors and linearly for large errors makes it
well-suited for smoothing gradients and mitigating
the influence of outliers (Patra et al., 2023). Results
in Table 1 demonstrate that our approach outper-
forms strong baselines, and the inclusion of LHuber
further improves accuracy over using LCE alone.

In real-world deployment, retrieval-augmented
generation (RAG) pipelines must meet strict la-
tency requirements, as the LLM prompt length is
constrained by model context limits and thousands
of queries are processed daily. Tables 4 and 5 sum-
marize our performance–latency trade-offs. Reduc-
ing the number of Llama 3.1 8B layers from 32
to 16 while keeping context size fixed preserves
accuracy while reducing latency by approximately
42.5%. When the context size is reduced, alethic er-
rors increase due to incomplete retrieval, raising the
model’s masking rate (i.e., instances where no an-
swer is returned due to low confidence). Neverthe-
less, the 16-layer configuration achieves compara-
ble performance to the 32-layer setup at lower com-
putational cost. We observe a slight improvement
in response latency when hosting the model using
vLLM inference compared to Hugging Face’s infer-
ence API, likely due to vLLM’s optimized memory
management and continuous batching capabilities.

Overall, our approach leveraging FFN activa-
tions as auto-regressive signals, modeling them
with an LSTM, and regularizing with LHuber proves
effective in long-form RAG settings. This method
improves the trustworthiness of LLM-generated re-
sponses and holds strong potential for safe deploy-
ment in sensitive, domain-specific applications.

6 Limitations

Our work pushes the boundary of confidence esti-
mation in retrieval-augmented generation (RAG)
for sensitive domains, but several practical consid-
erations remain. Ideally, a RAG system should
generate both the response and its confidence score
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in a single pass. In our current implementation,
the confidence score requires a second run of the
system, which introduces additional computational
and latency overhead.

While this design choice enables deeper access
to model internals, it also necessitates operating in
a white-box setting, as the confidence model relies
on activation signals from the LLM to assess cor-
rectness. Furthermore, the method is customized to
the specific architecture of the target model, mean-
ing that adaptation to other LLMs may require
reconfiguration and retraining. These limitations
also present opportunities for future research: in-
tegrating confidence estimation directly into the
generation process, reducing computational cost,
and developing architecture-agnostic approaches
that preserve the performance benefits of activation-
based probing methods.

A limitation of this study is that the dataset can-
not be made publicly available. The data contains
sensitive and proprietary information pertaining to
internal financial tools and knowledge resources
used by service agents within a financial institution.
This restriction is mandated by internal data gover-
nance policies to protect confidential and regulated
financial information.
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