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Abstract

Autoregressive language models achieve strong
performance across a wide range of natural lan-
guage processing (NLP) tasks, yet their uncer-
tainty estimates remain poorly understood, par-
ticularly during training. Prior work has primar-
ily evaluated calibration and out-of-distribution
(OOD) robustness at the final checkpoint, over-
looking the dynamics that unfold earlier. We in-
troduce a phase-based framework for tracking
uncertainty metrics—including expected cali-
bration error (ECE) and Kullback-Leibler (KL)
divergence—across distinct stages of training.
Using GPT-2 models trained across multiple
random seeds, we find that uncertainty dynam-
ics follow a consistent set of phases: models be-
gin conservative and relatively well calibrated,
but later phases introduce a paradoxical decou-
pling where confidence increases even as cali-
bration worsens, especially under distribution
shift. This paradox implies that the final check-
point is not always the most reliable for deploy-
ment and motivates phase-aware strategies such
as dynamic checkpoint selection or targeted cal-
ibration. Our findings highlight that uncertainty
should be understood as a training-dependent
property rather than a static one, opening new
directions for scaling this framework to larger
models, tasks, and distribution shift scenarios.

1 Introduction

Autoregressive language models have become cen-
tral to a large portion of modern NLP, driving
progress in tasks as varied as document summariza-
tion, dialogue, and code generation (Brown et al.,
2020). Yet, the impressive in-distribution perfor-
mance of these models hides a recurring issue: their
behavior is far less predictable when the input de-
parts from the training distribution (Hendrycks and
Gimpel, 2017). In production settings, such out-
of-distribution (OOD) cases are inevitable such as
topic drift in conversational systems, domain mis-
match in translation, or simply user queries that
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exploit corner cases in the model’s learned repre-
sentation.

Uncertainty estimation has become a way to ad-
dress this problem. Approaches such as Bayesian
approximations via dropout (Gal and Ghahramani,
2016) or calibration-based adjustments (Guo et al.,
2017) offer ways to associate model predictions
with confidence scores. However, most of this work
evaluates a final trained output. What is less well
understood, especially in language modeling, is
how uncertainty evolves during training itself. Lan-
guage models acquire the syntax, semantic, and
task-specific reasoning in a staged manner, and
their calibration profile is unlikely to be uniform
across these stages (Desai and Durrett, 2020; Jiang
et al., 2021).

Our key finding is that calibration does not im-
prove monotonically with training: a mid-training
phase emerges in which models grow more confi-
dent while becoming less calibrated.

In this work, we introduce a phase-based frame-
work for tracking and analyzing the joint dynam-
ics of calibration error and KL divergence be-
tween successive stages of training. By segmenting
model training into distinct phases and evaluating
these metrics both in-distribution and OOD, our
approach offers a structured view of how and when
models become more or less calibrated, and how
their predictive distributions shift over time.

2 Related Work

2.1 Uncertainty Estimation in NLP

Quantifying predictive uncertainty has been a
needed measure in modeling and modern neural
networks. For classification tasks, baseline confi-
dence scores such as the maximum softmax proba-
bility and predictive entropy are widely used to flag
low-confidence predictions (Hendrycks and Gim-
pel, 2017). Bayesian-inspired techniques, includ-
ing Monte Carlo dropout (Gal and Ghahramani,
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2016) and deep ensembles (Lakshminarayanan
et al., 2017), have adapted to NLP models to bet-
ter capture the epistemic and aleatoric uncertainty.
Recent work has explored these methods for both
and structured prediction tasks like semantic pars-
ing (Dong et al., 2017). However, most existing
approaches report uncertainty only for the final
converged models, and that overlooks how these
measures are evolving during training.

2.2 Calibration of Language Models

Calibration measures the degree to which predicted
probabilities align with empirical correctness (Guo
etal.,2017). While overconfidence is a well-known
issue in fields like computer vision, language mod-
els exhibit domain-specific calibration challenges
(Desai and Durrett, 2020). Post-hoc techniques
such as temperature scaling and histogram binning
have been applied to NLP (Guo et al., 2017), but
once again, their effectiveness is often evaluated
only after full training.

Some other work has explored calibration in gen-
erative settings, (Kumar et al., 2019), yet there re-
mains little understanding of how calibration qual-
ity changes mid-training, especially for large-scale
autoregressive models.

2.3 OOD Robustness and Distribution Shifts

OOD detection aims to identify inputs that dif-
fer substantially from the training distribution.
Density-based methods (Lee et al., 2018), and
uncertainty-based rejection strategies (Hendrycks
and Gimpel, 2017) have been explored in NLP, of-
ten under domain shift scenarios (Varshney et al.,
2022). Despite this, the majority of studies evaluate
robustness at convergence, providing little insight
into the temporal dynamics of OOD behavior. The
opportunity of the interplay between the training-
phase uncertainty trends, calibration shifts, and
OOD performance remains largely unexplored.

We address this gap by systematically tracking
the uncertainty metrics, calibration scores, and KL
divergence between training phases for autoregres-
sive language models. By linking these evolving
quantities to in-distribution and OOD generaliza-
tion, we provide a temporal perspective on uncer-
tainty and robustness, which offers a richer un-
derstanding than simple post-training evaluation
alone.
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3 Methodology

3.1 A Phase-Based View of Training
Dynamics

Calibration in neural networks is typically assessed
only at convergence, which obscures transient
regimes where confidence and reliability can drift
in opposite directions (Guo et al., 2017; Ovadia
et al., 2019; Minderer et al., 2021). Leveraging this
observation, we take a temporal perspective and
segment training into phases defined by persistent
shifts in uncertainty and calibration traces.

3.2 Metrics

We track two uncertainty-related metrics at regular
checkpoints.

KL Divergence to Uniform (Confidence Proxy).
Let p € AV ! be the next-token predictive distri-
bution over a vocabulary of size V, and let « denote
the uniform distribution (u; = 1/V). Confidence
is measured as

Z Di IOg

Higher values indicate sharper, more confident dis-
tributions; lower values indicate more diffuse pre-
dictions. This quantity is 0 when predictions are
maximally uncertain (uniform) and increases as
the distribution sharpens, making it a natural con-
fidence proxy. It is closely related to predictive
entropy, since Dkr,(p || u) = log V' — H(p). While
other reference distributions could be considered,
we adopt the uniform baseline because it provides a
simple and interpretable notion of random guessing,
against which sharper, more confident predictions
can be measured.

Dxui(p || w) )]

Expected Calibration Error (ECE). Follow-
ing Guo et al. (2017), tokens are binned by
predicted confidence into M equal-width bins
{Bn}M_,. Let acc(By,) be the empirical accu-
racy and conf(B,,) the mean confidence in bin m.
The ECE is

ECE = Z

Lower values indicate better calibration.

|lacc(By,) — conf(

Bn)|-
2
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3.3 Phase Detection

At each checkpoint we record KL-to-uniform and
ECE over the ID validation set and an OOD corpus;



we smooth each per-seed KL trajectory with an
exponentially weighted moving average and detect
changepoints on KL. Let ¢ index checkpoints.

We then identify three regimes per seed:

1. Phase I (Early Learning): ends at the early
local maximum of KL (searched in the first
half of training) or a default tertile boundary
if no clear maximum exists.

Phase II (Confidence Surge): begins after
Phase I and ends at the subsequent local maxi-
mum of KL (or a default second-tertile bound-
ary), enforcing a minimum phase length.

. Phase III (Stabilization):
steps to the final checkpoint.

the remaining

Boundaries are constrained to respect minimum
durations and ordered consistency (therefore I < II
< II). We compute all metrics per phase and then
report both per-seed summaries and seed-averaged
statistics. This procedure captures non-monotonic
behavior that endpoint-only evaluation can miss,
such as periods where confidence rises while cal-
ibration degrades (Ovadia et al., 2019; Minderer
et al., 2021).

4 Experiments and Results

4.1 Experimental Setup

We trained GPT-2 models for 3,000 optimization
steps across five seeds. Training was conducted
on the WikiText-2 (Merity et al., 2016) corpus
for in-distribution (ID) evaluation, while out-of-
distribution (OOD) generalization was assessed on
the AG News (Zhang et al., 2016) dataset. At regu-
lar intervals, we computed both standard training
metrics (loss) and uncertainty metrics for both ID
and OOD test sets. This setup provides a compre-
hensive view of the interaction between confidence
and calibration throughout training. Unless stated
otherwise, significance is assessed with a two-sided
paired t-test over checkpoints, aggregated across
seeds.

4.2 Phase Detection Procedure

To identify interpretable regimes of uncertainty dy-
namics, we employed an automatic phase segmen-
tation method based on changepoints in the KL tra-
jectory. Consistently across all seeds, three phases
emerged as shown in Table 1.

Phase characteristics across seeds are summa-
rized in Table 2. Figure 1 shows the dynamics for
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Table 1: Training phase boundaries identified across all
seeds.

Phase Step Range
I (Early Transient) 50-1500

II (Confidence—Calibration Drift)  1550-2900
IIT (Convergence Plateau) 2950-3000

the average of the seeds. Phase I balances confi-
dence and calibration, Phase II marks systematic di-
vergence between them (the confidence—calibration
paradox), and Phase III represents a plateau at de-
graded calibration levels.

4.3 In-Distribution Dynamics

During Phase I, models maintained relatively low
calibration error (mean ECE =~ 0.005). As train-
ing progressed into Phase II, a paradoxical trend
emerged: calibration degraded even as confidence
increased. Specifically, mean ECE rose by ~23.4%
(from 0.0049 to 0.0058, p = 2.05 x 107°), while
KL divergence to uniform predictions increased
by 0.5% (9.471 — 9.523). This indicates that the
models became more confident but less calibrated.
In Phase III, metrics stabilized (KL =~ 9.529 and
ECE = 0.0057), but calibration did not return to
the initial level.

Across all five experiments, this paradox held
consistently: in every run, confidence increased
while calibration worsened. Prior speculation that
calibration might improve in later stages (e.g., Guo
et al., 2017; Desai and Durrett, 2020) was not sup-
ported in our setting.

4.4 Out-of-Distribution Behavior

When evaluated on AG News, models exhibited the
same paradox but with larger miscalibration. OOD
ECE rose from ~0.033 in Phase I to ~0.040 in
Phase II (p = 2.31 x 10~®), representing a ~21%
relative increase, alongside a concurrent increase
in KL-to-uniform. As with ID, metrics stabilized
in Phase III without recovery.

Notably, the paradox was amplified OOD: the
models simultaneously became more confident and
less calibrated under distribution shift, producing
error rates far larger in magnitude than ID. This
indicates that the confidence—calibration paradox
is not only a training artifact but also a deployment
concern for real-world distribution shifts.



1.01

0.8 4

0.6

0.4 4

0.24

Internal/External Uncertainty (normalized)

0.0 1

p—

 0.040

F0.035

F0.030 @
O

o
=3
N
o

ation Error (E!

F0.020 :

Calibr:

F0.015

r0.010

F0.005

0 500 1000

1500

Step

—=- Mean KL (norm) Over Seeds
Mean Entropy (norm) Over Seeds
Phase |

Phase Il
Phase Il

2000 2500 3000

—— Mean ECE (ID) Over Seeds
~=~- Mean ECE (OOD) Over Seeds

Figure 1: Phase dynamics of calibration and confidence. Confidence (KL, blue) rises steadily, while calibration error
(ECE, red/purple) degrades. Phase II (yellow) highlights the paradoxical “danger zone” where all 5 seeds showed
confident but unreliable predictions. Note the divergence between rising confidence and worsening calibration

around step 1500.

Table 2: Phase characteristics averaged across seeds. ECE reported for in-distribution (ID) and out-of-distribution
(OOD). KL-to-uniform is our primary confidence metric; entropy (H) is reported for reference only.

Phase KL H ECEID ECEOOD

I 9.471+0.004 1.354+0.004 0.005 0.033 £0.001
IT 9.523 £0.003 1.302+£0.003 0.006 0.040 + 0.001
I 9.529 £0.002 1.296 +£0.002 0.006 0.040 £ 0.001

5 Discussion and Future Work

We show three consistent training phases, docu-
ment a mid-training confidence-calibration gap,
and outline how to use these signals for safer check-
point selection and calibration. Our results suggest
that current practice may systematically deploy
models from their least reliable phase. Monitoring
only validation loss obscures the fact that Phase 11
coincides with worsening calibration. This paradox
has several practical consequences: (1) calibration
should be tracked jointly with loss during training,
(2) deployments should avoid Phase II checkpoints
(high confidence, poor calibration), and (3) inter-
ventions such as temperature scaling or selective
regularization may be most beneficial when tar-
geted specifically to this unstable phase. Without
such precautions, models risk being deployed pre-
cisely when they are most deceptively unreliable.

Beyond these immediate implications, our phase-
based framework highlights opportunities for fu-
ture work. Scaling to larger architectures and
reasoning-capable models will test the generality
of the paradox. Expanding to broader OOD scenar-
ios (e.g., multilingual or reasoning tasks) will help
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determine whether the observed dynamics extend
beyond WikiText and AG News. Finally, phase-
aware interventions could be designed to adaptively
correct calibration drift in real time, reducing de-
ployment risks for large-scale language models.

6 Conclusion

We introduced a phase-based framework for analyz-
ing uncertainty and calibration dynamics through-
out language model training. Across multiple seeds,
we consistently observed a confidence—calibration
paradox: models became less reliable precisely as
their predictions grew more confident. This para-
dox was amplified under distribution shift, under-
scoring its practical importance for deployment
safety.

By framing uncertainty as a training-dependent
property rather than a static one, we provide a foun-
dation for phase-aware monitoring, checkpointing,
and intervention strategies. In practice, our results
motivate monitoring calibration (ECE) jointly with
validation loss, avoiding Phase II checkpoints when
selecting release models, and applying simple post-
hoc calibration such as temperature scaling at de-
ployment.



Limitations

First, we trained GPT-2 scale models for 3,000 it-
erations across five seeds, a modest but controlled
scope. Second, our OOD evaluation was limited
to a single dataset (AG News) and a restricted set
of uncertainty metrics (ECE and KL). Third, our
phase detection relies on inflection points in these
metrics; whether analogous phase boundaries gen-
eralize to larger architectures or alternative metrics
remains open.

Despite these constraints, the reproducibility of
phase dynamics across seeds suggests that the phe-
nomena are not small-scale artifacts but emergent
properties of autoregressive training. Extending
this analysis to larger models, broader OOD sce-
narios, and alternative calibration interventions rep-
resents a natural next step.
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Response to Reviewer Comments
Reviewer RqHb

1. Missing double-descent literature (Nakkiran et al.; Ope-
nAl blog; Schaeffer et al.). Our work studies calibra-
tion dynamics across training phases (ECE and KL-
to-uniform), not necessarily accuracy/test-error curves.
While double descent concerns error as a function
of model size/data/epochs, our main result is a con-
fidence—calibration gap during mid-training even as
loss improves. We agree the phenomena are related but
orthogonal; due to short-paper space we keep Related
Work focused on calibration/uncertainty and OOD. We
are happy to expand this connection in a longer version.

2. Unclear how to utilize the research. The camera-ready
adds concrete guidance in Discussion and Future Work
and Conclusion: (i) monitor calibration (ECE) jointly
with validation loss; (ii) avoid Phase II checkpoints
when choosing release models; (iii) apply simple post-
hoc calibration (temperature scaling) and consider se-
lective regularization targeted to Phase II.

3. Missing dataset references. We now cite WikiText-2
and AG News explicitly in Experimental Setup.

4. Numbers not reflected in Figure 1. We clarified phase
boundaries (Table 1) and added a per-phase summary
(Table 2). Figure 1 caption explicitly describes the diver-
gence point (around step 1500) referenced in §4.3—4.4.

Reviewer T3uL

1. Entropy vs. KL to uniform are redundant. We agree. The
revision treats KL-to-uniform as the primary confidence
proxy and includes entropy only as a reference column
in Table 2. We explicitly note the identity Dk, (p||u) =
log V' — H(p) in Metrics.

Reviewer lagi

1. Generality to newer/reasoning models. We scope the
empirical study to GPT-2 scale for 3,000 steps across
five seeds on WikiText-2 (ID) and AG News (OOD).
We state this limitation and the generalization agenda in
Limitations and Discussion and Future Work (scaling to
larger and reasoning-capable models).

2. More seeds/tasks; statistical support. We report five
seeds and add a sentence in Experimental Setup speci-
fying two-sided paired ¢-tests over checkpoints (aggre-
gated across seeds) for reported comparisons. We agree
that the next step would require multiple more runs.

3. Intervening in the “danger zone.” We strengthened the
deployment guidance in Discussion: phase-aware check-
point selection, targeted regularization during Phase II,
and post-hoc calibration (temperature scaling) at deploy-
ment.



