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Abstract

Ambiguous words or underspecified references
require interlocutors to resolve them, often by
relying on shared context and commonsense
knowledge. Therefore, we systematically inves-
tigate whether Large Language Models (LLMs)
can leverage commonsense to resolve refer-
ential ambiguity in multi-turn conversations
and analyze their behavior when ambiguity
persists. Further, we study how requests for
simplified language affect this capacity. Us-
ing a novel multilingual evaluation dataset, we
test DeepSeek v3, GPT-40, Qwen3-32B, GPT-
40-mini, and Llama-3.1-8B via LLM-as-Judge
and human annotations. Our findings indicate
that current LLMs struggle to resolve ambi-
guity effectively: they tend to commit to a
single interpretation or cover all possible ref-
erences, rather than hedging or seeking clar-
ification. This limitation becomes more pro-
nounced under simplification prompts, which
drastically reduce the use of commonsense rea-
soning and diverse response strategies. Fine-
tuning Llama-3.1-8B with Direct Preference
Optimization substantially improves ambigu-
ity resolution across all request types. These
results underscore the need for advanced fine-
tuning to improve LLMs’ handling of ambi-
guity and to ensure robust performance across
diverse communication styles.

1 Introduction

Natural language is inherently ambiguous. For ex-
ample, pronouns may refer to multiple possible
entities within a sentence. Nevertheless, humans
typically resolve such ambiguity by drawing on
context, shared knowledge, and conversational his-
tory (Ferreira, 2008). Consider the two conversa-
tions shown in Figure 1, where the user asks the
question, “Why can it fly?”. Without additional
clues, the pronoun “it” is unclear and could refer
to multiple entities. In the left conversation, the
prior context mentions a helicopter and a drum; in

ClearRef

Provide me one sentence
l-: for each of the following:

helicopter, drum

SharedRef

Provide me one sentence
for each of the following:
helicopter, owl, drum

A helicopter is parked on the
tarmac.

An owl is a bird known for
its distinctive call.

A drum was placed on the
table for the meeting.

“au A helicopter is parked
E' on the tarmac.
= A drum was placed on
the table for the meeting.

Q Why can it fly?

:: The helicopter can
. fly because [..].

Context

Why can it fly?

Do you mean the helicopter,
or the owl?

Figure 1: Two conversations between a user and an
LLM in response to the ambiguous question (“Why can
it fly?”). In both cases, the LLM uses prior context
to narrow the possible referents to entities capable of
flying. In the left conversation, it attempts an answer; in
the right, it asks for clarification.

the right, it additionally includes an owl. Humans
effortlessly combine this context with common-
sense knowledge, recognizing that drums cannot
fly, but helicopters and owls can. As a result, the
first case is unambiguous, while the second may
require clarification.

This process reflects a fundamental feature of hu-
man communication: a “division of labor” between
speakers and listeners, where speakers omit explicit
details to minimize effort, trusting listeners to fill in
gaps using common ground (Ferreira, 2008). Com-
mon ground consists of the mutual knowledge, be-
liefs, and assumptions interlocutors accumulate and
maintain during conversation (Clark and Brennan,
1991; Clark, 1996). Central to common ground is
commonsense knowledge, a broadly shared under-
standing of the world that enables people to make
implicit inferences effortlessly.

As mentioned, humans are usually good at build-
ing and using common ground. While prior work
suggests that LLMs struggle with ambiguity res-
olution, particularly in static, single-turn contexts
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(Liu et al., 2023), our work shifts focus to a con-
versational setting. We study how LLLMs behave in
multi-turn dialogs where common ground is explic-
itly established through conversation history and
commonsense knowledge. In our setting, multi-
ple referents can remain plausible even after con-
sidering prior context. This allows us to evaluate
how models handle uncertainty through different
response strategies, such as requesting clarification.

We further examine how language constraints af-
fect this ability. Language models are increasingly
used to generate output in different variants, such as
simplified and easy-to-understand language. This
has clear benefits for accessibility, particularly for
users with cognitive or linguistic challenges (Freyer
et al., 2024). However, simplified outputs often re-
duce the depth and precision of content (Trienes
et al., 2024). Ellinger et al. (2025) find that models
prompted to define homonyms in simple language
often default to the most salient meaning, disre-
garding less dominant but valid definitions. We ex-
plore whether such requests for simplified language
also affect a model’s capacity to resolve ambiguity
when multiple interpretations are plausible.

Studying this is crucial because misinterpreta-
tion of ambiguous language can lead to down-
stream failures such as misinformation, hallucina-
tions, or user confusion. By systematically testing
whether LLMs consider multiple plausible candi-
dates rather than relying on recency or default bi-
ases, we provide a diagnostic view of their behavior
in ambiguous conversational settings.

Our contributions are as follows:

* We introduce a multilingual dataset for evalu-
ating LLMs to resolve referential ambiguity in
conversations with explicit common ground.

* We evaluate DeepSeek v3, GPT-40, Qwen3-
32B, GPT-40 mini, and Llama 3.1 8B using
both LLLM-as-Judge and human annotations.

* We show that LLMs often commit to a single
interpretation or cover all references instead
of hedging or clarifying. Simplified language
constraints worsen this by reducing common-
sense reasoning and response diversity.

* We fine-tune LLaMA 3.1 8B with Direct Pref-
erence Optimization (DPO), achieving signifi-
cant improvements on our task that generalize
to a lexical ambiguity benchmark, with less
degradation under simplified prompts.

2 Background and Related Work

Ambiguity and Clarification. Understanding
language often requires resolving ambiguity, such
as referential ambiguity, where it is unclear which
entity a phrase refers to. Such unclear references
slow down human processing (Gernsbacher, 1989;
MacDonald and MacWhinney, 1990; Myers and
O’Brien, 1998; Stewart et al., 2007), yet humans
are usually good at resolving them by drawing on
common ground.

In contrast, LLMs struggle with ambiguity. Min
et al. (2020) introduce AmbigQA, a dataset de-
signed to investigate underspecified questions, and
subsequent studies (Wildenburg et al., 2024; Liu
et al., 2023) show that even state-of-the-art mod-
els underperform in such settings. This limitation
extends to the multimodal domain: Testoni et al.
(2024) find that vision—language models also han-
dle ambiguity poorly, often replying with overcon-
fident or biased outputs. While their focus is on
visual context, the challenge is related to ours, with
textual context instead of images.

Models also rarely seek clarification. Kuhn et al.
(2023) show that LLMs often respond incorrectly
to ambiguous inputs rather than asking follow-up
questions. Prior work confirms this lack of clarifi-
cation behavior (Benotti and Blackburn, 2017; Xu
et al., 2019; Shi et al., 2022). Herlihy et al. (2024)
link this tendency to fine-tuning biases and propose
a taxonomy of model responses, which we adopt.

Prior work mainly studies ambiguity in static,
single-turn settings without common ground. No-
tably, datasets for anaphora resolution, such as
the Winograd Schema Challenge (Levesque et al.,
2012), focus on single-sentence coreference, where
exactly one antecedent is correct and can be iden-
tified using commonsense reasoning. In contrast,
we study LLMs in multi-turn dialogs where com-
mon ground is explicitly established through con-
versation history and commonsense knowledge. In
our setting, multiple referents can remain plausible
even after considering context. This allows us to
evaluate how models handle uncertainty through
different response strategies, such as direct answers,
hedging, or requesting clarification, rather than sim-
ply selecting the correct noun.

Finally, we test if our fine-tuned model general-
izes to lexical ambiguity using the benchmark of
Ellinger et al. (2025), which evaluates homonym
definitions without disambiguating context.
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Context |
helicopter, owl, drum

Refusal

Wh it flv? Answer Attempt
y can it fly? >

.| Pos. Entities
helicopter, owl

Answer Attempt v

A helicopter can fly due

to its rotating blades.
LLM-Judge

m Response

i Hedging
O O —
Clarification
L]

Entity Extraction

» X

Correctness

helicopter

Figure 2: Evaluation pipeline including LLM-Judge for response categorization and entity extraction. Based on
these outputs and the positive entities identified in the context, we determine the fine-grained response category and

assess correctness with respect to entity resolution.

Commonsense Evaluation. Prior work system-
atically evaluated LLMs on commonsense reason-
ing benchmarks. Li et al. (2022) conduct evalua-
tions under zero- and few-shot settings across four
benchmarks, revealing that pre-trained LMs strug-
gle to acquire commonsense knowledge without
task-specific supervision. Scaling model size or
adopting to few-shot prompting does not suffice to
reach human-level performance. Similarly, Bian
et al. (2024) assess ChatGPT on eleven common-
sense QA datasets. They find that ChatGPT can re-
trieve relevant knowledge via prompting. However,
it often fails to identify and apply the specific com-
monsense required to answer a given question. In
the multimodal domain, Fu et al. (2024) introduce
Commonsense-T2I, the first benchmark evaluat-
ing whether text-to-image models generate images
consistent with commonsense knowledge. They
find that state-of-the-art models achieve only 49%
accuracy, indicating significant gaps in visual com-
monsense understanding.

Our work extends these by exploring another
dimension of commonsense. Unlike prior bench-
marks focused on question answering or image
alignment, we assess whether models recognize
ambiguous referents and either disambiguate or re-
quest clarification, demonstrating a context-aware
application of commonsense reasoning.

Simple Language. Simplified language aims to
improve accessibility for a broad range of users,
including non-native speakers, children, domain
novices, and individuals with cognitive impair-
ments. Its availability is endorsed by the Web Con-
tent Accessibility Guidelines (WCAG) to promote
inclusive communication (W3C, 2025). Simplified
language involves straightforward vocabulary, clear
sentence structure, minimal jargon, and the avoid-
ance of complex grammar (Freyer et al., 2024). Do-
mains like healthcare, law, and education already

widely apply it (Garimella et al., 2022; Deilen et al.,
2024; Rets et al., 2022). However, prior work has
shown that simplification in LLM-generated text
can lead to undesirable side effects such as omis-
sions or overly vague formulations (Anschiitz et al.,
2025; Agrawal and Carpuat, 2024; Devaraj et al.,
2022). Ellinger et al. (2025), for instance, report
that when asked to define homonyms in simplified
language, models tend to default to the most salient
meaning, neglecting valid but less frequent senses.

Building on this line of work, we study how sim-
plification constraints affect a model’s ability to
resolve referential ambiguity and how task-specific
finetuning affects performance in the lexical ambi-
guity benchmark of Ellinger et al. (2025).

3 Methodology

We evaluate whether LLLMs can resolve referen-
tial ambiguity using common knowledge and how
requests for simplified language affect this abil-
ity. Each test instance consists of a short context
passage introducing some entities (e.g., helicopter,
owl, drum). The user then asks an ambiguous ques-
tion referring to one of the entities without nam-
ing it directly (e.g., Why can it fly?). For each in-
stance, we define a set of positive entities as those
for which the question makes sense, and negatives
as those for which it does not (e.g., a drum cannot
fly). We evaluate two setups: ClearRef, where one
positive and one negative entity make the referent
unambiguous with commonsense, and SharedRef,
where two positives and one negative leave ambi-
guity even with commonsense. This setup tests
whether models consider multiple plausible can-
didates rather than relying on recency or default
biases. We treat the pronoun “it” as equally applica-
ble to all introduced positive entities. To assess the
impact of recency, we perform an ablation in which
the order of entities is permuted (see Appendix D).
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Ambiguous Questions by Relation

Rel. 1: Why can it fly?

Rel. 2: Why is it sweet?

Rel. 3: Why is it made of wood?

Rel. 4: Why can it swim?

Rel. 5: Why can it run fast?

Rel. 6: Why can it climb trees?

Rel. 7: Why is it hot?

Rel. 8: Why is it loud?

Simple: [..] Respond in simple language.

Figure 3: Ambiguous questions for our eight relations.
In the Simple setting, an instruction is appended. Exact
relations names in Appendix B.

3.1 Dataset

We construct our datasets based on Concept-
Net (Speer et al., 2017), a knowledge graph that
encodes commonsense relationships between enti-
ties and attributes. We select eight relations, such
as capable of flying, and extract all associated enti-
ties. Figure 3 provides the complete list of relations.
Since each dialog requires a context passage, we
use GPT-4.1-nano to generate a concise sentence
for every entity. These sentences, each beginning
with the entity name, serve as the context passages
for all related evaluations.

For ClearRef, each entity is paired with a nega-
tive sample from a different relation. We use GPT-
4.1-nano to verify that the negative entity does not
satisfy the target relation. For SharedRef, we cre-
ate samples by pairing all entities within the same
relation and similarly pick a negative. This results
in 52 ClearRef and 227 SharedRef examples. We
list further details in Appendix B.

To enable multilingual evaluation, we trans-
late the context sentences and entities into Arabic,
French, Russian, and Simplified Chinese using the
DeepL API'. We choose these languages to facil-
itate comparison with the multilingual setting of
Ellinger et al. (2025).

3.2 Model and Prompt Configuration

We evaluate five LLMs on our task: GPT-40, GPT-
4o0-mini (OpenAl et al., 2024), Qwen3-32B (Qwen
Team, 2025), DeepSeek v3 (DeepSeek-Al et al.,
2025), and Llama 3.1 8B (Grattafiori et al., 2024).
These models vary in size and openness, enabling

"https://www.deepl.com/en/pro-api

a comprehensive analysis of performance across
diverse LLMs. Details on model versioning and
access are listed in Appendix A.

We evaluate eight relations, each associated with
an ambiguous question. For each, we test two
prompt settings: Normal, presenting only the am-
biguous question, and Simple, which adds an in-
struction to respond in simplified language. This
setup allows us to examine how constraining out-
puts to simpler language affects model responses.
English prompts are shown in Figure 3, with multi-
lingual versions in Appendix Figure 12.

3.3 Evaluation Pipeline

The input to the evaluation pipeline (Figure 2) con-
sists of a brief dialogue between a user and an LLM,
exemplified in Figure 1. The response to the dia-
logue is passed to our LLM-Judge, which performs
two tasks. First, it classifies the response type into
one of four categories: Refusal, Answer Attempt,
Hedging, or Clarification (cf. subsection 3.4). In
this case, the response is labeled as an Answer At-
tempt. Second, it extracts all entities mentioned in
the response (here, helicopter). Using the set of
mentioned entities and the known positive entities
(in this case, helicopter and owl), we assess the cor-
rectness of the response. Since the model attempts
an answer but only mentions one of the two positive
entities, the response is marked as incorrect.

3.4 Response Categorization

Following Laban et al. (2025), we adopt the re-
sponse taxonomy from Herlihy et al. (2024), which
includes Answer Attempt, Clarification, Interroga-
tion, Discussion, Hedging, Refusal, and Missing.
Focusing on referential ambiguity resolution, we
simplify this taxonomy by merging Interrogation
into Clarification and Discussion into Answer At-
tempt, reducing annotation complexity. Full defini-
tions and examples appear in Appendix E. Briefly:

* Hedging: The assistant uses conditional or
speculative language (e.g., “might be...”, “if
you meant X...”).

* Clarification: The assistant requests more
information without offering interpretations
or using hedging.

* Answer Attempt: The assistant clearly com-
mits to at least one interpretation, providing a
factual response without any hedging.
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We define a response as correct if it appropri-
ately addresses the ambiguity in the input. Clar-
ifications are always correct, as they seek addi-
tional input without committing to an interpreta-
tion. Hedging responses are considered correct, as
long as they mention at least one entity. While they
do not resolve the ambiguity, they acknowledge it
and express uncertainty in a transparent way. In
contrast, answer attempts are only deemed correct
if they explicitly mention both positive entities.

Herlihy et al. (2024) discuss the trade-off be-
tween the usefulness and cognitive cost of differ-
ent response categories, approximated by response
length. In our setting, we argue that the most de-
sirable responses, regardless of the category, are
those that mention all and only the positive entities.
We refer to these as direct responses. They reflect
correct disambiguation based on common knowl-
edge while minimizing user effort through clear
and concise answers, free of irrelevant distractors.

In SharedRef, we consider any direct response
the most appropriate response. In contrast, for
ClearRef, where the ambiguity can be fully re-
solved, an Answer Attempt is preferred.

3.5 Automatic Evaluation

We designed an automated evaluation framework
that leverages GPT-4.1-mini as an LLM-Judge. The
framework assesses model responses based on the
response categories defined in subsection 3.4. It
classifies responses and extracts explicitly men-
tioned entities. A few-shot prompt, detailed in
Appendix F, guides the evaluation. To validate
the framework, one author manually labeled 500
responses from the English dataset, with 100 re-
sponses per evaluated model (50 for the standard
prompt and 50 for the simple prompt). The anno-
tator performed both response classification and
extraction of explicitly mentioned entities, exactly
as the LLM was tasked to do. The LLM judge
achieved a 98% agreement rate on response classi-
fication and a Cohen’s Kappa score of 0.916, indi-
cating almost perfect agreement according to Lan-
dis and Koch (1977). For entity extraction, the
framework achieved a 97.8% exact match accuracy.
More details are provided in Appendix F.

3.6 Direct Preference Optimization

We fine-tuned Llama-3.1-8B to improve referential
ambiguity resolution using DPO (Rafailov et al.,
2024). DPO aligns model behavior with desired
outcomes by training on preference pairs. In our

setup, we favor direct over incorrect responses.

Our training dataset contains 1,388 preference
pairs across all languages by comparing incorrect
Llama 3.1 8B’s outputs with direct responses from
other models. To prevent reliance on entity posi-
tion, we randomly permuted the order within each
conversation. We restricted the training data to the
‘capableOf fly’ relation, allowing us to later assess
generalization to other relations.

We performed a single training run using the
whole training set. This decision reflects our aim
to demonstrate the feasibility of aligning models
to produce more useful responses with lower cog-
nitive cost, rather than optimizing for peak perfor-
mance through extensive tuning. Detailed training
information is provided in Appendix G.

4 Results

4.1 ClearRef Dataset

Figure 4 shows that all models maintain correct-
ness above 90% across languages and settings, with
some achieving perfect scores. The lowest correct-
ness score is 90.38%, observed for Deepseek v3
(Simple) and Llama-3.1-8B (Normal) in French.
When comparing the Normal and Simple settings,
GPT-4o0 is the only model with higher correctness
in the Normal setting, while the other models ei-
ther remain similar or slightly decrease. The rate of
direct responses among the correct answers varies
drastically across models and languages. In the
Simple setting, Qwen3-32B shows the highest vari-
ance, with a direct response rate ranging from as
low as 22.45% in Arabic to 73.08% in English. In
the Normal setting, GPT-40-mini varies most, with
only 47.06% direct responses in Russian to 82.69%
in English. Llama-3.1-8B demonstrates the high-
est rates for English, achieving 98.00% in Normal
and 97.96% in Simple. Averaged across languages,
mean direct responses among all responses differ
by model and setting. Except for Deepseek v3, all
models show higher direct response rates in the
Normal setting compared to Simple. In Normal,
Llama-3.1-8B achieves the highest rate (80.38%),
followed by GPT-40, GPT-40-mini, Qwen3-32B,
and Deepseek v3 (58.85%). Detailed breakdowns
by model, language, and prompt type are provided
in Appendix Table 9.

In Figure 5, we show the distribution of response
categories across languages and models. In all
cases, Answer Attempt is the dominant category.
However, comparing the Normal and Simple set-
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Figure 4: Percentage of correct responses across five languages on the ClearRef dataset. Colored squares indicate
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Figure 5: Distribution of the defined response categories across five languages on the ClearRef dataset. For each
model, the left bar represents the Normal setting and the right bar the Simple setting. Colored squares represent

response types: B Answer Attempt, - Hedge,

tings reveals a shift: In the Simple setting, mod-
els nearly always produce answer attempts (mean
97.92%). In Normal, especially with Qwen3-32B,
hedging occurs more frequently, and to a lesser
extent, clarifications. For Qwen3-32B, the average
proportion of Answer Attempts drops to 69.61%.

4.2 SharedRef Dataset

We show proportions of correct responses along
with direct response rates in Figure 6. The results
reveal a sharp drop from Normal to Simple and a
clear separation between two model groups: high
performers (GPT-40, Qwen3-32B, Deepseek v3)
and low performers (Llama-3.1-8B, GPT-40-mini).

Low-performing models show poor performance
across languages and prompt settings, with GPT-
40-mini reaching below 13% correctness in the
Normal setting and Llama-3.1-8B slightly higher
but inconsistent due to an outlier in the Arabic
Simple setting.

Among the top performers, GPT-40 achieves
the highest correctness in English Normal prompts
(81.06%, thereby 45.11% direct), while Qwen3-
32B performs best overall when averaged across
languages in the Normal setting (70.22%, 31.11%).
Deepseek v3 leads in the Simple setting (37.97%,
22.73%), outperforming the others despite lower
direct response rates.

Performance also varies notably by language.
In the Normal setting, English (69.16% correct,
thereby 47.28% direct) and Chinese (63.96%,
41.54%) achieve the highest average correctness,

Clarification, and m Refuse.

followed by Arabic, French, and Russian (51.19%,
45.71%), reflecting the models’ native strengths
(e.g., GPT for English, Qwen and Deepseek for
Chinese). In the Simple setting, Arabic leads
(50.22%, 44.01%), followed by Chinese and En-
glish, with French and Russian (26.08%, 59.81%)
trailing. We show a detailed breakdown per model,
language, and prompt type in Appendix Table 10.

Figure 7 shows the distribution of response cat-
egories across languages and models. Consistent
with ClearRef, Answer Attempt remains the domi-
nant category in the Simple setting, with an aver-
age proportion of 97.01% across all languages and
models. The only notable outlier is Qwen3-32B in
Chinese, with a lower proportion of 72.69%.

In the Normal setting, the shift toward other re-
sponse categories becomes more pronounced than
in ClearRef. The average proportion of Answer
Attempts decreases to 77.67%. Notable devia-
tions include GPT-40 in English (29.52%) and Rus-
sian (46.26%), as well as Qwen3-32B in English
(43.17%), French (49.34%), Russian (40.97%),
and Chinese (43.61%). These two models show
marked increases in Hedging (GPT-40 from 1.67%
to 35.06%, Qwen3-32B from 8.37% to 41.14%)
and Clarification (GPT-40 from 0.09% to 4.76%,
Qwen3-32B from 0.70% to 8.02%).

4.3 Direct Preference Optimization

We compare the base and the fine-tuned model on
the SharedRef test set, excluding the capableOf fly
relation among positives. Figure 8 shows that the
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results are consistent across languages. Overall,
the proportion of correct responses increases from
13.46% to 96.45% in the Normal setting and from
13.83% to 91.59% in the Simple setting. Among
the correct responses, direct responses rise from
28.60% to 42.96% (Normal) and from 33.37%
to 50.66% (Simple). For comparison, the best
base model, Qwen3-32B, achieves 62.43% correct
(30.44% direct) in the Normal setting and 22.06%
correct (60.97% direct) in the Simple setting.

The category distribution shifts drastically. In
the base model, Answer Attempts dominate
(91.78% in Normal, 96.45% in Simple). After fine-
tuning, Clarification is most frequent, followed by
Hedging and Answer Attempts. In the Simple set-
ting, Clarification is less dominant than in Normal,
while Hedging becomes more prevalent: 60.00%
vs. 30.84% Clarification, 36.07% vs. 52.52%
Hedging, and 3.74% vs. 16.63% Answer Attempts.

4.4 Homonym Definition Generation

Ellinger et al. (2025) introduced MCL-WiC, a mul-
tilingual homonym dataset, along with the Sense
Awareness metric for evaluation. A response shows
Sense Awareness by providing multiple definitions
or explicitly acknowledging ambiguity via clarifica-
tion requests or remarks about alternative meanings.
They evaluated model performance under standard,
simplified, and ELIS-style prompting (Fan et al.,
2019), where the model explains a word as if the
user were five years old.

Table 1 compares our fine-tuned model with the

ation, and m Refuse.

results reported by Ellinger et al. (2025). Against
baseline models, our model achieves the highest
Sense Awareness under the Normal prompt in En-
glish, French, and Russian, the second-highest in
Arabic, and competitive results in Chinese. For
Simple, it ranks highest in French and Russian,
with comparable results in other languages. For
ELIS5, it outperforms all baseline models in every
language except English, where it ranks second.
Compared to its base model, our fine-tuned version
shows consistent, mostly extensive improvements
across all configurations, with the only exception
being the English Simple setting, where perfor-
mance drops by three percentage points.

They also fine-tuned Llama-3.1-8B on the same
task. Their model produces English outputs for
all languages except Russian, reflecting heavy
optimization for English. In contrast, our DPO
model handles all languages natively. While their
fine-tuned model generally achieves higher Sense
Awareness scores, our model remains competitive
against the baseline models and narrows the gap
in the language constraints. Their fine-tuning was
explicitly targeted at this task, and reducing the gap
between the language constraints. In contrast, our
model achieves strong results across all languages
without task-specific tuning.

5 Discussion

Our results indicate that current models struggle
to apply commonsense knowledge for ambiguity
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Figure 8: Comparison of the base model and our DPO-
fine-tuned model across five languages on the SharedRef
test set. For each language, the left bar represents the
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Responses.

Bottom: Distribution of response categories. Colored
squares denote: M Answer Attempt, - Hedge, i Clarifi-
cation, M Refuse.

resolution. In the simpler ClearRef task, where
only one entity fits the question, models are able
to resolve the ambiguity with an accuracy ranging
from 94.23% down to 21.15% depending on the
model and setting. The more challenging Share-
dRef task, which involves two plausible entities,
sees direct responses ranging from just 36.56%
down to 0.44%. This aligns with findings by Bian
et al. (2024). They observe that LLMs can retrieve
commonsense facts, which in our case means re-
alizing that an entity fits a relation when asked on
its own. However, the models often fail to apply
this knowledge when answering a specific ques-
tion requiring such reasoning. In Appendix C, we
evaluate GPT-40’s performance in English under a
Chain-of-Thought setting, prompting it to explic-
itly verbalize its commonsense reasoning first.
Consistent with Herlihy et al. (2024) and Kuhn
et al. (2023), we observe that models frequently
skip clarification, opting to answer even when un-
certainty remains. Several models show almost
no clarification or hedging behavior. Herlihy et al.
(2024) and Singhal et al. (2024) argue that this
behavior stems from reinforcement learning from
human feedback (RLHF). Annotation processes
typically focus on single-turn conversations. As
a result, models are rarely exposed to examples

Prompt / Model Sense Aware

En Fr Ar Ru Zh

Prompt: Normal

N 3.18B 96.95 15.17 10.62 6.52 4.66
® 40-mini 93.90 79.31 9292 9043 84.46
v73-30B A3B 94.58 86.55 98.23 90.00 100.00
O 4 Maverick 96.27 54.83 7434 75.65 45.08
@ v3 94.24 8793 91.15 91.74 87.56
Our 3.1-8B 97.63 97.93 93.81 99.57 84.46
Their 3.1-8B 99.66 99.31 99.12 99.13  98.45

Prompt: Simple

Q3.1 8B 6441 759 6.19 217 177
@ 40-mini 63.05 5276 76.99 4391 75.13
32 3-30B A3B  76.61 59.66 69.03 67.83 82.38
Q4 Maverick  69.83 2828 45.13 48.70 68.91
@v3 63.73 4793 80.53 6522 74.09
Our 3.1-8B 61.02 73.10 71.68 79.13 64.25
Their 3.1-8B 8B 92.88 93.45 96.46 99.57 94.30
Prompt: ELIS

Q3.1 8B 7.12 759 0.88 130 0.52
@ 40-mini 542 690 10.62 2.61 6.74
V2 3-30B A3B  22.03 17.24 973 14.78 14.51
0 4 Maverick  10.85 13.10 11.50 9.57 9.84
@v3 8.14 828 1327 870 10.88
Our 3.1-8B 13.22 25.86 4690 19.13 17.62
Their 3.1-8B 35.59 35.17 55.75 63.48 33.68

Table 1: Sense Awareness scores by prompt type and
language. Best results are in bold, second-best in italic.
Model outputs are copied from the original paper.

of follow-up clarification questions, which require
multi-turn interaction. Moreover, annotators often
favor verbose, catch-all answers for under-specified
queries, even though such verbosity imposes cog-
nitive costs on users (Singhal et al., 2024).

Another important observation is that prompting
models to use simpler language can harm response
quality. Interestingly, in ClearRef, there is no drop
from Normal to Simple; in some models, Simple re-
sponses are even slightly better. In contrast, for the
more complex SharedRef task, performance drops
drastically in the Simple setting. This confirms
prior work showing that simplification often leads
to omissions and vague phrasing (Ellinger et al.,
2025; Anschiitz et al., 2025; Trienes et al., 2024;
Agrawal and Carpuat, 2024; Devaraj et al., 2022).
We argue that this behavior needs to change. For ex-
ample, Kearney et al. (2025) show that LLMs adapt
the information they provide based on assumptions
about the user. This is problematic, especially if re-
questing simple language causes models to produce
less thoughtful responses or overlook important dis-
tinctions. Again, RLHF may play a role, failing to
capture the needs of diverse users and discouraging
clarification and hedging in simplified contexts.
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Taken together, we argue that resolving ambigu-
ity requires a balance: infer as much as possible to
avoid unnecessary elaboration, but clarify when un-
certainty remains. Our DPO-trained model moves
in this direction. It not only improves on our main
evaluation but also generalizes to the lexical ambi-
guity benchmark of Ellinger et al. (2025). More-
over, it reduces the performance drop commonly
observed when models operate in simplified lan-
guage settings. This suggests that clarification and
hedging behaviors can be learned in a transferable
and robust way.

6 Conclusion

In this paper, we analyzed how LLMs handle tex-
tual referential ambiguity and to what extent they
apply commonsense knowledge to resolve it. Our
findings show that LLMs have limited ability to do
so effectively. They tend to commit to a single in-
terpretation or cover all possible references, rather
than hedging or seeking clarification. This ten-
dency becomes even more pronounced when users
request simple language, which reduces common-
sense reasoning and different answering strategies.

These results point to two core issues. First,
there is a need for better fine-tuning to improve
how LLMs deal with ambiguity. Second, LLMs
should better adapt to different user needs. It is
especially concerning that a request for simpler lan-
guage leads to less thoughtful responses and fewer
clarifications, showing that current systems often
fail to support users with varied communication
styles.

To support reproducibility and future research,
we release our code”. Further links to models and
datasets are provided in the repository.

Limitations

Multilingual Scope and Dataset Size. Our study
focuses on English, French, Russian, Arabic, and
Chinese. For non-English languages, we relied on
direct translations from English using automated
tools, which can introduce translation bias, cultural
mismatches, or loss of nuance. Future work should
create native datasets for each language to ensure
more accurate and culturally appropriate evalua-
tion. Additionally, the ClearRef and SharedRef
datasets contain only 52 and 227 datapoints, re-
spectively, and include only 8 relations from Con-
ceptNet, making it difficult to draw fully stable

*https://github.com/lukasellinger/itdepends

conclusions and potentially biasing evaluation to-
ward certain categories. Nevertheless, we observe
very strong tendencies in the results, suggesting
that the findings are still meaningful and indicative
of broader trends.

Referential Order. Due to computational lim-
its, we used a fixed entity order; full permutation
results for English are provided in Appendix D.

Commonsense Context. We provided all models
with the same context, which included a common-
sense fact sourced from ConceptNet. While these
facts consist of basic relations and vocabulary, we
cannot guarantee that models internally represent
or utilize this knowledge. Nevertheless, given the
simplicity and generality of the facts, the models
likely have access to such information.

LLM-based Evaluation. We used an LLM to
judge model responses, observing near-perfect
agreement with human annotations in English.
While we did not conduct human agreement checks
for other languages, the observed trends remain
consistent across all languages, suggesting broader
applicability. Moreover, the differences between
prompt settings are substantially larger than any
potential error margin, further reinforcing the ro-
bustness of our findings.

Selected Prompts. We use fixed user prompts
for each relation, along with a single predefined
suffix for requesting responses in simplified lan-
guage. This setup reflects how typical users might
interact with a model without actively optimizing
prompt phrasing. However, LLMs are known to be
highly sensitive to prompt formulation, which can
significantly influence output quality (Brown et al.,
2020). Future research could systematically inves-
tigate the effects of varied or optimized prompts on
LLM performance.
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A Model Access

To support reproducibility, Table 8 lists all mod-
els used in this paper, including their abbreviated
names (as used in tables and figures), full names,
versions, and access providers.

B Dataset

We extracted entities from the following eight
relations: CapableOf fly, HasProperty
sweet, MadeOf wood, CapableOf swim,

CapableOf run_fast, CapableOf climb_trees,
HasProperty hot, and HasProperty loud. All
entities were manually reviewed and cleaned.
During dataset construction, we used the following
prompt with GPT-4.1-nano to verify that each
negative entity truly does not satisfy the relation,
in contrast to the two positive entities:

User Prompt: Relation Satisfaction

Does the word ’<word>’ satisfy the relation
’<relation>’?

Answer with a brief explanation and either
True or False for satisfies.

C Ablation: Chain-of-Thought
Prompting

Bian et al. (2024) observe that LLMs often fail to
apply commonsense knowledge when answering
questions that require such reasoning. To investi-
gate this in our setting, we tested GPT-40 on the
English SharedRef dataset in a Chain-of-Thought
(CoT) setting. We choose GPT-40 as it showed
the sharpest drop from Normal to Simple. We
appended the following instructions to encourage
CoT reasoning:

User Prompt: Chain-of-Thought

<question> First, try resolving any
ambiguity using commonsense knowledge. If
the question remains ambiguous, your
answer should be a clarification request.
Otherwise, provide the answer. Put your
final response after Response:.

We compare standard and CoT prompting in
Figure 9. CoT prompting performs worse than
standard prompting, with accuracy dropping from
81.06% to 44.49% in the Normal setting. This is be-
cause CoT prompting often only partially resolves
the ambiguity, responding to one positive while
ignoring the other. This occurs roughly 50% of the
time, suggesting a model preference for one entity,
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Figure 9: Comparison of Standard vs. CoT-Prompting
on the SharedRef dataset. Left: Correctness; the darker
portion of each bar indicates the percentage of Direct Re-
sponses. Right: Response category distribution. (Nor-
mal = left bar, Simple = right bar). Categories: B An-
swer Attempt, = Hedge, = Clarification,

as it correctly identifies each entity when prompted
individually. We observe more Clarifications and
Answer Attempts, with nearly no Hedging in the
Normal setting. The Simple setting is largely simi-
lar, contrasting with the standard Simple prompt-
ing.

Comparing the gap between Normal and Simple
settings, we find it much smaller than in standard
prompting. This suggests that when the LLM is
explicitly guided on how to generate responses,
there is no loss of thoughtfulness or omission of
important distinctions. This is also reflected in
the Simple CoT setting, performing better than the
Simple standard prompting.

D Ablation: Permutation of Entity
Ordering

English

English 100
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Figure 10: Average performance across all permutations
in the English SharedRef dataset. Left: Correctness per
model; the darker portion of each bar indicates the per-
centage of Direct Responses. Right: Response category
distribution (Normal = left bar, Simple = right bar).
Models: m DeepSeek v3, i1 GPT-40-mini, = Qwen3-
32B, m GPT-40, B Llama-3.1-8B. Categories: M Answer
Attempt, - Hedge, i@ Clarification, B Refuse.

Our conversation context has a given order of
entities. Due to computational constraints, we fixed
the order to a single permutation for all evaluations
(‘0, 1, 2’ for SharedRef and ‘0, 1’ for ClearRef).
We based this choice not on performance but to
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Prompt / Model Pos.1 Pos.2 Pos.3
Prompt: Normal
® 40 3450 24.52  40.98
® 40-mini 4198 18.65 39.37
@ v3 29.13 2623 44.64
v 3-32B 3123 29.37  39.40
09 3.1-8B 3593 1741 46.66
DPO Llama (Ours) 33.38 3234 34.28
Prompt: Simple
® 40 3729 1580 4691
® 40-mini 41.67 1646 41.87
@ V3 31.03 2575 43.23
v 3-32B 30.35 2836 41.29
09 3.1-8B 35.04 16.53 48.43
DPO Llama (Ours) 33.73  32.30 33.97

Table 2: Average selection rate (%) of an entity appear-
ing at Position 1, 2, or 3 in the SharedRef dataset, across
different models and prompts (Normal vs. Simple) in
English.

ensure consistency across languages.

To assess the effect of this choice, we ran an ab-
lation on the English dataset using all permutations.
We observed that the frequency with which a model
selects an entity depends heavily on its position in
the list, indicating a strong positional bias.

Table 2 shows the distribution of selected entities
across positions for each permutation in SharedRef.
For example, in the Simple setting, entities at posi-
tion three are selected drastically more often (avg.
42.62%) than those at position two (avg. 22.53%).

Table 3 presents analogous results for ClearRef.
Here, the bias is milder, with position two being se-
lected slightly more frequently on average (+4.22%
in Normal, +3.03% in Simple).

Figure 10 shows the averaged correctness and
category distribution over all permutations in En-
glish SharedRef. Compared to the fixed ‘0, 1, 2’ or-
dering used in our main results, average correctness
drops. Notably, GPT-40 exhibits fewer clarification
attempts when averaged across permutations, while
Qwen3-32B maintains strong performance.

The overall trend of higher correctness and bet-
ter category distribution in the Normal setting com-
pared to the Simple setting remains.

E Response Categorization

We adopt the response taxonomy proposed by Her-
lihy et al. (2024), with slight modifications to better

Prompt / Model Pos. 1 Pos. 2
Prompt: Normal
® 40 48.00 52.00
® 40-mini 4835 51.65
@ V3 4336  56.64
v 3-32B 48.15 51.85
09 3.1-8B 48.57 5143
DPO Llama (Ours) 50.90 49.10
Prompt: Simple
® 40 4948 50.52
® 40-mini 48.65 51.35
@ V3 48.04 51.96
v/ 3-32B 46.24  53.76
09 3.1-8B 4851 51.49
DPO Llama (Ours) 50.00 50.00

Table 3: Average selection rate (%) of an entity appear-
ing at Position 1, or 2 in the ClearRef dataset, across
different models and prompts (Normal vs. Simple) in
English.

suit our coreference resolution evaluation. Specif-
ically, we merge Interrogation into Clarification,
as both involve follow-up questions rather than
direct answers. We also merge Discussion into
Answer Attempt, since our evaluation does not re-
quire a fully factual answer, only that the response
correctly identifies the positive entities. This sim-
plification reduces annotation complexity without
compromising the core objective of our analysis.
A detailed overview of all response categories, in-
cluding definitions and examples, is provided in
Table 4.

F Automatic Evaluation

We used GPT-4.1-mini as an LLLM judge to auto-
matically evaluate the responses. We divided the
evaluation into two parts: response classification
and entity extraction. The prompt used for response
classification is shown in Box 1. The prompts used
for entity extraction, split into a system prompt
and a user prompt, are shown in Box 2 and Box 3,
respectively.

We manually annotated 500 responses from the
English dataset to validate the framework. Table 5
reports the agreement rates for response catego-
rization along with Cohen’s Kappa scores. For
entity extraction, we report exact match accuracy.
Overall, the results show high agreement across all
models.
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Name

Description

Example

Answer attempt

The assistant clearly commits to at least
one interpretation, providing a factual
response without any hedging.

The helicopter can fly because its rotors
generate lift, allowing it to rise off the
ground and maneuver through the air.

Clarification The response asks for more information  Could you specify which one you’re re-
about the user’s intent without offering ferring to: the helicopter or the gnat?
interpretations or using hedging

Hedging The response uses hedging or condi- If you’re referring to a raven, it can
tional language (e.g., “if you meant fly due to its strong wings, lightweight
X...”) and does not fully commit to a sin- body, and aerodynamic shape, which al-
gle interpretation. Even if only one en- low it to generate lift and move through
tity is mentioned, the presence of such the air efficiently.
language marks it as a hedge.

Refuse The response refuses to answer the ques- Here are the sentences: 1. **Bat**:
tion and does not ask any follow-up The bat fluttered silently through the
questions. night sky, searching for insects. 2.

**Dragonfly**: The dragonfly darted
over the pond, its iridescent wings shim-
mering in the sunlight. 3. **Coffee**:
The aroma of freshly brewed coffee
filled the kitchen, awakening everyone’s
senses. 4. **Why can it fly?**: Why
can it fly, despite its small wings and
heavy body?"

Missing The response is empty. [blank]

Table 4: Description and Examples of our Response Categories.

Prompt Response Cat.  Entity Low-Rank Adaptation (LoRA). The full configura-

. tion for LoORA and DPO training is summarized in
® 40-mini  100.0% (N/A)  99% Table 7.
@E 40 100.0% (1.000) ~ 98% We observed performance improvements on both
¥7 3-32B 92.0% (0.804) 98% the SharedRef dataset and the homonym task from
Qv3 98.0% (0.823) 94% Ellinger et al. (2025). However, on the ClearRef
003.1-8B 100.0% (N/A) — 100% test set, while the number of correct responses
Total 98.0% (0.916) 97.8%

Table 5: Accuracy percentages and Cohen’s Kappa
scores (in parentheses) for Response Categorization and
exact match accuracy for Entity Extraction across our
evaluated models.

G Direct Preference Optimization

Our training set contains 472 responses from sim-
ple settings and 866 from normal settings. In ad-
dition, we included 30 basic clarification cases,
where the user posed clearly ambiguous questions.
A fine-grained distribution is provided in Table 6.
We fine-tuned the model for two epochs using

remained comparable to the base model, we ex-
perienced a category shift. As shown in Fig-
ure 11, the distribution of coarse response cate-
gories shifted significantly toward ‘clarification’
and ‘hedge’ across all languages. This indicates
that the cognitive cost of those responses is higher
for our DPO model compared to the base model
on this dataset. To address this, future alignment
efforts should incorporate more training examples
from ClearRef to encourage direct answers where
appropriate. Unlike in SharedRef, where the model
successfully used common knowledge to respond
only to the positive entities, in ClearRef, the model
no longer consistently applies this strategy.

242



Dataset / Category En Fr Ar Ru Zh
SharedRef
Normal Answer Attempt 64 80 69 37 53
Normal Hedge 106 39 49 78 57
Normal Clarification 58 44 47 55 47
Simple Answer Attempt 112 84 30 69 76
Simple Hedge 21 13 2 15 31
Simple Clarification 4 3 1 4 1
ClearRef
Normal Answer Attempt 2
Normal Hedge 1
Simple Answer Attempt 6
General
Clarification 6 6 6 6 6

Table 6: Distribution of chosen response types in our
DPO fine-tuning dataset, broken down by language,
response category, and setting.

Parameter Value

LoRA Configuration

r 64

LoRA Alpha 16

LoRA Dropout 0.05

Target Modules [q_proj, v_proj,
k_prOJ, 0_pr0_]]

Bias none

DPO Training Configuration

g

Learning Rate

0.1
5e-5

Batch Size (per device) 4

Epochs

2

Table 7: Combined configuration used for LoRA adap-
tation and Direct Preference Optimization (DPO) fine-
tuning.

Percentage
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Figure 11: Distribution of response categories in the
DPO test set across five languages in the ClearRef
dataset. Colored squares denote response types: B An-

swer Attempt,

Hedge,

Clarification, and m Refuse.
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Short Form  Name Version Access Provider
® 40-mini  GPT-40-mini  gpt-40-mini-2024-07-18  OpenAl API

® 40 GPT-40 gpt-40-2024-08-06 OpenAl API

® 4.1-nano  GPT-4.1-nano  gpt-4.1-nano-2025-04-14  OpenAl API

@ 4.1-mini  GPT-4.1-mini  gpt-4.1-mini-2025-04-14  OpenAl API

v 3-32B Qwen3-32B N/A OpenRouter

@ V3 Deepseek v3  N/A Fireworks Al
0 3.1-8B Llama-3.1-8B  N/A Fireworks Al

Table 8: Specific model versions used in our experiments. For each model we provide the short form as used in our
tables, the exact version and the access provider.

Prompt / Model Correct Direct
En Fr Ar Ru Zh En Fr Ar Ru Zh
Prompt: Simple
® 40 08.08 100.00 98.08 100.00 96.15 88.46 69.23 78.85 63.46 75.00
® 40-mini 100.00 100.00 100.00 100.00 100.00 69.23 55.77 53.85 28.85 76.92
@ V3 100.00 90.38 100.00 94.23 100.00 88.46 6731 61.54 69.23 69.23
%7 3-32B 100.00 9423 9423 96.15 96.15 73.08 63.46 21.15 65.38 67.31
X 3.1-8B 9423 9423 98.08 9038 9231 9231 7885 55.77 73.08 80.77
Prompt: Normal
® 40 96.15 96.15 98.08 98.08 96.15 86.54 73.08 75.00 80.77 80.77
® 40-mini 100.00 98.08 9423 98.08 9423 82.69 6538 57.69 46.15 67.31
@ v3 100.00 98.08 96.15 9423 96.15 69.23 53.85 59.62 61.54 50.00
¥ 3-32B 08.08 9423 98.08 9038 9423 82.69 5192 5192 67.31 63.46
X 3.1-8B 96.15 90.38 90.38 9423 98.08 94.23 78.85 6538 73.08 90.38

Table 9: Evaluation results showing the percentage of correct and direct responses across languages and prompt
types on the ClearRef dataset. Bold highlights the highest scores per language within each prompt and metric.

Prompt / Model Correct Direct
En Fr Ar Ru Zh En Fr Ar Ru Zh
Prompt: Simple
® 40 18.06 7.49 19.82 441 2379 1278 6.61 12.78 220 1542
® 40-mini 529 176 1145 352 11.89 352 176 881 1.76 8.37
@ V3 48.02 28.19 47.58 19.38 46.70 10.57 11.89 6.17 396 7.49
v 3-32B 33.04 2599 28.19 12.33 56.83 2335 11.89 396 7.93 26.87
Q0 3.1-8B 11.89 396 47.58 485 485 485 044 220 1.76 1.76
Prompt: Normal
® 40 81.06 50.66 47.14 57.27 62.11 36.56 34.80 30.40 22.03 21.15
® 40-mini 1410 11.89 14.10 441 1850 7.05 749 837 176 17.05
@ v3 61.23 61.23 65.64 31.28 49.78 396 9.25 10.13 352 1.76
%7 3-32B 7577 71.37 56.83 63.88 83.26 29.52 19.38 10.57 25.99 25.11
0 3.1-8B 1454 13.66 749 396 6.17 573 220 396 132 2.64

Table 10: Evaluation results showing the percentage of correct and direct responses across languages and prompt
types on the SharedRef dataset. Bold highlights the highest scores per language within each prompt and metric.
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Box 1: User Prompt: Response Classification

You are reviewing a single-turn conversation between a user and an assistant.
You must classify the assistant's response according to the **type of response strategy** used.
Here are the definitions:

- “answer_attempt”: The assistant **unambiguously commits*x to at least one interpretation of the
user’s question and provides a factual explanation or general background relevant to the query. It
must **not use any hedging language**, such as “if you mean. . . ”, “depending on. . .”, or “could
be. . . ”. Implicit or explicit hedging disqualifies it from this category. It may mention multiple
entities, as long as none are introduced with hedging or conditional phrasing.

- “clarification™: The assistant **asks for more informationx* about the user’s intent. This may
involve **one or more clarification questionsx*, but must not *xsuggest answers*x or list
*xinterpretations**,. The response must should **not contain hedging or speculative language*x.
- “hedge™: The assistant x*uses hedging or conditional language*x (e.g., “if you meant X. . .7”,
“could refer to. . .”, “might be. . . ”) and does not fully commit to a single interpretation. Even if
only one entity is mentioned, the presence of such language marks it as a hedge.

- “refuse”: The assistant explicitly or implicitly refuses to answer the question and does **notx*
ask any follow-up questions.

- “missing”: The assistant gives **no response at all*x.

You must output your answer in the following JSON format:
{"response_type": "refuse|missing|answer_attempt|hedge|clarification”}

Conversation:
Question: <question_str>
Answer: <asnwer_str>

Box 2: System Prompt: Entity Extraction

You are an expert in identifying explicit entity mentions in text.
Your task is to determine which of the listed entities are explicitly mentioned in the response.

Instructions:

- Return only entities from the provided list (use their exact spelling from the list in your
output).

- Consider an entity ’mentioned’ if the response text contains the entity exactly, or with minor
morphological or spelling variations.

Examples of acceptable variations include plural forms and misspellings.

- Do not infer mentions from implied meaning, associations, or unrelated paraphrasing.

- Only include entities that are clearly and explicitly present in the response text.

- x*Always** output the entity names exactly as they appear in the provided list.

Box 3: User Prompt: Entity Extractionn

Entities: <entity_list>
Response:

<answer_str>

Which of the listed entities are explicitly mentioned in the response?

245



Arabic Prompts French Prompts

Rel. 1: 13U e 901 b))

Rel. 2: 13U 4» 9ol

Rel. 3: B 5o ¢ a0 o T2
Rel. 4: 13U (e 9L

Rel. 5: 13U S of Joms e
Rel. 6: 13U L (5L ?)l.ﬁ"‘\”
Rel. 7: 150 &1 €,

Rel. 8:

B &yl ?ci:‘/-
Simple: (g Bl @l o []
Starter: <entity list> les.cj Aas sl ﬂ o ‘__LL'J\

L

Rel. 1: Pourquoi peut-il voler ?

Rel. 2: Pourquoi est-ce sucré ?

Rel. 3: Pourquoi est-il en bois ?

Rel. 4: Pourquoi peut-il nager ?

Rel. 5: Pourquoi peut-il fonctionner rapidement ?
Rel. 6: Pourquoi peut-il grimper aux arbres ?

Rel. 7: Pourquoi fait-il chaud ?

Rel. 8: Pourquoi est-ce si bruyant ?

Simple: [..] Veuillez répondre dans un langage sim-
ple.

Starter: Donnez-moi une phrase pour chacun des
mots suivants : <entity list>

J

Rel. 1: Why can it fly?

Rel. 2: Why is it sweet?

Rel. 3: Why is it made of wood?
Rel. 4: Why can it swim?

Rel. 5: Why can it run fast?

Rel. 6: Why can it climb trees?
Rel. 7: Why is it hot?

Rel. 8: Why is it loud?

Simple: [..] Respond in simple language.
Starter: Provide me one sentence for each of the fol-
lowing: <entity_list>

English Prompts

Rel. 1: €A 2467

Rel. 2: A4t 2 &35 ?

Rel. 3: At 2 A KRH 4 ?
Rel. 4: At 2 CaEH R ?

Rel. 5: At 2 € RwAFI 27
Rel. 6: A4tz Eeest ?

Rel. 7: At 2a4#?

Rel. 8: A4t 2 29 ?

Simple: [..] # A A6 5 1E 698 T =HA o
Starter: A AT HEANR B RE—GRE ¢ <en-
tity list>

Chinese (Zh) Prompts

J

Russian Prompts

Rel.
Rel.
Rel.
Rel.
Rel.

: [Touemy OH MOXeET JIeTaTh?

: Ilouemy on cnaakuit?

: [louemy oH czenan u3 aepesa?

: [louemy oH MOXeET raBaTh?

: [Touemy oH MokeT ObICTpO Oerarh?

Rel. 6: [Touemy oH MOXeET J1a3aTh 1O IEPEBbHIM?
Rel. 7: TTouemy Tak xapko?

Rel. 8: ITouemy Tak rpomko?

Simple: [..]
SI3BIKOM.
Starter: /laliTe MHE 110 OZTHOMY IPEIUIOKEHHIO VIS
Ka)KJIOT0 U3 CIEAYIONIMX CII0B: <entity list>

~N QN L BN —

[Moxaiyiicta, oTBeYaiTe MPOCTHIM

L J

Figure 12: Language Versions of Relation Questions, the Simple Instruction and the Starter Sentence in Arabic,
French, English, Chinese, and Russian
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