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Abstract

Large language models increasingly rely on
explicit reasoning chains and can produce mul-
tiple plausible responses for a given context.
We study the candidate sampler that produces
the set of plausible responses contrasting the
ancestral (parallel) sampling against two alter-
natives: enumeration, which asks the model to
produce n candidates in one pass, and iterative
sampling, which proposes candidates sequen-
tially while conditioning on the currently gener-
ated response set. Under matched budgets, we
compare these samplers on quality, lexical and
computation flow diversity, and efficiency. Our
empirical results demonstrate that enumeration
and iterative strategies result in higher diversity
at comparable quality. Our findings highlight
the potential of simple non-independent sam-
pling strategies to improve response diversity
without sacrificing generation quality.

1 Introduction

Large language models (LLMs) have shown strong
performance across a wide range of applications
(OpenAI et al., 2024; DeepSeek-AI et al., 2025). In
particular, the ability to generate explicit reasoning
chains that guide planning and decision-making has
become a cornerstone of recent progress (Wei et al.,
2022; Yao et al., 2023; Zhu et al., 2025; Zhang
et al., 2024). Many of these applications benefit
from access to multiple plausible responses for a
given context, including test-time control (Mudgal
et al., 2024; Deng and Raffel, 2023; Troshin et al.,
2025), majority voting or best-of-n (Stiennon et al.,
2020; Nakano et al., 2022), conformal generative
modeling (Kladny et al., 2025), reasoning with
diverse decoding paths (Wang et al., 2024) and
ambiguity resolution (Kobalczyk et al., 2025; Chen
et al., 2025; Saparina and Lapata, 2025).

A necessary component of these pipelines is
a candidate sampler that returns a set of n re-

*These authors contributed equally to this work

sponses in context. The candidates are commonly
obtained by ancestral sampling from the model
distribution, or from variations such as temper-
ature, top-p, top-k (Holtzman et al., 2020; Basu
et al., 2021; Hewitt et al., 2022; Minh et al., 2025;
Vilnis et al., 2023). Beyond being in some sense
the natural approach, ancestral sampling also ben-
efits from being simple to implement and readily
parallelizable across devices, as each response is
sampled independently of the others. Neverthe-
less, ancestral sampling suffers from repetitions
of high-probability sequences, which motivated re-
searchers to propose non-independent algorithms,
including arithmetic sampling (Vilnis et al., 2023),
diverse, stochastic, and determinantal beam search
modifications (Vijayakumar et al., 2018; Kool et al.,
2019; Meister et al., 2021). These approaches, well-
studied in the literature, are based on search-style
algorithms on top of a language model’s output
probability, which still scores each sample sepa-
rately, possibly with the help of a separate dissimi-
larity function. In this work, we take a substantially
different approach and ask whether we can use the
standard LLM generation pipelines to enable ef-
ficient non-independent sampling, by processing
multiple candidates at the same time.

In particular, we are interested in a candidate
sampler that:

(i) produces high-quality samples;

(ii) promotes response diversity;

(iii) scales efficiently as the number of responses
increases;

(iv) is simple to use and relies on standard LLM
decoding primitives.

We compare the commonly used parallel sampling
strategy (ancestral sampling) with two alternative
sampling strategies, which we define as enumera-
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tion and iterative approaches, and study them from
the perspective of quality, diversity, and efficiency.

Our main finding is that the enumeration and
iterative strategies are simple and promising alter-
natives to the standard parallel approach. We find
that our non-independent iterative and enumeration
strategies result in higher lexical and computational
flow diversity. Such approaches can be seen in
a way as upper-bound oracles to diverse genera-
tion, in the sense that they fully model the joint
distribution over samples and are only limited by
the instruction-following performance of the LLM.
Our implementation is released as open-source.1

2 Methodology

We consider tasks for which there are multiple valid
responses. In the context of this work, we consider
a valid response to contain both a derivation and a
final answer, so different derivations leading to the
same answer are valid responses. Given a model
pθ and a prompt c, our goal is to produce a set
S = {y(1), . . . , y(n)} of n responses. We keep all
decoding hyperparameters fixed across methods
and vary only the sampling protocol.

2.1 Sampling Strategies

Parallel sampling. We sample n times indepen-
dently with different random seeds; samples do not
condition on one another:

y(i) ∼ pθ(· | c; ) for i = 1..n (1)

Enumeration sampling. We prompt the model
to generate multiple different outputs in one pass;
later outputs condition on earlier ones:

y(k) ∼
k∏︂

i=1

pθ

(︂
y(i) | c, y(1:i−1)

)︂
. (2)

The number of desired samples is not specified in
the prompt, but rather implicitly predicted. To the
best of our knowledge, the enumeration approach
has not been studied in the literature. However, due
to its simplicity, we speculate it it is used in prac-
tice, for example, Ilia and Aziz (2024) prompt Chat-
GPT (OpenAI, 2022) to enumerate 40 responses
in context as a complementary strategy to ances-
tral sampling; Saparina and Lapata (2024) prompt
models to enumerate all possible interpretations of
ambiguous questions.

1https://github.com/serjtroshin/ask4diversity

Iterative sampling. We generate one candidate
at a time, and we re-prompt the model to extend
an already generated list of responses with a new
response. Namely, for k = 1, we generate as:

y(1) ∼ pθ(· | c), (3)

and for k > 1, we pass the generated solutions:

y(k) ∼ pθ

(︂
· | c(y(1), · · · , y(k−1))

)︂
. (4)

In practice, the conditioning is achieved with a
templated prompt; refer to Appendix A for the
specific prompts used for all strategies.

3 Experimental Setup

We evaluate on GSM8K (Cobbe et al., 2021), a
grade school math problem-solving benchmark.
Each problem has a single gold answer, but mul-
tiple valid solutions may lead to it. Therefore, a
candidate is y(i) = (r(i), a(i)), with r(i) the solu-
tion (reasoning) and a(i) the final extracted answer.

3.1 Models

In our work, we rely on the Qwen3 family of mod-
els (Yang et al., 2025), chosen for their high rea-
soning performance, diverse range of model sizes.
In our preliminary investigation, we observe that
Qwen3 models are able to follow our zero-shot
instructions, and they show high accuracy in fol-
lowing the required output format. For our ex-
periments, we use Qwen3-{4B,8B,14B} models
with thinking generation mode on; and we use
Qwen3-4B-{Instruct/Thinking}-2507 released
solely for non-thinking/thinking use-cases.

We use the hyperparameters suggested by the
model developers: temperature = 0.6, top-k =
20, top-p = 0.95, repetition_penalty = 1.0.

3.2 Metrics

Quality. We define the quality metrics as the av-
erage accuracy over response sets given a golden
answer for a problem. We calculate the accuracy of
a response set by taking the minimum, mean, and
maximum statistics over the answers within the set
and averaging these statistics over the dataset.

Lexical diversity. We follow Li et al. (2016) and
report averaged distinct N -gram diversity metric
as the proportion of distinct N -grams in the set of
responses relative to the total number of N -grams.
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60% of the boxes are full of books and 40% are empty. If there are 240 empty boxes, how many boxes are full?

Solution 1 

Lexical Diversity (2-grams)

Unique 2-grams: 66
Total 2-grams: 84 66/84 = 0.79

Let x x = total boxes boxes x …

Computational Flow Diversity
240 / 0.4 = 600

Unique steps: 4  
Total steps: 6 4/6 = 0.67

…

Solution 2 Solution 3 

Computational Flow 1 

240 / 0.4 = 600

0.6 × 600 = 360

Computational Flow 2 

240 / 0.4 = 600

0.6 × 600 = 360

Computational Flow 3 

240 / (2/5) = 600

(3/5) × 600 = 280

Answer Diversity

Let x = total boxes 
x = 240 / 0.4 = 600  
Full boxes = 60% of 600 = 0.6 × 600 = 360

Let the total number of boxes be x.
240 empty boxes represent 40% of x, so x = 240 / 
0.4 = 600 
The remaining 60% are full, giving 0.6 × 600 = 360

Let’s express 40% as the fraction 2/5. 
Then x = 240 / (2/5) = 600. 
Full boxes are 60%, of the total: (3/5) × 
600 = 280

360 360 280
n distinct answers: 2;

Figure 1: Example of a math problem with three responses, their computation flows, and the resulting metrics:
lexical, computational flow and answer diversity.

Computation flow diversity. To complement
the lexical diversity metric, we extract a compu-
tation flow of each solution by mapping it to se-
quences of normalized arithmetic steps (e.g., “Janet
sells 9 eggs at $2 each, which gives 18” maps to
9 × 2 = 18). We obtain flows with a one-shot
prompt to Qwen-3-32B (see Appendix C). We re-
port the proportion of unique steps relative to the
total number of steps in the set. To compute this
metric, we estimate the distinct 1-grams over the
simple arithmetical steps, namely 9 × 2 = 18 is
considered to be a single 1-gram. This approach
can collapse steps that are arithmetically identical
but occur in different parts of a solution; however,
we found this to be rare in our experiments. If
needed, repeated occurrences can be distinguished
by indexing them within a flow (e.g., (1) 9×2 = 18,
(2) 9× 2 = 18).

Final answer variability. For some applications,
it might be useful to have samples with different
answers (e.g. to have both positive and negative
demonstrations), and we measure the answer vari-
ability as the number of unique answers among the
response set. For GSM8K, high answer variability
means that some answers are parsed as incorrect.

Figure 1 illustrates an input math problem, three
different responses, the corresponding computation
flows, and the resulting metrics. The first and sec-
ond responses differ in phrasing, but follow the
same computation; the third differs in wording and
computation but yields an incorrect result.

4 Results

4.1 Quality and Diversity
In Table 1, we report the evaluation results on the
GSM8K dataset.

Parsing the solutions. We parse the re-
sponses from the generated outputs by
searching for the required solution tags, i.e.,

<Solution>...</Solution>. For the parallel
and iteration strategies, we obtain more than 4
successfully parsed responses on average (out of
5 required). For the enumeration strategy, we
do not specify the required number of responses
and obtain between 2 and 4 parsed responses on
average. Overall, Qwen3 models demonstrate a
satisfactory ability to follow our instructions for
output formatting.

Diversity of the responses. We observe that in
all cases the diversity of samples from the parallel
strategy is lower compared to the diversity of the
two non-independent strategies, both for the lexical
and computational flow diversity. We observe that
often higher lexical diversity does not imply higher
compute diversity, and we think these metrics can
provide complementary signals to the developers.

Quality of the answers. In most cases, our mod-
els demonstrate good zero-shot task performance
with an accuracy of around 90%. Parallel sampling
shows the most stable high quality (lowest quality
variation), probably because it is the most standard
approach, and it is easier for a language model to
adapt to the corresponding prompt requirements.

Variability of the answers. Additionally, we re-
port the answer variability and the average mini-
mum and maximum accuracy over the responses.
We observe that overall models exhibit low answer
variability with less than 1.3 distinct answers on av-
erage. Enumeration strategy results in the highest
quality difference (i.e., the gap between maximum
and minimum accuracy), while the parallel and iter-
ation are on par with each other. We note that under
diversity requirements, we do not expect a model
to always produce a parsable or even correct an-
swer, and part of the quality loss can be attributed
to answer parser failures.
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# Parsed Min Mean Max Lexical Compute # Distinct
Model Strategy Solutions Quality Quality Quality Diversity Diversity Answers

Qwen3-4B parallel 4.77 0.86 0.91 0.95 42.8 33.1 1.13
enumeration 3.90 0.88 0.90 0.91 68.1 56.1 1.04
iteration 4.75 0.83 0.87 0.90 61.8 60.0 1.07

Qwen3-8B parallel 4.23 0.89 0.91 0.93 44.5 34.7 1.06
enumeration 2.81 0.89 0.90 0.91 73.1 64.1 1.03
iteration 4.87 0.89 0.91 0.92 63.4 79.8 1.03

Qwen3-14B parallel 4.90 0.92 0.94 0.96 38.4 31.5 1.05
enumeration 3.58 0.90 0.92 0.94 70.2 57.1 1.05
iteration 4.96 0.60 0.73 0.83 70.1 59.3 1.25

Qwen3-4B-Instruct parallel 4.98 0.88 0.92 0.94 33.1 47.7 1.10
enumeration 3.09 0.88 0.90 0.91 72.8 61.2 1.04
iteration 5.00 0.86 0.89 0.90 60.3 55.6 1.08

Qwen3-4B-Thinking parallel 4.67 0.81 0.89 0.94 47.9 30.7 1.24
enumeration 2.27 0.64 0.73 0.79 66.2 64.5 1.19
iteration 4.17 0.78 0.87 0.92 68.0 62.0 1.16

Table 1: Main results for parallel, enumeration, and iteration sampling strategies. For enumeration, we let the
model decide the number of solutions, for parallel and iteration, we expect 5 solutions, and report the average
number of parsed solutions. Min and max quality denote the average minimum and maximum accuracy over the
response sets. # distinct answers denote the average number of distinct answers among the set of parsed responses.

4.2 Compute Efficiency

An important question when developing the sam-
pling strategies is to understand how efficient it is
to generate the set of n responses. We distinguish
the total number of generation calls that we need to
do in order to generate n responses, and the support
for parallelization. We compare the three strategies
w.r.t. the compute they require.

From the perspective of parallel-time computa-
tion, the parallel approach is most time-efficient
by design, and this sort of parallelization is well
optimized and supported in LLM codebases, but
its time efficiency is tied to the access to parallel
computation (e.g., a multi-GPU setup). As we ob-
serve from the diversity results, the independence
assumption results in lower diversity (a higher de-
gree of repetitions).

Both enumeration and iteration are most suited
for single-GPU generation. For enumeration, we
need a single call to the model to enumerate the
generations in the response; in thinking mode, the
model shares the computation to produce n re-
sponses: it generates a single thinking chain first,
and then it enumerates the responses. A limitation
of this strategy is that this approach requires a larger
context length to produce multiple responses in one
go, which in turn slows down the decoding for the
standard quadratic-time attention implementation.

For iteration, we need n full sequential calls:
the generated responses are reused, but not any
other internals. Iteration is less time-efficient than

enumeration, since the former requires multiple
sequential generation calls; on the other hand, iter-
ation sampling allows for easy and more explicit
control of the number of responses, and may be
more compatible with other probabilistic modeling
strategies for subset selection without sacrificing
the expressiveness of enumeration sampling.

The main difference between parallel and the
two serial approaches (enumeration and iteration)
is the degree to which information is shared and
efficiently reused across the set when generating
responses. We see promise in further study of in-
formation conditioning and compression, specif-
ically, quantifying the extent of this sharing and
reuse. In particular, the enumeration strategy can
potentially approach the efficiency of a single par-
allel call while processing the responses quasi-
independently, which in turn affects the diversity
of the responses.

5 Conclusion

We study the problem of generating a diverse set
of responses. We propose two non-independent ap-
proaches for sampling responses from a language
model, namely enumeration and iteration strate-
gies, and compare them against parallel algorithms
based on ancestral sampling. On GSM8k, we find
that our non-independent approaches can provide
higher diversity of the samples, while maintaining
simplicity and overall quality of the generations.
Compute efficiency analysis shows that enumera-
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tion and iteration are well-suited to a single GPU
and can reduce redundancy without specialized
search machinery. We hope our work will motivate
further investigation of simple non-independent
strategies for diverse candidate sampling.

6 Limitations

One of the main limitations of our work is a narrow
evaluation scope. We focus on a single dataset with
verifiable rewards and a room for diversity of an-
swers and reasoning chains. Future work can eval-
uate these methods on tasks that inherently benefit
from diverse generations, such as creative writing,
code generation, or ambiguous question answer-
ing. We do not compare the results to established
diverse decoding methods such as beam search vari-
ants, as we limit our scope to sampling from the
model output distribution rather than modifying it
through specialized decoding algorithms. Ippolito
et al. (2019) provide an extensive survey and evalu-
ation methodology for the established methods.
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A Prompts

Prompt for enumeration sampling.

Given the following problem, reason through
it and provide multiple different solutions:

Problem: {question}

Use exactly this format (no extra text):
<Solution 1> [Your reasoning should go here]
The answer is [Answer 1]. </Solution 1>
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...
<Solution N> [Your reasoning should go here]
The answer is [Answer N]. </Solution N>

Prompt for parallel sampling.

Given the following problem, reason through
it and provide a solution:

Problem: {question}

You must wrap your reasoning and answer into
<Solution> ...reasoning here... 'The answer
is [numerical value].'</Solution> format.

Prompt for iterative sampling.

Given a problem and a set of solutions,
reason through it and provide a new solution.
The new solution may result in the same
answer, but it must be different from the
ones already provided.

Problem: {question}

Existing solutions:
{solutions}

Use exactly this format (no extra text):
<New Solution> [Your reasoning should go
here]. The answer is [answer]. </New
Solution>

B Averaged Distinct N-gram Diversity

Given a set of responses S = {y(i)}ni=1, for N ∈
{1, . . . , 5}, we calculate the averaged distinct N-
gram diversity for each set as:

avg. dist. N-gram (S) =
5∑︂

N=1

|set(N-gram(RC))|
|N-gram(RC)|

.

The diversity metric is calculated as the mean avg.
distinct N-gram diversity over the sets of responses.

C Prompt for Computation Flow Parsing

You will receive a math question and a
free-form solution. Extract the sequence of
arithmetic steps from the solution and
output them one by one.

Rules:
- Output ONLY lines made of digits 0-9,
parentheses (), the operators + - * / ^, and
optionally "=" to show each step's result.
- No words, units, currency symbols, or
extra text.

- One step per line, in the order implied by
the solution.
- Convert verbal quantities to numbers.
Replace references like "the remainder" with
the actual numeric value.
- Keep only the steps that lead to the final
answer.
- If no computable arithmetic appears,
output an empty line.

Example:

Question: Janet lays 16 eggs a day. She eats
3, uses 4 for baking, and sells the rest for
$2 each. How much money does she make?
Solution: Janet lays 16 eggs per day. She
eats 3 and uses 4 for baking, so 16 - 7 = 9
eggs left. She sells them at $2 each → 9 * 2
= $18.
Output:
3 + 4 = 7
16 - 7 = 9
9 * 2 = 18

Now, extract the arithmetic steps from the
following:

Question: {question}
Solution: {solution}
Output:
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