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Abstract

Natural language generation (NLG) tasks are
often subject to inherent variability; e.g. pre-
dicting the next word given a context has multi-
ple valid responses, evident when asking multi-
ple humans to complete the task. While having
language models (LMs) that are aligned plu-
ralistically, so that they are able to reproduce
well the inherent diversity in perspectives of
an entire population of interest is clearly bene-
ficial, Ilia and Aziz (2024) show that LMs do
not reproduce this type of linguistic variability
well. They speculate this inability might stem
from the lack of consistent training of LMs with
data reflecting this type of inherent variability.
As such, we investigate whether training LMs
on multiple plausible word continuations per
context can improve their ability to reproduce
human linguistic variability for next-word pre-
diction. We employ fine-tuning techniques for
pre-trained and instruction-tuned models; and
demonstrate their potential when fine-tuning
GPT-2 and Mistral-7B-IT, using Provo Cor-
pus. Our evaluation, which measures diver-
gence among empirically estimated human and
model next-word distributions across contexts
before and after fine-tuning, shows that our
multi-label fine-tuning improves the LMs’ abil-
ity to reproduce linguistic variability; both for
contexts that admit higher and lower variability.

1 Introduction

Inherent variability in natural language generation
(NLG) tasks might arise from ambiguity or vary-
ing perspectives (Plank, 2022; Baan et al., 2023).
For example, when predicting the next word given
a context, multiple plausible and valid continua-
tions exist; a task whose linguistic variability we
can appreciate by asking a human population to
complete it (Luke and Christianson, 2018). We
can also appreciate this type of linguistic variabil-
ity for autoregressive language models (LMs) that
generate text by sampling from next-token (i.e. sub-
word unit) distributions conditioned on preceding
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tokens (Vaswani et al., 2017). We achieve that by
viewing such distributions as a representation of
the model’s uncertainty over continuations given a
prefix (Ilia and Aziz, 2024; Guo et al., 2024; Tevet
and Berant, 2020). It is often valuable for models
to reproduce such variability, particularly in open-
ended NLG tasks, where multiple responses can
be plausible. Whereas this variability contributes
to making LMs more robust (Sheng et al., 2008;
Peterson et al., 2019; Uma et al., 2021; Kurniawan
et al., 2025) and more representative of the lin-
guistic diversity of human populations of interest
(Sorensen et al., 2024; Muscato et al., 2025b), it
has been shown that the variability LMs exhibit
does not always align with the one humans exhibit
(Pavlick and Kwiatkowski, 2019; Ma et al., 2025;
Shaib et al., 2024). For next word prediction, Ilia
and Aziz (2024) identify this misalignment and
speculate it might stem from inconsistent exposure
of LMs to training data reflecting such variability.

As such, we investigate whether training LMs
with multiple observations of the next word per
context will improve their ability to reproduce hu-
man variability. While previous fine-tuning work
utilising multiple references per instance focused
on classification tasks (Peterson et al., 2019; Uma
et al., 2021; Rajeswar et al., 2022), our work fo-
cuses on next-word prediction, a generative task.
Similar to Eisape et al. (2020), who employ a form
of multi-label distillation in next word prediction,
we also employ a technique to fine-tune pre-trained
LMs and extend to instruction-tuned LMs. For the
former, we alter the training signal, and for the lat-
ter we exploit a training data augmentation method
to ensure that variability is observed.

We employ these fine-tuning techniques for GPT-
2 (Radford et al., 2019), a pre-trained model, and
Mistral-7B-IT (Jiang et al., 2023), an instruction-
tuned model. When evaluating, by measuring di-
vergence among empirically estimated human and
model next-word distributions across contexts, be-
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fore and after fine-tuning, we find that fine-tuning
with multiple labels per instance improves those
LMs’ ability to reproduce linguistic variability,
across contexts of varying open-endedness. Ad-
ditional ablations measure performance when vary-
ing the number of training labels per instance; and
with a preliminary analysis we measure the trade-
off in performance in tasks that admit no plausible
variability. For that, we handcraft a small eval-
uation dataset using a knowledge-based question
answering dataset (Berant et al., 2013).!

2 Related Work

Human label variation in natural language process-
ing (NLP) tasks is often dismissed as noise (Paun
et al., 2022; Ferracane et al., 2021). However, mul-
tiple responses can be plausible, especially rele-
vant to ambiguous or open-ended tasks or prompts
(Plank, 2022; Baan et al., 2023; Weber-Genzel
et al., 2024; Nie et al., 2020; Aroyo and Welty,
2015). Embracing this plausible variation as part
of NLP systems, which could make them more
fair (Deng et al., 2023; Muscato et al., 2025b) and
robust (Peterson et al., 2019; Sheng et al., 2008),
involves altering all stages of our systems’ devel-
opment pipelines: from dataset creation, collecting
multiple labels per prompt (Luke and Christianson,
2018; Nie et al., 2020, i.a.), to training, utilising
these labels during the learning phase (Rodriguez-
Barroso et al., 2024; Aroyo and Welty, 2012; Pad-
makumar et al., 2024, i.a.), and evaluation, com-
paring models’ responses to multiple human refer-
ences (Baan et al., 2022; Ilia and Aziz, 2024, i.a.).

Our approach aims to embrace plausible variabil-
ity during training. Rather than collapsing annota-
tions into a single ground truth (Paun et al., 2022),
we incorporate multiple plausible references. The
idea of multi-label fine-tuning has been adopted in
image-classification (Peterson et al., 2019; Aurpa
et al., 2024; Rajeswar et al., 2022), as well as in
NLP, primarily for classification (Uma et al., 2021;
Jung et al., 2023; He and Xia, 2018; Betianu et al.,
2024; Li et al., 2024; Zhang et al., 2024a; Li et al.,
2025; Muscato et al., 2025a). Additionally, re-
cent efforts have applied instruction fine-tuning for
multi-label text classification tasks (Siddiqui et al.,
2024; Yin et al., 2024) and tasks with restricted
outcome spaces, such as sampling from discrete
distributions (Zhang et al., 2024b). Our work fo-
cuses on a generative task, (i.e., that of predicting

!Code available at: GitHub repository
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complete wordforms by stringing together tokens),
with a countably infinite outcome space (i.e., all
possible wordforms from a finite set of tokens).
Eisape et al. (2020) explores a form of multi-label
distillation in next-word prediction for an LSTM
model. We also explore a form of multi-label dis-
tillation for transformer-based models, extending
our investigation to instruction tuned LMs.

3 Methodology

We exploit simple yet intuitive fine-tuning tech-
niques, depending on the LMs’ previous training.
These require a set of contexts C' = {cy, ...,cn },
where for each context ¢;, we have a set of human
next-word references W; = {w1, ..., wips }2:

Fine-tuning pre-trained LMs Autoregressive
LMs are trained using cross-entropy between a
target and the model’s next-token distribution given
context ¢ (p(+|c) and ¢(-|c) resp.). This corresponds
to searching for the maximum likelihood estimate
(MLE). When training on a corpus with a single
continuation (i.e. the next corpus token w*), pis a
deterministic distribution centered on w*, leading
to the following loss:

ey

When multiple word continuations are avail-
able, we replace this deterministic distribution with
the empirically estimated distribution (using W;),
where the probability of a word given ¢;, p(w|c¢;),
equals its relative frequency in W;. This results in
the following loss, which comprises generalized
cross entropy (Jurafsky and Martin, 2025):

Lvae ==Y p(w|c)logg(w | c),
wey

LLabel = - IOg Q(w* ‘ C)'

(@)

where V is the vocabulary.® Since words may con-
sist of multiple tokens, to obtain g(w | ¢;) we re-
express the model’s token-level probabilities over
complete words.* For a word w with tokenization
7(w) = (t1,...,t,), we compute:

q(w | ) = HQ(tj |cistrs. ooy tj—1),  (3)
j=1

where ¢(t; | -) is the probability of token ¢; under
the model, given the context and preceding tokens.

M might vary accross contexts.

3Words that actually contribute to the loss, i.e. non-zero
terms, are words in the set of human samples, W; for c;.

*Humans predicted word continuations, not tokens; so the
outcome space of p(w | ¢;) is over complete words, and we
must ensure that g(w | ¢;) is expressed over the same space.
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Fine-tuning instruction-tuned LMs Instruction-
tuned models underwent additional training to cater
a rather conversational format and adhere to task in-
structions. We sample responses from the model’s
conditional predictive distribution (CPD) given a
prompt, i.e. an instruction and an example. For
our task, we sample response r containing a pre-
dicted word from ¢(r|(Z, ¢;)), where the prompt
includes instruction I requesting a word continua-
tion given a prefix, and the example context c;. So
as to utilise multiple labels, we employ the follow-
ing training data augmentation technique: for each
context ¢; in C, we construct the prompt (1, ¢;)
and for each word w; in W;, we create a training
datapoint where wj is a response to (I, ¢;). This
entails that ¢; will appear multiple times with differ-
ent continuations as per their frequency in W;. We
train using Lqp¢;.> See Appendx A for prompts.

4 [Experiments

Models & Datasets. We fine-tune pre-trained
GPT-2 (124M; Radford et al. (2019)) and
instruction-tuned Mistral-7B-Instruct-v0.3 (7.25B;
Jiang et al. (2023)), which we refer to as Mistral-
7B-IT. Both models are fine-tuned using Provo Cor-
pus (Luke and Christianson, 2018), which contains
55 text passages (2687 total contexts). Each prefix
is annotated with an average of 40 human annota-
tions predicting the word following it. We split the
dataset randomly at the paragraph level (to avoid
partial passage leaks between train and test sets).
80% is for training, of which 10% is reserved for
validation; and the remaining for testing.

Training Configuration. Both models were fine-
tuned using the Adam optimizer (Kingma, 2014).
For GPT-2: we train for 3 epochs, using a learning
rate of 1e~® and a batch size of 16. For Mistral-7b-
IT: we train for 4 epochs using Low-Rank Adapta-
tion (Dettmers et al., 2023, LoRA) with a learning
rate of 1e~* with a batch size of 32. We train on 3
random seeds; training details in Appendix B.

Metrics. Following Ilia and Aziz (2024): for
each context, we measure the divergence between
the human and model CPDs given a context us-
ing total variation distance (TVD) (Rudin, 1987).
TVD quantifies the difference between two proba-
bility distributions by summing the absolute dif-

3Constructing the dataset in this way (one prompt-response
pair for each word annotation for every context) using L z,qpe:
is similar to learning g(r|(I, ¢)) with Ly q..

‘TVD(p,q) = 5 3, [p(wlei) — g(wle:)|
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Mean TVD + SD ({)

Model GPT-2 Mistral-7b-IT
Base 0.607£0.001  0.812+£0.002
1-Shot N/A 0.784+0.002
FT (Orig. corpus) 0.612+0.002  0.805+0.001
FT (Maj. label) 0.556+0.005  0.563£0.002
FT (Mul. labels)  0.550+0.003  0.499+0.006
Oracle 0.443£0.002  0.443£0.002

Table 1: Mean and standard deviation of TVD averages
across test contexts for three seeds.

ferences in the probabilities they assign to the
same event. A higher TVD indicates greater dis-
agreement between human and model CPDs (i.e.,
poorer alignment with human linguistic variabil-
ity), whereas a lower TVD indicates less disagree-
ment (i.e. better alignment with human linguistic
variability). In order to compute TVD, we need
estimates of the human and model CPDs (p(w|c)
and g(w|c) respectively). As done in Ilia and Aziz
(2024): (1) for p(w|c), we estimate it via Monte
Carlo, with p(w|c) equaling the relative frequency
of w in all human samples, and (2) for g(w|c),
we estimate it via Monte Carlo, by sampling 40
sequences from the model long enough to con-
tain a full word, slice it, and compute g(w|c) (or
q(wl|(I,c))) as the relative frequency of w in all
sampled words.

Baselines & Upper Bounds. We compare the
distribution of TVD values across contexts before
and after fine-tuning, where improved performance
would mean a shift towards lower TVD values (i.e.
less disagreement with human CPDs). For the
instruction-tuned model, we add a 1-shot baseline,
where the prompt includes an example of a context
and word references (details in Appendix A). As
another baseline, we fine tune models with Provo’s
original corpus passages (i.e. one continuation per
prefix), imitating models’ usual training. Lastly, to
estimate the best performance we can expect from
our models, which essentially is to mimic human
divergence, we establish a baseline for the expected
level of disagreement from humans for a context.
We split human responses in two disjoint groups
and measure their CPDs’ TVD (‘Oracle’ baseline).

5 Results

Main results As shown in Table 1, both models
fine-tuned with multiple labels (FT (Mul. labels))
achieve a notably lower mean TVD compared to
other baselines (Base, 1-Shot and FT (Orig. Cor-
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Figure 1: Distribution of TVD scores (for 1 seed) across
contexts. For both GPT-2 and Mistral-7B-IT; fine-tuning
shifts the TVD distribution towards the Oracle baseline,
suggesting better linguistic alignment with humans.

pus)). We also observe how FT (Orig. corpus)’s
performance is very similar to the Base model. This
simultaneously indicates that our improved perfor-
mance does not stem from an out-of-distribution
effect between Provo Corpus and the models’ train-
ing data. Figure 1, which shows the histogram
of TVD values for all models and baselines (for
1 seed), confirms that; FT (Mul. labels) models’
TVD distributions shift towards the Oracle distribu-
tions, indicating that models improve at reproduc-
ing human linguistic variability. For other seeds,
we see similar patterns; see Appendix C.

When and how do models improve? To under-
stand the effects of our fine-tuning, we analyze
changes in TVD. We visualise the models’ changes
in performance against context open-endedness (as
measured by the TVD between human oracles;
lower TVD indicating more ‘restrictive’ contexts),
allowing us to grasp if performance gains arise
in contexts that admit higher or lower variability.
In Figure 4 (Appendix D), negative TVD differ-
ences between fine-tuned and base models (indi-
cating gains) occur at all levels of contexts’ open-
endedness. We also assess whether models improve
at predicting words that humans predicted (regard-
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less of frequency). We plot the fraction of unique
human predictions that were also predicted by the
models before and after fine-tuning (Figure 7; Ap-
pendix D). Fine-tuned Mistral-7B-IT’s ability to
predict unique human words (along with its CPDs’
‘diversity’; Figure 6, Appendix D) improves sub-
stantially (details and analyses in Appendix D).

Is the entire response distribution useful?
When gathering datasets with multiple labels, dis-
agreement can be discarded as noise and the most
common response is used as ground truth. Aiming
to assess whether retaining the entire response dis-
tribution is useful, we fine-tune a model on Provo
Corpus using only the majority response (FT (Maj.
Label) in Table 1). We find that, FT (Maj. Label)
surpasses the performance of FT (Orig. Corpus),
which is not entirely surprising: the corpus word
is a single observation, while the majority vote ex-
ploits in a sense multiple labels. This is intuitively
in line with analysis revealing that performance
gains seem to relate with less open-ended contexts
(Figure 8; Appendix E). Nonetheless, FT (Mul. la-
bels) outperforms FT (Maj. label), with moderate
gains for GPT2 and more notable gains for Mistral-
7B-IT; indicating the utility of retaining all labels.

Number of labels ablation. We analyse how the
number of labels used to fine-tune the model affect
the model’s performance. We fine-tune GPT2 us-
ing a varying number of labels each time (1,2,4,16
and 32; randomly sampled from available anno-
tations). Figure 9 of Appendix F shows that 16
samples are sufficient for substantial performance
improvements; for more details, see Appendix F.

Impact on tasks without data uncertainty.
Whereas optimising for a task that admits inher-
ent variability (i.e. next-word prediction) might
improve the model’s ability to reproduce such vari-
ability; the effect of this on tasks that admit no vari-
ability is unclear. To assess that, we test the mod-
els’ performance before and after fine-tuning on
knowledge-based question answering (a task admit-
ting no plausible variability), adapted for next-word
prediction. For that, we handcraft examples from
a subset of WebQuestions (Berant et al., 2013);
details and examples in Appendix G. For each con-
text, we sample 40 responses and measure how
often responses exactly match the reference. As
shown in Table 3 of Appendix G, fine-tuning on
multi-label data moderately improves the low per-
formance of GPT2, but worsens the performance



of Mistral-7B-IT; highlighting a potential trade-off
in performance between tasks that do and do not
admit variability, when optimising for the latter.

6 Conclusion

This study examines whether fine-tuning with mul-
tiple labels per instance has the potential to en-
hance models’ ability to reproduce linguistic vari-
ability in next word prediction. We show im-
proved performance for a smaller pre-trained lan-
guage model (GPT-2) and a larger instruction-tuned
model (Mistral-7b-IT) across contexts that admit
varying levels of plausible variability. Our findings
highlight both the potential and possible limitations
of such fine-tuning, paving the way for further ad-
vancements in modeling linguistic variation.

7 Limitations

We hereby discuss various limitations of our study:
we fine-tune using Provo Corpus, which is a rela-
tively small dataset with a limited number of human
annotations per prefix. The high cost of obtaining
data with multiple references means that such data
is scarce and not available at large scale. How-
ever, we show that even with a limited amount of
contexts and a limited amount of annotations per
context that are well-curated and of high-quality it
is possible to observe performance improvements.
Simultaneously, as the field of synthetic data gen-
erations is becoming increasingly popular; we can
entertain the idea that future work exploits such
synthetic labels, and a model that has been fine-
tuned to embrace variability, such as the ones we
present in this study, could comprise generators
for such synthetic annotations. Additionally, for
our training and evaluation, we assumed all human
annotations to be draws from the same underly-
ing distribution; which is not an assumption that
is easy to verify. We also observed a trade-off be-
tween capturing variability well and performance
on tasks with a single correct answer; with future
work potentially focusing on methods that could
balance-off better such trade-offs. Additionally,
due to resource constraints, we were only able to
include in our study only two (relatively small)
models that were trained for English. Despite fo-
cusing on a generative task, we only focused on
next word prediction. Transferring this to the se-
quence level might be non-trivial and come with its
own challenges. However, we hope that our study
inspires future work in this research direction, aim-

77

ing to embrace inherent variability as part of the
training of LMs, and tackle challenges related to
this field.
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A Prompts for Baselines

When constructing the training set and evaluating
our models, we present the relevant prompts:

Base prompt. To assess the performance of the
non fine-tuned models, we prompt them repeat-
edly for the next word prediction task. The prompt
includes an instruction to predict a next-word con-
tinuation and the given context at a time.

Prompt:

Instruction: Return one plausible next
word for the following context.
Context: <CONTEXT>
Continuation:

When creating training prompt-response pairs,
the prompt is identical to before, and the responses
are words from the set of human references.

Response:

<HUMAN_REFERENCE>

1-Shot prompt. As a performance baseline we
have one-shot prompting, which includes the in-
struction, an example from the training set, and the
given context at a time:

Instruction: This is an example of a
context and some plausible next word

continuations. given by a group of 39
people: Context: There are now
rumblings that, Continuations:

[are, are, are, are, are, are, are,
can, can, can, can, can, sound,
sound, sound, sound, shake, shake,
shake, the, the, the, have, have,
our, our, someone, someone,

appear, ca, cause, come, make,
occur, people, say, suggest,

tumble, we]. Following this

example, return only one plausible
next word for the following context.
Context: <context>

Continuation:

B QLoRa

Table 2 shows the configuration used for finetuning
the Mistral-7B-IT model.


https://arxiv.org/abs/2403.01931
https://arxiv.org/abs/2403.01931
https://arxiv.org/abs/2403.01931

Parameter Value

QLoRA

r 8

LoRA « 16

LoRA dropout 0.05

Task type Causal Language Modeling

Target modules
gate_proj, up_proj, down_proj

a_proj, k_proj, v_proj, o_proj,

Quantization

Load in 4-bit True
4-bit quantization type  nf4
Double quantization True
Compute data type bfloat16

Table 2: LoRA and 4-bit quantization configuration
parameters.

C Main results

We present Figure 1, which comprises the results
on the test set for one of the three random seeds
we trained on. We observe similar trends for the
remaining seeds; which we present in Figure 2.
This is confirmed when plotting the differences
between the TVD of the model and human CPDs
and the TVD among the human oracle CPDs, as
observed in Figure 3.

D Analysis of model performance changes

In order to understand how fine tuning has affected
the model performance. We perform various anal-
yses. We visualise the models’ changes in perfor-
mance against context open-endedness. We approx-
imate that using the TVD between human oracles.
We assume that a lower TVD, reflecting lower dis-
agreement among human populations, indicates
more ‘restrictive’ contexts, while a higher TVD,
indicates contexts that admit a higher level of plau-
sible variability. We plot changes in performance
by computing the differences between the TVD of
the fine tuned model and human CPD and the TVD
of the non fine tuned model and human CPD. Re-
sults are shown in Figure 4 (showing all contexts)
and Figure 5 (showing only contexts for which per-
formance improved, i.e. negative differences in
TVD values). We observe how improvements oc-
cur across contexts of varying open-endedness (i.e.
varying TVD among oracles values).

To gain further insight as to how fine tuning has
affected our models, we plot the entropy values
of the empirically estimated model CPDs across
contexts before and after fine-tuning. Results can
be seen in Figure 6. For GPT2, we observe how
the entorpy of the model’s empirically estimated
CPDs were not impacted very substantially. We
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observe only a slight shift towards lower entropy
values (i.e. peakier distributions); which means
that model predictions might be slightly more con-
fident, while also being better better aligned with
human linguistic variability. On the contrary, the
fine tuned Mistral-7B-IT model’s entropy values
shift substantially towards higher values, demon-
strating that now the model is making more diverse
predictions (which are also better aligned with hu-
man linguistic variability, as evident by our main
findings).

Lastly, we assess whether models improve at pre-
dicting words that humans predicted (regardless of
their frequency), as a means to approximate how
wel their lexical diversity aligns with that of our
assessed human population. We plot the fraction of
unique human predictions that were also predicted
by the models before and after fine-tuning with
multiple labels (Figure 7). Higher values indicat-
ing a more highly aligned lexical diversity. We find
that GPT2’s lexical diversity remained relatively
similar to before fine tuning, but for Mistral-7B-IT
we see a clear rightward shift in the distribution
of unique word coverage for the fine-tuned model.
This indicates that the fine-tuned model predicts a
greater number of relevant unique words per con-
text compared to the non-fine-tuned baseline.

E Analysis of model fine-tuned with
majority label

Similar to Appendix D, we analyse the changes
in performance of the model fine tuned with the
majority label compared to the base model. We
visualise the models’ (FT (Maj.Label)) changes in
performance against context open-endedness. We
approximate that using the TVD between human
oracles. We assume that a lower TVD, reflecting
lower disagreement among human populations, in-
dicates more ‘restrictive’ contexts, while a higher
TVD, indicates contexts that admit a higher level
of plausible variability. We plot changes in perfor-
mance by computing the differences between the
TVD of the fine tuned model (FT Maj. label) and
human CPD and the TVD of the base model and
human CPD. Results are shown in Figure 8. When
comparing with the corresponding plots for FT
(Mul.label) in Figure 4, we observe how improve-
ments occur for contexts that admit lower plausible
variabiltiy (i.e. lower TVD among oracles values;
steeper regression line towards lower Oracle TVD
values for lower negative differences/performance
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Figure 3: Distribution of differences of TVD scores between the model and the human CPDs and the oracle
CPDs, for all 3 seeds. For both GPT-2 and Mistral-7B-IT; fine-tuning shifts the TVD distribution towards smaller
differences, confirming previous findings.

gains). bited). We sample 1,2,4,16 and 32 labels given
our available annotations and fine tune GPT2 given

F Varying training labels per instance the subsequent training sets. We then perform the
Study same evaluation as for the rest of our analysis and

present the average TVD of the test set, against the
label set size per instance in Figure 9. Scores for
16 and 32 samples are nearly identical, and very
similar to the score obtained when training on all
available labels (40 on average per prompt). These
results suggest that around 16 labels per instance

We perform an ablation to understand the num-
ber of labels that is necessary to obtain substan-
tial performance gains. We perform this ablation
study only for GPT2, given computational con-
strains (Mistral-7B-IT is a much larger model, and
fine-tuning it repeatedly is computationally proho-
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are sufficient to observe significant performance
gains.
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Figure 6: Entropy of model predictions before an after finetuning.
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Figure 9: Mean TVD by number of samples per context.
Performance improves with more samples, plateauing
after 16.

86



G Analysis for QA task without Mean Hit Rate + SD

variability Model GPT-2 Mistral-7B
Base 0.032 £0.002  0.59040.005

Whereas optimising for a task that admits inher- FT (Orig.corpus) 0.030 £+ 0.002  0.22940.005
ent variability (i.e. next-word prediction) might FT (Mul.labels)  0.041 +0.002  0.127+0.005

improve the model’s ability to reproduce such vari-
ability better; the effect of this on tasks that admit
no variability is unclear. We test the models’ per-
formance on knowledge-based question answering
(which is a task that admits no plausible variability),
adapted as a next-word prediction task. We create
a small evaluation dataset based on a knoweldge-
based question answering dataset, WebQuestions
(Berant et al., 2013). We create a subset of 55
handpicked contexts, chosen to include a variety
of topics ranging from science, history and pop
culture, each rephrased into next-word prediction
tasks. We demonstrate 3 randomly chosen exam-
ples below:

Table 3: Mean target hit rate for 40 samples per context
across three seeds with standard deviation, for both GPT-
2 and Mistral-7B.

poland in ww2?
Continuation:

We compare the base model, the model fine
tuned with the original corpus (so as to account
for the impact of training on Provo corpus, a poten-
tially different domain) and the model that was fine
tuned with multiple labels in their ability to gener-
ate the correct answer to the question (phrased as a
next-word prediction task). To evaluate the perfor-

Prompt:

Instruction: Return one plausible next
word for the following context.

mance, for each context, we sample 40 responses
and measure how often responses exactly match
the reference, denoted as hit rate.

Table 3 shows the results of this evaluation. GPT-
2 shows a slight increase in hit rate after finetuning,

Context: The first country to invade
poland in ww2 was

Continuation: although its overall performance remains poor, and
Target: Mistral-7B-IT’s performance also drops, more sub-
stantially. However, we cannot rule out the effect

Germany of other confounders in the data or optimisation
Prompt: process that might have incidentally impacted the

performance changes and are not relevant to the
multiplicity of responses. Hence, we approach
these preliminary results with cautiousness, and
hope to inspire future work that investigates this

Instruction: Return one plausible next
word for the following context.
Context: the organelle responsible
for atp production and storage is the

Continuation: more extensively. Supplementary histograms of
hit-rates across contexts can be seen in Figure 12.
Target:
mitochondrion
Prompt:

Instruction: Return one plausible next
word for the following context.
Context: darth vader's star
destroyer was called
Continuation:

Target:
Devastor

We also evaluate model performance using the
original questions. For Mistral-7B-IT, the instruc-
tion was modified into: QA-Prompt:

Instruction: Answer the following
guestion with one word only
Context: What country first invaded
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Figure 10: Hit rates on gold target label before and after finetuning. Averaged across 3 seeds.
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Figure 11: Hit rates on gold target label when prompted in the original QA format, before and after finetuning.
Averaged across 3 seeds.
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Figure 12: Hit rates on gold target label after finetuning on hard targets (corpus). Averaged across 3 seeds.



