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Abstract

We present a joint multitask model for the Uni-
Dive 2025 Morpho-Syntactic Parsing shared
task, where systems predict both morphologi-
cal and syntactic analyses following novel UD
annotation scheme. Our system uses a shared
XLM-RoBERTa encoder with three specialized
decoders for content word identification, de-
pendency parsing, and morphosyntactic feature
prediction. Our model achieves the best overall
performance on the shared task’s leaderboard
covering nine typologically diverse languages,
with an average MSLAS score of 78.7%, LAS
of 80.1%, and Feats F1 of 90.3%. Our abla-
tion studies show that matching the task’s gold
tokenization and content word identification
are crucial to model performance. Error analy-
sis reveals that our model struggles with core
grammatical cases (particularly Nom-Acc) and
nominal features across languages.'

1 Introduction

The UniDive 2025 Morpho-Syntactic Parsing
shared task (Goldman et al., 2025) introduces a
novel framework for dependency parsing that seeks
to bridge the traditional divide between morpholog-
ical and syntactic analysis. In conventional Univer-
sal Dependencies (Nivre et al., 2020), morphology
and syntax are treated as distinct modules operating
at different linguistic levels, with word boundaries
serving as the interface between them. However,
this separation has led to significant inconsisten-
cies in how different languages and even different
treebanks for the same language handle word seg-
mentation and grammatical analysis. The shared
task proposes to address these long-standing chal-
lenges by reorganizing grammatical representation
around the content-function distinction rather than
relying on theoretically problematic word bound-
aries, proposing a more typologically consistent

'Our code and models are publicly available:

https://github.com/DemianInostrozaAmestica/
shared_task_UD_official

ID Token FEATS HEAD DEPREL

1 From _ _

2 the _ _ _

3 AP Case=AblIDefinite=Defl 4 obl
Number=Sing

4 comes Mood=IndIPolarity=Posl 0 root
Tense=Pres|VerbForm=Finl
Voice=Act

5  this Number=Sing| 6 det
PronType=Dem

6  story Number=Sing 4 nsubj

7 :

Table 1: Example of the new annotation scheme used in
the shared task

approach to multi-linguistic parsing. For instance,
in the sentence ‘From the AP comes this story’
shown in Table 1, traditional UD treats ‘From’ as a
dependent of ‘AP’ with the deprel case, while the
new framework transfers the grammatical meaning
of ‘From’ as a morphosyntactic feature Case=Abl
(Ablative) directly onto the content word ‘AP’.

The task requires systems to predict both labeled
dependency arcs and morphosyntactic features, but
with a difference from standard Universal Depen-
dencies parsing: the dependency tree consists only
of content words (lexical words carrying semantic
meaning like nouns, verbs, and adjectives), while
function words (grammatical elements like adpo-
sitions, articles, and auxiliaries) contribute their
grammatical information as features on related con-
tent words.

While the content-function distinction is explicit
in the training data, systems must identify this dis-
tinction themselves at test time from raw text. This
identification determines which words participate
in the dependency tree and which contribute fea-
tures to other words. Additionally, the multi-label
nature of features, where a content word can have
multiple feature values for a given feature class,
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Figure 1: Joint model architecture for the shared task.

like case=Ine;Atr,2 requires models to learn intri-
cate morphosyntactic patterns.

We present a joint multitask model (Figure 1)
that explicitly addresses these challenges through
three specialized decoders sharing a common
XLM-RoBERTa encoder (Conneau et al., 2020),
initialized from pre-trained multilingual represen-
tations. We design content word identification as
an explicit task to be learned by the model rather
than relying on intuition-driven heuristics. We par-
ticipate in the multilingual track, training separate
models for each of the nine languages, allowing us
to tune hyperparameters specifically for each lan-
guage’s characteristics while still benefiting from
multilingual pretrained representations. On the
shared task’s results, our system achieves the best
overall performance with average scores of 78.7%
MSLAS, 80.1% LAS, and 90.3% Feats F1 across
all languages. Additionally, our model ranks first
on each individual language, demonstrating the ef-
fectiveness of multitask learning for this task.

Our error analysis yields three main observa-
tions: (1) errors in tokenization and content word
identification cascade through the pipeline, with
gold annotations improving MSLAS by up to 12
points; (2) the majority of residual errors lie in nom-
inal morphology—=Gender, Number, and Case—with

’Ine=Inessive, “inside an enclosed area”;
Atr="complement, attribute”. Both definitions come
from the official Case inventory supplied by the shared-task
organisers.
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common Nominative-Accusative swaps; and (3) syn-
tactic mislabels are concentrated in the nmod versus
obl relation.

2 System Description

2.1

We propose a joint multitask model implemented
using the Flair framework (Akbik et al., 2019) for
morphosyntactic parsing, as shown in Figure 1.
Although the evaluation metrics assess only depen-
dency arcs and morphosyntactic features, produc-
ing these outputs requires distinguishing between
content and function words. Because this classifi-
cation is not given at test time, we treat it as an ad-
ditional prediction task. Our system uses the large
version of XLLM-RoBERTa augmented with charac-
ter embeddings (Akbik et al., 2018) as a shared en-
coder, both provided by the Flair framework. This
encoder’s output is then passed through a shared in-
termediate layer (linear transformation with ReLU
and dropout) before being fed to three specialized
decoders: content word identification, morphosyn-
tactic feature prediction, and dependency parsing.

Model Overview

2.2 Decoders

Content word identification. The content word
identification decoder accepts tokens as input. Each
token’s contextual embedding computed by the
shared intermediate layer is passed through a bidi-
rectional LSTM (256 hidden units in both direc-
tions). The LSTM output is then passed through a
linear layer with 2 output units, each corresponds to
“content” vs. “function” respectively. Training uses
two forms of regularisation: token-level (word)
dropout—zeroing the entire embedding of 5% of
UD tokens—and locked dropout that masks 50%
of the LSTM outputs with the same pattern across
all timesteps. Class-weighted cross-entropy loss
function is then used to compensate for the imbal-
ance between the number of content and function
tokens.

Morphosyntactic features. The morphosyntac-
tic features decoder consists of a single linear
layer that performs multi-label classification di-
rectly from the output of the shared intermediate
layer. For each content word, it outputs proba-
bilities for all possible feature-value pairs in the
vocabulary (e.g., Case=Gen, Number=Sing, Voice=Act).
Using sigmoid activation with a 0.5 threshold,
the model can predict multiple features per to-
ken—for instance, a noun might simultaneously



have Number=Plur and Case=Gen. Complex features
with multiple values (like Case=Ine;Atr) are handled
by predicting each component separately, allowing
the model to learn different value combinations.
Function words bypass this decoder entirely and
receive ‘_’ as their feature value. At training time,
we use gold content word (i.e. checking if its fea-
ture values exist). In contrast, we use the predicted
content words by the content word identification at
test time.

Dependency parser. The parsing decoder em-
ploys separate multilayer perceptrons (MLPs) for
arc and relation prediction with biaffine attention
mechanisms, following Dozat and Manning (2016).
The arc MLPs have 256 hidden units while the rela-
tion MLPs use 128 units, both with layer normaliza-
tion and ReL U activation. Operating exclusively
on content words, we frame the parser as a con-
ditional random field over projective dependency
trees that we implement using TorchStruct (Rush,
2020). Similar to the morphosyntactic feature de-
coder, we use gold and predicted content word at
training and test time respectively.

2.3 Data Handling and Inference

While the shared task data includes abstract nodes
for representing implicit arguments, we initially at-
tempted to handle them through sequence labeling
by inserting mask tokens at potential abstract node
positions. However, this approach introduced noise
that degraded performance across all metrics, as
incorrect abstract node predictions propagated er-
rors to downstream decoders. Therefore, our final
system filters out abstract nodes during data load-
ing, simplifying the parsing task while improving
overall performance.

During inference, raw text is first segmented
into word tokens using Stanza (Qi et al., 2020).
Since tokenization quality impacts downstream per-
formance but is not the focus of this shared task,
we choose to leverage Stanza’s pre-trained models
rather than training custom tokenizers. For each
language, we evaluated different Stanza model vari-
ants on the development set and selected those that
best matched the gold tokenization (e.g., HTB for
Hebrew, IMST for Turkish). This selection was
done manually by running the full pipeline with
each available Stanza model variant and choosing
the one that achieved the highest metrics on the
official evaluation script.

We apply minimal post-processing to ensure
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valid output. For content word identification, to-
kens with confidence below 0.6 that appear be-
tween two tokens of the opposite type are relabeled
to match their context (e.g., a low-confidence func-
tion word between two content words becomes
content). As a fallback for extreme cases where
content word identification predicts all tokens as
function words (particularly in very short sentences
of 2-3 tokens), we force the first token to be content
with deprel=‘root’ and features=¢|’. This ensures
every sentence has at least one parseable token.

2.4 Training Objective and Optimization

The model is trained end-to-end using a weighted
sum of the three decoders’ losses: Liotal
wparserﬁparser + wmorphfcmorph + wewiLcwi, where
the weights are hyperparameters tuned for each lan-
guage. The parser uses negative log-likelihood loss
over projective trees, the morphosyntactic decoder
uses binary cross-entropy for multi-label classifi-
cation, and the content word identification uses
class-weighted cross-entropy to handle class imbal-
ance.

3 Experimental Setup

The shared task provided training and development
sets for multiple languages. To simulate a realis-
tic evaluation scenario, we split the official train-
ing data into 90% for training and 10% for de-
velopment, using the official development set as
our local test set. This allowed us to tune hyper-
parameters and select models before the official
test release. The languages included in our experi-
ments were English, Turkish, Hebrew, Czech, Pol-
ish, Portuguese, Italian, Serbian, and Swedish, with
training sizes ranging from approximately 3,000 to
10,000 sentences depending on the language.

We develop a custom data loader to handle the
modified CoNLL-U format used in the shared task.
The loader automatically extracts content words
by examining the FEATS column, where ‘_’ indi-
cates function words and any other value indicates
content words. As mentioned before, we filter out
abstract nodes during loading.

All models are trained using AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 2 x 10~° and batch size of 16 for
25 epochs. We employ early stopping with pa-
tience of 1 epoch and learning rate reduction by
factor 0.5 when validation loss plateaus. Training
is performed on a NVIDIA A100 GPU with 32GB



RAM on a high-performance computing cluster,
with each model taking approximately 1-5 hours to
converge.

We perform grid search over task-specific loss
weights on our development split. The optimal
weights varied by language—for example, Turk-
ish benefited from weighting parsing and morpho-
logical feature losses twice as much as content
word identification (2.0:2.0:1.5), while English per-
formed better with parsing weighted most heavily,
followed by morphological features and content
word identification (2.0:1.5:1.0).

For each language, we train three models with
different random seeds using the same hyperparam-
eter configuration to verify training stability and
robustness. All three models are evaluated on our
local test set (the official development set) using
the shared task’s official evaluation script.

Once hyperparameters are selected, we retrain a
single model for each language using the complete
official training and development data combined.
These final models use the same hyperparameters
determined during development. These models are
used to generate predictions on the official covered
test set, which contains only raw text without anno-
tations. Evaluation is performed using the official
script which computes three metrics: MSLAS (mor-
phosyntactic features F1 only on correctly parsed
tokens), LAS (labeled attachment score), and Feats
F1 (morphosyntactic features F1).

4 Results

This section is divided into two parts: first, we
present official test results from models trained on
all available data (official train + dev combined)
and evaluated on the covered test set; second, we re-
port development results using our local data splits
(90% train, 10% dev, official dev as test) to analyze
design choices and hyperparameter impact.

4.1 Official Test Results

Table 2 presents the official test results from models
trained on all available data. Our system achieved
the highest performance among all submissions
with an average MSLAS of 78.7%. The results
show strong performance across most languages,
with MSLAS scores exceeding 83% for seven
of the nine languages. Portuguese (88.9%) and
Czech (87.1%) achieved the highest scores, con-
sistent with our development results. The morpho-
logically complex languages continued to present

22

Language @ MSLAS LAS Feats
Czech 87.1 88.0 952
English 83.8 85.1 949
Hebrew 68.7 714 834
Italian 73.0 73.7 847
Polish 75.0 76.5  86.2
Portuguese 88.9 89.5 948
Serbian 86.6 883 95.6
Swedish 86.6 87.7 957
Turkish 58.7 609  82.1
Average 78.7 80.1  90.3

Table 2: Official test results on the covered test set.
Our system achieved the highest average MSLAS score
(78.7%) among all submissions.

System MSLAS LAS Feats
Our model 78.7 80.1 90.3
baseline_multi 47.3 55.4 64.2
baseline_cross 36.7 51.2 50.6
baseline_finetune 33.0 36.1 52.3

Table 3: Comparison with baseline systems (average
across all languages).

challenges—Turkish (58.7%) and Hebrew (68.7%)
showed the lowest performance.

The baseline systems provide important context
for understanding the task’s difficulty (Table 3).
The multilingual few-shot baseline achieved mod-
erate performance (average MSLAS 47.3%), while
the cross-lingual few-shot approach struggled sig-
nificantly (36.7%), highlighting the importance of
language-specific examples. The finetuned BERT
baseline performed poorest (33.0%), suggesting
that the reformulated parsing task with its content-
function distinction and expanded feature inventory
benefits from specialized modeling approaches.
Our 31.4 point improvement over the best base-
line (78.7% vs 47.3%) indicates that combining
pretrained representations with task-specific archi-
tectural components can effectively address the
challenges of unified morphosyntactic parsing.

4.2 Development Results

The ablations in Figure 2 show that most of the gain
comes from using gold tokenization, with a smaller
but consistent boost from explicit content/function
labeling. Hebrew makes this clear: MSLAS goes
from 75.2 (Full) — 84.5 (GoldTok, +9.3) — 85.7
(GoldWT, +1.2; +10.5 total). This motivates per-
language tokenizer selection and modeling content
word identification as a dedicated task.
Loss-weight tuning largely favored parser=2.0,
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Figure 2: MSLAS across setups (Full, GoldTok,
GoldWT) for four languages with the largest gains. Full:
predicted tokenization and predicted content word iden-
tity. GoldTok: gold tokenization with predicted content
word identity. GoldWT: gold tokenization plus gold
content word identity.

Language Parser Morph CWI
Czech 2.0 1.5 1.0
English 2.0 1.5 1.0
Hebrew 2.0 1.5 1.0
Italian 2.0 1.5 1.0
Polish 2.0 1.5 1.0
Portuguese 2.0 1.5 1.0
Serbian 2.0 1.5 1.0
Swedish 2.0 1.5 1.5
Turkish 2.0 2.0 1.5

Table 4: Optimal loss weight configurations by language.
CWI =content word identification.

morph=1.5, CWI=1.0; Turkish and Swedish bene-
fited from higher weights on morph/CWI (Table 4).

5 Error Analysis

We performed error analysis on the models trained
with our local data splits (90% train, 10% dev, of-
ficial dev as test). We analyzed only the first seed
model for each language, as the low standard de-
viations indicate minimal variation across seeds.
The analysis uses scripts that replicate the official
evaluation logic to ensure our error categorization
matches the scoring methodology.

5.1 Nominal Morphology Errors

The main feature prediction errors occur in nominal
morphology, with Gender, Number, and Case show-
ing the highest confusion rates. Since languages
have different feature inventories (e.g., Czech in-
cludes Dual while others do not), creating a unified
confusion matrix is not feasible. We selected Czech
as a representative example because it has by far the
most training data points, resulting in more stable
model behavior.
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Our analysis of Czech reveals strong overall per-
formance, with 99.1% accuracy for Gender and
99.6% for Number predictions. For Gender, the
model correctly classifies the vast majority of in-
stances, with Feminine (12,405 correct), Mascu-
line (14,914 correct), and Neuter (5,325 correct)
all showing high diagonal values in the confusion
matrix. The annotation scheme includes syncretic
forms like "Fem,Masc" for grammatically ambigu-
ous cases. The most common confusions occur
between Masculine and Feminine (110 instances
misclassified as Feminine when Masculine was cor-
rect), though these remain relatively rare. Simi-
larly, for Number, Singular (24,653 correct) and
Plural (9,587 correct) are accurately predicted, with
minimal confusion between categories (only 44
Singular instances misclassified as Plural, and 85
Plural instances misclassified as Singular).

Since our model uses multi-label classification
with sigmoid activation (threshold 0.5), it occa-
sionally predicts semantically incompatible feature
combinations—for instance, simultaneously pre-
dicting both a specific gender value (e.g., "Fem")
and a syncretic form containing that value (e.g.,
"Fem,Masc"). While these semantically nonsen-
sical predictions are rare (occurring in fewer than
100 instances out of over 30,000), they suggest
that post-processing constraints based on linguistic
compatibility rules could eliminate such predic-
tions and further improve the performance.

For case features, plotting a confusion matrix
is impractical due to the >100 possible values in
the expanded inventory. While there is some vari-
ation across languages, aggregating the most fre-
quent errors reveals consistent patterns. Table 5
shows the 10 most common Case confusions aver-
aged across all languages. The high frequency of
Nom-Acc confusions (154 and 140 instances) reflects
both the prevalence of these cases in the data and
their potential ambiguity—distinguishing core ar-
guments becomes particularly challenging in com-
plex sentences with long-distance dependencies or
multi-clause structures. This pattern holds across
languages despite their individual variations, sug-
gesting that even within the expanded Case system,
these fundamental grammatical distinctions remain
challenging when syntactic complexity increases.
These systematic errors in core grammatical cases
suggest a targeted improvement strategy: increas-
ing loss weights for frequently confused cases (es-
pecially Nom/Acc) during training. Given our joint
model architecture where all tasks share embed-



Count Gold case Predicted case
154  Acc Nom
140 Nom Acc
77 Nom Conj;Nom
47 Nom Gen
44  Conj;Nom Nom
43 Gen Nom
36 Acc Gen
25 Gen Acc
22 Gen Conj;Gen
15 Dat Ins

Table 5: Top 10 most frequent case prediction errors
(average across all languages).

dings, better representation of these central argu-
ments could benefit dependency parsing as well.

5.2 Spatial Case Results

We evaluate our model’s performance on the fine-
grained spatial Case values, a particularly challeng-
ing subset due to the numerous possible inflec-
tional meanings that this domain contains.> The
complete inventory of spatial cases includes over
40 fine-grained distinctions. Table 6 shows high
performance across all languages (F1 scores 89.2-
98.7%), demonstrating that our model successfully
learned the unified case system for spatial mean-
ings. This annotation scheme directly names in-
flectional meanings regardless of the grammatical
markers used - for instance, in Polish, when abla-
tive meaning is expressed periphrastically through
a clitic (an adposition)* plus an inflected form (a
root with a genitive case affix), the system assigns
the inflectional meaning (e.g., Case=Abl) instead of
the genitive meaning conveyed by the suffix on its
own. Our model’s performance on these distinc-
tions suggests it effectively captures the mapping
between diverse surface forms and their underly-
ing spatial semantics. This opens opportunities for
injecting linguistic knowledge about spatial rela-
tions in downstream applications, leveraging the
semantic transparency of the annotation scheme.

5.3 Dependency Parsing Errors

For dependency relation errors, we analyze confu-
sions across all languages since the label inventory

3These notions are understood as defined by Haspelmath
(2025): “inflectional meaning” designates the specific mean-
ing conveyed by an inflected form (for example, ablative),
and “inflectional domain” denotes the broader class of related
properties in which this meaning is categorized (for example,
case).

*The classification of adpositions as clitics follows the
definition proposed by Haspelmath (2023).
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Language Precision Recall F1

Czech 98.2 984 983
English 93.3 90.3 91.8
Hebrew 88.4 90.0 89.2
Italian 98.0 97.0 97.5
Polish 98.4 97.2 97.8
Portuguese 98.5 99.0 98.7
Serbian 96.4 93.7 95.1
Swedish 98.4 96.1 97.2
Turkish 94.7 964  95.6

Table 6: Spatial case performance (%) across languages
using micro-averaged metrics.

Count  Gold label Predicted label
67 obl nmod
63 nmod obl
11 obj nsubj
11 advmod _
10 nmod flat
10 nmod amod

9 nsubj obj
9 iobj obj
8 obj obl
8 nsubj root

Table 7: Top 10 most frequent deprel labeling errors
(average across all languages).

is universal. Table 7 presents the 10 most frequent
labeling errors aggregated across languages. The
nmod-obl confusion dominates with 67 and 63 in-
stances respectively, accounting for over 40% of
the top errors. This pattern is linguistically ex-
pected as the boundary between nominal modifiers
and oblique arguments could involve borderline
cases.

Unlike other languages where errors concen-
trate on the nmod/obl distinction, Turkish shows a
much more dispersed error pattern with confusions
spread across many dependency relations. This
suggests that our joint architecture may not be opti-
mal for Turkish’s non-projective structures and rich
morphology. A dedicated non-projective parsing
algorithm might better capture Turkish’s complex
dependency patterns.

Additionally, we analyze attachment distance
patterns specifically for parsing errors (i.e., tokens
with incorrect head assignments). Figure 3 shows
the distribution of attachment distances for Czech
parsing errors, comparing gold (blue) versus pre-
dicted (orange) distances for these misparsed to-
kens. The graph reveals that while most gold at-
tachments occur at distances 1-3, the model’s er-
rors tend to predict longer distances (note the or-
ange bars extending further right). This indicates
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the parser frequently overlooks nearby heads in fa-
vor of more distant ones when making mistakes.
Figure 4 presents a heatmap of misparsed tokens
where rows represent gold attachment directions
and columns show predicted directions. The strong
diagonal (LEFT—LEFT: 1179, RIGHT—RIGHT:
1058) confirms the model correctly identifies at-
tachment direction in most error cases. However,
within each correct direction, the parser still selects
the wrong head - for instance, when it correctly
predicts a leftward attachment, it often chooses a
head that is too far to the left.

6 Conclusions

We present a joint multitask architecture for unified
morphosyntactic parsing that achieves first place in
the UniDive 2025 shared task. Our key contribution
is explicitly modeling content word identification
as a classification task, creating a robust cascade
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where the identification determines parsing and
feature assignment.

Our analysis reveals systematic error patterns
pointing to specific improvement opportunities.
case confusions concentrate on core grammatical
distinctions (Nom-Acc), while dependency errors re-
flect the expected challenges at the nmod-obl bound-
ary. While these patterns are linguistically under-
standable, they suggest potential room for improve-
ment through weighted training or specialized han-
dling of frequently confused categories, though
such optimizations may yield only incremental
gains.

A more substantial enhancement to the annota-
tion scheme could be making explicit which func-
tion words contribute features to which content
words. Currently, function words are marked with
‘_’ and their grammatical information is incorpo-
rated into "related" content words, but these re-
lationships remain implicit. An indexing system
could explicitly link each function word to its tar-
get content word. This would not only reduce am-
biguity in feature assignment but also make the
annotation more transparent for researchers unfa-
miliar with specific languages, as they could trace
exactly how morphosyntactic information flows
from function words to content words in the uni-
fied representation.

Finally, the 30-point performance gap between
Portuguese and Turkish highlights fundamental
challenges in handling typologically diverse lan-
guages within a unified framework. While the
parser excels at the predominantly projective struc-
tures, Turkish’s agglutinative morphology and flex-
ible word order might be introducing some diffi-
culties. The dispersed error patterns observed for
Turkish—contrasting with the concentrated confu-
sions in other languages—suggest that the current
architecture may not be optimal for highly non-
projective languages. Future work could explore
specialized parsing algorithms designed for non-
projective structures or alternative architectures
that better handle long-distance dependencies and
flexible word order. Despite these challenges, our
results across nine languages demonstrate the vi-
ability of joint morphosyntactic modeling for the
task.

Acknowledgments

We thank the anonymous reviewers for their con-
structive feedback. This research was supported



by The University of Melbourne’s Research Com-
puting Services and the Petascale Campus Initia-
tive. Demian is funded by the Graduate Research
Scholarship from the Faculty of Engineering and
Information Technology, University of Melbourne.
COST (European Cooperation in Science and Tech-
nology) kindly provided funding for travel to the
event.

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54-59.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In COLING 2018, 27th International Conference on
Computational Linguistics, pages 1638—1649.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR, abs/1611.01734.

Omer Goldman, Leonie Weissweiler, Kutay Acar, Diego
Alves, Anna Baczkowska, Giilsen Eryigit, Lenka
Krippnerovd, Adriana Pagano, Tanja Samardzié,
Luigi Talamo, Alina Wréblewska, Daniel Zeman,
Joakim Nivre, and Reut Tsarfaty. 2025. Report of the
UniDive 2025 shared task on multilingual morpho-
syntactic parsing. In Proceedings of The UniDive
2025 shared task on multilingual morpho-syntactic
parsing.

Martin Haspelmath. 2023. Types of clitics in the world’s
languages. Linguistic Typology at the Crossroads,
3(2):1-59.

Martin Haspelmath. 2025. Grammatical markers and
inflectional categories: Reconciling the two perspec-
tives. Draft, Max Planck Institute for Evolutionary
Anthropology, April 9, 2025.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo

26

Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4034-4043, Marseille,
France. European Language Resources Association.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Alexander M. Rush. 2020. Torch-struct: Deep struc-
tured prediction library. Preprint, arXiv:2002.00876.



