@inproceedings{acar-eryigit-2025-typology,
title = "Typology-aware Multilingual Morphosyntactic Parsing with Functional Node Filtering",
author = "Acar, Kutay and
Eryigit, Gulsen",
editor = "Goldman, Omer and
Weissweiler, Leonie and
Tsarfaty, Reut",
booktitle = "Proceedings of The UniDive 2025 Shared Task on Multilingual Morpho-Syntactic Parsing",
month = aug,
year = "2025",
address = "Ljubljana, Slovenia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.unidive-1.3/",
pages = "27--33",
ISBN = "979-8-89176-320-3",
abstract = "This paper presents a system for the UniDive Morphosyntactic Parsing (MSP) Shared Task, where it ranked second overall among participating teams. The task introduces a morphosyntactic representation that jointly models syntactic dependencies and morphological features by treating content-bearing elements as graph nodes and encoding functional elements as feature annotations, posing challenges for conventional parsers and necessitating more flexible, linguistically informed approaches. The proposed system combines a typology-aware, multitask parser with a multilingual content/function classifier to handle structural variance across languages. The architecture uses adapter modules and language embeddings to encode typological information. Evaluations across 9 typologically varied languages confirm that the system can accurately replicate both universal and language-specific morphosyntactic patterns."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="acar-eryigit-2025-typology">
<titleInfo>
<title>Typology-aware Multilingual Morphosyntactic Parsing with Functional Node Filtering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kutay</namePart>
<namePart type="family">Acar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gulsen</namePart>
<namePart type="family">Eryigit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The UniDive 2025 Shared Task on Multilingual Morpho-Syntactic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Omer</namePart>
<namePart type="family">Goldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonie</namePart>
<namePart type="family">Weissweiler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Ljubljana, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-320-3</identifier>
</relatedItem>
<abstract>This paper presents a system for the UniDive Morphosyntactic Parsing (MSP) Shared Task, where it ranked second overall among participating teams. The task introduces a morphosyntactic representation that jointly models syntactic dependencies and morphological features by treating content-bearing elements as graph nodes and encoding functional elements as feature annotations, posing challenges for conventional parsers and necessitating more flexible, linguistically informed approaches. The proposed system combines a typology-aware, multitask parser with a multilingual content/function classifier to handle structural variance across languages. The architecture uses adapter modules and language embeddings to encode typological information. Evaluations across 9 typologically varied languages confirm that the system can accurately replicate both universal and language-specific morphosyntactic patterns.</abstract>
<identifier type="citekey">acar-eryigit-2025-typology</identifier>
<location>
<url>https://aclanthology.org/2025.unidive-1.3/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>27</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Typology-aware Multilingual Morphosyntactic Parsing with Functional Node Filtering
%A Acar, Kutay
%A Eryigit, Gulsen
%Y Goldman, Omer
%Y Weissweiler, Leonie
%Y Tsarfaty, Reut
%S Proceedings of The UniDive 2025 Shared Task on Multilingual Morpho-Syntactic Parsing
%D 2025
%8 August
%I Association for Computational Linguistics
%C Ljubljana, Slovenia
%@ 979-8-89176-320-3
%F acar-eryigit-2025-typology
%X This paper presents a system for the UniDive Morphosyntactic Parsing (MSP) Shared Task, where it ranked second overall among participating teams. The task introduces a morphosyntactic representation that jointly models syntactic dependencies and morphological features by treating content-bearing elements as graph nodes and encoding functional elements as feature annotations, posing challenges for conventional parsers and necessitating more flexible, linguistically informed approaches. The proposed system combines a typology-aware, multitask parser with a multilingual content/function classifier to handle structural variance across languages. The architecture uses adapter modules and language embeddings to encode typological information. Evaluations across 9 typologically varied languages confirm that the system can accurately replicate both universal and language-specific morphosyntactic patterns.
%U https://aclanthology.org/2025.unidive-1.3/
%P 27-33
Markdown (Informal)
[Typology-aware Multilingual Morphosyntactic Parsing with Functional Node Filtering](https://aclanthology.org/2025.unidive-1.3/) (Acar & Eryigit, UNIDIVE-SyntaxFest 2025)
ACL