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Abstract

This paper presents a system for the UniDive
Morphosyntactic Parsing (MSP) Shared Task,
where it ranked second overall among partici-
pating teams. The task introduces a morphosyn-
tactic representation that jointly models syntac-
tic dependencies and morphological features
by treating content-bearing elements as graph
nodes and encoding functional elements as fea-
ture annotations, posing challenges for con-
ventional parsers and necessitating more flex-
ible, linguistically informed approaches. The
proposed system combines a typology-aware,
multitask parser with a multilingual content/-
function classifier to handle structural variance
across languages. The architecture uses adapter
modules and language embeddings to encode
typological information. Evaluations across
9 typologically varied languages confirm that
the system can accurately replicate both uni-
versal and language-specific morphosyntactic
patterns.

1 Introduction

Morphosyntactic parsing aspires to integrate syn-
tactic structure with fine-grained morphological an-
notation to offer a deeper and linguistically neutral
understanding of sentence structure. The UniDive
Morphosyntactic Parsing (MSP) Shared Task of-
fers a novel paradigm that challenges conventional
parsing assumptions by restructuring dependency
trees around content-bearing elements and func-
tional grammatical units. In this new schema, only
content nodes—such as lexical verbs, nouns, and
adjectives—are represented explicitly in the graph,
while functional elements like auxiliaries, clitics,
and determiners are removed and represented as
features of the content words. Moreover, the for-
mat integrates abstract nodes for dropped or elided
arguments, which are syntactically required but
not present on the surface, as commonly seen in
pro-drop languages.
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Such a shift from surface-token-based syntax to
deeper morphosyntactic abstraction makes this task
both linguistically rich and technically challeng-
ing. Traditional parsers must be adapted to filter
out functional nodes and accommodate missing
heads, necessitating new modeling strategies. In
response to the novel task format, this study adapts
the UDapter model (Ustiin et al., 2020, 2022), a
typologically informed multilingual dependency
parser. The original architecture is extended with
a content/function classifier and decoding routines
are modified accordingly, while multitask learn-
ing is leveraged for both dependency parsing and
morphological tagging. This approach not only
conforms to the structural assumptions of the MSP
task but also exploits cross-lingual signals across 9
diverse languages.

Evaluated in the official shared task, the pro-
posed system ranks second overall. As the first
adaptation of UDapter to the MSP framework, it in-
troduces a content/function classifier to align pars-
ing with the task’s structure. By combining multi-
lingual pretraining, typological conditioning, and
multitask learning, the system effectively integrates
syntax and morphology beyond surface-level rep-
resentations, offering a robust solution for typolog-
ically diverse parsing.

This paper is structured as follows: Section 2
reviews related work on dependency parsing and
morphosyntactic modeling. Section 3 presents the
system architecture. Section 4 details the experi-
mental setup and results. Section 5 concludes the
paper and outlines directions for future research.

2 Related Work

Dependency parsing methods are traditionally
grouped into two paradigms: transition-based and
graph-based approaches. Transition-based parsers,
such as those by Nivre (2003); Nivre et al. (2006);
Hall et al. (2007), incrementally construct depen-
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dency trees through local decisions. These models
are computationally efficient but often suffer from
error propagation. A significant advancement in
this line was the biaffine parser of Dozat and Man-
ning (2016), built on Kiperwasser and Goldberg
(2016), which introduced attention-based arc and
label scoring and achieved state-of-the-art results
across many languages.

Multilingual dependency parsing has gained
traction due to the Universal Dependencies (UD)
framework (de Marneffe et al., 2021), which stan-
dardizes syntactic annotation across more than 100
languages. Multilingual benchmarks enabled by
UD treebanks include CoNLL-X (Buchholz and
Marsi, 2006), CoNLL 2007 (Nivre et al., 2007),
and CoNLL 2018 (Zeman et al., 2018). Full pars-
ing pipelines from raw text to dependency struc-
tures in 75 languages were evaluated in the CoNLL
2018 shared task.

Modern approaches increasingly rely on multi-
lingual pretrained language models like mBERT
(Devlin et al., 2019) and XLM-RoBERTa (Con-
neau et al., 2020). UDify (Kondratyuk and Straka,
2019) was among the first to use mBERT for joint
multitask prediction of POS tags, morphological
features, lemmas, and dependencies across all UD
languages. Its universal parameter sharing, how-
ever, made it less flexible for languages with low
resources or typological distance. By introducing
lightweight adaptor modules in between mBERT
layers, UDapter (Ustiin et al., 2020, 2022) ad-
dressed this issue and preserved the advantages of
multilingual pretraining while enabling typology-
aware, language-specific transformation. This ap-
proach improved generalization, especially when
resources were scarce or the setting is zero shot.

The Morphosyntactic Parsing (MSP) Shared
Task (Goldman et al., 2025) presents an updated
parsing approach in which function words are ap-
pended as morphological features and only con-
tent words are represented as syntactic nodes. Ab-
stract nodes are also integrated to represent dropped
or implicit arguments, such as pro-drop pronouns.
This annotation strategy decouples word segmenta-
tion from syntactic structure, enabling more typo-
logically robust morphosyntactic parsing.

3 System Architecture

The system integrates a multilingual content/func-
tion classifier with a universal dependency parser
to handle the structural transformations introduced
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by the MSP shared task. In this format, functional
nodes—such as determiners, auxiliaries, adposi-
tions, and punctuation—are excluded from the de-
pendency graph by assigning them null heads, ren-
dering them incompatible with standard parsing
methods. As illustrated in Figure 1, adpositions
like sonra and clitic constructions like —kine are
not linked via dependency arcs. Instead, their mor-
phological contributions are absorbed into the par-
ent node: for instance, the combination gittikten
sonra alters the original Case=Abl to Case=Tps,
and sizin + —kine merges into a single node with
Case=Gen;Dat. To support this abstraction, a
BERT-based classifier is applied in preprocess-
ing to identify and remove functional tokens be-
fore parsing. The UDapter model, equipped with
typology-aware adapters and multitask heads for
both morphological tagging and dependency pars-
ing, then processes the remaining content nodes
under this structurally modified scheme.

3.1 UDapter Model Architecture

Built on top of mBERT, UDapter is a multilin-
gual, multitask neural architecture intended for
morphological tagging and universal dependency
parsing across typologically disparate languages.
By combining shared task heads with language-
specific adapter modules, it facilitates effective
cross-lingual generalization, especially in situa-
tions with limited resources and a rich morphology.

The architecture consists of three main compo-
nents: (1) a frozen mBERT encoder that provides
deep multilingual token representations; (2) adapter
modules that introduce language-specific transfor-
mations between encoder layers; and (3) shared
task heads for parsing and tagging that operate over
the adapter-enhanced embeddings.

Language embeddings are learned during train-
ing by projecting URIEL typological features (Lit-
tell et al., 2017) with a multi-layer perceptron, fol-
lowing Ustiin et al. (2020, 2022). This projection
allows structurally sensitive adaptation without re-
lying on fixed encodings, enabling UDapter to op-
timize language embeddings for parsing quality.

Adapter Modules UDapter uses residual bottle-
neck adapters inserted after each transformer layer,
following the formulation in Houlsby et al. (2019).
Each adapter transforms the hidden state h € R?
as:

Adapter(h) = h + W, f(LN(h)Wg) (1)



Original Representation

# sent_id = 00099161_102
# text = Kadinlar gittikten sonra sizinkine veririm.

1 Kadinlar kadin ADJ NAdj Case=Nom|Number=Plur|Person=3 2 nsubj _ _
2 gittikten git VERB Verb Aspect=Perf|Case=Abl|Mood=Ind|Polarity=Pos|Tense=Past|VerbForm=Part 6 advcl _ _

3 sonra sonra ADP PCAbl _ 2 case _ _
4-5 sizinkine

4 sizin siz PRON Pers Case=Gen|Number=Plur|Person=2|PronType=Prs 6 iobj _ _

5 kine ki ADP Rel Case=Dat|Number=Sing|Person=3 4 case _

6 veririm ver VERB Verb Aspect=Hab|Mood=Ind|Number=Sing|Person=1|Polarity=Pos|Tense=Pres @ root _ SpaceAfter=No

7 . . PUNCT Punc _ 6 punct _ _

MSP-Adapted Representation

# sent_id = 00099161_102
# text = Kadinlar gittikten sonra sizinkine veririm.

1 Kadinlar kadin ADJ _ Case=Nom|Number=Plur|Person=3 2 nsubj _ _
2 gittikten git VERB _ Aspect=Perf|Case=Tps|Mood=Ind|Polarity=Pos|Tense=Past|VerbForm=Part 6 advcl _ _

3 sonra sonra ADP
4-5 sizinkine

4 sizin siz PRON _ Case=Gen;Dat|Number=Sing|Person=3|PronType=Prs 6 iobj _ _

5 kine ki ADP

6 veririm ver VERB _ Aspect=Hab|Mood=Ind|Polarity=Pos|Tense=Pres @ root _ _

6.1

7 . . PUNCT

_ _ PRON _ Case=Nom|Number=Sing|Person=1|PronType=Prs 6 nsubj _ _

Figure 1: Data Formats

Here, LN denotes layer normalization, f is a non-
linearity (typically ReLU or GELU), and W, €
R4 W, € R¥* are projection matrices defining
the bottleneck structure. This configuration enables
efficient language-specific adaptation while keep-
ing the main encoder frozen.

Task Heads UDapter includes two task heads
shared across languages. The Dependency Parsing
Head uses a biaffine attention mechanism to predict
syntactic arcs and labels. For each token pair, head
and dependent projections are computed as:

r?ead = MLPpeoq ( hz) , T?ep = MLPdep (h])

The score of an arc from token ¢ to token j is given
by:

head

.
s(i, ) = riead Warcrsep + UL [

. ,.dep
arc 9 Tj ] + barc

A separate biaffine classifier is used to assign de-
pendency labels to each scored arc.

The Morphological Tagging Head follows a
multi-label setup, predicting the value of each mor-
phological attribute (e.g., Case, Number, Tense)
independently. For each attribute f, a dedicated
softmax layer is applied:
?Qi(f )

where W), (/) are task-specific parameters.
This factored approach allows the model to gener-
alize better on rare tag combinations compared to
predicting a concatenated tag string.

= softmax(W ) h; + b))
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3.2 Content/Function Classifier (CF-BERT)

To identify functional nodes in a language-agnostic
way, bert-base-multilingual-cased is fine-
tuned on a binary token classification task. Func-
tional nodes (e.g., AUX, DET, ADP) are excluded
from the standard parsing graph, as they are as-
signed null heads in the MSP format and their
contribution is represented through morphological
features. The classifier computes:

p(yi|zi) = softmax(Weh; + b.) 2
where h; is the contextual embedding of token x;
from mBERT, and W, b, are learned parameters.

Training data is constructed from the MSP
shared task data by labeling tokens with null heads
as functional and others as content. All languages
are used jointly during training, resulting in a multi-
lingually trained model that achieves high accuracy
and enables reliable identification of functional
nodes prior to dependency parsing.

4 Experimental Setup & Results

In this section, the multilingual parsing system’s
test set results, evaluation methods, and training
configuration are shown. Key hyperparameters,
implementation details, and necessary preparation
steps for the MSP shared task format are explained.
Three metrics—MSLAS, LAS, and morphologi-
cal feature (Feats) F1—are used to compare the
empirical performance across languages in the mul-
tilingual and monolingual setups.



4.1 Experimental Setup

The models are trained on an NVIDIA L40S GPU
using the AllenNLP framework (Gardner et al.,
2018). While the training set consists of uncovered
Universal Dependencies treebanks, the test set is
displayed in covered format!. Tokenization and
segmentation are recovered during evaluation using
UDPipe 2.0 (Straka, 2018) just during test time.

The bert-base-multilingual-cased model
is used as the shared backbone, frozen through-
out, with adapter modules and task-specific de-
coders trained on top. Input embeddings incor-
porate language-specific adapter representations
using syntax, phonology, and phoneme inventory
features. Morphological features are modeled with
factored outputs using separate softmax layers for
each attribute.

Dropout is applied at multiple levels: 0.15 in
BERT adapters, 0.2 in word dropout, and 0.5 in
decoders. Layer dropout and language embed-
ding dropout are both set to 0.1. Language em-
beddings are 32-dimensional vectors learned from
typological features. The batch size is dynami-
cally adjusted using a maximum amount of 3200
tokens per batch. Training is performed for up to 80
epochs with early stopping and gradient clipping
(IIV]| < 5). Total training time was approximately
12.3 hours, with peak GPU memory usage reach-
ing 28.3GB. No additional hyperparameter tuning
was performed; the configurations were adopted
directly from the original UDapter work (Ustiin
et al., 2020, 2022).

4.2 Results & Discussion

Tables la—1c report performance on the covered
test set using MSLAS, LAS, and Feats F1 metrics.
As the test data omits structural and morpholog-
ical annotations, UDPipe is used during evalua-
tion to recover segmentation and token boundaries
only. This ensures compatibility with the uncov-
ered training format while allowing test-time eval-
uation against the shared task metrics.

The submitted system corresponds to the
multilingual configuration, where all languages
are trained jointly with shared parameters and
language-specific adapters. For comparison, a
monolingual baseline is included, consisting of sep-

'The “covered” version, as referred to throughout the paper,
includes only the # text = “...”” line for each sentence in the data

files, with all remaining annotations removed. The “uncovered”

version of the data can be seen in the example provided in
Figure 1.
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arately trained models for each language without
cross-lingual transfer.

Multilingual Superiority The multilingual
model consistently outperforms its monolingual
counterparts across all metrics, demonstrating
the effectiveness of cross-lingual transfer in
morphosyntactic parsing. On average, it yields
a relative improvement of +6.20 in MSLAS
F1, +7.45 in LAS F1, and +7.21 in Feats F1
(Tables la—Ic). These gains are particularly
pronounced in English (+7.61 MSLAS, +7.19
LAS, +4.40 Feats), Italian (+7.58, +7.66, +7.19),
and Serbian (+7.69, +6.82, +4.06), suggesting
that typological proximity and morphological
richness play key roles in enhancing multilingual
adapter-based learning.

Such improvements also indicate that the shared
parameter space of UDapter—augmented with
language-specific adapters and multitask supervi-
sion—facilitates better generalization in low- to
medium-resource settings. Even for languages
with complex morphology and flexible word or-
der, such as Turkish, notable gains are achieved
(+7.50 MSLAS, +7.50 LAS, +4.36 Feats), confirm-
ing the model’s robustness within MSP’s revised
structural paradigm.

Abstract Node Omission A key limitation of the
current architecture is its inability to model abstract
nodes, despite their presence in the training data.
These nodes represent syntactic elements with no
surface realization—such as dropped subjects or
objects—but still function as content nodes with
syntactic heads and morphological features. For
example, in the sentence provided in Figure 1, the
subject pronoun ben is not expressed in the surface
form but is represented by an abstract node with
ID 6.1. This node functions syntactically as the
subject of the verb veririm and carries person and
number features.

Since the test set is provided in covered format,
abstract nodes must have been generated before
parsing, which requires nontrivial modifications to
standard pipelines. As our current system lacks this
capability, recall is penalized in languages where
such structures are common. Turkish is particularly
affected due to its reliance on pro-drop construc-
tions and agglutinative morphology. As shown
in Table 2, Turkish exhibits the highest propor-
tion of abstract nodes (13.45%), contributing to its
relatively lower evaluation gains. Omitting such
content nodes impacts both dependency arc and



System AVG cz en he it pl pt st Y tr
Monolingual 55.08 70.30 52.11 37.62 4995 5447 63.53 6835 58.56 40.85
Multilingual 61.28 73.02 59.72 43.44 57.53 60.40 68.07 76.04 64.99 48.35
Diff 16.20 12.72 17.61 1582 17.58 1593 1454 17.69 16.43 17.50
(a) MSLAS F1 scores
System AVG cz en he it pl pt ST sV tr
Monolingual 58.86 74.87 58.60 43.53 5398 59.60 69.53 73.79 63.39 4520
Multilingual 66.31 77.57 65.79 49.68 61.64 65.62 73.97 80.61 69.67 52.70
Diff 1745 1270 17.19 16.15 17.66 16.02 1444 16.82 16.28 17.50
(b) LAS F1 scores
System AVG cz en he it pl pt st Y tr
Monolingual 73.29 8541 7635 6348 69.54 73.19 79.88 8547 81.09 71.15
Multilingual 80.50 87.22 80.75 6894 76.73 7846 83.12 89.53 84.56 75.51
Diff 17.21 11.81 1440 1546 17.19 1527 1324 14.06 1347 14.36

(c) Feats F1 scores

Table 1: Test set performance per language using covered CoNLL-U and predicted content/function labels. Each

subtable reports one metric.

morphological feature prediction.

Lang. Abs. Total Rate (%)
Czech 2441 87857 2.78
English 30 7732 0.39
Hebrew 171 5717 2.99
Italian 161 9956 1.62
Polish 1238 34310 3.61
Portuguese 915 32625 2.80
Serbian 45 11466 0.39
Swedish 14 20128 0.07
Turkish 1553 11544 13.45

Table 2: Rates of abstract nodes per language in the test
sets. Turkish shows the highest omission rate.

Functional Node Filtering with CF-BERT
Prior to parsing, functional nodes are filtered using
a dedicated content/function classifier, CF-BERT.
This preprocessing step is essential for the MSP
task, where functional nodes—such as auxiliaries,
conjunctions, and determiners—are excluded from
the dependency graph. To align with the MSP an-
notation scheme, CF-BERT is trained on the uncov-
ered training split and validated on the uncovered
development split. That is, whether a token had
a head annotation in the CoNLL-U file was used
as the class label in our content/function classi-
fication task. To maintain direct supervision and
avoid dependence on POS tags or language-specific
heuristics, we used only surface forms of words as
input features.
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As shown in Table 3, the classifier achieves
excellent results across all metrics, maintaining
above 99% accuracy, precision, recall, and F1 score.
These scores confirm the classifier’s effectiveness
in consistently identifying and filtering out non-
content elements. With high-confidence functional
filtering in place, the UDapter parser receives clean,
content-bearing structures, enhancing both arc pre-
diction and cross-lingual generalization.

Metric Score
Accuracy 99.57%
Precision  99.04%
Recall 99.04%
F1 Score  99.04%

Table 3: CF-BERT performance on functional node
classification using the uncovered training (train) and
development (dev) splits of the MSP dataset.

Structural Universality through Multitask
Learning UDapter’s multitask design aligns
closely with the shared task’s goal of simultane-
ously modeling syntactic dependencies and mor-
phological features. The system predicts both
arc structures and token-level features in a uni-
fied framework, allowing complementary signals
to guide representation learning. By using fac-
tored morphological decoders and typology-aware
adapters, the model generalizes well to the struc-
tural diversity present in the 9 target languages.
As seen in Tables 1b and 1c, UDapter achieves



strong performance across both syntactic and mor-
phological dimensions. LAS gains demonstrate ro-
bust parsing capabilities, with improvements such
as +7.66 in Italian and +7.19 in English, while
Feats F1 results such as +7.19 in Italian, +5.27 in
Polish, +4.36 in Turkish show accurate modeling
of rich morphological systems. The factored de-
coding architecture enables efficient learning over
sparse feature combinations, particularly beneficial
in morphologically complex settings. These results
affirm that structurally aware multitask systems can
offer a linguistically grounded and scalable solu-
tion to cross-lingual morphosyntactic parsing.

5 Conclusion

This work presents the first successful adaptation
of the UDapter model to the UniDive MSP Shared
Task, which challenges traditional parsing by in-
troducing structurally flexible and typologically
informed dependency representations. The task for-
mat—featuring abstract nodes and functional node
eliminations—necessitates substantial revisions to
conventional parsing pipelines.

To address these challenges, the proposed sys-
tem combines a BERT-based functional node clas-
sifier (CF-BERT) with UDapter’s multilingual
adapter architecture and factored multitask de-
coders. CF-BERT aligns training and test condi-
tions by filtering out non-content elements with
near-perfect accuracy, allowing the parser to fo-
cus exclusively on content-bearing structures. This
setup enhances both syntactic and morphological
prediction under cross-lingual supervision.

Experimental results show that the multilingual
system consistently outperforms monolingual base-
lines across MSLAS, LAS, and Feats F1 metrics,
with particularly strong gains in morphologically
rich languages like Turkish and typologically adja-
cent languages like Italian and Serbian. The results
affirm the system’s core strengths: typology-aware
representation, functional node filtering, and multi-
task structural learning. Future improvements may
focus on integrating abstract node generation to
better capture pro-drop phenomena and further en-
hance recall in structurally underspecified contexts.

Limitations

Despite the fact that it works well across languages
in the MSP Shared Task, some limitations affect
the scope and architecture of the proposed system.

Although abstract nodes are present in the train-
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ing data, the current model architecture does not
learn or predict them. These nodes typically corre-
spond to syntactic elements that are not explicit in
surface form, such as dropped subjects or pronouns
in pro-drop languages like Turkish. Since the test
data is covered, special mechanisms are required to
incorporate abstract nodes into parsing and decod-
ing. Designing models that can effectively handle
such structures remains an open direction for future
research.

Second, the content/function classifier is only
used as a preprocessing step and is not integrated
into the multitask learning process. A more unified
framework may be able to jointly learn this classi-
fication in addition to parsing and labeling, which
could improve task interaction.

Additionally, the system just slightly alters its
default hyperparameters. Language-specific typo-
logical embeddings, dropout rates, and adaption
sizes are all fixed. Custom configurations can fur-
ther enhance performance, particularly in environ-
ments with complex morphology or constrained
resources.

Lastly, the experiments only use the 9 languages
that were included in the challenge. The robustness
and universality of the model would be supported
by further evaluation on datasets with greater diver-
sity of typologies.

These limitations open up a number of paths
for future study, such as deeper task integration,
structural modeling of abstract nodes, and more
comprehensive multilingual testing.
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