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Gülşen Eryiğit3, Lenka Krippnerová6, Adriana Pagano7, Tanja Samardžić8,
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Abstract

This paper details the findings of the 2025
UniDive shared task on multilingual morpho-
syntactic parsing. It introduces a new repre-
sentation in which morphology and syntax are
modelled jointly to form dependency trees of
contentful elements, each characterized by fea-
tures determined by grammatical words and
morphemes. This schema allows bypassing the
theoretical debate over the definition of “words”
and it encourages the development of parsers
for typologically diverse languages. The data
for the task, spanning 9 languages, was anno-
tated based on existing Universal Dependencies
(UD) treebanks that were adapted to the new
format. We accompany the data with a new met-
ric, MSLAS, which combines syntactic LAS
with F1 over grammatical features. The task
received two submissions, which, together with
three baselines, give a detailed view on the abil-
ity of multi-task encoder models to cope with
the task at hand. The best performing system,
UM, achieved 78.7 MSLAS macro-averaged
over all languages, improving by 31.4 points
over the few-shot prompting baseline.

1 Introduction

Syntactic and morphological tasks, such as parsing
(Sakai, 1961; Zeman et al., 2018) and lineariza-
tion (Filippova and Strube, 2007; Shimorina et al.,
2021), analysis (Koskenniemi, 1983; McCarthy
et al., 2019) and inflection (Durrett and DeNero,
2013; Goldman et al., 2023), have a long history
in NLP research. Collectively, these tasks aim to
provide structured representations of free text to fa-
cilitate further research and applications. However,
the distinction between morphology and syntax,
and hence the definitions of these tasks, rely on
the definition of a “word” (Dixon and Aikhenvald,
2002) – a unit that is notoriously ill-defined from a
cross-lingual perspective (Haspelmath, 2011).

This shared task draws on previous works which
attempt to avoid relying on words, in either syn-
tax (Bārzdin, š et al., 2007; Nivre et al., 2022) or
morphology (Goldman and Tsarfaty, 2022), and
presents a new representation that models mor-
phosyntax in a unified and harmonized fashion.
The representation used here closely resembles de-
pendency trees from Universal Dependencies (UD;
de Marneffe et al., 2021), but instead of the dis-
tinction between words and morphemes, it adopts
the distinction between content and function. In
this structure, every sentence is represented by a
dependency tree whose nodes are content-bearing
elements. On the other hand, function elements,
words and morphemes, are represented as gram-
matical features on the nodes, in a manner similar
to morphological features in UD.

The shared task includes data in 9 languages:
Czech, English, Hebrew, Italian, Polish, Brazilian
Portuguese, Serbian, Swedish, and Turkish, with
several thousands of sentences as training data for
each. The data was converted from UD dependency
trees in a semi-automatic fashion. Submitted sys-
tems were tested on a held-out test set for which
participants got only the raw text as input. The
systems’ predictions were evaluated using three
metrics. LAS, as defined by Nivre et al. (2004),
was used to measure the systems’ success in con-
necting the nodes to their correct parent with the
correct relation. F1 over morpho-syntactic features
measured the systems’ ability to correctly charac-
terize the functions relating to each node. But as
the main metric, we defined MSLAS, which com-
bines both metrics to measure overall success in
modelling both node relations and node content.

This report includes the results of five systems,
three baselines and two submitted systems. Both
submitted systems and one of the baselines utilize
multi-task training, where several classifiers are
trained on top of a frozen encoder-only model such
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I am in the office so give me a call
PRON AUX ADP DET NOUN ADV VERB PRON DET NOUN

Case=Nom Case=Ine Case=Cnsq Case=Acc Definite=Ind
Number=Sing Definite=Def Mood=Imp Number=Sing Number=Sing

Person=1 Mood=Ind Person=1
Number=Sing

Tense=Pres

nsubj parataxis iobj
obj

nsubj
cop

case
det

parataxis
advmod iobj

obj
det

Figure 1: An example of a morphosyntactic tree above the sentence, with the full UD tree below for reference.
Function words do not participate in the morphosyntactic tree and are coloured grey.

as BERT (Devlin et al., 2019) or XLM-R (Con-
neau et al., 2020). The systems differ mostly in
the way they incorporate the prediction of content-
fulness into the system, and whether they were
trained jointly or separately across languages. In
addition, two baselines prompted Gemini 2.5 (Co-
manici et al., 2025) in a few-shot setting to output
the entire prediction as a string.

The best performing system, UM (Inos-
troza Améstica et al., 2025), achieved 78.7 MSLAS
over the covered test set macro-averaged over all
languages. This score is a 31.4-point improvement
over the best baseline. Although impressive, the
results show that there is still some headroom, for
training better models to excel in the task. Specifi-
cally, non-Indo-European languages, like Turkish
and Hebrew, seem to pose a greater challenge to the
submitted systems that are based on dependency
parsing models.

All in all, this shared task introduces a more
holistic representation that takes into account the
typological variety in word definitions across lan-
guages, and shows that predicting this structure
poses a challenge for parsing technology and to
large language models alike.

2 Task Description

The concept of “word” is known to have a highly
disputed definition, ever since (at least) the for-
mation of modern linguistics as a field (Krámský,
1969; Juilland and Roceric, 1972). Despite that,
words have had a crucial role in delineating syntax
and morphology, both from a theoretical (Dixon
and Aikhenvald, 2002) and practical (de Marneffe
et al., 2021; Batsuren et al., 2022) standpoint. The
result in UD is that words are defined inconsistently
across languages, so the ability to compare struc-
tures across languages is severely hindered. On
the other hand, the mere attempt to cross-lingually

define words entails a tokenization process that
is unnatural to some languages that differ greatly
from the prototypical Western language.

Morpho-syntactic parsing is designed to bypass
the issue by modelling syntax and morphology in
tandem, getting rid of the necessity to define words
in order to separate the two. In this task, systems
are required to predict a morpho-syntactic depen-
dency tree for each sentence, where nodes are con-
tentful elements. These nodes include lexemes
from open-class parts of speech, such as nouns
and verbs, and their arguments. Grammatical, or
functional, elements do not appear as nodes in the
tree, even if they are written as independent words.
Instead, they contribute morpho-syntactic features
that characterize the content nodes, akin to mor-
phological features in UD.

All predicates and arguments are included in
the morpho-syntactic tree, including arguments in
the form of pronouns, clitics and agreement mor-
phemes.1 On the other hand, elements that signify
relations between content nodes are deemed func-
tion nodes, as well as elements that specify some
grammatical additional meaning to content nodes.

The result is a dataset in which sentences in dif-
ferent languages are structured much more simi-
larly, owing their differences to structural linguistic
variations between languages, and not to variations
in orthography or grammatical tradition. Systems
solving morpho-syntactic parsing must then detect
contentful elements in a similar fashion across all
languages, without the benefit of a more natural
tokenization process given to languages that are
more similar to English and a few other Western
languages.

Figure 1 has an example tree. It shows several
function words in gray that are not part of the

1See Zwicky and Pullum (1983) for a discussion on the
wordhood of these elements.
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Lang Train Dev Test Annotator Treebank

CS 10,000 4,681 5,885
Daniel Zeman &
Lenka Krippnerová

PDT &
PUD

EN 2,576 472 492 Omer Goldman EWT

HE 2,267 374 253 Omer Goldman HTB

IT 7,773 537 461
Luigi Talamo &
Arianna Bienati &
Ludovica Pannitto

All UD
treebanks

PL 9,914 2,180 3,180
Alina Wróblewska &
Anna Bączkowska

PDB &
PUD

PT 5,591 806 1,596
Diego Alves &
Adriana Pagano

Porttinari

SR 3,312 536 520 Tanja Samardžić SET

SV 4,128 492 2,168
Joakim Nivre &
Victor Norrman

Talbanken
& PUD

TR 3,409 1,081 1,082
Kutay Acar &
Gülşen Eryiğit

IMST

Table 1: The number of sentences in each split for each
language.

morpho-syntactic tree, but contribute features to
the content nodes, like the conjunction so and the
preposition in that contribute a Case feature, and
the copula am that contributes verbal features to
the nominal predicate office.

2.1 Data Annotation Process

The data for this task was semi-automatically con-
verted from UD treebanks. A conversion script was
written for every language, based on some shared
infrastructure. The scripts used POS tags and de-
pendency relations to detect function words and
used the languages’ grammars to decide on the
morpho-syntactic features of the nodes given the
function words and morphological features in UD.
Manual decisions were made, for example in cases
of ambiguity, like English would that can denote
either a conditional mood or past prospective, or in
cases of categories that are not strictly function or
content, like adverbs.

The annotation of UD treebanks into the morpho-
syntactic schema followed several principles. First
and foremost, the resulting data structure had to be
independent of word definitions. Specifically, all
predicates and arguments should have correspond-
ing tree nodes.2 For practical reasons, the data was
annotated in a way that deviates as little as possi-
ble from the existing UD data. We only replaced
the morphological features with morpho-syntactic
features, removed function words from the tree,

2This also bypasses the debate on whether pronouns are a
functional feature bundle or contentful elements with definite
semantic meaning.

and occasionally added abstract nodes for unreal-
ized arguments. In other words, we did not alter
the heads of the nodes nor the arc labels. The full
annotation guidelines are given in Appendix A.

All in all, we ended up with about 70k annotated
sentences in 9 languages. Of which, about 45k
were used for training, and about 12.5k constitute
a held-out test whose gold trees were not revealed
to the participants. The data was split according to
the splits in the UD treebanks it is based on. The
statistics of the entire dataset are given in Table 1.

2.2 Evaluation

Systems were evaluated using three metrics: LAS,
Feats-F1, and MSLAS, with the latter being the
main metric that combines the two others others.

Since the input for this task is raw text, systems
may predict a different number of nodes compared
to the ground truth. And because all metrics com-
pare nodes to one another, an alignment mechanism
is needed between the prediction and the gold trees.
Nodes are then considered correctly predicted un-
der any of the metrics only if they are aligned with a
node in the gold tree and have the same dependency
arc, morpho-syntactic features, or both, depending
on the metric. The alignment of content nodes to
gold nodes is done sequentially for each sentence
twice, from right to left or left to right, then metrics
are computed for each alignment, and the better
score is taken for that sentence.

The evaluation script is based on that of Zeman
et al. (2018), and can be found at https://github.
com/UniDive-MSP/MSP-shared-task.

Labelled Attachment Score (LAS) is the stan-
dard evaluation metric in dependency parsing. It is
the percentage of predicted nodes that are assigned
the same parent and relation type (arc label) as the
corresponding gold node. In our task, LAS is cal-
culated only over content nodes. Note that we did
not take subtypes into account. For example, an
arc labelled acl:relcl was considered correct as
long as the corresponding gold arc had acl as its
main type.

Features F1 Score (Feats-F1) is a standard met-
ric in morphological analysis. It is the F1 score
when comparing the predicted set of features of a
specific node to the features of its aligned node in
the gold tree. We applied this metric to all morpho-
syntactic features assigned to a node, not only to
the morphological features.
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Morphosyntactic Labelled Attachment Score
(MSLAS) is the main metric of the task that com-
bines both other metrics to evaluate the systems’
trees as well as the quality of the characterization
of each node. This metric averages the per-node
Feats-F1 score only for nodes that are considered
correct according to the LAS metric.

3 Languages

The data for each language was prepared by indi-
viduals or teams who are speakers of that language
(see Table 1). Below is a short description of the
languages included in the shared task.

3.1 Czech

Czech is a West Slavic language with rich fusional
morphology. Nouns, adjectives, pronouns, deter-
miners and numerals inflect for up to 7 case forms.
Morphology of finite verbs cross-references the
person and number of the subject; participles cross-
reference gender and number. Consequently, sub-
ject nominals can be dropped. Some verb forms
(past tense, future tense, conditional, and passive)
are composed periphrastically using various forms
of the auxiliary být ‘to be’. Modal verbs are treated
as main verbs in UD, and that approach is kept in
the shared task. The reflexive clitics se, si are used,
besides marking true reflexive arguments, also in
so-called reflexive passive construction (and, with
certain verbs, as a particle modifying the meaning
of the verb).

The shared task data is based on the Prague De-
pendency Treebank (PDT; Hajič et al., 2020),3 au-
tomatically modified to the shared task format us-
ing rule-based heuristics implemented in the Udapi
framework4 (Popel et al., 2017). In the first stage,
periphrastic verb forms and copular constructions
were identified and converted into features, based
in part on Krippnerová and Zeman (2025).5

In the second stage, the value of the Case fea-
ture was determined for nominals. First, by de-
termining the morphological case of some non-
straightforward cases: uninflected loanwords, ab-
breviations, and numeral-modified nouns. Then,

3We only took documents that had tectogrammatical anno-
tation in the original treebank, as their UD conversion already
has abstract nodes for some dropped pronouns. We excluded
all sentences containing the orphan relation because they have
other types of abstract nodes, not expected in the shared task.

4https://udapi.github.io/
5This tool is ready to process any Slavic language currently

covered in UD, including Polish and Serbian; however, in the
present shared task, it was used to prepare the Czech data only.

we combined the morphological case with prepo-
sitions to generate the morphosyntactic Case
value that reflects the most salient meaning of
that combination. For example, za ‘behind’ +
Case=Ins would result in Case=Pst (postessive),
za + Case=Acc in Case=Psl (postlative), and za
‘under’ + Case=Gen would yield Case=Der (dura-
tive). In an analogy, the Case feature was also used
to encode meanings of subordinating and even co-
ordinating conjunctions. See Appendix A.1 for
the full label inventory; out of them, 79 values are
attested in the Czech data.

Finally, abstract nodes were created to represent
dropped subject pronouns in finite clauses; their
features (Number, Person and/or Gender) were
taken from the verb. If an overt subject was present
in the sentence, no abstract node was created, but
the agreement features were still removed from the
verb.6

3.2 English

While English is often described as morpholog-
ically “poor”, its morpho-syntax is considerably
rich. Verbs, whose features now include informa-
tion from auxiliaries and particles, are inflected to
3 tenses, 4 aspects, and multiple moods. Nouns are
inflected for number and definiteness, as well as for
a wide array of cases, mostly using prepositions.
And adjectives are also inflected for degree.

Although grammatical functions are usually
expressed by concatenative means, some non-
concatenative operations are also employed by En-
glish: ablauts for past inflections and word/mor-
pheme order for interrogative mood.

In terms of marginally grammatical structures,
the treebank we started with, EWT (Silveira et al.,
2014), considers modal verbs are inflections of
the main verb (expressed using the Mood feature),
but going to, used to and similar constructions are
considered semantic compositions of two verbs
rather than a grammatical tense marking.

3.3 Italian

Italian presents quite rich morphology, especially
in the verbal system, while being primarily tense-
based, aspect and mood also play crucial roles.
However, while tense is morphologically marked
or explicit through construction with auxiliaries,
aspect is not fully grammaticalized and has often

6The features were not copied to the overt subject (i.e.,
Person=3 can disappear completely if the subject is a noun or
a subject clause).
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to be inferred from lexical choices or contextual
cues. Nonetheless, in the indicative mood, tenses
bear a tendential association with aspect, which we
implemented in the task data.

The Italian data was selected by randomly sam-
pling 10K sentences from all released Italian
UD treebanks (Bosco et al., 2013; Sanguinetti
et al., 2018; Alfieri and Tamburini, 2016; Zeman
et al., 2017b). Sentences containing parataxis,
orphan, dep or discourse relations were ex-
cluded, as they introduced trees too difficult to
process automatically for the sake of the task. The
resulting data is composed of 8771 sentences. Each
dependency tree was traversed via depth first search
(DFS), yielding head tokens and their non-content
children. Specialized modules handled the infor-
mation depending on the head UPOS.

Adpositions, subordinating conjunctions and co-
ordinating conjunctions are mapped by lemmas to
the Case feature. Values were assigned based on
the lemma’s meaning retrieved from a dictionary.
If polysemous, the value was assigned determin-
istically to the most ‘basic’ or ‘shared’ meaning
across languages, prioritizing spatial and tempo-
ral meanings. This decision is made according to
the literature, when available (e.g., Luraghi, 2009),
otherwise it relies on the intuition of a proficient
speaker.

3.4 Hebrew
As a Semitic language, Hebrew grammar is char-
acterized by the extensive use of ablauts for verbal
inflection and the assignment of lexical meaning
to consonantal roots. The Hebrew verbal paradigm
is somewhat limited, with only indicative and im-
perative moods and one periphrastic aspect, but it
has 7 inflectional cases and many irregulars. Many
prepositions and conjunctions are fused onto the
following word, possessive pronouns are some-
times fused onto the previous words, and some
other prepositions are inflected when applied to
personal pronouns.

The segmentation strategy taken in HTB (Sade
et al., 2018) made its conversion to the morpho-
syntactic schema relatively straightforward. Most
fused elements were segmented from their parents
so Case were determined based on the table in Ap-
pendix A.1 and applied to the heads. The Hebrew
verbal system means that periphrastic inflections
are extremely rare, although they had to be disam-
biguated manually. Lastly, nominal and adjectival
predicates were harmonized in structure regardless

of whether a copula exists or not.

3.5 Portuguese
Portuguese, like Italian, has a rich morphological
system, particularly in its verb forms. To address
this, rule-based adaptations were implemented for
the five auxiliary verbs in Portuguese and their
combinations, taking into account tense, mood, and
aspect.

Portuguese is also distinctive for having two cop-
ulas ser and estar, which differ in aspect: ser typi-
cally marks stative situations, while estar conveys
more dynamic or temporary states. The distinc-
tion between them was marked using the Aspect
feature of their nominal head.

The Brazilian Portuguese corpus for the shared
task was derived from the Porttinari corpus (Pardo
et al., 2021; Duran et al., 2023), incorporating
adaptations based on the changes proposed for the
English corpus, while accounting for Portuguese-
specific characteristics.

A set of features was defined for prepositions,
adverbs, conjunctions, and fixed expressions. Spe-
cial attention was given to avoid mislabelling ho-
mographic forms, such as se, which can function
either as a clitic, as a pronoun or as a subordinate
conditional conjunction. In addition, some man-
ual decisions were made when dealing with degree
markers of adjectives.

3.6 Polish
Analogous to Czech, Polish is a highly inflectional
and fusional West Slavic language, characterised
by the possibility of dropping subject nominals
and by the use of analytical verb forms in the past
tense, future tense, conditional, reflexive, and pas-
sive constructions. Modal verbs, inherently im-
personal verb forms, and predicative words are
treated as main verbs. A distinctive feature of Pol-
ish morphosyntax is the phenomenon called mobile
inflection: auxiliary morphemes may detach from
participles and move to another syntactically li-
censed position, e.g., attached to conjunctions or
pronouns.

The shared task data is derived from the Pol-
ish PDB-UD and PUD-PL treebanks (Wróblewska,
2018), both automatically converted from the Pol-
ish Dependency Bank (Wróblewska, 2014). We
excluded sentences with orphan relation that were
proven too difficult for automatic annotation. The
assignment of morpho-syntactic features then fol-
lowed a rule-based procedure. Simple structural
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rules are applied to assign features to content words
based on the subtrees they head. In addition, Case
values were assigned based on a predefined reper-
toire (see Table 4) to all nouns, their adjectival
dependents that show morphological agreement,
and their conjuncts. Verbs were also assigned fea-
tures based on suboridnators and other markers that
modified them.

3.7 Serbian
Like the other Slavic languages, Serbian grammar
is characterized by a preference for periphrastic
verb forms. Of Serbian’s seven tenses, and four
moods, indicative present tense and imperative
mood are the only frequently used inflections that
do not require auxiliary verbs. Nouns inflect to 7
morphological cases with distinct singular vs. plu-
ral forms for most of the cases. Together with a
wide array of prepositions, they form many more
morpho-syntactic cases. Serbian has a relatively
free word order, with many clitics, i.e., auxiliaries
and some pronouns, tending to occupy the second
position in the sentence in a fixed relative order.

The data for the shared task is based on the SET
treebank (Batanović et al., 2023; Samardžić et al.,
2017). The conversion process largely followed the
logic set in the other languages, incorporating auxil-
iaries, conjunctions, and prepositions into features
on their contentful parents. The lack of articles in
Serbian meant that determiners were treated solely
as content nodes.

3.8 Swedish
Swedish is a moderately inflected language be-
longing to the North Germanic branch of the Indo-
European family. The case system for nouns has
been reduced to two cases, nominative (which sub-
sumes the old nominative, accusative and dative)
and genitive, while the pronominal system still dis-
tinguishes three cases (nominative, accusative/da-
tive, and genitive). The verbal inflection system
has been simplified by dropping number and per-
son agreement (except for past participles) and sub-
junctive mood (except for a few frequent verbs).
Unusual features include a suffixed definite arti-
cle (which means that all nouns are inflected for
number, definiteness and case) and two passive con-
structions, one inflectional and one periphrastic.

The Swedish data sets are based on the UD tree-
banks Swedish-Talbanken (Einarsson, 1976; train,
dev and test) and Swedish-PUD (Zeman et al.,
2017a; only test). The conversion is based on

the English conversion script, which was adapted
to Swedish and complemented by a number of
language-specific post-processing steps. The con-
version has gone through a number of iterations
involving a combination of automatic consistency
checks and manual spot checks.

All adpositions, subordinating conjunctions and
coordinating conjunctions have been mapped de-
terministically to the most frequent semantic cate-
gory, with no attempt to disambiguate polysemous
expressions. Since Swedish is not a pro-drop lan-
guage, abstract nodes have been inserted only in
cases where the head of an adposition or conjunc-
tion is elided.

3.9 Turkish

Turkish is the most agglutinative language in our
selection. Morphemes are added to verbs, and
occasionally to nouns and adjectives, to express
tense and a wide array of compounding aspects and
moods. Nouns inflected for case and possession,
and subordinated verbs are inflected to convey their
relation with their parent clause.

In order to convert the original IMST-UD tree-
bank (Sulubacak and Eryiğit, 2018) to the shared
task format, we manually annotated some func-
tional categories (i.e., adverbials, adpositions, con-
junctions, determiners, and auxiliaries) with the
morphological features they should contribute to
their contentful heads. Overall, we introduced
23 morphological features for adpositions, 10 for
conjunctions, 10 for adverbials, 4 for determiners,
and 1 for auxiliaries. These new morpho-syntactic
features were then systematically transferred up-
wards to contentful nodes via recursive syntactic
tree traversal, ensuring accurate representation of
implicit grammatical structures. Abstract nodes
were explicitly introduced to represent dropped
pronouns, frequent in Turkish.

Appendix B provides a sample sentence anno-
tated in UD and in the morpho-syntactic schema.
It illustrates double-case marking on the particle
-ki in Karşınızdakine (nodes 1 and 2) and multiple
abstract nodes for dropped pronouns (nodes 1.1,
5.1, 9.1, and 11.1).

4 Baseline Systems

We provide three baseline systems, of which one
is a fine-tuned mBERT model and two are on the
basis of prompting Gemini 2.5.
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4.1 MC: Fine-tuning Baseline

The fine-tuning baseline uses the MaChAmp toolkit
(van der Goot et al., 2021), a multi-task learning li-
brary optimised specifically for handling ConLL-U
data. MaChAmp encodes the data using mBERT
(Devlin et al., 2019), and then trains a separate
decoding head for each task. We do not predict sep-
arately which words are content words, but rather
use the SEQ head for the prediction of the mor-
phosyntactic features (as would be standard for the
prediction of regular UD morphological features)
and set words with no features as function words.
In addition, the DEPENDENCY head predicts depen-
dencies between all words. This resulted in over-
prediction of dependency arcs for function nodes,
which does not affect the scores as they are ignored
in the evaluation. We trained separate models per
language for 20 epochs with early stopping, and
applied postprocessing to ensure that the node de-
termined by the dependency parser as the root, if
it had not been assigned any morphosyntactic fea-
tures, is assigned the empty feature set to mark it
as a content node (‘|’).

4.2 Prompting Baselines

In addition, we provided two prompting-based
baselines where no model was trained. Instead,
we gave Gemini 2.5 Pro the annotation guidelines
from Appendix A (without the cases table from
Appendix A.1) together with 3 example parse trees,
randomly chosen from the dev sets for each test
example. The model was then asked to output, as
a text string, the correct parse tree for that test ex-
ample. Minor post processing was done to correct
some formatting issues, like replacing whitespaces
with tabs. But for the most part, when the model
output a tree in the wrong format, it received zero
credit.

The difference between the two baselines is in
the source of the examples given with the input
sentence:

• Cross is a cross-lingual baseline, where the ex-
amples for each test input were taken strictly
from three other languages.

• Mono is where the examples for each test
input were taken solely from the dev set of the
same language.

System MSLAS LAS Feats

baselines
MC 33.0 36.1 52.3
Cross 36.7 51.2 50.6
Mono 47.3 55.4 64.2

submissions
ITU 61.3 66.4 80.5
UM 78.7 80.1 90.3

Table 2: Scores for each of the systems, averaged over
all 9 languages.

5 Submitted Systems

5.1 UM: University of Melbourne

The system submitted by the University of Mel-
bourne (Inostroza Améstica et al., 2025) is based
on an XLM-RoBERTa encoder augmented with
character embeddings (Akbik et al., 2018), which
is shared for all languages. This is combined with
three specialised decoders, where the first classifies
words into either content or function, and the other
two operate only on the function words. The con-
tent words identification system is a BiLSTM com-
bined with a linear layer, while the morphosyntactic
feature decoder is a single multi-label classification
layer, which notably predicts each feature value
separately. The parsing decoder uses multilayer
perceptrons for arc and relation prediction with bi-
affine attention mechanisms (Dozat and Manning,
2017).

5.2 ITU: Istanbul Technical University

The system submitted by Istanbul Technical Uni-
versity (Acar and Eryiğit, 2025) is similarly based
on mBERT (Devlin et al., 2019). Specifically, it
uses UDapter (Üstün et al., 2020), which introduces
adapter modules for language-specific transforma-
tions between encoder layers. These adapter mod-
ules are informed by language embeddings derived
from the URIEL database (Littell et al., 2017). Pre-
diction is handled by a dependency parsing head
with biaffine attention, and a morphological tag-
ging head which predicts the value of each feature
separately. Classification into content and function
words is handled by a separate model, a fine-tuned
instance of mBERT.

6 Results

We present overall evaluation results in Table 2.
Out of the two submitted systems, UM achieved
the highest MSLAS on the test set, macro-averaged
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Lg. Metric Baseline UM ITU

Mono Cross MC

CS
MSLAS 32.9 43.9 34.7 87.1 73.0
LAS 39.5 58.3 36.7 88.0 77.6
Feats 48.0 58.8 53.0 95.2 87.2

EN
MSLAS 51.4 43.1 37.7 83.8 59.7
LAS 59.4 58.5 41.2 85.1 65.8
Feats 69.0 55.3 53.9 94.9 80.7

IT
MSLAS 46.5 3.5 33.6 73.0 57.6
LAS 52.8 8.1 35.1 73.7 61.6
Feats 62.7 15.3 54.1 84.7 76.9

HE
MSLAS 56.3 37.3 22.4 68.7 43.4
LAS 65.0 53.1 26.4 71.4 49.7
Feats 71.9 54.0 43.3 83.4 68.9

PT
MSLAS 46.5 40.0 31.4 88.9 68.1
LAS 53.9 53.1 33.5 89.5 74.0
Feats 60.6 51.8 48.3 94.8 83.1

PL
MSLAS 43.0 39.6 31.8 75.0 60.4
LAS 52.8 54.0 35.3 76.5 65.6
Feats 60.3 54.8 50.2 86.2 78.5

SR
MSLAS 49.6 42.4 41.0 86.6 76.0
LAS 58.3 58.7 43.5 88.3 80.6
Feats 70.0 59.2 60.1 95.6 89.5

SV
MSLAS 55.1 45.7 47.5 86.6 65.0
LAS 64.3 63.5 49.9 87.7 69.7
Feats 67.8 56.0 61.5 95.7 84.6

TR
MSLAS 44.8 35.1 17.0 58.7 48.3
LAS 52.3 53.2 23.6 60.9 52.7
Feats 67.2 50.4 46.8 82.1 75.5

Table 3: Results for each language

across all languages, with 78.7. Both submissions
significantly outperformed all baselines across all
scores. Of the baselines, the best-performing sys-
tem was the Mono system, which used few-shot
prompting to learn from examples in the same lan-
guage.

Considering the results per language in Table 3,
the UM system consistently outperformed the oth-
ers in all languages. All systems notably struggled
with Turkish and Hebrew, and scores did not seem
to correlate in an obvious way with the number of
sentences in the training data in Table 1.

7 Discussion

7.1 Abstract Nodes

Neither of the submitted systems was able to handle
abstract nodes. They were also not handled by the
fine-tuning baseline. Acar and Eryiğit (2025) note
that the Turkish data has by far the highest rate of
abstract nodes (13.45% as opposed to 3.61% in the
second-highest, Polish). This is significant because
all systems that do not model abstract nodes report

their worst performance on Turkish. We cannot
differentiate whether this is due to the agglutinative
nature of Turkish, as we do not include any other
agglutinative language in our sample, or simply
due to points lost to missing abstract nodes, as well
as cascading errors.

7.2 Tokenisation
The test data was provided in an untokenised for-
mat, and systems and baselines therefore had to
make choices about the tokenisation, introducing
errors which inevitably propagated down the line.
The UM system made an attempt at re-engineering
the tokenisation of the original data by selecting the
stanza tokenisation model that results in the highest
downstream performance. Because the evaluation
script aligns either from the beginning or the end,
one extra (or missing) word towards the middle of
the sentence will cause the rest of the sentence to
be misaligned and the score to drop significantly.
This points to the improvement of tokenisation as
an opportunity for improvement for parsers.

7.3 Multilinguality
All systems were based on a multilingual encoder
model and then finetuned with the MSP training
data on each language separately. Future systems
could explore something more multilingual, espe-
cially for related languages like Italian and Por-
tuguese, given how little data is available in total.

8 Conclusion

This paper presents the results of the UniDive 2025
Shared Task on Multilingual Morpho-Syntactic
Parsing, introducing a novel representation and
evaluation metric designed to be more inclusive
of typologically diverse languages. By shifting the
focus from traditional distinction between “words”
and “morphemes” to a distinction between content
and function elements, the task encourages the de-
velopment of new parsing technologies that operate
in a more equitable fashion across all languages.

The results from the five evaluated systems
demonstrate that the task is challenging yet solv-
able for modern multi-task learning models. The
top-performing system, UM, achieved an impres-
sive MSLAS score of 78.7, significantly outper-
forming all baselines and showcasing the potential
of dedicated architectures for this problem. Never-
theless, challenges remain, particularly in handling
abstract nodes and parsing non-Indo-European lan-
guages like Turkish and Hebrew, indicating clear
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directions for future research. Overall, this shared
task successfully established a new benchmark for
morpho-syntactic analysis and paved the way for
more linguistically comprehensive parsing models.

Future iterations of the shared task will have
the opportunity to cover a more diverse set of lan-
guages to allow a better evaluation, as well as better
applications for studies in computational typology
and morpho-syntax.
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Umut Sulubacak and Gülşen Eryiğit. 2018. Implement-
ing universal dependency, morphology, and multi-
word expression annotation standards for turkish lan-
guage processing. Turkish Journal of Electrical En-
gineering and Computer Sciences, 26(3):1662–1672.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Massive
choice, ample tasks (MaChAmp): A toolkit for multi-
task learning in NLP. In Proceedings of the 16th

Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 176–197, Online. Association for
Computational Linguistics.

Alina Wróblewska. 2018. Extended and enhanced Pol-
ish dependency bank in Universal Dependencies for-
mat. In Proceedings of the Second Workshop on Uni-
versal Dependencies (UDW 2018), pages 173–182,
Brussels, Belgium. Association for Computational
Linguistics.

Alina Wróblewska. 2014. Polish Dependency Parser
Trained on an Automatically Induced Dependency
Bank. Ph.D. dissertation, Institute of Computer Sci-
ence, Polish Academy of Sciences, Warsaw.
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jič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis
Tyers, Elena Badmaeva, Memduh Gokirmak, Anna
Nedoluzhko, Silvie Cinková, Jan Hajič jr., Jaroslava
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A Annotation Guidelines

These are official annotation guidelines as shared with the participants in the shared task’s official GitHub
repo.7

Introduction:
In this documentation, we first explain the general principles of MSP, and then elaborate on the feature

set and the file format.

Motivation
Words have long been an essential concept in the definition of treebanks in Universal Dependencies

(UD), since the first stage in their construction is delimiting words in the language at hand. This is done
due to the common view in theoretical linguistics of words as the dividing line between syntax, the
grammatical module of word combination, and morphology, that is word construction.

We suggest defining the content-function boundary to differentiate ’morphological’ from ’syntactic’
elements. In our morpho-syntactic data structure, content words are represented as separate nodes on
a dependency graph, even if they share a whitespace-separated word, and both function words and
morphemes contribute morphology-style features to characterize the nodes.

Principles
* Independence from Word Boundaries: Delimiting syntactically relevant words gets exponentially

more complicated, the less isolating the languages are. Thus, this operation, which is as simple as breaking
the text on white spaces for English, is borderline impossible for polysynthetic languages, in which a
single word may be composed of several lexemes that have predicate-argument relations. This reflects
the fact that, despite the presumed role of words in contemporary linguistics, there is no consensus on
a coherent cross-lingual definition of words. We will thus avoid (most) theoretical debates on word
boundaries, and solve much of the word segmentation inconsistencies that occur in UD, either across
languages, e.g., Japanese is treated as isolating and Korean as agglutinative, even though they are very
similar typologically, or across treebanks of the same language, e.g., the different treebanks for Hebrew
segment and attribute different surface forms for clitics.

* Content-Function Divide: The central divide in an MS graph is between content words (or mor-
phemes) and function words (or morphemes). Content words form the nodes, while the information from
function words is represented as features modifying the content nodes.

* Crosslingual Parallelism: Morphosyntactic Annotation will bring the trees of very different lan-
guages much closer together and thus enable new typological studies. In isolating languages, the data will
explicitly surface MS features that are expressed periphrastically. Morpho-syntactic data will be more
inclusive towards languages that are currently treated unnaturally, most prominently noun-incorporating
languages. Morpho-syntactic models will be able to parse sentences in more languages and enable better
cross-lingual studies.

* Minimal Deviation from CoNLL-U: We will use the well-established CoNLL-U file format for our
data. The morpho-syntactic features are replacing the morphological features, and function nodes are
recognizable by the lack of content in this column. This format is a variant of the CoNLL-U Plus format
from which the data was constructed.

Schema Description
File Format

The format for morpho-syntactic parsing data is a simple alternation of UD’s CoNLL-U format. It
includes a replacement of a single column, morphological features, with morpho-syntactic features
(named: MS-FEATS) for every UD node that contains a content word. UD nodes that contain function
words should have empty (i.e. _) MS features. In addition, columns that are irrelevant for MSP, like
MISC and XPOS, are also left empty.

7https://github.com/UniDive-MSP/MSP-shared-task

12



Morpho-Syntactic Features
As the key characteristics of morpho-syntactic dependency trees, morpho-syntactic features (MS

features) are modelled after the morphological features in UD and may be viewed as a generalization of
them. Like in UD, the features are an alphabetically ordered set of name and value pairs separated by
pipes, of the structure Name1=Value1|Name2=Value2.8 Most feature names and values are equivalent to
those in UD, for example Gender=Masc, Voice=Pass, etc.

However, MS features also differ from morphological features in a couple important characteristics:
* The features are only defined for content nodes (see below).

- Function words should not have MS features. All the information they convey should be expressed
as features on the relevant content node.
- Note: since the file format is a modified version of UD’s CoNLL-U, function words may appear
in the final output, their MS-feats column should be _. This is in contrast with content words that
happen to have no MS-feats that should contain an orphan pipe |.

* The features are defined not only by morphemes but by any grammatical function marker, be it a
morpheme or a word. So the content node go in will go should bear the feature Tense=Fut.

- All applicable features should be marked on the respective content nodes, even if expressed by
non-concatenative means (as long as they are grammatical). E.g., the node go in did you go? should
be marked with Mood=Ind;Int even though the interrogative mood is expressed mostly by word
order.

* Features should be applied only to their relevant node. In other words, no agreement features are needed,
and in a phrase like he goes only he should bear Number=Sing|Person=3, and goes should have only
Tense=Pres (and other features if relevant).
* The feature structure is not flat. In other words, features are not necessarily single strings. They can
contain:

- a list of values separated by a semicolon, for example Aspect=Perf;Prog on the verb of the
English clause I have been walking,
- a negation of a value, for example Mood=not(Pot) on the Turkish verb yürüyemez (“he can’t
walk”) where the negation refers to the ability,9

- a conjunction of values. This mechanism is to be used only in cases of explicit conjunction of
grammatical constructions, for example Case=and(Cnd,Temp) is the manifestation of the English
phrase if and when when connecting two clauses (see below for discussion on the Case feature),
- and a disjunction of values, Tense=or(Fut,Pas)

* If a feature includes multiple values in any kind of order or structure, they are ordered alphabetically in
accordance with the general UD guidelines.

The mapping from morpho-syntactic constructions to features does not have to be one-to-one. In
cases where several constructions have the exact same meaning (e.g., they differ in geographic dis-
tribution, register or personal preferences), it is perfectly suitable to assign the same feature com-
bination to both of them. For example, in Spanish, both comiera and comiese will be assigned
Aspect=Imp|Mood=Sub|Tense=Past|VerbForm=Fin (remember that the agreement features should ap-
pear only on the relevant argument).

The categories of words to be "consumed" into MS features are usually: auxiliaries, articles, adpositions,
conjunctions and subordinators, and some particles. These categories may not neatly correspond to UD
POS tags. Some clearly do, like auxiliaries (POS tag AUX), while others, like DET, may include also
contentful word, like all and every. Some POS tags like ADV mix many contentful words (nicely, rapidly,
often, etc.) with a few that serve as conjunctions (when, then, etc.), and in rare cases the same word may
be considered functional or contentful depending on the context.10

8The feature set is unordered in theory, but in practice the features are ordered alphabetically by feature name, just to make
the annotations consistent.

9This is in contrast with the verb yürümebilir (literally “he is able to not walk”, i.e., he may not walk), where the negation
pertains to the verb itself and should be tagged as Mood=Pot|Polarity=Neg.

10Compare the word then in the sentence if you want, then I’ll do it (functional) to the same word in I didn’t know what to do,
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Feature Inventory
Since the MS features are a generalization of UD’s morphological features, their types and possible

values are also highly similar with that of UD’s features. Therefore, for most features, the list in UD is
sufficient in characterizing content nodes in MS trees as well. The most prominent exception to this is the
expansion of the Case feature.

Originally, the Case feature characterized the relation between a predicate and its argument, almost
always a nominal, but for MS trees its role is expanded twice. First, in line with the principle of
independence from word boundaries, in MS trees this feature corresponds to traditional case morphemes
as well as adpositions (these usually have case as DEPREL in UD trees) and coverbs when such exist. The
inclusion of adpositions in determining the Case feature entails the expansion of cases possible in almost
any language. Nominals in German, for example, now have an elative case (indicating motion from the
inside of the argument) expressed by the combination of the synthetic dative case and the periphrastic aus
preposition.

The second expansion of the Case feature is that in MS trees this feature is also used to characterize
predicate-predicate relations, hence it is applicable also to verbal nodes and it "consumes" also conjunc-
tions and subordinators. So fell in I cried until I fell asleep and today in It is true until today will both get
a Case=Ttr because they are both marked by the function word until.

In general, the same function word/morpheme combination should be mapped to the same Case value,
even if it serves multiple functions. For example, the Swahili preposition na should be mapped only to
Case=Conj even when it serves a function of introducing the agent of a passive verb.

Table 4 details a set of universal values for the Case feature. These features do not cover all possible
relations, and in some cases when there are adpositions or conjunctions that do not correspond to any of
the features, the value of the respective feature should be the canonical citation form of the function word
transliterated into Latin letters.
Content Nodes

Content nodes, to which morpho-syntactic features are to be defined, are all words or morphemes from
open classes (like nouns, verbs and adjectives) that do not convey a grammatical modification of another
word.11 These content words form a morpho-syntactic tree.

Note that copulas are not content words. In sentences with copulas refer to the nominal as the predicate
and tag it with the features expressed by the copula.

For example, in the sentence the quick brown fox jumps over the lazy dog there are 6 content words
(quick, brown, fox, jump, lazy, dog) and 3 function words (the, over, the).

In compounds or headless expressions, i.e., cases where one of the fixed, flat or goeswith DEPRELs
are used, all words are judged together to either be of content or of function. Usually, such cases will be
contentful, but sometimes a fixed expression can be a multi-word adposition, for example as well as and
because of.
Abstract Nodes

In addition to words from open classes, content nodes also include all arguments and predicates in the
sentence. The implications of this are twofold:
1. Pronouns should always be represented as nodes with MS features, regardless of your theoretical
position on whether pronouns are contentful or a mere bundle of features.
2. Arguments that do not appear explicitly in a sentence but are expressed implicitly (i.e., by agreement of
their predicate) should also be represented by their own node. However, this node lacks FORM or LEMMA
fields and is therefore an abstract node. Abstract nodes should appear after the node from which they
inherit their features and should have a special ID in the form of X.1, X.2 etc.

The most common use case of abstract nodes is when pronouns are dropped. For example, in Basque,
the UD nodes:
4 ziurtatu ziurtatu VERB _ Aspect=Perf|VerbForm=Part 0 root _ _
5 zuten edun AUX _ Mood=Ind|Number[abs]=Sing|Number[erg]=Plur|Person[abs]=3|Person[erg]=3|Tense=Past|VerbForm=Fin 4 aux _

ReconstructedLemma=Yes

then I understood (then stands for "after some time" hence contentful).
11In most languages, content nodes are equivalent to words. However, in some noun incorporating languages open class nouns

can appear as morphemes concatenated to another content node that is the verb.
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is be tagged as:
4 ziurtatu ziurtatu VERB _ Aspect=Perf|Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _
5 zuten edun AUX _ _ _ _ _ _
5.1 _ _ _ _ Case=Erg|Number=Plur|Person=3 4 nsubj _ _
5.2 _ _ _ _ Case=Abs|Number=Sing|Person=3 4 obj _ _

Note that node 5 now doesn’t have MS-feats and therefore it will be dropped from the MS tree.
This example underlines that the abstract nodes may be viewed as a replacement for feature layering.

The advantage of this mechanism is that it equates the representation of agreement morphemes, clitics and
full pronouns, and removes the need to decide which is which.

The same mechanism is used whenever an argument is missing from the clause as an independent
word, but expressed in other means, i.e., not when an argument was dropped for pragmatic reasons or was
otherwise not detectable from the surface forms. For example, the annotation of the Japanese sentence宣
言したのだ (‘(he) proclaimed’) should not contain an abstract node for the non-existent subject, although
one is understood.

Abstract nodes are also to be used when the argument is outside the clause.
Gaps

Abstract nodes are also to be used in simple gaps, when there are function words referring to some
missing argument. For example, a phrase like books to choose from, should be annotated as:
4 books book NOUN NN Number=Plur 2 obj _ _
5 to to PART TO _ _ _ _ _
6 choose choose VERB VB VerbForm=Inf 4 acl _ _
7 from from ADP IN _ _ _ _ _
7.1 _ _ _ _ Case=Abl 6 obl _ _

So node 7.1 is created to carry the feature of the function word from.
Cases of more complex gaps are largely excluded from this shared task’s data.

A.1 Case Values

Table 4: The inventory of Case values with examples from several shared task languages. The examples on the
same line are often translation equivalents but this is not guaranteed, as sometimes a different example is more
appropriate in a particular language.

EN CS TR
Argument alignment
Nom nominative he on o
Acc accusative him jeho onu
Abs absolutive — — —
Erg ergative — — —
Dat dative — jemu ona
Agt agentive — — —
Static location
Loc locative at school — okulda
Ine inessive in the house v domě —
Ces interessive among the students uprostřed lesa —
Int intrative between us mezi námi —
Ext external outside the house vně domu —
Ade adessive on the table na stole —
Adt superadessive atop the mountain — —
Adh lateradessive — — —
Apu apudessive beside the house vedle domu —
Chz chezative — u Martina —
Cir circumessive around the house kolem domu —
Prx proximative near the house blízko domu —
Dst distantive far from the house daleko od domu —
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Table 4: The inventory of Case values with examples from several shared task languages. The examples on the
same line are often translation equivalents but this is not guaranteed, as sometimes a different example is more
appropriate in a particular language.

EN CS TR
Sup superessive above the house nad domem bir yılı aşkın
Sub subessive under the house pod domem —
Ant antessive in front of the house před domem —
Pst postessive behind the house za domem amacından öte
Ori orientative — — —
Rev revertive — — —
Opp oppositive opposite the house naproti domu —
Tot total throughout the house — —
Direction focused on origin
Abl ablative from the school od školy —
Egr egressive — — —
Ela elative — z domu —
Cne interelative — zprostřed lesa —
Ite intraelative from between — —
Exe exelative — — —
Del delative off the table se stolu —
Ape apudelative — — —
Spe superelative from above the house — —
Sbe subelative from under the house zpod domu —
Ane antelative — — —
Pse postelative from behind the house zpoza domu —
Direction focused on path
Per perlative — po ulici —
Crs perlative across across the lake napříč jezera —
Lng perlative along along the river podél řeky —
Pro prolative via Berlin — —
Inx inprolative through the house skrz dům —
Cnx interprolative — — —
Adx adprolative — — —
Apx apudprolative — — —
Spx superprolative over the bridge přes most —
Sbx subprolative — — —
Cix circumprolative — ob dům —
Asc ascentive up the river — —
Dsc descentive down the river — —
Direction focused on destination
Lat lative to the house — —
Ter terminative up to that house po tamten dům —
Ill illative into the house do domu —
Cnl interlative — doprostřed lesa —
Itl intralative — mezi nás —
Exl exlative — — —
All allative onto the table na stůl —
Apl apudlative — k domu —
Spl superlative — nad dům —
Sbl sublative to under the house pod dům —
Anl antlative — před dům —
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Table 4: The inventory of Case values with examples from several shared task languages. The examples on the
same line are often translation equivalents but this is not guaranteed, as sometimes a different example is more
appropriate in a particular language.

EN CS TR
Psl postlative — za dům —
Temporal
Tan temporal antessive before lunch dokud neobědvá yemekten önce
Ttr temporal terminative until lunch — yemek saatine kadar
Lim limitative — — —
Tem temporal upon doing X v sobotu —
Tpx temporal approximative circa 9 v období dešt’ů —
Din durative initiative — počátkem zimy —
Dur durative during winter během zimy yol boyunca
Der durative era — za Caesara —
Dtr durative terminative — koncem zimy —
Tdi temporal distributive — — —
Tps temporal postessive after lunch jakmile doobědvá yemekten sonra
Teg temporal egressive since winter počínaje zimou kıştan beri
Tbt temporal interessive — — —
Relation
Atr complement / attribute that že -arak
Gen genitive of the house domu —
Psd possessed — — —
Par partitive — — —
Dis distributive — — —
Com comitative with Martin s Martinem Martin ile birlikte
Orn ornative — — uzun parmaklı
Abe abessive without Martin bez Martina Martin olmadan
Inc inclusive including Martin včetně Martina —
Add additive — — —
Exc exclusive except Martin kromě Martina —
Sbs substitutive instead of Martin místo Martina —
Similarity
Ess essive as a teacher jako učitel —
Equ equative — — öğretmen kadar
Sem semblative like a teacher — öğretmen gibi
Rpl replicative — — —
Dsm dissemblative unlike a teacher oproti učiteli —
Cmp comparative than a teacher než učitel —
Dif differential — o dva metry —
Tra translative — — —
Exe exessive — — —
Cmt comment whereas kdežto halbuki
Cause, consequence, circumstance, other
Cau causative because of rain kvůli dešti yağmurdan dolayı
Pur purposive in order to survive aby přežil hayatta kalmak için
Cns considerative considering the rain na základě doporučení —
Ign ignorative regardless of the rain at’ prší nebo ne —
Ccs concessive despite the rain navzdory dešti yağmura rağmen
Cnd conditional in case of rain pokud bude pršet eğer yağmur yağarsa
The themative about the rain o dešti yağmurla ilişkin
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Table 4: The inventory of Case values with examples from several shared task languages. The examples on the
same line are often translation equivalents but this is not guaranteed, as sometimes a different example is more
appropriate in a particular language.

EN CS TR
Quo quotative according to the law podle zákona yasaya göre
Ins instrumental using a hammer kladivem —
Ben benefactive for Martin pro Martina —
Mal malefactive — — —
Adv adversative against Martin proti Martinovi Martin’e karşı
Evi evitative — — —
Voc vocative — Martine! —
Paratactic relations (CCONJ type)
Conj conjunctive and a ve
Nnor negative conjunctive nor ani ne
Disj disjunctive or nebo veya
Advs adversative but ale ama
Reas reason for nebot’ çünkü
Cnsq consequence so tedy ki

B Example Sentence Annotation

Original Representation
# sent_id = 00058111_26
# text = Karşınızdakine Sizi işe alıyorum, demek geçer aklınızın bir köşesinden.
1-2 Karşınızdakine _ _ _ _ _ _ _ _
1 Karşınızda karşı ADJ NAdj Case=Loc|Number=Sing|Number[psor]=Plur|Person=3|Person[psor]=2 7 iobj _ _
2 kine ki ADP Rel Case=Dat|Number=Sing|Person=3 1 case _ _
3 Sizi siz PRON Pers Case=Acc|Number=Plur|Person=2|PronType=Prs 4 obj _ _
4 işe iş NOUN Noun Case=Dat|Number=Sing|Person=3 7 ccomp _ _
5 alıyorum al VERB Verb Aspect=Prog|Mood=Ind|Number=Sing|Person=1|Polarity=Pos|Polite=Infm|Tense=Pres 4 compound _ SpaceAfter=No
6 , , PUNCT Punc _ 7 punct _ _
7 demek de VERB Verb Aspect=Perf|Case=Nom|Mood=Ind|Polarity=Pos|Tense=Pres|VerbForm=Vnoun 8 nsubj _ _
8 geçer geç VERB Verb Aspect=Hab|Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres 0 root _ _
9 aklınızın akıl NOUN Noun Case=Gen|Number=Sing|Number[psor]=Plur|Person=3|Person[psor]=2 8 compound _ _
10 bir bir NUM ANum NumType=Card 8 compound _ _
11 köşesinden köşe NOUN Noun Case=Abl|Number=Sing|Number[psor]=Sing|Person=3|Person[psor]=3 8 compound _ SpaceAfter=No
12 . . PUNCT Punc _ 8 punct _ _

MSP-Adapted Representation
# sent_id = 00058111_26
# text = Karşınızdakine Sizi işe alıyorum, demek geçer aklınızın bir köşesinden.
1-2 Karşınızdakine _ _ _ _ _ _ _ _
1 Karşınızda karşı ADJ _ Case=Loc;Dat|Number=Sing|Person=3 7 iobj _ _
1.1 _ _ PRON _ Case=Gen|Number=Plur|Person=2|PronType=Prs 1 nmod:poss _ _
2 kine ki ADP _ _ _ _ _ _
3 Sizi siz PRON _ Case=Acc|Number=Plur|Person=2|PronType=Prs 4 obj _ _
4 işe iş NOUN _ Case=Dat|Number=Sing|Person=3 7 ccomp _ _
5 alıyorum al VERB _ Aspect=Prog|Mood=Ind|Polarity=Pos|Polite=Infm|Tense=Pres 4 compound _ _
5.1 _ _ PRON _ Case=Nom|Number=Sing|Person=1|PronType=Prs 5 nsubj _ _
6 , , PUNCT _ _ _ _ _ _
7 demek de VERB _ Aspect=Perf|Case=Nom|Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Vnoun 8 nsubj _ _
8 geçer geç VERB _ Aspect=Hab|Mood=Ind|Polarity=Pos|Tense=Pres 0 root _ _
9 aklınızın akıl NOUN _ Case=Gen|Number=Sing|Person=3 8 compound _ _
9.1 _ _ PRON _ Case=Gen|Number=Plur|Person=2|PronType=Prs 9 nmod:poss _ _
10 bir bir NUM _ NumType=Card 8 compound _ _
11 köşesinden köşe NOUN _ Case=Abl|Number=Sing|Person=3 8 compound _ _
11.1 _ _ PRON _ Case=Gen|Number=Sing|Person=3|PronType=Prs 11 nmod:poss _ _
12 . . PUNCT _ _ _ _ _ _
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Abstract
We present a joint multitask model for the Uni-
Dive 2025 Morpho-Syntactic Parsing shared
task, where systems predict both morphologi-
cal and syntactic analyses following novel UD
annotation scheme. Our system uses a shared
XLM-RoBERTa encoder with three specialized
decoders for content word identification, de-
pendency parsing, and morphosyntactic feature
prediction. Our model achieves the best overall
performance on the shared task’s leaderboard
covering nine typologically diverse languages,
with an average MSLAS score of 78.7%, LAS
of 80.1%, and Feats F1 of 90.3%. Our abla-
tion studies show that matching the task’s gold
tokenization and content word identification
are crucial to model performance. Error analy-
sis reveals that our model struggles with core
grammatical cases (particularly Nom-Acc) and
nominal features across languages.1

1 Introduction

The UniDive 2025 Morpho-Syntactic Parsing
shared task (Goldman et al., 2025) introduces a
novel framework for dependency parsing that seeks
to bridge the traditional divide between morpholog-
ical and syntactic analysis. In conventional Univer-
sal Dependencies (Nivre et al., 2020), morphology
and syntax are treated as distinct modules operating
at different linguistic levels, with word boundaries
serving as the interface between them. However,
this separation has led to significant inconsisten-
cies in how different languages and even different
treebanks for the same language handle word seg-
mentation and grammatical analysis. The shared
task proposes to address these long-standing chal-
lenges by reorganizing grammatical representation
around the content-function distinction rather than
relying on theoretically problematic word bound-
aries, proposing a more typologically consistent

1Our code and models are publicly available:
https://github.com/DemianInostrozaAmestica/
shared_task_UD_official

ID Token FEATS HEAD DEPREL
1 From _ _ _
2 the _ _ _
3 AP Case=Abl|Definite=Def|

Number=Sing
4 obl

4 comes Mood=Ind|Polarity=Pos|
Tense=Pres|VerbForm=Fin|
Voice=Act

0 root

5 this Number=Sing|
PronType=Dem

6 det

6 story Number=Sing 4 nsubj
7 : _ _ _

Table 1: Example of the new annotation scheme used in
the shared task

approach to multi-linguistic parsing. For instance,
in the sentence ‘From the AP comes this story’
shown in Table 1, traditional UD treats ‘From’ as a
dependent of ‘AP’ with the deprel case, while the
new framework transfers the grammatical meaning
of ‘From’ as a morphosyntactic feature Case=Abl

(Ablative) directly onto the content word ‘AP’.

The task requires systems to predict both labeled
dependency arcs and morphosyntactic features, but
with a difference from standard Universal Depen-
dencies parsing: the dependency tree consists only
of content words (lexical words carrying semantic
meaning like nouns, verbs, and adjectives), while
function words (grammatical elements like adpo-
sitions, articles, and auxiliaries) contribute their
grammatical information as features on related con-
tent words.

While the content-function distinction is explicit
in the training data, systems must identify this dis-
tinction themselves at test time from raw text. This
identification determines which words participate
in the dependency tree and which contribute fea-
tures to other words. Additionally, the multi-label
nature of features, where a content word can have
multiple feature values for a given feature class,
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Figure 1: Joint model architecture for the shared task.

like Case=Ine;Atr,2 requires models to learn intri-
cate morphosyntactic patterns.

We present a joint multitask model (Figure 1)
that explicitly addresses these challenges through
three specialized decoders sharing a common
XLM-RoBERTa encoder (Conneau et al., 2020),
initialized from pre-trained multilingual represen-
tations. We design content word identification as
an explicit task to be learned by the model rather
than relying on intuition-driven heuristics. We par-
ticipate in the multilingual track, training separate
models for each of the nine languages, allowing us
to tune hyperparameters specifically for each lan-
guage’s characteristics while still benefiting from
multilingual pretrained representations. On the
shared task’s results, our system achieves the best
overall performance with average scores of 78.7%
MSLAS, 80.1% LAS, and 90.3% Feats F1 across
all languages. Additionally, our model ranks first
on each individual language, demonstrating the ef-
fectiveness of multitask learning for this task.

Our error analysis yields three main observa-
tions: (1) errors in tokenization and content word
identification cascade through the pipeline, with
gold annotations improving MSLAS by up to 12
points; (2) the majority of residual errors lie in nom-
inal morphology—Gender, Number, and Case—with

2Ine=Inessive, “inside an enclosed area”;
Atr=“complement, attribute”. Both definitions come
from the official Case inventory supplied by the shared-task
organisers.

common Nominative–Accusative swaps; and (3) syn-
tactic mislabels are concentrated in the nmod versus
obl relation.

2 System Description

2.1 Model Overview
We propose a joint multitask model implemented
using the Flair framework (Akbik et al., 2019) for
morphosyntactic parsing, as shown in Figure 1.
Although the evaluation metrics assess only depen-
dency arcs and morphosyntactic features, produc-
ing these outputs requires distinguishing between
content and function words. Because this classifi-
cation is not given at test time, we treat it as an ad-
ditional prediction task. Our system uses the large
version of XLM-RoBERTa augmented with charac-
ter embeddings (Akbik et al., 2018) as a shared en-
coder, both provided by the Flair framework. This
encoder’s output is then passed through a shared in-
termediate layer (linear transformation with ReLU
and dropout) before being fed to three specialized
decoders: content word identification, morphosyn-
tactic feature prediction, and dependency parsing.

2.2 Decoders
Content word identification. The content word
identification decoder accepts tokens as input. Each
token’s contextual embedding computed by the
shared intermediate layer is passed through a bidi-
rectional LSTM (256 hidden units in both direc-
tions). The LSTM output is then passed through a
linear layer with 2 output units, each corresponds to
“content” vs. “function” respectively. Training uses
two forms of regularisation: token-level (word)
dropout—zeroing the entire embedding of 5% of
UD tokens—and locked dropout that masks 50%
of the LSTM outputs with the same pattern across
all timesteps. Class-weighted cross-entropy loss
function is then used to compensate for the imbal-
ance between the number of content and function
tokens.

Morphosyntactic features. The morphosyntac-
tic features decoder consists of a single linear
layer that performs multi-label classification di-
rectly from the output of the shared intermediate
layer. For each content word, it outputs proba-
bilities for all possible feature-value pairs in the
vocabulary (e.g., Case=Gen, Number=Sing, Voice=Act).
Using sigmoid activation with a 0.5 threshold,
the model can predict multiple features per to-
ken—for instance, a noun might simultaneously
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have Number=Plur and Case=Gen. Complex features
with multiple values (like Case=Ine;Atr) are handled
by predicting each component separately, allowing
the model to learn different value combinations.
Function words bypass this decoder entirely and
receive ‘_’ as their feature value. At training time,
we use gold content word (i.e. checking if its fea-
ture values exist). In contrast, we use the predicted
content words by the content word identification at
test time.

Dependency parser. The parsing decoder em-
ploys separate multilayer perceptrons (MLPs) for
arc and relation prediction with biaffine attention
mechanisms, following Dozat and Manning (2016).
The arc MLPs have 256 hidden units while the rela-
tion MLPs use 128 units, both with layer normaliza-
tion and ReLU activation. Operating exclusively
on content words, we frame the parser as a con-
ditional random field over projective dependency
trees that we implement using TorchStruct (Rush,
2020). Similar to the morphosyntactic feature de-
coder, we use gold and predicted content word at
training and test time respectively.

2.3 Data Handling and Inference

While the shared task data includes abstract nodes
for representing implicit arguments, we initially at-
tempted to handle them through sequence labeling
by inserting mask tokens at potential abstract node
positions. However, this approach introduced noise
that degraded performance across all metrics, as
incorrect abstract node predictions propagated er-
rors to downstream decoders. Therefore, our final
system filters out abstract nodes during data load-
ing, simplifying the parsing task while improving
overall performance.

During inference, raw text is first segmented
into word tokens using Stanza (Qi et al., 2020).
Since tokenization quality impacts downstream per-
formance but is not the focus of this shared task,
we choose to leverage Stanza’s pre-trained models
rather than training custom tokenizers. For each
language, we evaluated different Stanza model vari-
ants on the development set and selected those that
best matched the gold tokenization (e.g., HTB for
Hebrew, IMST for Turkish). This selection was
done manually by running the full pipeline with
each available Stanza model variant and choosing
the one that achieved the highest metrics on the
official evaluation script.

We apply minimal post-processing to ensure

valid output. For content word identification, to-
kens with confidence below 0.6 that appear be-
tween two tokens of the opposite type are relabeled
to match their context (e.g., a low-confidence func-
tion word between two content words becomes
content). As a fallback for extreme cases where
content word identification predicts all tokens as
function words (particularly in very short sentences
of 2-3 tokens), we force the first token to be content
with deprel=‘root’ and features=‘|’. This ensures
every sentence has at least one parseable token.

2.4 Training Objective and Optimization

The model is trained end-to-end using a weighted
sum of the three decoders’ losses: Ltotal =
wparserLparser +wmorphLmorph +wCWILCWI, where
the weights are hyperparameters tuned for each lan-
guage. The parser uses negative log-likelihood loss
over projective trees, the morphosyntactic decoder
uses binary cross-entropy for multi-label classifi-
cation, and the content word identification uses
class-weighted cross-entropy to handle class imbal-
ance.

3 Experimental Setup

The shared task provided training and development
sets for multiple languages. To simulate a realis-
tic evaluation scenario, we split the official train-
ing data into 90% for training and 10% for de-
velopment, using the official development set as
our local test set. This allowed us to tune hyper-
parameters and select models before the official
test release. The languages included in our experi-
ments were English, Turkish, Hebrew, Czech, Pol-
ish, Portuguese, Italian, Serbian, and Swedish, with
training sizes ranging from approximately 3,000 to
10,000 sentences depending on the language.

We develop a custom data loader to handle the
modified CoNLL-U format used in the shared task.
The loader automatically extracts content words
by examining the FEATS column, where ‘_’ indi-
cates function words and any other value indicates
content words. As mentioned before, we filter out
abstract nodes during loading.

All models are trained using AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 2× 10−5 and batch size of 16 for
25 epochs. We employ early stopping with pa-
tience of 1 epoch and learning rate reduction by
factor 0.5 when validation loss plateaus. Training
is performed on a NVIDIA A100 GPU with 32GB
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RAM on a high-performance computing cluster,
with each model taking approximately 1-5 hours to
converge.

We perform grid search over task-specific loss
weights on our development split. The optimal
weights varied by language—for example, Turk-
ish benefited from weighting parsing and morpho-
logical feature losses twice as much as content
word identification (2.0:2.0:1.5), while English per-
formed better with parsing weighted most heavily,
followed by morphological features and content
word identification (2.0:1.5:1.0).

For each language, we train three models with
different random seeds using the same hyperparam-
eter configuration to verify training stability and
robustness. All three models are evaluated on our
local test set (the official development set) using
the shared task’s official evaluation script.

Once hyperparameters are selected, we retrain a
single model for each language using the complete
official training and development data combined.
These final models use the same hyperparameters
determined during development. These models are
used to generate predictions on the official covered
test set, which contains only raw text without anno-
tations. Evaluation is performed using the official
script which computes three metrics: MSLAS (mor-
phosyntactic features F1 only on correctly parsed
tokens), LAS (labeled attachment score), and Feats
F1 (morphosyntactic features F1).

4 Results

This section is divided into two parts: first, we
present official test results from models trained on
all available data (official train + dev combined)
and evaluated on the covered test set; second, we re-
port development results using our local data splits
(90% train, 10% dev, official dev as test) to analyze
design choices and hyperparameter impact.

4.1 Official Test Results

Table 2 presents the official test results from models
trained on all available data. Our system achieved
the highest performance among all submissions
with an average MSLAS of 78.7%. The results
show strong performance across most languages,
with MSLAS scores exceeding 83% for seven
of the nine languages. Portuguese (88.9%) and
Czech (87.1%) achieved the highest scores, con-
sistent with our development results. The morpho-
logically complex languages continued to present

Language MSLAS LAS Feats

Czech 87.1 88.0 95.2
English 83.8 85.1 94.9
Hebrew 68.7 71.4 83.4
Italian 73.0 73.7 84.7
Polish 75.0 76.5 86.2
Portuguese 88.9 89.5 94.8
Serbian 86.6 88.3 95.6
Swedish 86.6 87.7 95.7
Turkish 58.7 60.9 82.1

Average 78.7 80.1 90.3

Table 2: Official test results on the covered test set.
Our system achieved the highest average MSLAS score
(78.7%) among all submissions.

System MSLAS LAS Feats

Our model 78.7 80.1 90.3

baseline_multi 47.3 55.4 64.2
baseline_cross 36.7 51.2 50.6
baseline_finetune 33.0 36.1 52.3

Table 3: Comparison with baseline systems (average
across all languages).

challenges—Turkish (58.7%) and Hebrew (68.7%)
showed the lowest performance.

The baseline systems provide important context
for understanding the task’s difficulty (Table 3).
The multilingual few-shot baseline achieved mod-
erate performance (average MSLAS 47.3%), while
the cross-lingual few-shot approach struggled sig-
nificantly (36.7%), highlighting the importance of
language-specific examples. The finetuned BERT
baseline performed poorest (33.0%), suggesting
that the reformulated parsing task with its content-
function distinction and expanded feature inventory
benefits from specialized modeling approaches.
Our 31.4 point improvement over the best base-
line (78.7% vs 47.3%) indicates that combining
pretrained representations with task-specific archi-
tectural components can effectively address the
challenges of unified morphosyntactic parsing.

4.2 Development Results

The ablations in Figure 2 show that most of the gain
comes from using gold tokenization, with a smaller
but consistent boost from explicit content/function
labeling. Hebrew makes this clear: MSLAS goes
from 75.2 (Full) → 84.5 (GoldTok, +9.3) → 85.7
(GoldWT, +1.2; +10.5 total). This motivates per-
language tokenizer selection and modeling content
word identification as a dedicated task.

Loss-weight tuning largely favored parser=2.0,
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Figure 2: MSLAS across setups (Full, GoldTok,
GoldWT) for four languages with the largest gains. Full:
predicted tokenization and predicted content word iden-
tity. GoldTok: gold tokenization with predicted content
word identity. GoldWT: gold tokenization plus gold
content word identity.

Language Parser Morph CWI

Czech 2.0 1.5 1.0
English 2.0 1.5 1.0
Hebrew 2.0 1.5 1.0
Italian 2.0 1.5 1.0
Polish 2.0 1.5 1.0
Portuguese 2.0 1.5 1.0
Serbian 2.0 1.5 1.0

Swedish 2.0 1.5 1.5

Turkish 2.0 2.0 1.5

Table 4: Optimal loss weight configurations by language.
CWI =content word identification.

morph=1.5, CWI=1.0; Turkish and Swedish bene-
fited from higher weights on morph/CWI (Table 4).

5 Error Analysis

We performed error analysis on the models trained
with our local data splits (90% train, 10% dev, of-
ficial dev as test). We analyzed only the first seed
model for each language, as the low standard de-
viations indicate minimal variation across seeds.
The analysis uses scripts that replicate the official
evaluation logic to ensure our error categorization
matches the scoring methodology.

5.1 Nominal Morphology Errors

The main feature prediction errors occur in nominal
morphology, with Gender, Number, and Case show-
ing the highest confusion rates. Since languages
have different feature inventories (e.g., Czech in-
cludes Dual while others do not), creating a unified
confusion matrix is not feasible. We selected Czech
as a representative example because it has by far the
most training data points, resulting in more stable
model behavior.

Our analysis of Czech reveals strong overall per-
formance, with 99.1% accuracy for Gender and
99.6% for Number predictions. For Gender, the
model correctly classifies the vast majority of in-
stances, with Feminine (12,405 correct), Mascu-
line (14,914 correct), and Neuter (5,325 correct)
all showing high diagonal values in the confusion
matrix. The annotation scheme includes syncretic
forms like "Fem,Masc" for grammatically ambigu-
ous cases. The most common confusions occur
between Masculine and Feminine (110 instances
misclassified as Feminine when Masculine was cor-
rect), though these remain relatively rare. Simi-
larly, for Number, Singular (24,653 correct) and
Plural (9,587 correct) are accurately predicted, with
minimal confusion between categories (only 44
Singular instances misclassified as Plural, and 85
Plural instances misclassified as Singular).

Since our model uses multi-label classification
with sigmoid activation (threshold 0.5), it occa-
sionally predicts semantically incompatible feature
combinations—for instance, simultaneously pre-
dicting both a specific gender value (e.g., "Fem")
and a syncretic form containing that value (e.g.,
"Fem,Masc"). While these semantically nonsen-
sical predictions are rare (occurring in fewer than
100 instances out of over 30,000), they suggest
that post-processing constraints based on linguistic
compatibility rules could eliminate such predic-
tions and further improve the performance.

For Case features, plotting a confusion matrix
is impractical due to the >100 possible values in
the expanded inventory. While there is some vari-
ation across languages, aggregating the most fre-
quent errors reveals consistent patterns. Table 5
shows the 10 most common Case confusions aver-
aged across all languages. The high frequency of
Nom-Acc confusions (154 and 140 instances) reflects
both the prevalence of these cases in the data and
their potential ambiguity—distinguishing core ar-
guments becomes particularly challenging in com-
plex sentences with long-distance dependencies or
multi-clause structures. This pattern holds across
languages despite their individual variations, sug-
gesting that even within the expanded Case system,
these fundamental grammatical distinctions remain
challenging when syntactic complexity increases.
These systematic errors in core grammatical cases
suggest a targeted improvement strategy: increas-
ing loss weights for frequently confused cases (es-
pecially Nom/Acc) during training. Given our joint
model architecture where all tasks share embed-
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Count Gold case Predicted case

154 Acc Nom
140 Nom Acc

77 Nom Conj;Nom
47 Nom Gen
44 Conj;Nom Nom
43 Gen Nom
36 Acc Gen
25 Gen Acc
22 Gen Conj;Gen
15 Dat Ins

Table 5: Top 10 most frequent case prediction errors
(average across all languages).

dings, better representation of these central argu-
ments could benefit dependency parsing as well.

5.2 Spatial Case Results

We evaluate our model’s performance on the fine-
grained spatial Case values, a particularly challeng-
ing subset due to the numerous possible inflec-
tional meanings that this domain contains.3 The
complete inventory of spatial cases includes over
40 fine-grained distinctions. Table 6 shows high
performance across all languages (F1 scores 89.2-
98.7%), demonstrating that our model successfully
learned the unified Case system for spatial mean-
ings. This annotation scheme directly names in-
flectional meanings regardless of the grammatical
markers used - for instance, in Polish, when abla-
tive meaning is expressed periphrastically through
a clitic (an adposition)4 plus an inflected form (a
root with a genitive case affix), the system assigns
the inflectional meaning (e.g., Case=Abl) instead of
the genitive meaning conveyed by the suffix on its
own. Our model’s performance on these distinc-
tions suggests it effectively captures the mapping
between diverse surface forms and their underly-
ing spatial semantics. This opens opportunities for
injecting linguistic knowledge about spatial rela-
tions in downstream applications, leveraging the
semantic transparency of the annotation scheme.

5.3 Dependency Parsing Errors

For dependency relation errors, we analyze confu-
sions across all languages since the label inventory

3These notions are understood as defined by Haspelmath
(2025): “inflectional meaning” designates the specific mean-
ing conveyed by an inflected form (for example, ablative),
and “inflectional domain” denotes the broader class of related
properties in which this meaning is categorized (for example,
case).

4The classification of adpositions as clitics follows the
definition proposed by Haspelmath (2023).

Language Precision Recall F1

Czech 98.2 98.4 98.3
English 93.3 90.3 91.8
Hebrew 88.4 90.0 89.2
Italian 98.0 97.0 97.5
Polish 98.4 97.2 97.8
Portuguese 98.5 99.0 98.7
Serbian 96.4 93.7 95.1
Swedish 98.4 96.1 97.2
Turkish 94.7 96.4 95.6

Table 6: Spatial case performance (%) across languages
using micro-averaged metrics.

Count Gold label Predicted label

67 obl nmod
63 nmod obl
11 obj nsubj
11 advmod _
10 nmod flat
10 nmod amod
9 nsubj obj
9 iobj obj
8 obj obl
8 nsubj root

Table 7: Top 10 most frequent deprel labeling errors
(average across all languages).

is universal. Table 7 presents the 10 most frequent
labeling errors aggregated across languages. The
nmod-obl confusion dominates with 67 and 63 in-
stances respectively, accounting for over 40% of
the top errors. This pattern is linguistically ex-
pected as the boundary between nominal modifiers
and oblique arguments could involve borderline
cases.

Unlike other languages where errors concen-
trate on the nmod/obl distinction, Turkish shows a
much more dispersed error pattern with confusions
spread across many dependency relations. This
suggests that our joint architecture may not be opti-
mal for Turkish’s non-projective structures and rich
morphology. A dedicated non-projective parsing
algorithm might better capture Turkish’s complex
dependency patterns.

Additionally, we analyze attachment distance
patterns specifically for parsing errors (i.e., tokens
with incorrect head assignments). Figure 3 shows
the distribution of attachment distances for Czech
parsing errors, comparing gold (blue) versus pre-
dicted (orange) distances for these misparsed to-
kens. The graph reveals that while most gold at-
tachments occur at distances 1-3, the model’s er-
rors tend to predict longer distances (note the or-
ange bars extending further right). This indicates
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Figure 3: Distribution of attachment distances for pars-
ing errors in Czech.

Figure 4: Attachment direction confusion matrix for
Czech.

the parser frequently overlooks nearby heads in fa-
vor of more distant ones when making mistakes.
Figure 4 presents a heatmap of misparsed tokens
where rows represent gold attachment directions
and columns show predicted directions. The strong
diagonal (LEFT→LEFT: 1179, RIGHT→RIGHT:
1058) confirms the model correctly identifies at-
tachment direction in most error cases. However,
within each correct direction, the parser still selects
the wrong head - for instance, when it correctly
predicts a leftward attachment, it often chooses a
head that is too far to the left.

6 Conclusions

We present a joint multitask architecture for unified
morphosyntactic parsing that achieves first place in
the UniDive 2025 shared task. Our key contribution
is explicitly modeling content word identification
as a classification task, creating a robust cascade

where the identification determines parsing and
feature assignment.

Our analysis reveals systematic error patterns
pointing to specific improvement opportunities.
Case confusions concentrate on core grammatical
distinctions (Nom-Acc), while dependency errors re-
flect the expected challenges at the nmod-obl bound-
ary. While these patterns are linguistically under-
standable, they suggest potential room for improve-
ment through weighted training or specialized han-
dling of frequently confused categories, though
such optimizations may yield only incremental
gains.

A more substantial enhancement to the annota-
tion scheme could be making explicit which func-
tion words contribute features to which content
words. Currently, function words are marked with
‘_’ and their grammatical information is incorpo-
rated into "related" content words, but these re-
lationships remain implicit. An indexing system
could explicitly link each function word to its tar-
get content word. This would not only reduce am-
biguity in feature assignment but also make the
annotation more transparent for researchers unfa-
miliar with specific languages, as they could trace
exactly how morphosyntactic information flows
from function words to content words in the uni-
fied representation.

Finally, the 30-point performance gap between
Portuguese and Turkish highlights fundamental
challenges in handling typologically diverse lan-
guages within a unified framework. While the
parser excels at the predominantly projective struc-
tures, Turkish’s agglutinative morphology and flex-
ible word order might be introducing some diffi-
culties. The dispersed error patterns observed for
Turkish—contrasting with the concentrated confu-
sions in other languages—suggest that the current
architecture may not be optimal for highly non-
projective languages. Future work could explore
specialized parsing algorithms designed for non-
projective structures or alternative architectures
that better handle long-distance dependencies and
flexible word order. Despite these challenges, our
results across nine languages demonstrate the vi-
ability of joint morphosyntactic modeling for the
task.
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Abstract

This paper presents a system for the UniDive
Morphosyntactic Parsing (MSP) Shared Task,
where it ranked second overall among partici-
pating teams. The task introduces a morphosyn-
tactic representation that jointly models syntac-
tic dependencies and morphological features
by treating content-bearing elements as graph
nodes and encoding functional elements as fea-
ture annotations, posing challenges for con-
ventional parsers and necessitating more flex-
ible, linguistically informed approaches. The
proposed system combines a typology-aware,
multitask parser with a multilingual content/-
function classifier to handle structural variance
across languages. The architecture uses adapter
modules and language embeddings to encode
typological information. Evaluations across
9 typologically varied languages confirm that
the system can accurately replicate both uni-
versal and language-specific morphosyntactic
patterns.

1 Introduction

Morphosyntactic parsing aspires to integrate syn-
tactic structure with fine-grained morphological an-
notation to offer a deeper and linguistically neutral
understanding of sentence structure. The UniDive
Morphosyntactic Parsing (MSP) Shared Task of-
fers a novel paradigm that challenges conventional
parsing assumptions by restructuring dependency
trees around content-bearing elements and func-
tional grammatical units. In this new schema, only
content nodes—such as lexical verbs, nouns, and
adjectives—are represented explicitly in the graph,
while functional elements like auxiliaries, clitics,
and determiners are removed and represented as
features of the content words. Moreover, the for-
mat integrates abstract nodes for dropped or elided
arguments, which are syntactically required but
not present on the surface, as commonly seen in
pro-drop languages.

Such a shift from surface-token-based syntax to
deeper morphosyntactic abstraction makes this task
both linguistically rich and technically challeng-
ing. Traditional parsers must be adapted to filter
out functional nodes and accommodate missing
heads, necessitating new modeling strategies. In
response to the novel task format, this study adapts
the UDapter model (Üstün et al., 2020, 2022), a
typologically informed multilingual dependency
parser. The original architecture is extended with
a content/function classifier and decoding routines
are modified accordingly, while multitask learn-
ing is leveraged for both dependency parsing and
morphological tagging. This approach not only
conforms to the structural assumptions of the MSP
task but also exploits cross-lingual signals across 9
diverse languages.

Evaluated in the official shared task, the pro-
posed system ranks second overall. As the first
adaptation of UDapter to the MSP framework, it in-
troduces a content/function classifier to align pars-
ing with the task’s structure. By combining multi-
lingual pretraining, typological conditioning, and
multitask learning, the system effectively integrates
syntax and morphology beyond surface-level rep-
resentations, offering a robust solution for typolog-
ically diverse parsing.

This paper is structured as follows: Section 2
reviews related work on dependency parsing and
morphosyntactic modeling. Section 3 presents the
system architecture. Section 4 details the experi-
mental setup and results. Section 5 concludes the
paper and outlines directions for future research.

2 Related Work

Dependency parsing methods are traditionally
grouped into two paradigms: transition-based and
graph-based approaches. Transition-based parsers,
such as those by Nivre (2003); Nivre et al. (2006);
Hall et al. (2007), incrementally construct depen-
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dency trees through local decisions. These models
are computationally efficient but often suffer from
error propagation. A significant advancement in
this line was the biaffine parser of Dozat and Man-
ning (2016), built on Kiperwasser and Goldberg
(2016), which introduced attention-based arc and
label scoring and achieved state-of-the-art results
across many languages.

Multilingual dependency parsing has gained
traction due to the Universal Dependencies (UD)
framework (de Marneffe et al., 2021), which stan-
dardizes syntactic annotation across more than 100
languages. Multilingual benchmarks enabled by
UD treebanks include CoNLL-X (Buchholz and
Marsi, 2006), CoNLL 2007 (Nivre et al., 2007),
and CoNLL 2018 (Zeman et al., 2018). Full pars-
ing pipelines from raw text to dependency struc-
tures in 75 languages were evaluated in the CoNLL
2018 shared task.

Modern approaches increasingly rely on multi-
lingual pretrained language models like mBERT
(Devlin et al., 2019) and XLM-RoBERTa (Con-
neau et al., 2020). UDify (Kondratyuk and Straka,
2019) was among the first to use mBERT for joint
multitask prediction of POS tags, morphological
features, lemmas, and dependencies across all UD
languages. Its universal parameter sharing, how-
ever, made it less flexible for languages with low
resources or typological distance. By introducing
lightweight adaptor modules in between mBERT
layers, UDapter (Üstün et al., 2020, 2022) ad-
dressed this issue and preserved the advantages of
multilingual pretraining while enabling typology-
aware, language-specific transformation. This ap-
proach improved generalization, especially when
resources were scarce or the setting is zero shot.

The Morphosyntactic Parsing (MSP) Shared
Task (Goldman et al., 2025) presents an updated
parsing approach in which function words are ap-
pended as morphological features and only con-
tent words are represented as syntactic nodes. Ab-
stract nodes are also integrated to represent dropped
or implicit arguments, such as pro-drop pronouns.
This annotation strategy decouples word segmenta-
tion from syntactic structure, enabling more typo-
logically robust morphosyntactic parsing.

3 System Architecture

The system integrates a multilingual content/func-
tion classifier with a universal dependency parser
to handle the structural transformations introduced

by the MSP shared task. In this format, functional
nodes—such as determiners, auxiliaries, adposi-
tions, and punctuation—are excluded from the de-
pendency graph by assigning them null heads, ren-
dering them incompatible with standard parsing
methods. As illustrated in Figure 1, adpositions
like sonra and clitic constructions like –kine are
not linked via dependency arcs. Instead, their mor-
phological contributions are absorbed into the par-
ent node: for instance, the combination gittikten
sonra alters the original Case=Abl to Case=Tps,
and sizin + –kine merges into a single node with
Case=Gen;Dat. To support this abstraction, a
BERT-based classifier is applied in preprocess-
ing to identify and remove functional tokens be-
fore parsing. The UDapter model, equipped with
typology-aware adapters and multitask heads for
both morphological tagging and dependency pars-
ing, then processes the remaining content nodes
under this structurally modified scheme.

3.1 UDapter Model Architecture
Built on top of mBERT, UDapter is a multilin-
gual, multitask neural architecture intended for
morphological tagging and universal dependency
parsing across typologically disparate languages.
By combining shared task heads with language-
specific adapter modules, it facilitates effective
cross-lingual generalization, especially in situa-
tions with limited resources and a rich morphology.

The architecture consists of three main compo-
nents: (1) a frozen mBERT encoder that provides
deep multilingual token representations; (2) adapter
modules that introduce language-specific transfor-
mations between encoder layers; and (3) shared
task heads for parsing and tagging that operate over
the adapter-enhanced embeddings.

Language embeddings are learned during train-
ing by projecting URIEL typological features (Lit-
tell et al., 2017) with a multi-layer perceptron, fol-
lowing Üstün et al. (2020, 2022). This projection
allows structurally sensitive adaptation without re-
lying on fixed encodings, enabling UDapter to op-
timize language embeddings for parsing quality.

Adapter Modules UDapter uses residual bottle-
neck adapters inserted after each transformer layer,
following the formulation in Houlsby et al. (2019).
Each adapter transforms the hidden state h ∈ Rd

as:

Adapter(h) = h+Wuf(LN(h)Wd) (1)
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Figure 1: Data Formats

Here, LN denotes layer normalization, f is a non-
linearity (typically ReLU or GELU), and Wd ∈
Rd×b, Wu ∈ Rb×d are projection matrices defining
the bottleneck structure. This configuration enables
efficient language-specific adaptation while keep-
ing the main encoder frozen.

Task Heads UDapter includes two task heads
shared across languages. The Dependency Parsing
Head uses a biaffine attention mechanism to predict
syntactic arcs and labels. For each token pair, head
and dependent projections are computed as:

rhead
i = MLPhead(hi), r

dep
j = MLPdep(hj)

The score of an arc from token i to token j is given
by:

s(i, j) = rhead⊤
i Warcr

dep
j + U⊤

arc[r
head
i ; r

dep
j ] + barc

A separate biaffine classifier is used to assign de-
pendency labels to each scored arc.

The Morphological Tagging Head follows a
multi-label setup, predicting the value of each mor-
phological attribute (e.g., Case, Number, Tense)
independently. For each attribute f , a dedicated
softmax layer is applied:

ŷ
(f)
i = softmax(W (f)hi + b(f))

where W (f), b(f) are task-specific parameters.
This factored approach allows the model to gener-
alize better on rare tag combinations compared to
predicting a concatenated tag string.

3.2 Content/Function Classifier (CF-BERT)
To identify functional nodes in a language-agnostic
way, bert-base-multilingual-cased is fine-
tuned on a binary token classification task. Func-
tional nodes (e.g., AUX, DET, ADP) are excluded
from the standard parsing graph, as they are as-
signed null heads in the MSP format and their
contribution is represented through morphological
features. The classifier computes:

p(yi|xi) = softmax(Wchi + bc) (2)

where hi is the contextual embedding of token xi
from mBERT, and Wc, bc are learned parameters.

Training data is constructed from the MSP
shared task data by labeling tokens with null heads
as functional and others as content. All languages
are used jointly during training, resulting in a multi-
lingually trained model that achieves high accuracy
and enables reliable identification of functional
nodes prior to dependency parsing.

4 Experimental Setup & Results

In this section, the multilingual parsing system’s
test set results, evaluation methods, and training
configuration are shown. Key hyperparameters,
implementation details, and necessary preparation
steps for the MSP shared task format are explained.
Three metrics—MSLAS, LAS, and morphologi-
cal feature (Feats) F1—are used to compare the
empirical performance across languages in the mul-
tilingual and monolingual setups.
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4.1 Experimental Setup

The models are trained on an NVIDIA L40S GPU
using the AllenNLP framework (Gardner et al.,
2018). While the training set consists of uncovered
Universal Dependencies treebanks, the test set is
displayed in covered format1. Tokenization and
segmentation are recovered during evaluation using
UDPipe 2.0 (Straka, 2018) just during test time.

The bert-base-multilingual-cased model
is used as the shared backbone, frozen through-
out, with adapter modules and task-specific de-
coders trained on top. Input embeddings incor-
porate language-specific adapter representations
using syntax, phonology, and phoneme inventory
features. Morphological features are modeled with
factored outputs using separate softmax layers for
each attribute.

Dropout is applied at multiple levels: 0.15 in
BERT adapters, 0.2 in word dropout, and 0.5 in
decoders. Layer dropout and language embed-
ding dropout are both set to 0.1. Language em-
beddings are 32-dimensional vectors learned from
typological features. The batch size is dynami-
cally adjusted using a maximum amount of 3200
tokens per batch. Training is performed for up to 80
epochs with early stopping and gradient clipping
(∥∇∥ ≤ 5). Total training time was approximately
12.3 hours, with peak GPU memory usage reach-
ing 28.3GB. No additional hyperparameter tuning
was performed; the configurations were adopted
directly from the original UDapter work (Üstün
et al., 2020, 2022).

4.2 Results & Discussion

Tables 1a–1c report performance on the covered
test set using MSLAS, LAS, and Feats F1 metrics.
As the test data omits structural and morpholog-
ical annotations, UDPipe is used during evalua-
tion to recover segmentation and token boundaries
only. This ensures compatibility with the uncov-
ered training format while allowing test-time eval-
uation against the shared task metrics.

The submitted system corresponds to the
multilingual configuration, where all languages
are trained jointly with shared parameters and
language-specific adapters. For comparison, a
monolingual baseline is included, consisting of sep-

1The “covered” version, as referred to throughout the paper,
includes only the # text = “...” line for each sentence in the data
files, with all remaining annotations removed. The “uncovered”
version of the data can be seen in the example provided in
Figure 1.

arately trained models for each language without
cross-lingual transfer.

Multilingual Superiority The multilingual
model consistently outperforms its monolingual
counterparts across all metrics, demonstrating
the effectiveness of cross-lingual transfer in
morphosyntactic parsing. On average, it yields
a relative improvement of +6.20 in MSLAS
F1, +7.45 in LAS F1, and +7.21 in Feats F1
(Tables 1a–1c). These gains are particularly
pronounced in English (+7.61 MSLAS, +7.19
LAS, +4.40 Feats), Italian (+7.58, +7.66, +7.19),
and Serbian (+7.69, +6.82, +4.06), suggesting
that typological proximity and morphological
richness play key roles in enhancing multilingual
adapter-based learning.

Such improvements also indicate that the shared
parameter space of UDapter—augmented with
language-specific adapters and multitask supervi-
sion—facilitates better generalization in low- to
medium-resource settings. Even for languages
with complex morphology and flexible word or-
der, such as Turkish, notable gains are achieved
(+7.50 MSLAS, +7.50 LAS, +4.36 Feats), confirm-
ing the model’s robustness within MSP’s revised
structural paradigm.

Abstract Node Omission A key limitation of the
current architecture is its inability to model abstract
nodes, despite their presence in the training data.
These nodes represent syntactic elements with no
surface realization—such as dropped subjects or
objects—but still function as content nodes with
syntactic heads and morphological features. For
example, in the sentence provided in Figure 1, the
subject pronoun ben is not expressed in the surface
form but is represented by an abstract node with
ID 6.1. This node functions syntactically as the
subject of the verb veririm and carries person and
number features.

Since the test set is provided in covered format,
abstract nodes must have been generated before
parsing, which requires nontrivial modifications to
standard pipelines. As our current system lacks this
capability, recall is penalized in languages where
such structures are common. Turkish is particularly
affected due to its reliance on pro-drop construc-
tions and agglutinative morphology. As shown
in Table 2, Turkish exhibits the highest propor-
tion of abstract nodes (13.45%), contributing to its
relatively lower evaluation gains. Omitting such
content nodes impacts both dependency arc and
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System AVG cz en he it pl pt sr sv tr
Monolingual 55.08 70.30 52.11 37.62 49.95 54.47 63.53 68.35 58.56 40.85
Multilingual 61.28 73.02 59.72 43.44 57.53 60.40 68.07 76.04 64.99 48.35
Diff ↑6.20 ↑2.72 ↑7.61 ↑5.82 ↑7.58 ↑5.93 ↑4.54 ↑7.69 ↑6.43 ↑7.50

(a) MSLAS F1 scores

System AVG cz en he it pl pt sr sv tr
Monolingual 58.86 74.87 58.60 43.53 53.98 59.60 69.53 73.79 63.39 45.20
Multilingual 66.31 77.57 65.79 49.68 61.64 65.62 73.97 80.61 69.67 52.70
Diff ↑7.45 ↑2.70 ↑7.19 ↑6.15 ↑7.66 ↑6.02 ↑4.44 ↑6.82 ↑6.28 ↑7.50

(b) LAS F1 scores

System AVG cz en he it pl pt sr sv tr
Monolingual 73.29 85.41 76.35 63.48 69.54 73.19 79.88 85.47 81.09 71.15
Multilingual 80.50 87.22 80.75 68.94 76.73 78.46 83.12 89.53 84.56 75.51
Diff ↑7.21 ↑1.81 ↑4.40 ↑5.46 ↑7.19 ↑5.27 ↑3.24 ↑4.06 ↑3.47 ↑4.36

(c) Feats F1 scores

Table 1: Test set performance per language using covered CoNLL-U and predicted content/function labels. Each
subtable reports one metric.

morphological feature prediction.

Lang. Abs. Total Rate (%)
Czech 2441 87857 2.78
English 30 7732 0.39
Hebrew 171 5717 2.99
Italian 161 9956 1.62
Polish 1238 34310 3.61
Portuguese 915 32625 2.80
Serbian 45 11466 0.39
Swedish 14 20128 0.07
Turkish 1553 11544 13.45

Table 2: Rates of abstract nodes per language in the test
sets. Turkish shows the highest omission rate.

Functional Node Filtering with CF-BERT
Prior to parsing, functional nodes are filtered using
a dedicated content/function classifier, CF-BERT.
This preprocessing step is essential for the MSP
task, where functional nodes—such as auxiliaries,
conjunctions, and determiners—are excluded from
the dependency graph. To align with the MSP an-
notation scheme, CF-BERT is trained on the uncov-
ered training split and validated on the uncovered
development split. That is, whether a token had
a head annotation in the CoNLL-U file was used
as the class label in our content/function classi-
fication task. To maintain direct supervision and
avoid dependence on POS tags or language-specific
heuristics, we used only surface forms of words as
input features.

As shown in Table 3, the classifier achieves
excellent results across all metrics, maintaining
above 99% accuracy, precision, recall, and F1 score.
These scores confirm the classifier’s effectiveness
in consistently identifying and filtering out non-
content elements. With high-confidence functional
filtering in place, the UDapter parser receives clean,
content-bearing structures, enhancing both arc pre-
diction and cross-lingual generalization.

Metric Score

Accuracy 99.57%
Precision 99.04%
Recall 99.04%
F1 Score 99.04%

Table 3: CF-BERT performance on functional node
classification using the uncovered training (train) and
development (dev) splits of the MSP dataset.

Structural Universality through Multitask
Learning UDapter’s multitask design aligns
closely with the shared task’s goal of simultane-
ously modeling syntactic dependencies and mor-
phological features. The system predicts both
arc structures and token-level features in a uni-
fied framework, allowing complementary signals
to guide representation learning. By using fac-
tored morphological decoders and typology-aware
adapters, the model generalizes well to the struc-
tural diversity present in the 9 target languages.

As seen in Tables 1b and 1c, UDapter achieves
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strong performance across both syntactic and mor-
phological dimensions. LAS gains demonstrate ro-
bust parsing capabilities, with improvements such
as +7.66 in Italian and +7.19 in English, while
Feats F1 results such as +7.19 in Italian, +5.27 in
Polish, +4.36 in Turkish show accurate modeling
of rich morphological systems. The factored de-
coding architecture enables efficient learning over
sparse feature combinations, particularly beneficial
in morphologically complex settings. These results
affirm that structurally aware multitask systems can
offer a linguistically grounded and scalable solu-
tion to cross-lingual morphosyntactic parsing.

5 Conclusion

This work presents the first successful adaptation
of the UDapter model to the UniDive MSP Shared
Task, which challenges traditional parsing by in-
troducing structurally flexible and typologically
informed dependency representations. The task for-
mat—featuring abstract nodes and functional node
eliminations—necessitates substantial revisions to
conventional parsing pipelines.

To address these challenges, the proposed sys-
tem combines a BERT-based functional node clas-
sifier (CF-BERT) with UDapter’s multilingual
adapter architecture and factored multitask de-
coders. CF-BERT aligns training and test condi-
tions by filtering out non-content elements with
near-perfect accuracy, allowing the parser to fo-
cus exclusively on content-bearing structures. This
setup enhances both syntactic and morphological
prediction under cross-lingual supervision.

Experimental results show that the multilingual
system consistently outperforms monolingual base-
lines across MSLAS, LAS, and Feats F1 metrics,
with particularly strong gains in morphologically
rich languages like Turkish and typologically adja-
cent languages like Italian and Serbian. The results
affirm the system’s core strengths: typology-aware
representation, functional node filtering, and multi-
task structural learning. Future improvements may
focus on integrating abstract node generation to
better capture pro-drop phenomena and further en-
hance recall in structurally underspecified contexts.

Limitations

Despite the fact that it works well across languages
in the MSP Shared Task, some limitations affect
the scope and architecture of the proposed system.

Although abstract nodes are present in the train-

ing data, the current model architecture does not
learn or predict them. These nodes typically corre-
spond to syntactic elements that are not explicit in
surface form, such as dropped subjects or pronouns
in pro-drop languages like Turkish. Since the test
data is covered, special mechanisms are required to
incorporate abstract nodes into parsing and decod-
ing. Designing models that can effectively handle
such structures remains an open direction for future
research.

Second, the content/function classifier is only
used as a preprocessing step and is not integrated
into the multitask learning process. A more unified
framework may be able to jointly learn this classi-
fication in addition to parsing and labeling, which
could improve task interaction.

Additionally, the system just slightly alters its
default hyperparameters. Language-specific typo-
logical embeddings, dropout rates, and adaption
sizes are all fixed. Custom configurations can fur-
ther enhance performance, particularly in environ-
ments with complex morphology or constrained
resources.

Lastly, the experiments only use the 9 languages
that were included in the challenge. The robustness
and universality of the model would be supported
by further evaluation on datasets with greater diver-
sity of typologies.

These limitations open up a number of paths
for future study, such as deeper task integration,
structural modeling of abstract nodes, and more
comprehensive multilingual testing.
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Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. CoNLL 2018 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–21, Brussels, Belgium. Association
for Computational Linguistics.

33



Author Index

Acar, Kutay, 1, 27
Alves, Diego, 1
Améstica, Demian Inostroza, 19

Baczkowska, Anna, 1

Eryigit, Gulsen, 1, 27

Goldman, Omer, 1
Guest, Chris, 19

Krippnerová, Lenka, 1
Kurniawan, Kemal, 19

Mistica, Meladel, 19

Nivre, Joakim, 1

Pagano, Adriana, 1
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