@inproceedings{kyslyi-etal-2025-unlp,
title = "The {UNLP} 2025 Shared Task on Detecting Social Media Manipulation",
author = "Kyslyi, Roman and
Romanyshyn, Nataliia and
Sydorskyi, Volodymyr",
editor = "Romanyshyn, Mariana",
booktitle = "Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.unlp-1.12/",
doi = "10.18653/v1/2025.unlp-1.12",
pages = "105--111",
ISBN = "979-8-89176-269-5",
abstract = "This paper presents the results of the UNLP 2025 Shared Task on Detecting Social Media Manipulation. The task included two tracks: Technique Classification and Span Identification. The benchmark dataset contains 9,557 posts from Ukrainian Telegram channels manually annotated by media experts. A total of 51 teams registered, 22 teams submitted systems, and 595 runs were evaluated on a hidden test set via Kaggle. Performance was measured with macro F1 for classification and token{-}level F1 for identification. The shared task provides the first publicly available benchmark for manipulation detection in Ukrainian social media and highlights promising directions for low{-}resource propaganda research. The Kaggle leaderboard is left open for further submissions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kyslyi-etal-2025-unlp">
<titleInfo>
<title>The UNLP 2025 Shared Task on Detecting Social Media Manipulation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Kyslyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nataliia</namePart>
<namePart type="family">Romanyshyn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Volodymyr</namePart>
<namePart type="family">Sydorskyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Romanyshyn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-269-5</identifier>
</relatedItem>
<abstract>This paper presents the results of the UNLP 2025 Shared Task on Detecting Social Media Manipulation. The task included two tracks: Technique Classification and Span Identification. The benchmark dataset contains 9,557 posts from Ukrainian Telegram channels manually annotated by media experts. A total of 51 teams registered, 22 teams submitted systems, and 595 runs were evaluated on a hidden test set via Kaggle. Performance was measured with macro F1 for classification and token-level F1 for identification. The shared task provides the first publicly available benchmark for manipulation detection in Ukrainian social media and highlights promising directions for low-resource propaganda research. The Kaggle leaderboard is left open for further submissions.</abstract>
<identifier type="citekey">kyslyi-etal-2025-unlp</identifier>
<identifier type="doi">10.18653/v1/2025.unlp-1.12</identifier>
<location>
<url>https://aclanthology.org/2025.unlp-1.12/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>105</start>
<end>111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The UNLP 2025 Shared Task on Detecting Social Media Manipulation
%A Kyslyi, Roman
%A Romanyshyn, Nataliia
%A Sydorskyi, Volodymyr
%Y Romanyshyn, Mariana
%S Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (online)
%@ 979-8-89176-269-5
%F kyslyi-etal-2025-unlp
%X This paper presents the results of the UNLP 2025 Shared Task on Detecting Social Media Manipulation. The task included two tracks: Technique Classification and Span Identification. The benchmark dataset contains 9,557 posts from Ukrainian Telegram channels manually annotated by media experts. A total of 51 teams registered, 22 teams submitted systems, and 595 runs were evaluated on a hidden test set via Kaggle. Performance was measured with macro F1 for classification and token-level F1 for identification. The shared task provides the first publicly available benchmark for manipulation detection in Ukrainian social media and highlights promising directions for low-resource propaganda research. The Kaggle leaderboard is left open for further submissions.
%R 10.18653/v1/2025.unlp-1.12
%U https://aclanthology.org/2025.unlp-1.12/
%U https://doi.org/10.18653/v1/2025.unlp-1.12
%P 105-111
Markdown (Informal)
[The UNLP 2025 Shared Task on Detecting Social Media Manipulation](https://aclanthology.org/2025.unlp-1.12/) (Kyslyi et al., UNLP 2025)
ACL