@inproceedings{bazdyrev-etal-2025-transforming,
title = "Transforming Causal {LLM} into {MLM} Encoder for Detecting Social Media Manipulation in Telegram",
author = "Bazdyrev, Anton and
Bashtovyi, Ivan and
Havlytskyi, Ivan and
Kharytonov, Oleksandr and
Khodakovskyi, Artur",
editor = "Romanyshyn, Mariana",
booktitle = "Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.unlp-1.13/",
doi = "10.18653/v1/2025.unlp-1.13",
pages = "112--119",
ISBN = "979-8-89176-269-5",
abstract = "We participated in the Fourth UNLP shared task on detecting social media manipulation in Ukrainian Telegram posts, addressing both multilabel technique classification and token-level span identification. We propose two complementary solutions: for classification, we fine-tune the decoder-only model with class-balanced grid-search thresholding and ensembling. For span detection, we convert causal LLM into a bidirectional encoder via masked language modeling pretraining on large Ukrainian and Russian news corpora before fine-tuning. Our solutions achieve SOTA metric results on both shared task track. Our work demonstrates the efficacy of bidirectional pretraining for decoder-only LLMs and robust threshold optimization, contributing new methods for disinformation detection in low-resource languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bazdyrev-etal-2025-transforming">
<titleInfo>
<title>Transforming Causal LLM into MLM Encoder for Detecting Social Media Manipulation in Telegram</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anton</namePart>
<namePart type="family">Bazdyrev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Bashtovyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Havlytskyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleksandr</namePart>
<namePart type="family">Kharytonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artur</namePart>
<namePart type="family">Khodakovskyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Romanyshyn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-269-5</identifier>
</relatedItem>
<abstract>We participated in the Fourth UNLP shared task on detecting social media manipulation in Ukrainian Telegram posts, addressing both multilabel technique classification and token-level span identification. We propose two complementary solutions: for classification, we fine-tune the decoder-only model with class-balanced grid-search thresholding and ensembling. For span detection, we convert causal LLM into a bidirectional encoder via masked language modeling pretraining on large Ukrainian and Russian news corpora before fine-tuning. Our solutions achieve SOTA metric results on both shared task track. Our work demonstrates the efficacy of bidirectional pretraining for decoder-only LLMs and robust threshold optimization, contributing new methods for disinformation detection in low-resource languages.</abstract>
<identifier type="citekey">bazdyrev-etal-2025-transforming</identifier>
<identifier type="doi">10.18653/v1/2025.unlp-1.13</identifier>
<location>
<url>https://aclanthology.org/2025.unlp-1.13/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>112</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transforming Causal LLM into MLM Encoder for Detecting Social Media Manipulation in Telegram
%A Bazdyrev, Anton
%A Bashtovyi, Ivan
%A Havlytskyi, Ivan
%A Kharytonov, Oleksandr
%A Khodakovskyi, Artur
%Y Romanyshyn, Mariana
%S Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (online)
%@ 979-8-89176-269-5
%F bazdyrev-etal-2025-transforming
%X We participated in the Fourth UNLP shared task on detecting social media manipulation in Ukrainian Telegram posts, addressing both multilabel technique classification and token-level span identification. We propose two complementary solutions: for classification, we fine-tune the decoder-only model with class-balanced grid-search thresholding and ensembling. For span detection, we convert causal LLM into a bidirectional encoder via masked language modeling pretraining on large Ukrainian and Russian news corpora before fine-tuning. Our solutions achieve SOTA metric results on both shared task track. Our work demonstrates the efficacy of bidirectional pretraining for decoder-only LLMs and robust threshold optimization, contributing new methods for disinformation detection in low-resource languages.
%R 10.18653/v1/2025.unlp-1.13
%U https://aclanthology.org/2025.unlp-1.13/
%U https://doi.org/10.18653/v1/2025.unlp-1.13
%P 112-119
Markdown (Informal)
[Transforming Causal LLM into MLM Encoder for Detecting Social Media Manipulation in Telegram](https://aclanthology.org/2025.unlp-1.13/) (Bazdyrev et al., UNLP 2025)
ACL