@inproceedings{akhynko-etal-2025-hidden,
title = "Hidden Persuasion: Detecting Manipulative Narratives on Social Media During the 2022 {R}ussian Invasion of {U}kraine",
author = "Akhynko, Kateryna and
Kosovan, Oleksandr and
Trokhymovych, Mykola",
editor = "Romanyshyn, Mariana",
booktitle = "Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.unlp-1.19/",
doi = "10.18653/v1/2025.unlp-1.19",
pages = "194--202",
ISBN = "979-8-89176-269-5",
abstract = "This paper presents one of the top-performing solutions to the UNLP 2025 Shared Task on Detecting Manipulation in Social Media. The task focuses on detecting and classifying rhetorical and stylistic manipulation techniques used to influence Ukrainian Telegram users. For the classification subtask, we fine-tuned the Gemma 2 language model with LoRA adapters and applied a second-level classifier leveraging meta-features and threshold optimization. For span detection, we employed an XLM-RoBERTa model trained for multi-target, including token binary classification. Our approach achieved 2nd place in classification and 3rd place in span detection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akhynko-etal-2025-hidden">
<titleInfo>
<title>Hidden Persuasion: Detecting Manipulative Narratives on Social Media During the 2022 Russian Invasion of Ukraine</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kateryna</namePart>
<namePart type="family">Akhynko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleksandr</namePart>
<namePart type="family">Kosovan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mykola</namePart>
<namePart type="family">Trokhymovych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Romanyshyn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-269-5</identifier>
</relatedItem>
<abstract>This paper presents one of the top-performing solutions to the UNLP 2025 Shared Task on Detecting Manipulation in Social Media. The task focuses on detecting and classifying rhetorical and stylistic manipulation techniques used to influence Ukrainian Telegram users. For the classification subtask, we fine-tuned the Gemma 2 language model with LoRA adapters and applied a second-level classifier leveraging meta-features and threshold optimization. For span detection, we employed an XLM-RoBERTa model trained for multi-target, including token binary classification. Our approach achieved 2nd place in classification and 3rd place in span detection.</abstract>
<identifier type="citekey">akhynko-etal-2025-hidden</identifier>
<identifier type="doi">10.18653/v1/2025.unlp-1.19</identifier>
<location>
<url>https://aclanthology.org/2025.unlp-1.19/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>194</start>
<end>202</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hidden Persuasion: Detecting Manipulative Narratives on Social Media During the 2022 Russian Invasion of Ukraine
%A Akhynko, Kateryna
%A Kosovan, Oleksandr
%A Trokhymovych, Mykola
%Y Romanyshyn, Mariana
%S Proceedings of the Fourth Ukrainian Natural Language Processing Workshop (UNLP 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (online)
%@ 979-8-89176-269-5
%F akhynko-etal-2025-hidden
%X This paper presents one of the top-performing solutions to the UNLP 2025 Shared Task on Detecting Manipulation in Social Media. The task focuses on detecting and classifying rhetorical and stylistic manipulation techniques used to influence Ukrainian Telegram users. For the classification subtask, we fine-tuned the Gemma 2 language model with LoRA adapters and applied a second-level classifier leveraging meta-features and threshold optimization. For span detection, we employed an XLM-RoBERTa model trained for multi-target, including token binary classification. Our approach achieved 2nd place in classification and 3rd place in span detection.
%R 10.18653/v1/2025.unlp-1.19
%U https://aclanthology.org/2025.unlp-1.19/
%U https://doi.org/10.18653/v1/2025.unlp-1.19
%P 194-202
Markdown (Informal)
[Hidden Persuasion: Detecting Manipulative Narratives on Social Media During the 2022 Russian Invasion of Ukraine](https://aclanthology.org/2025.unlp-1.19/) (Akhynko et al., UNLP 2025)
ACL