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Abstract

Slot and intent detection (SID) is a classic nat-
ural language understanding task. Despite this,
research has only more recently begun focus-
ing on SID for dialectal and colloquial varieties.
Many approaches for low-resource scenarios
have not yet been applied to dialectal SID data,
or compared to each other on the same datasets.
We participate in the VarDial 2025 shared task
on slot and intent detection in Norwegian va-
rieties, and compare multiple set-ups: varying
the training data (English, Norwegian, or di-
alectal Norwegian), injecting character-level
noise, training on auxiliary tasks, and applying
Layer Swapping, a technique in which layers of
models fine-tuned on different datasets are as-
sembled into a model. We find noise injection
to be beneficial while the effects of auxiliary
tasks are mixed. Though some experimenta-
tion was required to successfully assemble a
model from layers, it worked surprisingly well;
a combination of models trained on English and
small amounts of dialectal data produced the
most robust slot predictions. Our best models
achieve 97.6% intent accuracy and 85.6% slot
F1 in the shared task.

1 Introduction

Slot and intent detection (SID) is a classic natural
language understanding (NLU) task. Research to-
day has mainly focused on standard languages with
many speakers (e.g., Schuster et al., 2019; Xu et al.,
2020; Li et al., 2021; FitzGerald et al., 2023). How-
ever, even when performance on a related standard
language is high, SID for non-standard varieties
can be challenging. This can be due to spelling
variation (Srivastava and Chiang, 2023b) and syn-
tactic differences that complicate cross-lingual slot
filling (Artemova et al., 2024). Furthermore, the
lack of task data in the relevant language varieties
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Figure 1: Overview of our approaches: pre-trained lan-
guage models (PLMs) fine-tuned on English, machine-
translated Norwegian data or the dialectal development
set; noise injection into the Norwegian data; training
on auxiliary tasks in addition to SID data (sequentially
or jointly); assembling layers of models fine-tuned on
different datasets.

complicates the adaptation of SID models to under-
resourced varieties.

In this paper, we report on the results of our
participation in the VarDial 2025 shared task on
slot and intent detection in Norwegian standard and
dialect varieties (NorSID; Scherrer et al., 2025).
We compare multiple strategies for improving the
performance of SID systems (Figure 1):

1. Fine-tuning models on large amounts of gold-
standard English or silver-standard Norwe-
gian data, or smaller amounts of gold-standard
Norwegian dialect data (§4.1);
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2. Adding noise to the Norwegian training data
to make models more robust to spelling varia-
tion (§4.2);

3. Additionally training on auxiliary NLP tasks
in Norwegian (§4.3);

4. Assembling layers of models fine-tuned on
different tasks or languages into a new model
to combine their capabilities (§4.4).

We share our code at https://github.com/
mainlp/NorSID.

2 Related Work

In the past few years, research on SID for dialects
and non-standard languages has gained popularity.
The multilingual SID dataset xSID (van der Goot
et al., 2021a; Aepli et al., 2023; Winkler et al.,
2024) contains evaluation data in over a dozen
languages, including non-standard varieties like
Neapolitan, and German dialects spoken in Switzer-
land, South Tyrol, and Bavaria. It has recently been
extended with translations into Norwegian dialects
(Mæhlum and Scherrer, 2024), which are the focus
of this shared task. We provide more details in §3.

Using xSID, van der Goot et al. (2021a) investi-
gate multi-task learning with auxiliary tasks in the
target language (or a closely related standard lan-
guage). Similarly, Krückl et al. (2025) include aux-
iliary tasks in multi-task learning and intermediate-
task training set-ups for dialectal SID. Both studies
find that the effects depend on both the auxiliary
task(s) and the target task. We include auxiliary
tasks in one of our experiments (§4.3).

Two previous shared tasks have focused on di-
alectal SID (Aepli et al., 2023; Malaysha et al.,
2024). Useful approaches by the participants were
to train on SID data in multiple languages (Kwon
et al., 2023), injecting character-level noise into
the training data (Srivastava and Chiang, 2023b;
we use a similar method in §4.2), and ensembling
models trained on dialectal translations of the train-
ing set (Ramadan et al., 2024; Elkordi et al., 2024;
Fares and Touileb, 2024).

Outside the context of a shared task, Abboud
and Oz (2024) also focus on generating synthetic
dialectal training data. Lastly, Muñoz-Ortiz et al.
(2025) find that visual input representations are
more robust than subword token embeddings when
transferring German intent classification models to
related dialects.

Label type / data subset Train Dev Test

Intents 18 15 15
Slot types 40 33 34

English 43k (not used)
Bokmål (MT) 43k 1×300 1×500
North Norwegian — 2×300 2×500
Trønder Norwegian — 3×300 3×500
West Norwegian — 5×300 5×500

Total (evaluation) — 3 300 5 500
Training on dev 2 970 330 5 500

Table 1: Distribution of labels and languages/dialects
in the data. While 15 intent types occur in both the
development and test splits, only 14 of them overlap.

Numerous other methods for improving NLP
performance in low-resource settings exist (Hed-
derich et al., 2021), many of which have not yet
been applied to dialectal or cross-lingual SID. One
recently proposed approach is assembling layers of
models trained on different tasks or languages into
a new model (Bandarkar et al., 2024), which we
explore in §4.4.

3 Data

We use the xSID 0.6 dataset (van der Goot et al.,
2021a) and its Norwegian extension NoMusic
(Mæhlum and Scherrer, 2024). xSID combines
re-annotated versions of two SID datasets (Coucke
et al., 2018; Schuster et al., 2019). It includes
43k English training sentences, as well as smaller
development and test datasets that have been trans-
lated into other languages. The shared task also
includes an automatic translation of the training
set into Bokmål (Scherrer et al., 2025). For these
sentence-level translations, the intent labels re-
mained unchanged, while the slot annotations were
automatically projected during the translation.

NoMusic provides translations of xSID’s devel-
opment and test utterances into the Norwegian Bok-
mål orthography and Norwegian dialects from three
of the four major dialect groups (Table 1). The di-
alect groups have two to five different translations
each. In some of our experiments, we train on the
development set, which we split into a training and
new development set according to a 90:10 ratio.

Slots are annotated in the BIO scheme. Intent
classification is measured with accuracy, and slot
filling with strict span F1.

One of our approaches uses datasets for auxiliary

https://github.com/mainlp/NorSID
https://github.com/mainlp/NorSID
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tasks; these are described in §4.3. We also use ad-
ditional datasets for Layer Swapping experiments,
described in §4.4.

4 Methodology

We construct several baselines that differ in their
training data and pretrained language model (PLM)
choices (§4.1). We subsequently build on (some of)
these baselines to examine the effects of different
recent approaches to improving performance on
low-resource language data. We submitted three
systems each for intent classification and for slot
filling; here we also discuss models we tested but
did not submit to the shared task. When selecting
systems for submission, we considered their perfor-
mance on the development set while also aiming
for a diverse set of systems.

We use MaChAmp (van der Goot et al., 2021b;
v.0.4.2, commit 052044a) with default hyperpa-
rameters to fine-tune the PLMs to simultaneously
predict slot and intent labels. The slot predictions
are decoded via a conditional random field (CRF;
Lafferty et al., 2001). Each model is fine-tuned for
20 epochs, and the best epoch is chosen based on
performance on the development set. For Layer
Swapping, we build on an implementation of Joint-
BERT (§4.4).

4.1 Baselines

We fine-tune three PLMs as baselines: 1) the mono-
lingual Norwegian NorBERT v3 (Samuel et al.,
2023);1 2) ScandiBERT (Snæbjarnarson et al.,
2023),2 which was pretrained on data in Norwe-
gian, Danish, Swedish, Icelandic, and Faroese; and
3) mDeBERTa v3 (He et al., 2021, 2023),3 which
was pretrained on 100 languages, including Nor-
wegian (Conneau et al., 2020), and has performed
well on dialectal SID data (Artemova et al., 2024;
Krückl et al., 2025).

We fine-tune each PLM three times: once on
xSID’s English training data, once on the machine-
translated Norwegian version, and once on NoMu-
sic’s development data.

Shared task submission We include the
mDeBERTa model trained on the development
data in our submissions (slots and intents).4

1ltg/norbert3-base (Apache 2.0)
2vesteinn/ScandiBERT (AGPL 3.0)
3microsoft/mdeberta-v3-base (MIT)
4mainlp_{slots,intents}1_mdeberta_siddial_8446

4.2 Character-Level Noise

Aepli and Sennrich (2022) introduced a simple
method for improving transfer from a language to a
closely related variety by inserting character-level
noise into the training data. Training on the noised
data can make a model more robust to spelling
variation that results in subword tokenization dif-
ferences. This method has shown to be beneficial
in several studies of transfer to closely related lan-
guages and dialects (Aepli and Sennrich, 2022; Sri-
vastava and Chiang, 2023a,b; Brahma et al., 2023;
Blaschke et al., 2023, 2024).

We use the machine-translated Norwegian data
and randomly select a given percentage of the al-
phabetic5 words in a sentence. For each of the
selected words, we pick a random position within
that word, and delete a character and/or insert one
of the alphabetic characters that appear in the Nor-
wegian development set. We implement this once
for each of the three PLMs, and compare selecting
10, 20, and 30% of the words.

Shared task submission We submit the
mDeBERTa model trained on data with 20%
noised words as an intent classification model.6

4.3 Auxiliary Tasks

In another set of experiments, we include auxiliary
tasks to potentially teach the model tasks related to
slot filling and/or relevant information about Nor-
wegian (or Norwegian dialects). Previous studies
on training SID models on auxiliary tasks have
found that these tasks have different effects on in-
tent detection and slot filling (van der Goot et al.,
2021a; Krückl et al., 2025).

Since we are especially interested in whether
training on Norwegian auxiliary data can add use-
ful language information to the cross-lingually eval-
uated English SID model, we use ScandiBERT due
to its strong baseline performance when trained
on the English SID data. For comparison, we re-
peat the experiments with the machine-translated
Norwegian SID data.

In each of our auxiliary task experiments, we add
one additional task to SID. The model parameters
are shared across tasks, except for the task-specific
decoders. We compare two set-ups: joint multi-
task learning (where the model is simultaneously
learning SID and the other task, cf. Ruder, 2017),

5We ignore punctuation and other symbols as well as num-
bers written as digits.

6mainlp_intents3_mdeberta_sidnor20_5678

https://huggingface.co/ltg/norbert3-base
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
https://huggingface.co/vesteinn/ScandiBERT
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/agpl-3.0.md
https://huggingface.co/microsoft/mdeberta-v3-base
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md
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and intermediate-task training (where the model
is first trained on the auxiliary task, and afterwards
on the SID data, cf. Pruksachatkun et al., 2020).

Prior work suggests that choosing auxiliary tasks
that are similar to the target task is beneficial for
both multi-task learning (Schröder and Biemann,
2020) and intermediate-task training (Poth et al.,
2021; Padmakumar et al., 2022). Training on target-
language tasks in cross-lingual set-ups has yielded
mixed results (van der Goot et al., 2021a; Montariol
et al., 2022; Krückl et al., 2025). We include the
following auxiliary tasks, which are either in the
target dialects or similar to slot filling:

Dialect identification We use NoMusic’s devel-
opment data for dialect classification (with the
same 90:10 split as in §4.1) and classify instances
on the dialect group level (North Norwegian, Trøn-
der, West Norwegian, or Bokmål).

Part-of-speech tagging and dependency parsing
To potentially teach the models about Norwegian
sentence structure, we use the part-of-speech (POS)
and syntactic dependency annotations of the UD
Nynorsk LIA (Øvrelid et al., 2018) treebank. The
dataset contains transcriptions of dialectological
interviews.7 We use LIA’s phonetic transcriptions
and adjust the spelling to be somewhat more natural
(Appendix §A). We only include transcribed dialec-
tal material (i.e., exclude utterances by interview-
ers), leaving 2.3k training and 622 development
sentences. We treat POS tagging and dependency
parsing as two separate auxiliary tasks.

We note that some of the treebank’s dependency
annotations violate the Universal Dependencies
(de Marneffe et al., 2021) standards and the tree-
bank has been retired from official releases. Never-
theless, we believe that it contains valuable infor-
mation about Norwegian sentence structure.

Named entity recognition (NER) NER has been
useful in other multi-task SID work (Krückl et al.,
2025), and gold-standard named entity information
has been found to boost slot-filling performance
(Yao et al., 2013). As no dialectal NER datasets
are available, we use the NorNE dataset (Jørgensen
et al., 2020) with a reduced label set (person, orga-

7The dialect distribution of this treebank is different than
that of NoMusic, with around 30% each of East, North, and
West Norwegian sentences, and 7% Trønder. We use the script
by Blaschke et al. (2023) to merge the phonetic transcriptions
with the treebank.

nization, location, product, event, derived words).8

The dataset contains 29.9k training and 4.3k devel-
opment set sentences (slightly more than half are in
Bokmål, and the rest in the other written standard,
Nynorsk).

Shared task submission We submit the model
first trained on the dependency data and subse-
quently on xSID’s English data for slot filling.9

4.4 Layer Swapping

Layer Swapping was recently proposed as a method
for cross-lingual transfer (Bandarkar et al., 2024).
The authors fine-tune a task expert on English in-
struction data, and a language expert on general-
purpose data in the target language. They replace
the top and bottom layers of the task expert with
the corresponding layers of the language expert,
producing a model capable of performing the task
in the target language. We adapt this method – orig-
inally applied to LLAMA 3.1 8B (Grattafiori et al.,
2024), a 32-layer decoder model – to a 12-layer
encoder model.

Experts We use mDeBERTa (He et al., 2023),
as it is the strongest baseline when fine-tuned on
the NoMusic training data. We replace layers of
an EnSID expert with layers from a Norwegian
expert, and consider different options for the latter.

To produce the EnSID expert, we jointly fine-
tune on the English xSID training data for both
slot filling and intent classification. We build on
a JointBERT implementation (closely following
Chen et al., 2019),10 using default hyperparame-
ters, which do not include a CRF and specify 10
epochs. The best checkpoint is chosen based on
performance on the NoMusic development set.

We consider four options for the Norwegian
expert: the NoMusic dialect baseline described
in §4.1 (here referred to as the NorSID expert), as
well as three Norwegian language experts.

To produce the language experts, we fine-tune11

with the masked language modeling (MLM) objec-
tive using an example from Sentence Transformers

8We merge the two geo-political entity types GPE_LOC and
GPE_ORG into location and organization, respectively, and en-
tirely remove the category of miscellaneous entities, since it
occurs very rarely in the dataset.

9mainlp_slots3_scandibert_deprel_sid_8446
10https://github.com/monologg/JointBERT

(Apache 2.0; commit 00324f6)
11mDeBERTa is trained using replaced token detection

(RTD; He et al., 2023) rather than MLM, hence we do not
consider MLM fine-tuning a continuation of training.

https://github.com/monologg/JointBERT
https://github.com/monologg/JointBERT?tab=Apache-2.0-1-ov-file#readme
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(Reimers and Gurevych, 2019).12 We train for 20
epochs and select the best checkpoint based on
perplexity on the development set of NoMusic.

We use three different datasets for the language
experts to examine whether the text style/genre
and language variety makes a difference: the Bok-
mål transcriptions of interviews in the Nordic Di-
alect Corpus (NDC; Johannessen et al., 2009),13 the
Bokmål part of the Norwegian Dependency Tree-
bank (NDT; Solberg et al., 2014) which contains
news articles, blog posts, and government reports/
transcripts,14 and the NoMusic training set.

Identifying layers to replace As an ablation ex-
periment to identify layers of the EnSID expert that
might be replaceable, we revert its layers back to
their state in the pretrained model and observe the
performance of the resulting model on the NoMu-
sic development set. For each of the mDeBERTa
models fine-tuned on the English xSID data with
three different seeds, we revert pairs of sequential
layers (i.e., 0,1, then 1,2, and so on).

Unlike Bandarkar et al. (2024), we are unable to
use the mean absolute value (MAV) of the differ-
ence in parameters through fine-tuning to identify
less salient layers. The variance in change of the
parameters of the EnSID expert is very small at
1.5×10−7, such that no layers exhibit significantly
higher MAVs than others. This may be due to
any number of differences of our setup, such as
model architecture, layer depth, fine-tuning objec-
tive, amount of fine-tuning data, or simply duration
of fine-tuning; further analysis of layer-wise train-
ing dynamics is left to future work.

Model assembly The layer-reverting experi-
ments identify the first two layers of the EnSID
expert as suited for replacement. We replace the to-
ken embeddings and the first two encoder layers of
the EnSID expert with the corresponding layers of
the Norwegian expert, resulting in four assembled
models, one for each Norwegian expert. We do not
merge any parameters.

Shared task submission We submit the model
produced by assembling layers of the NorSID ex-
pert and the EnSID expert.15

12https://github.com/UKPLab/sentence-
transformers (Apache 2.0; commit 1cb196a)

13We use a random 80:10:10 split of half of the corpus.
14This treebank is the basis of the NorNE dataset (§4.3).
15mainlp_{slots,intents}2_mdeberta_topline_

swapped

Training data Model Intents Slots

English NorBERT 95.1 0.2 79.7 0.4
(train) ScandiBERT 94.8 0.8 80.7 0.7

mDeBERTa 92.4 1.8 76.5 1.2

Norwegian NorBERT 96.2 0.5 53.9 0.3
(train, MT) ScandiBERT 96.3 0.1 54.6 0.4

mDeBERTa 96.7 0.3 55.2 1.1

Nor. dialect NorBERT 94.2 0.6 76.8 1.1
(dev, 90%) ScandiBERT 92.8 0.6 81.2 0.6

mDeBERTa 93.4 0.7 83.2 1.0 *

Table 2: Test scores of baseline models (intent accu-
racy in %, slot span F1 in %) trained on English data,
machine-translated Norwegian data, or 90% of the di-
alectal Norwegian development set. The results are
averaged over three runs, with standard deviations as
subscripts. * Model submitted to the shared task (slots
and intents).

5 Results and Analysis

In this section, we mainly focus on the test scores.
For the shared task, we submitted models consid-
ering their development set performance. These
are denoted by asterisks in the results tables, and
further discussed in §5.5. All models were trained
(and evaluated on the development set) before the
test set was released.

Table 8 in Appendix B shows the development
and test scores for all systems.

5.1 Baselines

The training data choice had a greater effect on the
SID quality than the PLM choice (Table 2).

Training data Despite the language difference,
the models trained on the English training data
provide strong baselines – especially for the Nor-
wegian and Scandinavian PLMs, which achieve
intent prediction accuracies of 94.8–95.1% and slot-
filling F1 scores of 79.7–80.7%.

The models trained on the machine-translated
Norwegian training set produce better intent la-
bels (with accuracies between 96.2 and 94.8%), but
are poor slot fillers (53.9–55.2% F1).16 We sus-
pect this is due to quality issues with the slot label

16This is similar to the results by (van der Goot et al., 2021a),
who find training on translated data to be beneficial for intent
classification. In their experiments, translated data improves
slot filling for a PLM with poor baseline scores for cross-
lingual slot filling, but lowers the performance of another
model whose cross-lingual slot-filling scores were already
quite high when trained on English data.

https://github.com/UKPLab/sentence-transformers/blob/master/examples/unsupervised_learning/MLM/train_mlm.py
https://github.com/UKPLab/sentence-transformers/blob/master/examples/unsupervised_learning/MLM/train_mlm.py
https://github.com/UKPLab/sentence-transformers?tab=Apache-2.0-1-ov-file
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projections. To substantiate this, we compare the
strict span F1 scores with their loose counterpart,
which allows spans that only partially overlap. Al-
though the models trained on machine-translated
Norwegian achieve much lower strict F1 scores,
the loose F1 scores are similar to those of the other
baselines (Table 9, Appendix B). This suggests
that the slot annotations of the machine-translated
Norwegian baselines mainly suffer from incorrect
spans, as would be expected from poor projections,
which affect the span, but not the label.

Training the models on the largely dialectal de-
velopment set led to overfitting – these models
show the greatest drop between development and
test set performance (Table 8 in Appendix B). This
may have been exacerbated by how we stratified
the data, as we did not ensure that all translations
of the same sentence were assigned to the same
split. Furthermore, the development set is signifi-
cantly smaller than the training set (2.9k vs. 43.6k
samples). Finally, one intent and one slot type were
present in the test but not in the development set, as
well as seven I labels (though the corresponding B
was seen, more on this under Limitations). Despite
all of this, the models fine-tuned on this dataset
produce some of the best slot annotations (with F1
scores between 76.8 and 83.2%).

PLM No PLM is consistently the best or worst
model. For the models trained on the English or
machine-translated Norwegian data, performance
on slot filling appears to be correlated with per-
formance on intent classification, and vice versa.
However, there seems to be no relation between
the two for the models trained on the dialectal data
where, e.g., NorBERT produces the best intent la-
bels but the worst slot annotations.

5.2 Character-Level Noise

Fine-tuning on noised data generally improves the
models’ performance (Table 3) – by up to 1.2 per-
centage points (pp.) for intent classification and up
to 1.3 pp. for slot filling. Which noise level helps
most depends on the PLM choice; this is similar
to previous findings on using noised data for POS
tagging in Norwegian dialects and other language
varieties (Blaschke et al., 2023). However, the ef-
fect of noise also depends on the task – the trends
are different for intent classification and slot filling.

Prior work has found the ratios of words that
were split into multiple subword tokens to be
a strong predictor for transfer success between

PLM Noise (%) Intents ∆ Slots ∆

NorBERT 0 96.2 0.5 53.9 0.3
10 96.4 0.3 +0.2 55.1 0.8 +1.2
20 97.2 0.2 +1.0 55.0 0.3 +1.1
30 97.4 0.5 +1.2 54.1 1.1 +0.1

ScandiBERT 0 96.3 0.1 54.6 0.4
10 96.5 0.4 +0.2 55.9 0.7 +1.3
20 97.5 0.2 +1.2 54.6 0.5 –0.0
30 97.1 0.5 +0.8 54.8 0.5 +0.2

mDeBERTa 0 96.7 0.3 55.2 1.1
10 96.5 0.9 –0.2 55.6 1.0 +0.4
20 97.5 0.2 +0.8 55.5 0.5 +0.2 *
30 97.0 0.5 +0.3 56.2 0.5 +1.0

Table 3: Test scores of models trained on noised data
(intent accuracy in %, slot span F1 in %). The results
are averaged over three runs, with standard deviations
as subscripts. The ∆ columns show the differences to
the respective baseline (0 % noise). * Model submitted
to the shared task (intents).

closely related varieties: the more similar the split
word ratios are in the training and evaluation data,
the more successful transfer tends to be (Blaschke
et al., 2023). In our study, only the intent classifi-
cation results correlate with this difference in split
word ratio (Table 10 in Appendix B). We hypothe-
size that the weak correlations with the slot-filling
results might be due to the mixed quality of the
silver-standard slot annotations in the training data.

5.3 Auxiliary Tasks
The effect of the auxiliary tasks depends on the
tasks themselves, the language of the SID data, and
whether they are trained before or simultaneously
with the target SID task. Table 4 shows the re-
sults on the SID test data; Table 11 in Appendix B
also shows the development scores on the SID and
auxiliary task data.

Intermediate-task training vs. multi-task learn-
ing For slot filling, intermediate-task training
(training first on the auxiliary task and afterwards
on the SID data) generally achieves better results
than simultaneous multi-task learning. For intent
classification, there is no clear trend.

We additionally examine whether the effects of
multi-task learning are similar across tasks by in-
specting the models’ performances on the devel-
opment sets of the auxiliary tasks (Table 11 in
Appendix B). For the auxiliary tasks, multi-task
learning nearly always yields worse results than
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Task Intents ∆ Slots ∆

English training data
Baseline 94.8 0.8 80.7 0.7

Dial × 83.8 3.2 –11.0 75.8 1.2 –4.9
→ 94.0 1.7 –0.8 79.2 0.9 –1.5

POS × 94.9 0.3 +0.0 81.1 0.3 +0.4
→ 94.7 0.2 –0.2 82.2 1.1 +1.5

Dep × 93.5 0.6 –1.3 81.5 0.2 +0.8
→ 94.9 1.2 +0.1 81.8 0.7 +1.1 *

NER × 95.3 1.0 +0.5 80.6 1.0 –0.1
→ 95.0 0.4 +0.1 81.1 0.9 +0.4

Machine-translated Norwegian training data
Baseline 96.3 0.1 54.6 0.4

Dial × 89.2 1.4 –7.1 51.7 0.1 –2.9
→ 95.2 1.0 –1.1 53.7 0.5 –0.9

POS × 96.8 0.4 +0.4 53.7 0.6 –0.9
→ 96.7 0.4 +0.3 54.4 0.8 –0.2

Dep × 96.9 0.3 +0.5 53.7 0.2 –0.9
→ 96.4 0.3 +0.1 54.8 0.6 +0.2

NER × 96.9 0.1 +0.6 53.8 0.3 –0.8
→ 96.4 0.5 +0.1 53.5 1.0 –1.1

Table 4: Test scores of models trained on auxiliary
tasks (intent accuracy in %, slot span F1 in %). The
results are averaged over three runs, with standard devia-
tions as subscripts. The ∆ columns show the differences
to the respective baseline. Key: Dial = dialect identifica-
tion, dep = dependency parsing, ×= multitask learning,
→= intermediate-task training. * Model submitted to
the shared task (slots).

exclusively training on the auxiliary tasks (as the
first step in intermediary-task training). Although
the performance gap between the two settings is
especially large for the two syntactic tasks (with
multi-task learning achieving scores that are 11.8–
26.7 pp. lower), the impact on the corresponding
SID performance is less clear-cut (with multi-task
learning leading by up to 0.5 pp. in some constella-
tions and falling behind by 2.1 pp. in others).

Auxiliary task choice and SID training language
Dialect identification diminishes both the intent
classification and slot-filling performance in all of
our set-ups (most drastically in the multi-task set-
up with the English SID data, with drops of 11.0 pp.
for intent classification and 4.9 pp. for slot filling).

The effects of the other tasks depend on the SID

training language. For the models fine-tuned on
Norwegian data, the other tasks slightly improve
intent classification performance (with gains of up
to 0.6 pp.) but typically negatively impact slot fill-
ing (with changes between +0.2 and –0.9 pp.) – the
grammatical tasks do not mitigate the effect of poor
slot annotations in the machine-translated data.

For the English SID training data, the syntax-
related tasks (POS tagging and dependency pars-
ing) improve slot filling by between 0.4 and 1.5 pp.,
but have no or a negative effect on the intent classi-
fication performance (changes to the baseline be-
tween +0.1 and –1.3 pp.). Despite positive prior
findings (Krückl et al., 2025), NER has no or only
slightly positive effects on either SID task.

Dialects There is no apparent connection be-
tween the dialect distributions in the auxiliary task
training data and the SID performance on the differ-
ent dialect groups (Table 12 in Appendix B). This
applies both to the models trained on English SID
data and on the Norwegian translations, although
the gains per dialect group differ between them.

For the syntactic tasks, one possible explanation
is that the dialect transcriptions do not sufficiently
align with the ad-hoc dialect spellings used in No-
Music to show strong effects based on the repre-
sented dialect groups.

5.4 Layer Swapping

Identifying layers to replace Results of revert-
ing pairs of layers of the EnSID expert are shown
in Table 5. We found that in general, performance
decreased as later layers were reverted. This aligns
with our intuition that the later layers, being closer
to the classification heads, are particularly impor-
tant for performance.

Notably, we found that reverting layers 0 and 1
slightly increased performance on both slot filling
and intent classification (across three runs we ob-
served an average improvement of slot F1 of 3.0 pp.
and intent accuracy of 0.9 pp.). This improvement
through reverting is somewhat surprising, and sug-
gests that something about the fine-tuning process
on the English data is counterproductive to the ro-
bustness of the model to out-of-language data, at
least where the first two layers are concerned.

We also observed a large variance in the effect of
reverting the last two layers on intent classification,
this is due to the first seed seeing quite a large drop
(to 55.7%, the average accuracy of the other two
seeds was 86.1%).
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Layers Intents ∆ Slots ∆

none 95.1 0.6 77.1 1.4
0,1 96.1 0.4 +0.9 80.1 0.6 +3.0
1,2 96.0 0.2 +0.9 77.8 1.0 +0.6
2,3 95.1 0.8 0.0 69.9 0.5 –7.2
3,4 93.9 0.6 –1.2 65.8 0.2 –11.3
4,5 93.8 0.7 –1.4 68.0 1.6 –9.1
5,6 93.6 1.1 –1.5 69.3 2.0 –7.8
6,7 90.7 0.9 –4.5 63.1 5.8 –14.0
7,8 87.0 1.2 –8.1 59.7 3.8 –17.4
8,9 84.3 2.7 –10.8 58.0 2.5 –19.1
9,10 72.6 9.4 –22.6 54.1 5.5 –23.0
10,11 76.0 17.9 –19.2 59.4 0.6 –17.7

Table 5: Development scores of the EnSID expert
with reverted layers (intent accuracy in %, slot span
F1 in %). The results are averaged over three runs with
standard deviations as subscripts.

Norwegian Expert Intents ∆ Slots ∆

N/A – EnSID unchanged 95.1 0.6 77.1 1.4
N/A – EnSID reverted (0,1) 96.1 0.4 +0.9 80.1 0.6 +3.0
NorSID expert 98.3 0.4 +2.2 86.5 0.6 +9.6
NoMusic MLM 96.9 +0.8 78.8 +1.7
NDT MLM 97.4 +1.3 78.6 +1.5
NDC MLM 96.3 +0.2 77.9 +0.8

Table 6: Development scores of assembled models us-
ing different Norwegian experts (intent accuracy in %,
slot span F1 in %). Each Norwegian expert is assembled
with the EnSID expert. Results for the unchanged En-
SID expert and the best reverted model, layers 0,1, are
shown for comparison, each averaged over three runs.
The assembled model with the NorSID expert is aver-
aged over nine runs (for each combination of NorSID
and EnSID expert). We don’t repeat runs for unpromis-
ing language experts. The standard deviation, where
applicable, is denoted by subscripts.

Choosing a complementary expert Table 6
shows the results of replacing the first two lay-
ers of the EnSID expert with the corresponding
layers of each of our Norwegian experts. These
combinations performed roughly on par with or
slightly better than the reverted model, except for
the model containing the layers from the NorSID
expert, which performed better, particularly for slot
filling. Further analysis is needed to better under-
stand what makes layers useful for assembling into
a model, this is left for future work.

As these were exploratory preliminary experi-
ments, we do not repeat runs for unpromising lan-
guage experts.

Intents Slots

dev (no) test (no) dev (no) test (no)

EnSID expert 95.1 0.6 92.0 0.8 78.6 1.1 77.2 1.6
NorSID expert 99.4 0.0 93.4 0.7 96.4 0.4 83.2 1.0
Assembled* 98.3 0.4 96.4 0.2 86.5 0.6 84.9 0.5

dev (en) test (en) dev (en) test (en)

EnSID expert 100.0 0.0 99.2 0.0 97.1 0.3 96.0 0.3
NorSID expert 100.0 0.0 100.0 0.0 90.1 1.0 80.9 1.4
Assembled* 100.0 0.0 99.3 0.2 97.5 0.3 96.0 0.3

Table 7: Development and test scores of the origi-
nal experts and assembled model on NoMusic (no)
and xSID 0.6 English (en) (intent accuracy and slot F1
in %, best results bolded). The results are averaged over
three runs for the experts, and over nine runs for the as-
sembled model, with standard deviations as subscripts.
* Model submitted to the shared task (slots and intents).

Final submission Results for the submitted as-
sembled model (layers from the EnSID and Nor-
SID expert), and the individual experts on both
NoMusic and the xSID 0.6 English set are shown
in Table 7. Overall, the assembled model is more
robust to out-of-language data than the respective
experts, outperforming the EnSID expert on the
Norwegian development and test sets, and mostly
outperforming the Norwegian expert on the English
sets, except for intent classification on the test set.
We hypothesize that this exception may be due to
the EnSID expert overfitting the intent classifica-
tion task, which was not mitigated by using the first
two layers of the Norwegian SID expert.

Using only two layers of the Norwegian SID ex-
pert, which suffered from overfitting (§5.1), seems
to have a regularizing effect, as the assembled
model outperforms the Norwegian SID expert in
both tasks on the Norwegian test set.

5.5 Results of Shared Task Submissions
We submitted three systems per task (slot and intent
detection) and did not participate in dialect clas-
sification. The official results are provided in the
shared task overview paper (Scherrer et al., 2025)
and the accompanying website,17 and we include
them in Table 8 (Appendix B). Unlike the previous
sections, they only represent a single random seed.
Of our intent classification systems, noise injection
worked best (ranked 5th of all submissions; 97.64%
accuracy), narrowly followed by Layer Swapping

17https://github.com/ltgoslo/NoMusic/blob/main/
NorSID/results.md

https://github.com/ltgoslo/NoMusic/blob/main/NorSID/results.md
https://github.com/ltgoslo/NoMusic/blob/main/NorSID/results.md
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(6th rank; 97.16%). Both beat the baseline trained
only on the dialectal development set (10th rank;
93.47%).

For slot detection, Layer Swapping instead was
our best method, ranking third in the competition
(85.57% F1). Compared to our other two sub-
missions – the baseline trained on the develop-
ment set (5th rank; 83.68%) and the model with
intermediate-task training on dependency parsing
(6th rank; 82.57%) – it performed best on three out
of the four Norwegian varieties.

6 Discussion and Conclusion

The strength of our baselines suggest that the Nor-
SID task is, relatively speaking, less challenging
than other dialectical variants of xSID (cf. van der
Goot et al., 2021a; Aepli et al., 2023; Srivastava
and Chiang, 2023b; Kwon et al., 2023; Winkler
et al., 2024; Muñoz-Ortiz et al., 2025; Krückl et al.,
2025). We suspect that there is less deviation from
standard Norwegian, and less variation between the
dialects. This limits the gains we could expect from
additional methods, particularly on the intent clas-
sification task, where the accuracy of our baselines
ranges from 92.4% to 96.7% on the test set.

We observe somewhat of a trade-off between
performance on intent classification (strongest for
models trained on Norwegian data) and slot filling
(strongest for models trained on the gold-standard
English training or Norwegian development data;
§5.1). We hypothesize that the latter is due to
the poor quality of the slot labels in the machine-
translated Norwegian training data.

We see noise injection as a simple way to im-
prove transfer between a standard language and
related varieties (§5.2), although it requires access
to appropriate training data. Where a language has
enough resources for additional annotated datasets,
we see mixed effects from the inclusion of auxil-
iary NLP tasks (§5.3). Which auxiliary tasks help
SID performance depends on the target-task train-
ing data and SID subtask (intent classification vs.
slot filling) and remains hard to predict, requiring
further research.

Improving performance on the slot-filling task
proved to be quite difficult; our most successful
method by a small margin is the assembled model
made up of layers from a model trained on the
NoMusic development set (NorSID expert), and
another on the English xSID data (§5.4). Using
layers from both of these models seems to have

a regularizing effect and produces a model that is
able to perform well on both languages and suffers
less from overfitting than the NorSID expert.

We successfully adapted Layer Swapping – orig-
inally applied to a 32-layer decoder – to a 12-layer
encoder, demonstrating its potential for resource-
efficient cross-lingual transfer. Layer Swapping
could prove useful for modular solutions, as layers
for different languages could dynamically replace
those of a “base” SID expert to adapt the model.
We again note that the subset of the development
set of NoMusic we used, at 2.9k examples, is much
smaller than the set used to train our EnSID expert,
at 43.6k examples; this modular approach would
allow adaptation to different languages in a fairly
lightweight manner post-hoc.

We encourage further research comparing (and
combining) different methods for low-resource
NLP with the same training and/or evaluation data.

Limitations

Both MaChAmp and the JointBERT implemen-
tation only consider the exact labels seen during
training; consequently our SID models will not pre-
dict unseen I tags, even if the corresponding B tag
is known. In particular, the English xSID sets have
fewer I tags, i.e., corresponding slots are some-
times spread over more words in NoMusic. We
also find that the NoMusic test set has more I tags
than the development set.

While we compare several different approaches
for improving SID on this task, we find the condi-
tions of their success are difficult to generalize. For
example, no auxiliary task has prevailed. For Layer
Swapping, it is not clear what makes layers of par-
ticular expert suitable for assembly, and whether
our findings generalize to other models, languages,
or tasks. Further work is needed to understand
which method will work best for what conditions,
and how best to apply each method.

Because of time constraints, we were not able to
further investigate the effect of including auxiliary
datasets in standard vs. dialectal varieties. In partic-
ular, it would be interesting to include POS tagging
and dependency parsing on Bokmål or Nynorsk
data (e.g., the NDT and LIA treebanks we used in
other ways in this paper).

Similarly, we did not try MLM fine-tuning using
the dialect version of NDC to produce an expert
for Layer Swapping; on inspection of the corpus,
the Bokmål version seemed closer to the target
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language, and given the unpromising results using
the other MLM experts we did not explore this
further.
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Ljubešić, Kai North, Barbara Plank, Yves Scherrer,
and Marcos Zampieri. 2023. Findings of the VarDial
evaluation campaign 2023. In Tenth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial 2023), pages 251–261, Dubrovnik, Croatia.
Association for Computational Linguistics.

Noëmi Aepli and Rico Sennrich. 2022. Improving zero-
shot cross-lingual transfer between closely related
languages by injecting character-level noise. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 4074–4083, Dublin, Ireland.
Association for Computational Linguistics.

Ekaterina Artemova, Verena Blaschke, and Barbara
Plank. 2024. Exploring the robustness of task-
oriented dialogue systems for colloquial German va-
rieties. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
445–468, St. Julian’s, Malta. Association for Compu-
tational Linguistics.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj,
Rui Hou, Nayan Singhal, Hongjiang Lv, and Bing
Liu. 2024. Layer swapping for zero-shot cross-
lingual transfer in large language models. Preprint,
arXiv:2410.01335.

Verena Blaschke, Barbara Kovačić, Siyao Peng, Hin-
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A Spelling Changes to the Dialectological
Transcriptions

We make slight changes to the dialectological tran-
scriptions used in LIA based on LIA’s transcription
guidelines (Hagen et al., 2018). The idea is to
turn the transcriptions into slightly more plausible
spellings, but we want to stress that these rules are
simplistic and not meant to produce text that fully
emulates naturalistic dialect spellings.

• We replace ⟨L⟩ (/ó/, tjukk l ‘thick l’) with ⟨l⟩.
While it can also correspond to ⟨rd⟩, we found
that it much more often corresponds to ⟨l⟩ in
the data.

• We remove apostrophes (originally used to
mark syllabic consonants).

• The dialectological transcriptions use double
consonants to mark short vowels, which can
lead to consonant clusters that are unlikely to
occur in written Norwegian. In words where
a double consonant is followed by at least
one more consonant, we remove one of the
doubled consonants (C1C1C2→C1C2). If the
sequence is ⟨ssjt⟩ or ⟨ssjk⟩, we instead re-
place it with ⟨rst⟩ or ⟨rsk⟩, respectively. If
it otherwise starts with ⟨ssj⟩ or ⟨kkj⟩, we do
not remove the first ⟨s⟩ or ⟨k⟩.

B Detailed Results

All Table 8 shows the development and test
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Baselines Table 9 provides the results of addi-
tional slot-filling metrics for the baselines (§5.1).

Noise Table 10 shows the correlations between
the split word ratio difference of the noised training
sets and the dialectal evaluation sets (cf. §5.2).

Auxiliary tasks The remaining tables provide
additional details for §5.3. Table 11 focuses on the
set-ups with auxiliary tasks and shows the scores on
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focuses on the models trained on auxiliary tasks
and shows the dialect distributions in the auxiliary
task training data as well as the dialect-wise SID
results.
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Intents (acc., %) Slots (span F1, %)

Training data PLM Details Dev Test Subm. Dev Test Subm.

English (train) NorBERT baseline 96.9 0.4 95.1 0.2 79.9 0.1 79.7 0.4

ScandiBERT baseline 96.4 0.5 94.8 0.8 81.3 0.3 80.7 0.7
dial× 84.3 2.7 83.8 3.2 75.8 1.8 75.8 1.2
dial → 95.8 0.7 94.0 1.7 79.7 1.3 79.2 0.9
POS× 96.0 0.5 94.9 0.3 81.6 0.2 81.1 0.3
POS → 96.3 0.2 94.7 0.2 82.3 0.8 82.2 1.1
dep× 94.7 1.2 93.5 0.6 82.0 0.4 81.5 0.2
dep → 96.7 1.0 94.9 1.2 82.5 0.9 81.8 0.7 82.6
NER× 97.2 0.9 95.3 1.0 80.9 0.9 80.6 1.0
NER → 96.8 0.4 95.0 0.4 81.3 1.1 81.1 0.9

mDeBERTa baseline 95.3 1.1 92.4 1.8 77.3 1.2 76.5 1.2

Norwegian (MT) NorBERT baseline 98.3 0.4 96.2 0.5 55.7 0.5 53.9 0.3
(train) noise (10%) 98.5 0.4 96.4 0.3 57.3 0.2 55.1 0.8

noise (20%) 98.6 0.2 97.2 0.2 56.4 0.4 55.0 0.3
noise (30%) 99.0 0.1 97.4 0.5 56.4 1.3 54.1 1.1

ScandiBERT baseline 97.6 0.0 96.3 0.1 55.5 0.4 54.6 0.4
noise (10%) 97.8 0.1 96.5 0.4 56.9 0.9 55.9 0.7
noise (20%) 98.4 0.3 97.5 0.2 55.6 0.8 54.6 0.5
noise (30%) 98.0 0.4 97.1 0.5 56.5 0.6 54.8 0.5
dial× 89.8 1.4 89.2 1.4 53.0 0.1 51.7 0.1
dial → 96.1 1.0 95.2 1.0 54.4 0.4 53.7 0.5
POS× 97.9 0.3 96.8 0.4 54.0 0.5 53.7 0.6
POS → 97.8 0.5 96.7 0.4 55.5 0.4 54.4 0.8
dep× 98.0 0.4 96.9 0.3 54.5 0.2 53.7 0.2
dep → 97.5 0.7 96.4 0.3 55.7 0.5 54.8 0.6
NER× 97.9 0.6 96.9 0.1 54.6 0.5 53.8 0.3
NER → 97.6 0.2 96.4 0.5 54.1 0.6 53.5 1.0

mDeBERTa baseline 98.4 0.4 96.7 0.3 56.5 0.2 55.2 1.1
noise (10%) 98.5 0.6 96.5 0.9 56.7 0.7 55.6 1.0
noise (20%) 99.2 0.1 97.5 0.2 97.6 56.4 0.2 55.5 0.5
noise (30%) 98.9 0.5 97.0 0.5 57.6 0.3 56.2 0.5

Nor. dialect NorBERT baseline1 99.4 0.0 94.2 0.6 94.5 0.6 76.8 1.1
(dev 90%) ScandiBERT baseline1 99.6 0.2 92.8 0.6 96.0 0.6 81.2 0.6

mDeBERTa baseline1 99.4 0.0 93.4 0.7 93.5 96.4 0.4 83.2 1.0 83.7

Nor. dialect mDeBERTa EnSID expert 95.1 0.6 92.0 0.8 78.6 1.1 77.2 1.6
(dev 90%) / NorSID expert1,2 99.4 0.0 93.4 0.7 96.4 0.4 83.2 1.0
English assembled 98.3 0.4 96.4 0.2 97.2 86.5 0.6 84.9 0.5 85.6

Table 8: Intent classification and slot-filling scores for all systems on the development and test data, and for the
runs we submitted to the shared task. Results are averaged across three runs, with the exception of the assembled
system, which is averaged across nine total combinations of three runs each of both experts. Standard deviations
are denoted by subscripts. Key: Dial = dialect identification, dep = dependency parsing, ×= multitask learning,
→= intermediate-task training. 1For the models trained on 90% of the development data, the dev scores are
measured on the remaining 10%. 2The results for this model are already listed in the Norwegian dialect section
(mDeBERTa), but repeated here for easier comparison.
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Training data Model Loose Unlabelled Strict

English NorBERT 84.4 1.0 84.4 1.3 76.5 1.2
(train) ScandiBERT 88.0 0.3 88.2 0.2 80.7 0.7

mDeBERTa 86.8 0.2 87.0 0.7 79.7 0.4

Norwegian (MT) NorBERT 84.4 0.5 63.4 0.7 53.9 0.3
(train) ScandiBERT 86.0 0.6 62.9 0.4 54.6 0.4

mDeBERTa 85.7 0.4 63.3 1.1 55.2 1.1

Nor. dialect NorBERT 84.9 1.0 90.5 0.2 76.8 1.1
(dev 90%) ScandiBERT 87.9 0.4 93.1 0.3 83.2 1.0

mDeBERTa 86.6 0.5 92.6 0.2 81.2 0.6

Table 9: Test scores of baseline models on slot filling for F1 variants: loose, unlabelled, and strict span (all F1
scores in %). Strict span is the F1 score we use throughout, where both the span and label must be fully correct,
loose F1 allows for partial matches of the span (if the label is correct), and unlabelled ignores the label (considering
only the span overlaps). The results are averaged over three runs, with standard deviations as subscripts.

Intents Slots

PLM Split r pr ρ pρ r pr ρ pρ

mDeBERTa dev –0.51 0.09 –0.60 0.04 –0.56 0.06 –0.45 0.14
test –0.38 0.22 –0.44 0.15 –0.42 0.17 –0.35 0.27
dev+test –0.36 0.08 –0.44 0.03 –0.47 0.02 –0.39 0.06

ScandiBERT dev –0.57 0.06 –0.56 0.06 –0.24 0.44 –0.34 0.28
test –0.66 0.02 –0.68 0.02 0.14 0.66 0.07 0.83
dev+test –0.53 0.01 –0.50 0.01 –0.16 0.45 –0.19 0.36

NorBERT dev –0.70 0.01 –0.63 0.03 –0.16 0.63 –0.30 0.34
test –0.82 0.00 –0.81 0.00 –0.03 0.93 –0.09 0.79
dev+test –0.49 0.01 –0.56 0.00 –0.18 0.40 –0.27 0.20

Table 10: Correlations between the split word ratio difference and SID performance for the noising experi-
ments: Pearson’s r and Spearman’s ρ with corresponding p-values (p-values ≥0.05 have a grey background). Each
dev or test row is based on twelve observations (four noise levels à three initializations).



198

Intents Slots Aux. task performance (dev)

Task Dev ∆dev Test ∆test Dev ∆dev Test ∆test Dial POS Dep NER

English SID training data
Baseline 96.4 0.5 94.8 0.8 81.3 0.3 80.7 0.7

Dial × 84.3 2.7 –12.1 83.8 3.2 –11.0 75.8 1.8 –5.5 75.8 1.2 –4.9 75.9 3.5
→ 95.8 0.7 –0.6 94.0 1.7 –0.8 79.7 1.3 –1.6 79.2 0.9 –1.5 80.0 0.3

POS × 96.0 0.5 –0.4 94.9 0.3 +0.0 81.6 0.2 +0.3 81.1 0.3 +0.4 79.5 0.6
→ 96.3 0.2 –0.1 94.7 0.2 –0.2 82.3 0.8 +1.0 82.2 1.1 +1.5 92.1 0.0

Dep × 94.7 1.2 –1.8 93.5 0.6 –1.3 82.0 0.4 +0.7 81.5 0.2 +0.8 46.6 0.8
→ 96.7 1.0 +0.3 94.9 1.2 +0.1 82.5 0.9 +1.2 81.8 0.7 +1.1 67.8 0.6

NER× 97.2 0.9 +0.8 95.3 1.0 +0.5 80.9 0.9 –0.4 80.6 1.0 –0.1 93.2 0.2
→ 96.8 0.4 +0.4 95.0 0.4 +0.1 81.3 1.1 +0.0 81.1 0.9 +0.4 93.0 0.1

Machine-translated Norwegian SID training data
Baseline 97.6 0.0 96.3 0.1 55.5 0.4 54.6 0.4

Dial × 89.8 1.4 –7.8 89.2 1.4 –7.1 53.0 0.1 –2.6 51.7 0.1 –2.9 77.1 1.2
→ 96.1 1.0 –1.5 95.2 1.0 –1.1 54.4 0.4 –1.2 53.7 0.5 –0.9 79.7 0.3

POS × 97.9 0.3 +0.3 96.8 0.4 +0.4 54.0 0.5 –1.5 53.7 0.6 –0.9 70.3 1.4
→ 97.8 0.5 +0.2 96.7 0.4 +0.3 55.5 0.4 +0.0 54.4 0.8 –0.2 92.1 0.1

Dep × 98.0 0.4 +0.4 96.9 0.3 +0.5 54.5 0.2 –1.0 53.7 0.2 –0.9 41.1 0.9
→ 97.5 0.7 –0.1 96.4 0.3 +0.1 55.7 0.5 +0.2 54.8 0.6 +0.2 67.8 0.6

NER× 97.9 0.6 +0.3 96.9 0.1 +0.6 54.6 0.5 –0.9 53.8 0.3 –0.8 92.3 0.3
→ 97.6 0.2 –0.0 96.4 0.5 +0.1 54.1 0.6 –1.4 53.5 1.0 –1.1 93.0 0.1

Table 11: Performance of the models trained on auxiliary task data on the SID data (development and test)
and the auxiliary tasks (development sets). Scores are averaged over three runs (standard deviations in subscript
numbers) and in % – intent classification: accuracy, slot filling: span F1, dialect classification (“dial”): accuracy,
POS tagging: accuracy, dependency parsing (“dep”): labelled attachment score, NER: span F1. The ∆ columns
show the differences to the respective baseline. Joint multi-task learning is denoted by a ×, and intermediate-task
training by a →.
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Trained on auxiliary tasks and English SID data

Intents (acc., %) Slots (span F1, %)

Aux B ∆B N ∆N T ∆T W ∆W all ∆all B ∆B N ∆N T ∆T W ∆W all ∆all

none 96.30.7 93.31.5 94.00.9 95.60.5 94.80.8 83.71.0 75.70.8 79.30.7 82.80.8 80.70.7

9.2% 18.5% 26.9% 45.4% 9.2% 18.5% 26.9% 45.4%

Dial × 87.30.6 –9.1 72.86.1 –20.4 81.05.0 –13.0 89.21.7 –6.5 83.83.2 –11.0 82.70.9 –1.0 70.02.2 –5.7 70.11.8 –9.3 79.90.8 –2.9 75.81.2 –4.9
Dial → 96.50.9 +0.1 92.03.5 –1.3 92.01.6 –2.0 95.51.3 –0.2 94.01.7 –0.8 81.90.8 –1.9 75.41.8 –0.4 76.21.5 –3.2 82.00.2 –0.9 79.20.9 –1.5

0.0% 28.1% 7.6% 33.7% 0.0% 28.1% 7.6% 33.7%

POS × 95.90.9 –0.5 93.10.6 –0.2 94.00.9 +0.0 95.90.4 +0.2 94.90.3 +0.0 83.70.5 –0.1 77.00.2 +1.3 80.50.8 +1.2 82.60.3 –0.2 81.10.3 +0.4
POS → 96.20.4 –0.1 92.80.6 –0.5 93.70.2 –0.4 95.70.5 +0.1 94.70.2 –0.2 85.10.7 +1.3 77.31.7 +1.6 81.51.2 +2.2 83.80.9 +1.0 82.21.1 +1.5
Dep × 95.00.7 –1.3 91.60.8 –1.6 91.21.7 –2.8 95.40.1 –0.3 93.50.6 –1.3 83.80.6 +0.0 77.70.8 +2.0 80.40.3 +1.1 83.10.2 +0.3 81.50.2 +0.8
Dep → 95.91.2 –0.5 93.01.3 –0.2 94.31.9 +0.3 95.80.8 +0.1 94.91.2 +0.1 84.00.8 +0.3 77.51.9 +1.8 80.31.2 +0.9 83.90.4 +1.0 81.80.7 +1.1

100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

NER × 96.40.7 +0.1 94.11.4 +0.8 95.01.5 +0.9 95.80.6 +0.2 95.31.0 +0.5 83.92.2 +0.2 76.21.0 +0.5 79.11.0 –0.2 82.50.7 –0.4 80.61.0 –0.1
NER → 96.30.2 –0.1 93.60.9 +0.4 94.50.7 +0.5 95.50.2 –0.2 95.00.4 +0.1 84.52.0 +0.7 75.90.4 +0.2 79.31.6 +0.0 83.50.4 +0.7 81.10.9 +0.4

Trained on auxiliary tasks and machine-translated Norwegian SID data

Intents (acc., %) Slots (span F1, %)

Aux B ∆B N ∆N T ∆T W ∆W all ∆all B ∆B N ∆N T ∆T W ∆W all ∆all

none 97.40.0 94.90.1 96.90.5 96.30.2 96.30.1 58.70.3 50.91.1 54.60.9 55.20.4 54.60.4

9.2% 18.5% 26.9% 45.4% 9.2% 18.5% 26.9% 45.4%

Dial × 95.90.8 –1.5 80.14.1 –14.8 86.42.6 –10.5 93.30.6 –3.0 89.21.4 –7.1 57.30.8 –1.4 46.90.7 –4.1 50.30.5 –4.4 53.30.2 –1.9 51.70.1 –2.9
Dial → 97.60.0 +0.2 92.70.9 –2.3 95.50.9 –1.4 95.71.4 –0.6 95.21.0 –1.1 58.80.9 +0.1 51.00.2 +0.0 52.60.8 –2.0 54.40.7 –0.8 53.70.5 –0.9

0.0% 28.1% 7.6% 33.7% 0.0% 28.1% 7.6% 33.7%

POS × 97.60.4 +0.2 95.60.6 +0.6 97.20.2 +0.3 96.80.5 +0.5 96.80.4 +0.4 57.70.7 –1.0 50.60.2 –0.4 53.91.3 –0.8 54.00.5 –1.2 53.70.6 –0.9
POS → 97.50.4 +0.1 95.20.7 +0.3 97.30.3 +0.4 96.70.4 +0.4 96.70.4 +0.3 58.20.8 –0.4 51.30.6 +0.4 54.20.6 –0.4 54.91.1 –0.3 54.40.8 –0.2
Dep × 97.10.1 –0.3 95.80.6 +0.8 97.20.4 +0.4 97.00.1 +0.7 96.90.3 +0.5 57.90.6 –0.8 50.80.1 –0.2 53.90.1 –0.7 53.90.3 –1.3 53.70.2 –0.9
Dep → 97.50.3 +0.1 95.00.5 +0.1 97.10.2 +0.2 96.40.5 +0.1 96.40.3 +0.1 59.00.8 +0.3 52.00.4 +1.0 54.90.8 +0.3 55.00.7 –0.2 54.80.6 +0.2

100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

NER × 97.80.0 +0.4 95.40.4 +0.5 97.30.1 +0.4 97.00.0 +0.7 96.90.1 +0.6 58.50.2 –0.1 50.50.7 –0.5 54.00.6 –0.7 54.10.3 –1.1 53.80.3 –0.8
NER → 97.30.6 –0.1 95.10.6 +0.2 96.60.5 –0.3 96.60.5 +0.3 96.40.5 +0.1 57.71.2 –0.9 50.52.0 –0.5 52.61.1 –2.0 54.40.9 –0.8 53.51.0 –1.1

Table 12: Dialect-wise test results of the models trained on auxiliary tasks. The numbers in italics with blue
backgrounds describe the dialect distributions in the data used to train the respective auxiliary tasks (e.g., 28.1% of
the training data for the syntactic tasks is in North Norwegian). Key: B = Bokmål, N = North N., T = Trønder N.,
W = West Norwegian, ∆= difference to the baseline model (in pp.), ×= multi-task learning, →= intermediate-task
training.
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