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Abstract

This paper describes the LTG submission to
the VarDial 2025 shared task, where we partici-
pate in the Norwegian slot and intent detection
subtasks. The shared task focuses on Norwe-
gian dialects, which present challenges due to
their low-resource nature and variation. We
test a variety of neural models and training data
configurations, with the focus on improving
and extending the available Norwegian training
data. This includes automatically re-aligning
slot spans in Norwegian Bokmål, as well as
re-translating the original English training data
into both Bokmål and Nynorsk. We also re-
annotate an external Norwegian dataset to aug-
ment the training data. Our best models achieve
first place in both subtasks, achieving an span
F1 score of 0.893 for slot filling and an accu-
racy of 0.980 for intent detection. Our results
indicate that while translation quality is less
critical, improving the slot labels has a notable
impact on slot performance. Moreover, adding
more standard Norwegian data improves perfor-
mance, but incorporating even small amounts
of dialectal data leads to greater gains.

1 Introduction

The task of spoken language understanding (SLU)
is an essential part of task-oriented dialogue sys-
tems and voice assistants like Siri and Alexa. SLU
consists in annotating and identifying the mean-
ing of spoken prompts, and typically comprise an
Automatic Speech Recognition (ASR) component
for converting audio to text, alongside a Natural
Language Understanding (NLU) component for
extracting the semantic meaning of the utterance
(Faruqui and Hakkani-Tür, 2022).

Slot and intent detection (SID), also known as
slot filling and intent classification, is a key task
in NLU. Intent classification categorizes an entire
user utterance into a predefined intent class, de-
termining the purpose or goal behind the user’s
utterance. On the other hand, slot filling is a span

Intent Utterance

PlayMusic play with or without you by U2

Figure 1: Example utterance annotated with slots and
intent. Pink: track, green: artist.

labeling task that assigns each token in an utterance
a label, capturing the essential information required
to fulfill each intent, such as dates, locations and
names. An example is shown in Figure 1.

While significant progress has been made in the
field of NLU, the continued development of SID
models relies on the availability of datasets anno-
tated with slots and intents. In low-resource scenar-
ios, where little to no labeled data is available, chal-
lenges emerge in developing accurate SID models.
Over the years, there has been a notable increase
in research on various low-resource scenarios, and
VarDial has provided an important venue for discus-
sion and research in handling linguistic diversity
and low-resource scenarios (Aepli et al., 2023).

The 2025 iteration of the VarDial Shared Task
(Scherrer et al., 2025) introduces the novel NorSID
dataset to tackle the low-resource nature of Nor-
wegian dialects. This dataset includes prompts
intended for digital assistants across ten Norwe-
gian dialects as well as Norwegian Bokmål. Each
prompt is annotated with a dialect label, an intent
label, and slot spans following the BIO scheme.
NorSID therefore forms the foundation of this
Shared Task, which includes three subtasks: di-
alect identification, intent detection, and slot filling.
Our team participated in the latter two.

We make the following main contributions:

1. We compare various pre-trained models – both
multilingual and Norwegian-specific ones –
and fine-tune them on the xSID0.6 (van der
Goot et al., 2021a; Aepli et al., 2023; Win-
kler et al., 2024) data in English, Danish and
Norwegian.
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2. To enhance the quality of the Norwegian train-
ing data, we create a re-aligned version as
well as re-translations from English into both
Bokmål and Nynorsk.

3. We use the existing Norwegian split of the
MASSIVE dataset (FitzGerald et al., 2023) and
convert its annotations to the xSID0.6 annota-
tion scheme.1

2 Data and Evaluation

For developing our Norwegian SID models, the
xSID0.6 and NorSID datasets serve as our founda-
tional resources. To address the challenge of lim-
ited annotated Norwegian data, we experiment with
utilizing parts of the Norwegian split of MASSIVE
to augment the training data.

xSID0.6 is a recent NLU dataset, serving as a
benchmark for cross-lingual transfer with data in
17 languages, including 5 low-resource languages
and dialects. Although Norwegian is not part of
xSID0.6, a projected training set was created specifi-
cally for this Shared Task by translating the English
training data into Norwegian and aligning the slots
in the same way as for the non-English xSID0.6
training data.
xSID0.6 is derived from the English NLU

datasets Facebook (Schuster et al., 2019) and
Snips (Coucke et al., 2018), where the original
English development and test data were manually
translated and re-annotated into the other languages.
For high-resource languages, the training data was
machine-translated and slots were aligned using
attention (van der Goot et al., 2021a). The final
xSID0.6 dataset is annotated with 18 intents and 41
slots. It includes 43.6k training utterances for high-
resource languages, along with 300 development
and 500 test utterances for all languages.

NorSID is based on the NoMusic corpus (Mæh-
lum and Scherrer, 2024), and is a Norwegian exten-
sion of xSID0.6, with parallel data for 10 Norwe-
gian dialects along with Bokmål (B). The dialects
are grouped into 3 dialect areas, West Norwegian
(V), North Norwegian (N) and Trøndersk (T). The
dataset consists of translations of the validation and
test splits from xSID0.6, annotated with the same
slots and intents. Each utterance is translated into
all dialects by native speakers who use dialectal
writing on a regular basis, and slots are manually

1Our contributions are available at: https://github.
com/marthemidtgaard/SID-for-Norwegian-dialects

annotated by native NLP professionals. By includ-
ing several renditions of semantically identical ut-
terances, dialectal diversity is showcased, e.g., as
indicated by lexical and syntactic differences, and
this diversity introduces novel opportunities to en-
hance the robustness of both training and evaluation
of Norwegian SLU systems.

MASSIVE stands as the largest multilingual
SLU dataset to date, with “1M realistic, human-
created, labeled virtual assistant utterances”
(FitzGerald et al., 2023). The dataset comprises
51 languages, with 19.5k utterances per language
over 18 domains, 60 intents and 55 slots. MASSIVE
is thus more comprehensive than xSID0.6 and, with
some overlapping slots and intents, serves as a suit-
able resource for augmenting xSID0.6.
MASSIVE is, to our knowledge, the only other

SID annotated dataset that includes Norwegian, but
it only contains utterances in Norwegian Bokmål,
which limits its ability to capture the diverse nature
of the Norwegian language. With two official writ-
ten standards, Bokmål and Nynorsk, as well as nu-
merous dialectal variations, the effect of MASSIVE
might be limiting on the dialects.

Although limited to Bokmål, MASSIVE still offers
a valuable resource worth exploring. The process
of aligning Norwegian MASSIVE utterances to the
xSID0.6 scheme is described in section 4.3. How-
ever, since other SID annotated datasets are not
allowed in the Shared Task, we provide the models
based on MASSIVE outside of the competition.

Evaluation The evaluation of the slot and intent
subtasks is based on two primary metrics: span F1
score for slot filling and accuracy for intent detec-
tion. For span F1, both the span and slot label must
match the gold standard for the prediction to be
counted as correct. Intent accuracy measures the
proportion of correct intent predictions out of the
total number of utterances. Additionally, the mod-
els will be evaluated using dialect-specific slot and
intent scores to assess robustness to dialectal varia-
tion. We use the official evaluation script provided
by the organizers.

3 Existing Data and Pre-Trained Models

In recent years, jointly addressing the tasks of
slot and intent detection has been recognized as
an effective strategy (Weld et al., 2022). In this
work, we adopt this joint approach by utilizing the
MaChAmp0.4.2 toolkit (van der Goot et al., 2021b)

https://github.com/marthemidtgaard/SID-for-Norwegian-dialects
https://github.com/marthemidtgaard/SID-for-Norwegian-dialects
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with default hyperparameters for all experiments.
We evaluate the models on the NorSID develop-
ment set, and compare results to the results of
mBERT (Devlin et al., 2019), following the setup
in van der Goot et al. (2021a).

3.1 Pre-Trained Models

As a first experiment, we investigate which pre-
trained base models are the most suitable for
the task. We use several multilingual models
– XLM-R-large (Conneau et al., 2020), RemBERT
(Chung et al., 2020), mT0-base (Muennighoff
et al., 2023), mDeBERTaV3-base (He et al., 2022)
– all of which include Norwegian Bokmål in their
training data and have demonstrated state-of-the-
art performance on zero-shot cross-lingual tasks.
These models are therefore expected to exhibit
enhanced robustness in the low-resource scenario
of Norwegian (Artemova et al., 2024). Addition-
ally, we explore two Norwegian-specific models
– NB-BERT-base2 and NorBERT-base-3 (Samuel
et al., 2023) – which are trained on both Bokmål
and Nynorsk. These models may therefore offer
improved performance when applied to the SID
task for Norwegian dialects.

3.2 Fine-Tuning Languages

The xSID0.6 training data is available in various
languages, but all except the English data was
machine-translated, with potentially poor transla-
tion quality. We identify three languages for our
next experiments: English, Danish and Norwegian.
We consider these languages to be the most effec-
tive, as they exhibit the closest linguistic proxim-
ity to Norwegian dialects among the languages in
xSID0.6. We fine-tune three separate models for
each pre-trained model to understand how anno-
tation quality and linguistic proximity affect the
prediction performance.

3.3 Results

The results of these experiments on the develop-
ment set are presented in Table 1. They reveal no-
table trends in performance across different models.
For intent classification, fine-tuning on Norwegian
data yields the best accuracy for almost all models.
For slot filling, the opposite trend is observed: per-
formance drops considerably when models are fine-
tuned on Norwegian or Danish data. In this case,
fine-tuning on English achieves much better results,

2https://github.com/NbAiLab/notram

Model Slots Intents

en da nb en da nb

mBERT .659 .525 .569 .898 .907 .907
XLM-R .800 .566 .561 .985 .984 .979
RemBERT .734 .558 .549 .944 .962 .974
mT0 .737 .531 .529 .889 .922 .921
mDeBERTa .787 .579 .564 .965 .934 .982
NB-BERT .812 .590 .572 .988 .969 .989
NorBERT .797 .568 .558 .964 .964 .990

Table 1: Results on slot filling (F1) and intent detection
(accuracy) on the dev set. Bold: Top intent accuracy
and span F1 score.

which can be attributed to the fact that the original
training data is in English. Norwegian and Danish
training data, derived through machine translation
and slot alignment via attention mechanisms, likely
suffer from noise and alignment inconsistencies,
which impacts the performance.

In terms of base models, NB-BERT delivers the
overall best results across subtasks and languages,
followed by XLM-R and NorBERT. All three mod-
els outperform the baseline mBERT. NorBERT fine-
tuned on Norwegian has the highest intent accu-
racy, but NB-BERT achieves the highest increase in
intent accuracy compared to the baseline mBERT,
with a +0.90 improvement when fine-tuned on En-
glish. For slot filling, NB-BERT sees smaller gains
compared to the mBERT baseline: +0.153 when fine-
tuned on English and only +0.003 when fine-tuned
on Norwegian. These results highlight the difficulty
of slot filling and the need for further refinement to
improve performance.

Based on these findings, our continued ex-
periments focus on the top-performing models
NB-BERT, XLM-R and NorBERT. Fine-tuning on En-
glish emerges as the best approach for slot filling,
while fine-tuning on Norwegian is most effective
for intent classification. We also conduct additional
experiments combining English and Norwegian
training data, aiming to benefit from their comple-
mentary strengths.

4 Improving and Extending the Training
Data

To address the lower span F1 scores observed when
fine-tuning on Norwegian data, we further explore
ways to improving the quality of the training data.

https://github.com/NbAiLab/notram
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Dataset B-tags I-tags Sum

en 82,408 61,036 143,444
nb 82,644 91,556 174,200
nb_ra 87,411 45,340 132,760
nb_rt 83,165 47,143 130,308
nn_rt 84,644 45,563 130,207

Table 2: Distributions of B- and I-tags. The number of
B-tags corresponds to the number of slot spans.

4.1 Slot Re-Alignment

A comparison of slot counts shows that 143,444
English tokens are annotated with a slot, compared
to 174,200 in Norwegian (nb), despite Norwegian
having slightly fewer tokens (336,387 vs 341,094).
This suggests an overuse of slots in Norwegian,
driven by Norwegian having around 30k more I-
tags. The distribution of B- and I-tags is shown in
Table 2. For example, I-datetime is used 14,153
more times in Norwegian. This indicates poor slot
projection quality and highlights the need for re-
alignment to improve training effectiveness.

To project labels from English to Norwegian, we
use simAlign (Jalili Sabet et al., 2020), a word
alignment tool that leverages both static and con-
textualized embeddings to map English tokens to
their Norwegian counterparts. Challenges arise
when multiple English tokens align with a single
Norwegian token, as each Norwegian token can
hold only one slot. If all aligned English tokens
share the same slot, it is transferred directly. This is
typically the case for compound words, which are
split across multiple tokens in English but generally
appear as a single token in Norwegian. For exam-
ple for rain forecast, the slot weather/attribute
is easily transferred to the Norwegian regnvarsel.
For conflicting slots, we calculate cosine similarity
between the contextualized embeddings of each En-
glish token and the Norwegian token using XLM-R,
considering a context window of two tokens before
and after each token. The English token with the
highest similarity score is selected, and its slot is
transferred to the Norwegian token. After align-
ment, we reapply the BIO tagging format and ad-
just slot spans based on the xSID0.6 annotation
guidelines (van der Goot et al., 2021a), excluding
prepositions like på, for, and til, and the infinitive
marker å from the edges of slot spans.

This results is a new Norwegian training set
(nb_ra), where ra stands for re-alignment. The

en will it rain today ?

nb Kommer det til å regne i dag ?

nb_ra Kommer det til å regne i dag ?

Figure 2: Examples of slots. Green: weather/attribute,
pink: datetime.

updated set contains 132,760 slots – 41,440 fewer
than the original nb version – bringing it closer to
the total number of slots in the English dataset (see
Table 2). The slot spans in nb_ra are generally
shorter, with about 50% fewer I-tags compared to
nb. This reduction arises primarily because fewer
surrounding tokens are included in slot spans. The
example in Figure 2 illustrates this difference.

4.2 Re-Translation

Manual inspection of the original Norwegian trans-
lations reveals significant translation issues. For
example, the original translation model may mis-
translate questions into declaratives or with atyp-
ical word order (see example 1 in Figure 3). The
original translation also suffers from unknown to-
kens, such as february being translated as <unk>
ary. In addition, the translation model often splits
expression into multiple tokens due to punctua-
tions, leading to misaligned tokens and incorrect
slot transfers in nb and nb_ra. This is for example
frequent in time expressions as in example 2 of
Figure 3. Improving the quality of the translations
therefore seems essential to enhance slot alignment
and further increase span F1 scores.

We re-translated the English xSID0.6 train-
ing data into Bokmål and Nynorsk by using
NorMistral-7b-warm,3 which is an LLM
initialized from Mistral-7B-v0.14, and con-
tinuously pre-trained on Norwegian data.
NorMistral-7b-warm was chosen for its favorable
performance in prior zero-shot English-to-Bokmål
and English-to-Nynorsk translation evaluations.3

The original data contains inconsistent use of
proper capitalization and punctuation. The first
part is problematic since the dataset contains nu-
merous proper names that should not be translated
into Norwegian, and to improve the quality of the
translations, we apply truecasing to each sentence

3https://huggingface.co/norallm/
normistral-7b-warm

4https://huggingface.co/mistralai/
Mistral-7B-v0.1

https://huggingface.co/norallm/normistral-7b-warm
https://huggingface.co/norallm/normistral-7b-warm
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
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en is Tuesday to be rainy

nb_ra Det regner på torsdager

(It rains on Thursdays )

nb_rt Skal det bli regn på tirsdag ?

(Will it be rain on Tuesday ?)

nn_rt Kjem det til å bli regn på tysdag

(Will it come to be rain on Tuesday ?)

en Set alarm for 5:30 am tomorrow

nb_ra Alarm kl . 17 . 30 i morgen .

(Alarm at 17 : 30 in the morning )

nb_rt Sett alarm til kl. 05.30 i morgen

(Set alarm to 5:30 am tomorrow )

nn_rt Set alarm for 5.30 i morgon

(Set alarm for 5:30 am tomorrow )

Figure 3: Examples of slots. Green: weather/attribute,
pink: datetime.

using the Python truecase5 library. This results
in two new Norwegian datasets, nb_rt (Bokmål
re-translated) and nn_rt (Nynorsk re-translated),
which both undergo the same slot alignment as
nb_ra. Our decision to include Nynorsk is mo-
tivated by the fact that it more closely resem-
bles many Norwegian dialects than Bokmål. This
makes Nynorsk potentially more valuable for cap-
turing linguistic features representative of dialectal
variation.

Manual inspection of the new translations re-
veals significant improvement over nb, both in the
choice of words and sentence structure. The new
model produces structurally accurate sentences bet-
ter reflecting the English source (see example 1 in
Figure 3). The issue of unknown tokens is also
entirely resolved in the new dataset.

Since the Norwegian re-translations follow the
same alignment process as nb_ra, some of the
same alignment issues remain. For example, syn-
tactic differences between English and Norwegian
can challenge the alignment and map tokens based
on their position in the sentence (see example 1
in Figure 3). However, the improved translations
reduce unnecessary token splitting, particularly for
time expressions, resulting in better slot labeling.

5https://github.com/daltonfury42/truecase

4.3 Adapting the Norwegian MASSIVE
Dataset

As another means to improve span F1 scores, we
follow the approach of Winkler et al. (2024), who
propose to extract utterances from the MASSIVE
dataset that align with intents in xSID0.6 and to
re-annotating them following the xSID0.6 annota-
tion guidelines. While MASSIVE contains a broader
range of intents, Winkler et al. (2024) successfully
identified 2021 utterances matching the xSID0.6
intents. The mapping and re-annotation process is
documented in Appendix B of their work (Winkler
et al., 2024).

Building on their efforts, we use their mapped
Bavarian utterances to identify the corresponding
Norwegian utterances in MASSIVE. Intents were di-
rectly transferred from the Bavarian dataset, while
slots had to be manually annotated.

Although we aimed to follow the slots of Win-
kler et al. (2024), we found deviations from the
slot-intent combinations in xSID0.6. For exam-
ple, they apply the object_select slot to several
tokens, whereas xSID0.6 restricts this slot to the
RateBook intent, leaving similar tokens in other in-
tents unannotated. In such cases, we diverged from
the choices of Winkler et al. (2024) and adhered
strictly to the slot–intent combinations in xSID0.6,
ensuring that the model learns patterns consistent
with those in xSID0.6. This results in a new Nor-
wegian Bokmål training dataset named nb_mas.6

4.4 Results
Re-alignment The fine-tuning results on the
NorSID development set using our best-performing
models on nb_ra are presented in Table 3. For
slot filling, the nb_ra dataset shows substantial
improvements over nb across all models. For ex-
ample, the F1 score for NB-BERT increases from
0.575 (nb) to 0.762 (nb_ra), a gain of nearly 33%.
Similar improvements are observed for XLM-R and
NorBERT, and these enhancements indicate that
the re-alignment process helps improve slot an-
notations. In addition, adding English data to
nb_ra (en+nb_ra) further boosts performance for
NB-BERT and NorBERT, as it allows the models to
leverage the higher-quality English slot annotations.
The linguistic similarities between English and Nor-
wegian slots, such as named entities, enable the
models to learn transferable cross-lingual patterns,

6The re-annotated and re-translated data, as well as the Nor-
wegian MASSIVE data, are available at: https://github.
com/marthemidtgaard/SID-for-Norwegian-dialects.

https://github.com/daltonfury42/truecase
https://github.com/marthemidtgaard/SID-for-Norwegian-dialects
https://github.com/marthemidtgaard/SID-for-Norwegian-dialects
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Slots Intents

NB-B. XLM-R NorB. NB-B. XLM-R NorB.

en .812 .800 .797 .988 .985 .964
nb .572 .561 .558 .989 .979 .990

nb_ra .762 .764 .741 .987 .988 .986
en+nb_ra .789 .761 .770 .994 .986 .993

nb_rt .758 .751 .716 .987 .985 .984
en+nb_rt .770 .761 .762 .991 .986 .995

nn_rt .753 .753 .752 .981 .980 .986
en+nn_rt .772 .783 .776 .992 .992 .982

Table 3: Results on slot filling (F1) and intent detection
(accuracy) on the dev set. Bold: Top intent accuracy
and span F1 score. nb_ra: re-aligned nb. nb_rt and
nn_rt: machine translated and re-aligned nb/nn.

and the improved F1 score reflects the benefit of
learning from the more accurate English data. How-
ever, the best performing new system, NB-BERT
fine-tuned on en+nb_ra, still does not outperform
fine-tuning solely on English. This suggests that
the Norwegian data cannot match the quality of
the English slot annotations, and that the inclusion
of English only partially helps stabilize the noisier
Norwegian annotations.
NB-BERT fine-tuned on en+nb_ra also achieves

the highest intent accuracy (0.994), though the im-
provements from nb_ra are slightly smaller for
intent detection compared to slot filling. This indi-
cates that the inclusion of English data enhances
performance without compromising the model’s
ability to understand Norwegian intents.

Re-translation Results from fine-tuning on the
higher-quality translations, nb_rt and nn_rt, can
be found in the bottom rows of Table 3. The
en+nn_rt dataset achieves the highest F1 score
(0.783 with XLM-R), with both XLM-R and NorBERT
outperforming their en+nb_ra counterparts, and all
three models surpassing their en+nb_rt counter-
parts. This likely reflects a closer resemblance be-
tween Nynorsk and Norwegian dialects compared
to Bokmål, allowing the model to generalize bet-
ter across dialectal variations. However, models
trained exclusively on either nb_rt or nn_rt still
fall significantly behind those trained on English as
well, emphasizing the continued impact of higher-
quality annotations in English.

Furthermore, the improved Bokmål translations
in nb_rt show no notable impact on span F1 scores.
Since the main changes from nb_ra are structural,
slot alignments do not differ too much, resulting
in comparable performance. Intent accuracy also

Slots Intents

NB-B. XLM-R NorB. NB-B. XLM-R NorB.

en .812 .800 .797 .988 .985 .964
+nb_mas .859 .858 .832 .990 .985 .982

en+nb_ra .789 .761 .770 .994 .986 .993
+nb_mas .793 .799 .788 .994 .988 .992

Table 4: Impact of including the Norwegian MASSIVE
(+nb_mas on slot filling (F1) and intent detection (ac-
curacy), measured on the dev set. Bold: Top intent
accuracy and span F1 score. nb_ra: re-aligned nb.

remains stable across the new models, as our data
augmentation efforts primarily target slot quality.

Overall, the findings underscore the need for
further refinement in addressing slot alignment is-
sues in order to bridge the performance gap be-
tween Norwegian and English. This is evident from
the superior span F1 scores achieved by NB-BERT
trained solely on English, which remains the best-
performing model for slot labeling.

MASSIVE Fine-tuning results on the Norwegian
MASSIVE data are shown in Table 4. Including
nb_mas results in noticeable improvements in span
F1 scores, with NB-BERT fine-tuned on en+nb_mas
achieving the highest F1 score of 0.859, outper-
forming all other setups. This highlights the signif-
icant impact of MASSIVE data on slot performance
when combined with high-quality English anno-
tations. The other models also show notable im-
provements compared to their counterparts without
MASSIVE.

Intent accuracy remains unaffected, suggesting
that intent detection does not benefit from addi-
tional data. This is likely because the new utter-
ances closely resemble those already present in
xSID0.6, indicating that they do not introduce novel
patterns for the model to learn. This just shows that
the intent mapping efforts by Winkler et al. (2024)
were robust and effective.

Overall, these findings highlight the potential
of including MASSIVE utterances to enhance slot
filling. However, these models fall outside the per-
mitted training data rules of the Shared Task and
were submitted outside of the competition. Despite
this, the promising results justify their inclusion in
this paper to underscore the approach’s potential.

5 Our Shared Task Submission

For our submission, we selected the best-
performing model and training data combination
per subtask. For slot filling, our best-performing
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model is NB-BERT fine-tuned on English, while
for intent detection, it is NorBERT fine-tuned on
en+nb_rt. However, due to technical difficulties
in test set prediction with NorBERT, we submitted
our second-best intent detection model, namely
NB-BERT fine-tuned on en+nb_ra, whose perfor-
mance is nearly identical.

The Shared Task guidelines allowed the partici-
pants to use the development set for training. In or-
der to further enhance the models mentioned above,
we fine-tune them with the inclusion of the NorSID
dev set. Since this prevents us from using a valida-
tion set, we submitted models after 20 epochs and
after the best epoch. This resulted in three systems
per subtask.

5.1 Results
Table 5 presents the official slot filling results,
while Table 6 shows intent detection accuracy. Our
models strongly outperform the mBERT baseline
across both tasks, achieving a 38.6% improvement
in slot filling with the top performing model fine-
tuned on en+norsid. This model also outperforms
the one fine-tuned on English, and the improved
performance likely results from the close align-
ment between the dev and test sets, both translated
by the same native speakers and annotated by the
same team. By including the dev set in fine-tuning,
utterances with the same style, word choices and
slot spans are seen during training, facilitating im-
proved performance on the test set, which closely
resembles the training data.

Furthermore, Bokmål (B) consistently achieves
the highest F1 scores, while North Norwegian (N)
poses the greatest challenge, likely due to a greater
linguistic divergence from the Bokmål and Nynorsk
patterns learned during pre-training. This might
also explain why North Norwegian, along with
Trøndersk (T), sees the largest F1 improvements
with the inclusion of the NorSID dev set, highlight-
ing the importance of dialect-specific data in adapt-
ing the model to dialectal variations.

For intent detection, accuracy remains consistent
across datasets and dialects, with North Norwe-
gian performing only slightly lower than the others.
This consistency suggests that intent detection ef-
fectively generalizes well across dialects and does
not benefit from the inclusion of dialect utterances.

Interestingly, the number of training epochs has
no impact on performance, suggesting rapid con-
vergence due to the high quality data. Despite its
small size, the NorSID development set provides

ID System B N T V Overall

Baseline mBERT .715 .607 .632 .651 .644

LTG 1 en .847 .801 .810 .833 .822
LTG 3 en+norsid (11) .909 .872 .897 .895 .893
LTG 2 en+norsid (20) .899 .879 .893 .896 .893

LTG 4 en+nb_mas+norsid .918 .876 .890 .898 .894

Table 5: Dialect-specific and overall span F1 scores
on the test set using NB-BERT. B=Bokmål, N=North
Norwegian, T=Trøndersk, V=West Norwegian. Number
of fine-tuning epochs in parentheses.

ID System B N T V Overall

Baseline mBERT .864 .826 .833 .848 .842

LTG 3 en+nb_ra+norsid (5) .980 .972 .983 .982 .980
LTG 1 en+nb_ra .982 .972 .983 .978 .979
LTG 2 en+nb_ra+norsid (20) .982 .973 .981 .978 .979

LTG 4 en+nb_mas+norsid .978 .967 .977 .972 .973

Table 6: Dialect-specific and overall intent accuracies
on the test set using NB-BERT. Number of fine-tuning
epochs in parentheses.

sufficient task-specific information for effective op-
timization, with additional epochs offering no fur-
ther gains or risk of overfitting.

Finally, we also evaluate our best model includ-
ing MASSIVE (en+nb_mas) on the test set and get
a slot filling F1 score of 0.858. Dialect F1 scores,
except for Bokmål, decrease significantly com-
pared to en+norsid, indicating that new and un-
seen Bokmål utterances from MASSIVE contributes
less than dialect utterances. This is also highlighted
by the fact that dialect F1 scores are the same for
en+norsid and en+nb_mas+norsid. However, in-
terestingly, F1 score for Bokmål reaches a high
with 0.918 for en+nb_mas+norsid. To further im-
prove slot filling, a promising approach could be
to add raw dialect data to fine-tuning, allowing the
model to better handle nuanced dialect features.

6 Conclusion

In this paper, we presented our contribution to the
two subtasks of the VarDial 2025 Shared Task: in-
tent detection and slot filling. We evaluated differ-
ent pre-trained models, including NB-BERT, XLM-R,
and NorBERT, and identified NB-BERT as the best
overall model, likely due to its superior ability to
handle the linguistic complexities of Norwegian
language varieties.

Slot filling emerged as a more challenging task
than intent detection, with the latter showing consis-
tent accuracy across experiments. This consistency
can be attributed to the ease of transferring intents
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from the original English xSID0.6 to our different
Norwegian versions, unlike slots, which rely on an
automatic alignment process prone to errors. Our
efforts to enhance slot annotations did not achieve
the same level of performance as fine-tuning exclu-
sively on English data, highlighting the critical role
of high-quality slot annotations and the necessity
for further refinement.

In addition, intent detection operates at the sen-
tence level, relying on broader semantic features
rather than the token-level distinctions critical for
slot filling. As a result, it is less sensitive to di-
alectal variation and does not require extensive
dialect-specific data. Models fine-tuned solely on
Bokmål performed comparably to those incorporat-
ing dialectal data for intent detection. In contrast,
slot filling is highly dependent on dialect-specific
data due to token-level linguistic intricacies. For
dialects, adding dialect-specific data proved more
impactful than merely increasing the amount of
Bokmål data.

Looking ahead, we aim to experiment with the
inclusion of raw dialect data to better capture lin-
guistic variation at the token level. Additionally,
we intend to explore alternative methods for align-
ing slots between English and Norwegian to further
enhance the quality of slot annotations.

Limitations

All of our models are trained once with a fixed
random seed. This makes it hard to judge how
stable the observed result patterns are. In particular
for the intent detection task, many score differences
are so small that they are likely due to random
variation rather than to different training setups.
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Noëmi Aepli, Çağrı Çöltekin, Rob Van Der Goot,

Tommi Jauhiainen, Mourhaf Kazzaz, Nikola
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