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Abstract

Native Language Identification (NLI) – the task
of identifying the native language (L1) of a
person based on their writing in the second
language (L2) – has applications in forensics,
marketing, and second language acquisition.
Historically, conventional machine learning ap-
proaches that heavily rely on extensive feature
engineering have outperformed transformer-
based language models on this task. Recently,
closed-source generative large language mod-
els (LLMs), e.g., GPT-4, have demonstrated
remarkable performance on NLI in a zero-shot
setting, including promising results in open-set
classification. However, closed-source LLMs
have many disadvantages, such as high costs
and undisclosed nature of training data. This
study explores the potential of using open-
source LLMs for NLI. Our results indicate
that open-source LLMs do not reach the ac-
curacy levels of closed-source LLMs when
used out-of-the-box. However, when fine-tuned
on labeled training data, open-source LLMs
can achieve performance comparable to that of
commercial LLMs.

1 Introduction

Native Language Identification (NLI) is the task
of automatically identifying an author’s native lan-
guage (L1) based on texts written in their second
language (L2). The task is based on the language
transfer hypothesis, the phenomenon in which char-
acteristics of L1 influence the production of texts
in L2 to the degree that L1 is identifiable (Odlin,
1989). NLI is useful for educational purposes,
forensic applications in the context of author pro-
filing, and to inform second language acquisition
research (Goswami et al., 2024).

From a machine learning (ML) perspective,
NLI is commonly framed as a supervised multi-
class classification task, where NLI systems are
trained to assign an author’s L1. While the task
has been proven difficult to perform by humans

(Malmasi et al., 2015), automated methods have
shown remarkable results using conventional ML
approaches based on extensive feature engineer-
ing, e.g., (Cimino and Dell’Orletta, 2017; Markov,
2018). Such methods rely on features that capture
L1-indicative linguistic patterns in L2 writing, e.g.,
spelling errors (Koppel et al., 2005; Chen et al.,
2017; Markov et al., 2019), word choice (Brooke
and Hirst, 2012), and syntactic patterns (Wong and
Dras, 2011).

Transformer-based encoder models, like
BERT (Devlin et al., 2019), on the other hand, have
yielded poorer performance than conventional ML
approaches for the NLI task (Markov et al., 2022;
Steinbakken and Gambäck, 2020; Goswami et al.,
2024). Previous research suggests that this is likely
because NLI concerns very specific linguistic
features that models trained on general corpora
cannot capture (Markov et al., 2022). Recent
research has shown that generative large language
models (LLMs) demonstrate promising results for
NLI. Lotfi et al. (2020) presented the first study
addressing NLI using fine-tuned GPT-2 models,
which outperformed previous traditional ML
approaches and achieved state-of-the-art results on
the NLI benchmark TOEFL11 and ICLE datasets.
Zhang and Salle (2023) explored the ability of
GPT-3.5 (Brown et al., 2020) and GPT-4 (OpenAI,
2023) to perform NLI. Their results indicate
that out-of-the-box GPT models demonstrate
outstanding performance, with GPT-4 setting a
new performance record of 91.7% accuracy on
the TOEFL11 benchmark dataset, and achieve
promising results for open-set classification
(without a predefined set of L1s), a useful setting
for real-world NLI applications.

While Zhang and Salle’s results indicate that
LLMs achieve state-of-the-art performance on NLI,
they only evaluate the performance of GPT-3.5 and
GPT-4. The closed-source nature of these mod-
els presents a multitude of limitations to research.
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Providers of closed-source models often disclose
minimal information regarding the training data
or procedure, hindering the evaluation of results
achieved with these models and obscuring biases
in training data and models (Balloccu et al., 2024).
The undisclosed nature of the training data has also
raised concerns among researchers about data con-
tamination risks, as it is challenging to determine
whether a model’s high performance on a task can
be attributed to the model’s effective generalization
or potential data leakage (Yu et al., 2023). In addi-
tion, closed-source models are typically only acces-
sible via an API, causing lack of control over model
updates, which are often communicated poorly to
users (Yu et al., 2023; Pozzobon et al., 2023). In
turn, the reproducibility of experiments cannot be
guaranteed. The usage of closed-source LLMs is
also highly costly, which negatively impacts the
accessibility of LLMs (Bender et al., 2021).

Providers of open-source LLMs, on the other
hand, often release more information regarding
training data and procedures. As model weights
are released openly, open-source LLMs can be
fine-tuned for a down-stream task, which is often
highly costly or not supported for closed-source
models. Despite these advantages, employing open-
source LLMs for NLI remains unexplored, and it is
therefore important to investigate the difference in
performance between open-source and proprietary
LLMs on this task. Hence, the research question ad-
dressed in this study is: Can open-source LLMs be
used for effective Native Language Identification?

The contributions of this work are the following:
(i) we are the first to explore the performance of
open-source LLMs on NLI and quantify the dif-
ference in performance with closed-source models,
and (ii) we investigate the impact of fine-tuning
open-source LLMs on NLI performance.

2 Data and Models

To comprehensively evaluate the ability of current
LLMs to perform NLI, we compare the perfor-
mance of two closed-source commercial LLMs
(i.e., GPT-3.5 and GPT-4) with five open-source
LLMs (§2.2), used out-of-the-box and after fine-
tuning, on two NLI benchmark datasets.

2.1 Data

TOEFL11 (Blanchard et al., 2013): the ETS
Corpus of Non-Native Written English (TOEFL11)
consists of 12,100 essays, with 1,100 essays per

L1, written by English learners with low, medium,
or high proficiency levels. The 11 L1s covered in
the data are Arabic (ARA), Chinese (CHI), French
(FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JPN), Korean (KOR), Spanish (SPA),
Telugu (TEL), and Turkish (TUR). We use the
TOEFL11 test set for evaluation, which contains
100 essays per L1. The average length of essays in
TOEFL11 is 348 words.

ICLE-NLI (Granger et al., 2009): a 7-language
subset of the ICLEv2 dataset commonly used for
NLI (Tetreault et al., 2012). The data contains 770
essays, with 110 essays per L1, written by highly-
proficient English learners. The L1s represented
in the dataset are Bulgarian (BUL), Chinese (CHI),
Czech (CZE), French (FRE), Japanese (JPN), Rus-
sian (RUS), and Spanish (SPA). We evaluate the
models on the complete ICLE-NLI dataset. The av-
erage length of essays in this corpus is 747 words.

2.2 Models

Baselines We compare the performance of LLMs
to several baseline approaches: the best-performing
feature-engineered approach (SVM) (Markov,
2018), a simple SVM approach with bag-of-words
(BoW) features, BERT and GPT-2 approaches,
with all scores directly cited from the original pa-
per (Lotfi et al., 2020).

Closed-source LLMs We rely on the results re-
ported by Zhang and Salle (2023) for GPT-3.5 (gpt-
3.5-turbo) (Brown et al., 2020) and GPT-4 (gpt-4-
0613) (OpenAI, 2023) on TOEFL11 and evaluate
their performance on the ICLE-NLI dataset.

Open-source LLMs We conduct a comparative
study of five recent open-source LLMs: LLaMA-2
(7B) (Touvron et al., 2023), LLaMA-3 (8B) (Meta,
2024), Gemma (7B) (Mesnard et al., 2024), Mistral
(7B) (Jiang et al., 2023), and Phi-3 (3.8B) (Mi-
crosoft, 2024). While there is an ongoing debate
surrounding the definition of ‘open-source’ with
the rise of LLMs (Liesenfeld and Dingemanse,
2024), for the purpose of our experiments, we con-
sider open-source models that are open in weights.
Following Zhang and Salle (2023), we carry out ex-
periments in a zero-shot setup, both for the closed-
set and open-set NLI tasks.

We run inference on the selected open-source
LLMs using the same prompt as Zhang and Salle
(2023), with the only difference that we instruct
each model to respond using JSON dictionaries to
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Model
TOEFL11

(11 L1s, test set)
ICLE-NLI

(7 L1s, 5FCV/entire)
Closed-set Open-set Closed-set Open-set

Baselines
BoW SVM (Lotfi et al., 2020) 71.1 – 80.6 –
Feature-engineered SVM (Markov, 2018) 88.6 – 93.4 –
BERT (Lotfi et al., 2020) 80.8 – 76.8 –
GPT-2 (fine-tuned) (Lotfi et al., 2020) 89.0 – 94.2 –
GPT-3.5 (Zhang and Salle, 2023) 74.0 73.4 81.2 84.2
GPT-4 (Zhang and Salle, 2023) 91.7 86.7 95.5 89.1

Open-source LLMs
LLaMA-2 (7B) (zero-shot) 29.2 ±0.9 22.1 ±0.7 29.2 ±1.0 15.5 ±0.3

LLaMA-2 (7B) (fine-tuned) 78.7 ±1.0 – 42.9 ±2.0 –
LLaMA-3 (8B) (zero-shot) 56.8 ±1.1 56.4 ±0.7 75.8 ±0.4 71.0 ±0.9

LLaMA-3 (8B) (fine-tuned) 85.3 ±0.1 – 78.5 ±2.5 –
Gemma (7B) (zero-shot) 13.6 ±0.0 7.0 ±0.0 28.2 ±0.1 13.1 ±0.0

Gemma (7B) (fine-tuned) 90.3 ±1.2 – 96.6 ±0.2 –
Mistral (7B) (zero-shot) 35.6 ±1.6 24.2 ±0.1 53.1 ±1.1 41.5 ±0.1

Mistral (7B) (fine-tuned) 89.8 ±0.8 – 83.2 ±9.4 –
Phi-3 (3.8B) (zero-shot) 18.2 ±0.3 21.6 ±1.6 33.6 ±0.4 40.9 ±2.1

Phi-3 (3.8B) (fine-tuned) 65.6 ±0.4 – 51.4 ±1.7 –

Table 1: Comparative analysis of the performance of the baseline methods and closed- and open-source LLMs on
the TOEFL11 and ICLE-NLI datasets in terms of classification accuracy (%).

restrict the model output to one L1 classification
label. For the closed-set task, we include the set
of possible L1s in the prompt. If the model clas-
sifies an L1 outside of the provided set of classes,
we apply iterative prompting up to 5 times. For
the open-set task, the prompt does not include a
set of possible L1s. For both closed- and open-set
tasks, we adapt the prompt to each model’s prompt
template. If a prediction cannot be extracted af-
ter 5 attempts, the predicted label is set to ‘other’.
The prompts for closed-set and open-set tasks are
provided in appendices C.1 and C.2, respectively.
We use 4-bit quantized instruction-fine-tuned ver-
sions of the open-source LLMs when prompting
out-of-the-box.

In addition, we fine-tune the 4-bit quantized
models on the TOEFL11 training set and under 5-
fold cross-validation (5FCV) on ICLE-NLI1 with
QLoRA (Dettmers et al., 2023), using the Hugging
Face framework and Unsloth library2. The prompts
used for fine-tuning are provided in Appendix C.3.

1We used 5-fold cross-validation for a direct comparison
with previous studies, e.g., (Lotfi et al., 2020; Markov, 2018).

2https://unsloth.ai/

3 Results

Table 1 shows the results in terms of classifica-
tion accuracy (%) for the baseline approaches and
LLMs, both out-of-the-box and after fine-tuning, in
closed-set and open-set settings. For open-source
LLMs, we provide the average score and standard
deviation over three runs to account for stochastic-
ity in model inference and training.

3.1 Closed-Source LLMs

We observe high accuracy scores on the ICLE-NLI
dataset in our experiments using the GPT-3.5 and
GPT-4 models. The results are in line with the state-
of-the-art results on the TOEFL11 dataset reported
in (Zhang and Salle, 2023) and indicate that GPT-
4 is able to identify the L1s of highly-proficient
English learners both in closed-set and open-set
classification experiments.

3.2 Open-Source LLMs Out-of-the-Box

We note a surprisingly low performance of open-
source LLMs when used out-of-the-box in a closed-
set setting, with the exception of LLaMA-3 on
ICLE-NLI. While GPT-4 achieves an accuracy
of 91.7% and 95.5% on TOEFL11 and ICLE-
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NLI, respectively, the five open-source models ob-
tain accuracy scores ranging between 13.6% and
75.8%. All open-source LLMs also perform worse
than the baseline approaches, including the sim-
ple SVM model with BoW features. Some open-
source LLMs tend to predict mostly one or two
languages, e.g., Gemma predicting mostly French
and LLaMA-2 mostly Chinese, which partially ex-
plains such low results. The large performance gap
raises the concern that closed-source LLMs might
have seen the NLI benchmark datasets in training.
Additional research is required to explore the possi-
bility of data leakage, e.g., by examining whether a
model has memorized a given text using perplexity
measurements (Carlini et al., 2021).

3.3 Fine-Tuned Open-Source LLMs vs.
Closed-Source LLMs

The results indicate that the performance of open-
source LLMs improves substantially after task-
specific fine-tuning. Fine-tuned Gemma achieves
an accuracy score of 90.3% (±1.2) on the TOEFL11
dataset, nearly matching the results of GPT-4 as
reported in (Zhang and Salle, 2023), and a near-
perfect accuracy score of 96.6% (±0.2) on the
ICLE-NLI dataset, outperforming GPT-4 by 1.1%.
We also observe that the open-source models that
perform best out-of-the-box do not necessarily
demonstrate the best performance after fine-tuning.

Previous studies comparing closed-source and
fine-tuned open-source LLMs provide contradic-
tory findings, with some researchers reporting a
drop in accuracy of 16% on sentiment classifica-
tion for fine-tuned smaller language models (Flan-
T5, 770M) compared to ChatGPT (Zhang et al.,
2024), while others report that fine-tuned open-
source LLMs (Qwen, 7B; LLaMA-3, 8B) outper-
form closed-source LLMs (GPT-3.5, GPT-4) on
text classification tasks (Bucher and Martini, 2024;
Edwards and Camacho-Collados, 2024; Wang et al.,
2024). The results presented in this study provide
evidence that fine-tuned open-source LLMs can
achieve comparable performance to closed-source
LLMs.

We also observe that LLaMA-3 stands out
with a high result on ICLE-NLI compared to
TOEFL11. While out-of-the-box LLaMA-3 ob-
tains 56.6% accuracy on TOEFL11, it achieves
a higher score of 75.8% on ICLE-NLI. In addi-
tion, while all other open-source LLMs gain a
large boost in performance after fine-tuning on both
datasets, LLaMA-3’s accuracy after fine-tuning

on ICLE-NLI increases by 2.7 percentage points
only. LLaMA-3’s relatively high performance out-
of-the-box and marginal performance boost after
fine-tuning are inconsistent with the results for
other open-source LLMs, possibly indicating that
LLaMA-3 has seen the ICLE data in training.

Comparing the confusion matrices for GPT-4
and fine-tuned Gemma, the best-performing closed-
source and open-source LLMs (Appendix B), we
note that both models tend to misclassify Hindi
texts as Telugu in the TOEFL11 dataset. Hindi and
Telugu have been considered a problematic lan-
guage pair in previous studies on TOEFL11 (Mal-
masi et al., 2013). Fine-tuned Gemma has a ten-
dency to misclassify Japanese essays as Korean.
The high degree of confusion between Korean and
Japanese has also been observed in previous re-
search (Markov et al., 2022). On ICLE-NLI, GPT-4
erroneously classifies Bulgarian as Russian, both
Slavic languages. Gemma misclassifies 14 Czech
and Russian samples as Bulgarian. In line with
previous research, we note that the confused L1s
are either related through geographical location or
belong to the same language family.

3.4 Closed-Set and Open-Set Settings

We observe a drop in performance for most open-
source LLMs from a closed-set to open-set set-
ting, similarly to closed-source LLMs. Surpris-
ingly, some of the models, i.e., GPT-3.5 and Phi-3,
perform better in the open-set than in the closed-set
setup. Further research is required to understand
the reasons for this behaviour.

4 Conclusion

We explored the performance of a variety of open-
source LLMs for the NLI task. Our results indi-
cate that open-source LLMs achieve lower perfor-
mance than closed-source LLMs for this task when
used out-of-the-box, while domain-specific fine-
tuning of open-source LLMs allows these mod-
els to achieve comparable results to the propri-
etary LLMs, such as GPT-4, on the benchmark
TOEFL11 and ICLE-NLI datasets. We believe that
our work opens up avenues for future research on
LLM-based Native Language Identification. Future
research could explore few-shot prompting and dif-
ferent prompt variations as a way to potentially
boost the performance of open-source LLMs.
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Limitations

Multilingual NLI Our study focuses purely on
native language identification in English, which is
the most well-studied L2 in the NLI task (Goswami
et al., 2024). It would be interesting to explore
whether the high performance of LLMs on NLI
holds for L2s other than English.

Fine-tuned LLMs in cross-corpus setting
While fine-tuning drastically improves the perfor-
mance of open-source LLMs, the prerequisite of
fine-tuning for optimal performance is a disadvan-
tage for open-source LLMs compared to closed-
source LLMs. Previous research has shown that
NLI models suffer from performance degradation
in a cross-corpus setting, and thus cannot be ap-
plied directly to different corpora (Markov et al.,
2022; Malmasi and Dras, 2015). Future research
could explore the use of fine-tuned open-source
LLMs for NLI in a cross-corpus setup.

Defining open-source LLMs More broadly, in
our study, we define open-source and closed-source
relatively loosely, treating the terms ‘open’ and
‘closed’ as a binary feature to perform a compar-
ative analysis between open-source and closed-
source LLMs for NLI. However, there are vari-
ous dimensions of openness, as a model release
involves different components ranging from the
disclosure of training datasets to model access (So-
laiman, 2023; Liesenfeld and Dingemanse, 2024).
Most providers of proclaimed open-source LLMs
release little to no information regarding their train-
ing data and procedure, despite framing them as
being open-source. In turn, it is difficult to deter-
mine whether an open-source model’s performance
can be attributed to the model’s learning or possi-
ble data contamination. The lack of insights into
the training data of proclaimed open-source LLMs
also hindered our evaluation of LlaMA-3 on the
ICLE-NLI dataset.
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A Hyperparameters and Computation
Time

We fine-tuned the open-source LLMs with the fol-
lowing hyperparameters: a learning rate of 1e-4,
batch size of 16, 3 epochs, and optimization via
AdamW optimizer. The experiments were con-
ducted on Google Colaboratory Pro with the A100
GPU (40 GB RAM). The models were loaded
with 4-bit NF-quantization and QLoRA adapters
were added and fine-tuned using the bitsandbytes
library3. The total computation time was roughly
120 hours. Total emissions are estimated to be 17.1
kgCO2eq of which 100% was directly offset by the
cloud provider4.

B Confusion Matrices

The confusion matrices are provided in Figure 1.
3https://huggingface.co/docs/bitsandbytes
4Estimations were conducted using the Machine Learning

Impact calculator (Lacoste et al., 2019).

C LLM Prompts

C.1 Closed-Set Prompts

For the closed-set experiments on the TOEFL11
dataset, we used the prompts below. For ICLE-NLI,
we used exactly the same prompts, with the only
difference being the set of possible L1s covered in
the dataset.

You are a forensic linguistics expert that reads
English texts written by non-native authors to
classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide
on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG”
(English). English is an invalid choice.

Valid output formats:
Class: “ARA”,
Class: “CHI”,
Class: “FRE”,
Class: “GER”

You ONLY respond in JSON files. The expected
output from you is: json {“native_lang”: The chosen
class, ARA, CHI, FRE, GER, HIN, ITA, JPN, KOR,
SPA, TEL, or TUR}

When possible, the prompt above was entered
as a System prompt. If the system role was not
supported by the prompt formatter, the prompt was
entered as part of the User prompt. We input the
given text and used the prompt below as a User
prompt:

<TOEFL11 ESSAY TEXT>
Classify the text above as one of ARA, CHI, FRE,
GER, HIN, ITA, JPN, KOR, SPA, TEL, or TUR. Do
not output any other class - do NOT choose “ENG”
(English). What is the closest native language of the
author of this English text from the given list?

In the closed-set experiments, if the L1 was in-
correctly predicted as English, we prompted the
model again using the prompt below:
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Figure 1: Confusion matrices for GPT-4 on TOEFL (Zhang and Salle, 2023) (top left), Gemma (7B) (fine-tuned) on
TOEFL (top right). GPT-4 on ICLE-NLI (bottom left), Gemma (7B) (fine-tuned) on ICLE-NLI (bottom right).

You previously mistakenly predicted this text as
“ENG” (English). The class is NOT English. Please
classify the native language of the author of the text
again.

If we were unable to parse the prediction or the
predicted L1 was not in the set of possible classes,
we prompted the model again. For the TOEFL11
experiments, we used the prompt below:

Your classification is not in the list of possible lan-
guages.
Please try again and choose only one of the follow-
ing classes: ARA, CHI, FRE, GER, HIN, ITA, JPN,
KOR, SPA, TEL, or TUR

C.2 Open-Set Prompts

For the open-set experiments, we used the prompt
below as an input prompt for all the models:

You are a forensic linguistics expert that reads texts
written by non-native authors in order to identify
their native language.
Analyze each text and identify the native language of
the author.
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide.

You ONLY respond in JSON files. The expected
output from you has to be: “json {“native_lang”:
“”}”

If the predicted L1 could not be extracted from
the generated output, we used the prompt below to
apply iterative prompting to get a valid prediction:

Your previous classification was not in the correct
format. Please only respond in the following JSON
format:
“json {“native_lang”: “”}”
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C.3 Fine-Tuning Prompts
We used the following prompt for the fine-tuning
experiments:

### Instruction:
You are a forensic linguistics expert that reads
English texts written by non-native authors to
classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide
on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG”
(English). English is an invalid choice.

Valid output formats:
Class: “ARA”,
Class: “CHI”,
Class: “FRE”,
Class: “GER”

Classify the text below as one of ARA, CHI, FRE,
GER, HIN, ITA, JPN, KOR, SPA, TEL, or TUR. Do
not output any other class - do NOT choose “ENG”
(English). What is the closest native language of the
author of this English text from the given list?

### Input:
<TOEFL11 ESSAY TEXT>

### Response:
<L1 LABEL>
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