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Preface

These proceedings include the 17 papers presented at the Twelfth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2025), co-located with the 31st International Conference
on Computational Linguistics (COLING 2025). VarDial was held in Abu Dhabi, UAE.

Despite the short interval between the 2024 and 2025 editions of VarDial, we are glad to see that VarDial
continues to serve the community as the main venue for researchers interested in the computational
processing of language variation. The papers accepted this year address a wide range of topics, such
as normalization and dialectal translation, native language identification, and slot and intent detection.
We also see several papers making use of and evaluating large language models on variety-related tasks.
Once again, these proceedings are characterized by great linguistic diversity, with work on regional
English dialects, Portuguese, Luxemburgish, Church Slavic, and Arabic, to name just a few.

As in previous editions, VarDial 2025 features an evaluation campaign with the NorSID shared task
on slot, intent and dialect identification for Norwegian dialects. Slot and intent detection were already
included in a VarDial shared task in 2023, but without including Norwegian data. Likewise, language and
dialect identification tasks have been very common at past editions of VarDial, but this is the first dialect
identification featuring varieties of Norwegian. This volume includes the system description papers
prepared by the four participating teams, as well as a report written by the task organizers summarizing
the results and findings of the evaluation campaign.

Finally, we would like to take this opportunity to thank all the shared task organizers and the participants
for their hard work. We further thank the VarDial program committee members for being an important
part of the workshop’s success.

The VarDial workshop organizers:

Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, and Marcos
Zampieri

http://sites.google.com/view/vardial-2025/
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Abstract

The VarDial Evaluation Campaign 2025 was
organized as part of the twelfth workshop on
Natural Language Processing for Similar Lan-
guages, Varieties and Dialects (VarDial), co-
located with COLING 2025. It consisted of
one shared task with three subtasks: intent de-
tection, slot filling and dialect identification
for Norwegian dialects. This report presents
the results of this shared task. Four participat-
ing teams have submitted systems with very
high performance (> 97% accuracy) for intent
detection, whereas slot detection and dialect
identification showed to be much more chal-
lenging, with respectively span-F1 scores up to
89%, and weighted dialect F1 scores of 84%.

1 Introduction

The workshop series on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), now at its
twelfth edition, has traditionally hosted an evalua-
tion campaign with shared tasks on various top-
ics such as language and dialect identification,
commonsense reasoning, question answering, and
cross-lingual tagging and parsing. The shared tasks
have featured many languages and dialects from
different families and data from various sources,
genres, and domains (Chifu et al., 2024; Aepli et al.,
2023, 2022; Chakravarthi et al., 2021; Gaman et al.,
2020; Zampieri et al., 2019, 2018, 2017; Malmasi
et al., 2016; Zampieri et al., 2015, 2014).

The VarDial Evaluation Campaign 2025 con-
sisted of the NorSID shared task, which focused
on slot filling, intent detection and dialect identi-
fication for Norwegian dialectal data. As digital
assistants are becoming more widespread, it is im-
portant that they can support a wide variety of lan-
guage varieties. Where other work has focused
on supporting a wider range of languages (e.g. Xu
et al., 2020; FitzGerald et al., 2023), we instead
focus on dialects, which has shown to be challeng-
ing for slot and intent detection systems (van der

Goot et al., 2021a; Aepli et al., 2023; Winkler et al.,
2024).

The NorSID shared task included three subtasks:
slot filling, intent detection, and dialect classifica-
tion. Each participating team was allowed to send
in three submissions per subtask. It was not manda-
tory for the participants to provide systems for all
tasks; they had the option to only take part in a
specific subtask.

2 Related Work

NLP for dialects and language varieties has been
a long-standing research topic, and the VarDial
workshop series has contributed substantially to its
popularity. Nevertheless, although important ad-
vances have been made in recent years thanks to
neural architectures and large language models, en-
gaging with linguistic variation remains one of the
crucial open research questions within NLP. Sev-
eral surveys summarize the state-of-the-art in NLP
for dialects: Zampieri et al. (2020) summarizes
the various research directions in NLP for dialects
that were explored in earlier VarDial editions and
introduces the reader to key issues in dialectology
and sociolinguistics. Joshi et al. (2024) provides
an updated perspective on NLP for dialects.

A large number of previous VarDial shared tasks
focused on language identification, either for na-
tional varieties of pluricentric languages, or for
dialects and closely related languages. The former
includes tasks of discriminating between British
and American English (DSL, Chifu et al., 2024;
Aepli et al., 2023; Malmasi et al., 2016; Zampieri
et al., 2015, 2014), or between French spoken in
Belgium, Canada, France and Switzerland (FDI,
Chifu et al., 2024; Aepli et al., 2022), to name but
a few. The latter includes the identification of vari-
ous Swiss German dialects (GDI, Zampieri et al.,
2018, 2017), or of the different regional languages
spoken in Italy (ITDI, Aepli et al., 2023). The di-
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alect identification subtask of this year’s NorSID
task falls in the latter category. An overview of the
history of language identification and its challenges
can be found in Jauhiainen et al. (2019).

The two other subtasks of NorSID focus on in-
tent classification and slot filling for task-oriented
dialog systems, a task also sometimes referred to
as spoken language understanding. Three re-
cent surveys provide excellent introductions to the
topic: Louvan and Magnini (2020) and Weld et al.
(2022) focus mainly on methods, whereas Larson
and Leach (2022) survey the available datasets. As-
pects of dialectal variation and cross-lingual trans-
fer between closely related varieties have been dis-
cussed in the SID4LR shared task at VarDial 2023
(Aepli et al., 2023), which focused on South Tyro-
lian and Swiss German dialects as well as Neapoli-
tan, a language closely related to Italian.

3 Data

The data used in the NorSID shared task is taken
from the NoMusic corpus, which is the Norwegian
extension of the xSID dataset. We present these
resources below. Table 1 provides an overview of
the dataset sizes.

xSID The multilingual xSID dataset was intro-
duced by van der Goot et al. (2021a). It consists
of prompts for digital assistants taken from the En-
glish Snips (Coucke et al., 2018) and cross-lingual
Facebook (Schuster et al., 2019) datasets, which
were manually translated and re-annotated into 13
language varieties. xSID continues to be updated
with additional languages: two languages (Neapoli-
tan and Swiss German) were added in the context
of the SID4LR shared task at VarDial 2023 (Aepli
et al., 2023), and two languages (Bavarian German
and Lithuanian) by Winkler et al. (2024).

The data in xSID is partitioned into 43,605 sen-
tences for training, 300 for development and 500
for testing. The native English data is translated
into the other languages, automatically in the case
of the training set, and by humans in the case of
the development and test sets.

NoMusic Since xSID currently does not cover
Norwegian, the NoMusic corpus project (Mæhlum
and Scherrer, 2024) was started to fill this gap. It
complements xSID with several Norwegian ver-
sions, taking into account the prevalence of dialects
(and dialect writing) in Norway. NoMusic contains
translations of the English xSID development and

Figure 1: Map of Norway with the origins of the ten
dialect translators (A1 to A10). The colors represent the
four major dialect areas.

test sets both into standard Norwegian Bokmål and
into the dialects of ten native speakers of Norwe-
gian who regularly write in these dialects.

Figure 1 shows the origins of the dialect speakers.
2 translators write in Northern dialects (N, blue on
the map), 3 translators write in Central Norwegian
dialects (T for Trøndersk, green) and 5 translators
write in Western dialects (V for Vestnorsk, orange).
None of the translators write in an Eastern dialect
(red on the map), but it is common in this area
to write in standard Bokmål. Therefore, the Bok-
mål translation can be viewed to some extent as
representative of the writing traditions in Eastern
Norway.

The NorSID training data As there was no train-
ing data for any Norwegian varieties, we followed
the procedure from van der Goot et al. (2021a) to
generate training data from the original xSID En-
glish training data using machine translation and
annotation transfer. The machine translation model
was trained on the Norwegian OpenSubtitles data1,

1https://object.pouta.csc.fi/
OPUS-OpenSubtitles/v2018/moses/en-no.txt.zip,
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# id = 33/8
# text = Kor varmt skal det ver i dag?
# intent = weather/find
# dialect = V
1 Kor weather/find O
2 varmt weather/find B-weather/attribute
3 skal weather/find O
4 det weather/find O
5 ver weather/find O
6 i weather/find B-datetime
7 dag weather/find I-datetime
8 ? weather/find O

Figure 2: Example sentence with sentence-level annota-
tion (intent, dialect) and token-level slot annotation
(i dag of type datetime). The id field tells that it is
sentence 38 from translator A8. It was translated from
the English sentence How warm will it be today?

as it was the largest open parallel data based on
transcribed speech. We used the FairSeq toolkit
v0.9.0 with default hyperparameters, matching the
original xSID setup, and relied on the attention
weights for transferring the slot labels, which were
afterwards automatically corrected to valid BIO
sequences (i.e. first I becomes a B, and if there is
a label mismatch in the span, the B-label is used).
It should be noted that the automatic mapping of
the slot labels led to some incorrect labeling in
the target language. We also noted that the ma-
chine translation quality was relatively poor overall
with a BLEU score of 18.46 (sacreBLEU on word-
segmented texts). The machine-translated training
set is only available in Norwegian Bokmål, not in
any of the dialects covered by NoMusic (nor in the
other written Norwegian norm, Nynorsk).

The NorSID development and test sets For the
purpose of the shared task, we concatenated and
shuffled all eleven versions of the NoMusic data,
keeping intact the division into development and
test sets. Furthermore, we annotated each prompt
with the dialect label (N, T, V, or B for Bokmål). An
example is shown in Figure 2. In the development
set, we also provide a unique sentence identifier
(33/8 in the example) that determines the content
(all sentences with number 33 have the same mean-
ing) and the translator (all sentences with /8 were
produced by translator A8).

The blind test set provided to the participants
consisted of the # text line and the first two
columns of the tokenized format.

http://www.opensubtitles.org/

Split Sentences Unique B N T V

Train 43,605 33,408 1 (MT) – – –
Dev 3,300 2,736 1 2 3 5
Test 5,500 4,477 1 2 3 5

Table 1: Overview of the data used in the NorSID shared
task. Sentences refers to the total number of sentences
per split, Unique to the number of unique lower-cased
sentences. B, N, T, V lists the number of translations
into the four varieties (Bokmål, Nordnorsk, Trøndersk,
Vestnorsk, respectively).

Team Slots Intents Dialect Reference

HiTZ ✓ ✓ ✓ Bengoetxea et al. (2025)
MaiNLP ✓ ✓ Blaschke et al. (2025)
LTG ✓ ✓ Midtgaard et al. (2025)
CUFE ✓ ✓ Ibrahim (2025)

Table 2: The teams that participated in the VarDial
Evaluation Campaign 2025.

Evaluation We used the standard evaluation met-
rics for the three tasks, namely the span F1 score
for slots, accuracy for intents, and weighted F1
score for dialect classification.

The English source data in xSID is character-
ized by a considerable number of duplicates, and
the number of duplicates further increased when-
ever several dialect translators produced the same
translation (see Table 1). For the slot and intent
evaluation, we did not perform any duplicate re-
moval to maintain comparability with other results
reported on this dataset. In contrast, the dialect
identification evaluation is based on unique lower-
cased sentences, each of which is associated with
a set of labels. The F1 score is computed in the
same way as in multi-label classification tasks (e.g.
Chifu et al., 2024).

4 Participants and Approaches

Four teams participated in the shared task (see Ta-
ble 2). The organizers provided baselines for the
three subtasks.

Baseline: For the slot and intent detection sub-
tasks, the baseline we provided is the same as in the
original xSID paper, trained on the English data,
with an updated version of MaChAmp2 (van der
Goot et al., 2021b). The model uses an mBERT
encoder and a separate decoder head for each task,
one for slot detection (with a CRF layer) and one

2https://machamp-nlp.github.io/
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for intent classification.
For dialect identification, we used the same base-

line model as in the ITDI shared task (Aepli et al.,
2023): a Support Vector Machine (SVM) classi-
fier with TF-IDF-weighted features of character
1-to-4-grams. The model was trained on the de-
velopment set using the scikit-learn toolkit (Pe-
dregosa et al., 2011).

HiTZ: Team HiTZ (Bengoetxea et al., 2025) was
the only one to address all three subtasks. For slot
and intent detection, they compared various com-
binations of the xSID training data and found that
English data alone performed best overall, followed
by all Germanic languages except Norwegian (i.e.,
English, German, Dutch and Danish). They also
confirmed that multi-task modelling outperformed
a single-task setup.

For dialect identification, Team HiTZ collected
four additional datasets of non-Standard Norwe-
gian and silver-labeled them using geolocation
metadata and linguistic features. On the modelling
side, they experimented with both encoder models
(fine-tuning) and decoder models (few-shot prompt-
ing and supervised fine-tuning). In the end, one of
the simplest setups consisting of the NorBERT3
encoder model fine-tuned on the provided devel-
opment set (i.e., without the additionally collected
data) yielded the best results.

MaiNLP: Team MaiNLP (Blaschke et al., 2025)
tried to improve performance for slot and intent de-
tection with a variety of methods: varying the train-
ing data, injecting character-level noise, training
on auxiliary tasks, and combining layers of models
fine-tuned on different datasets. They found that in-
jecting character-level noise is an efficient method
for improving performance, training on auxiliary
tasks did not lead to substantial improvements, and
replacing layers of a model fine-tuned on English
SID data with layers from a model fine-tuned on the
provided development set could lead to substantial
performance improvements.

LTG: Team LTG (Midtgaard et al., 2025) investi-
gated potential improvements of the automatically
translated training data. They improve the align-
ment of the slot labels with simAlign (Jalili Sabet
et al., 2020) and some heuristics, which leads to
substantial performance improvements. They also
use an LLM 3 for translating the training data to

3https://huggingface.co/norallm/
normistral-7b-warm

Team Slots (F1) Intents (Acc.) Dialect (w-F1)

Baseline 64.36 84.15 77.42

HiTZ 85.37 97.69 84.17
MaiNLP 85.57 97.64 —
LTG 89.27 98.02 —
CUFE — 94.38 79.64

Table 3: Highest results for each participating team for
intent classification (accuracy), slot detection (Span-F1
score), and dialect identification (weighted F1).

achieve a higher quality, but this did not lead to bet-
ter performance. Finally, they map annotation from
the MASSIVE dataset (FitzGerald et al., 2023) to
the xSID label set, and show that training on these
leads to higher performance.4

CUFE: Team CUFE (Ibrahim, 2025) fine-tuned
three BERT models (mBERT, NB-BERT and Nor-
BERT) for the intent detection and dialect identifi-
cation tasks. They only used the provided develop-
ment set for fine-tuning and found that the multilin-
gual mBERT model outperformed the Norwegian-
specific models.

5 Results

We evaluated the submitted systems according to
accuracy for intents, according to the span F1 score
for slots (where both span and label must match
exactly), and according to weighted F1 score for
dialect identification.5 Table 3 summarizes the re-
sults by showing the highest scores of each team.

For slot detection, all participants outperform
the baseline by a large margin. Detailed results
(Table 4) show that most submissions performed
best on the Bokmål data, followed by Trøndersk,
Vestnorsk and Nordnorsk. All participating teams
found that using the original English training data
in a cross-lingual transfer setting worked best, and
that adding the (machine-translated) Bokmål train-
ing data led to significant drops. The participants’
efforts to improve the quality of the slot annota-
tions were largely unsuccessful (Midtgaard et al.,
2025).

For intent classification, the baseline was also
outperformed by a large margin by all participants.
The range of scores show that this task is close to

4Note that training on additional SID-annotated Norwe-
gian was not allowed in the official runs. The run including
MASSIVE was submitted outside of the competition.

5The data, evaluation scripts and detailed results are avail-
able on Github: https://github.com/ltgoslo/NoMusic/
tree/main/NorSID
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Submission B N T V all

LTG 3 90.94 87.19 89.69 89.49 89.27
LTG 2 89.92 87.89 89.27 89.62 89.25
MaiNLP 2 90.11 79.66 85.18 87.17 85.57
HiTZ 1 91.09 79.00 85.48 86.61 85.37
MaiNLP 1 85.60 82.66 82.99 84.11 83.68
MaiNLP 3 84.37 79.25 81.68 84.01 82.57
LTG 1 84.74 80.09 80.96 83.30 82.22
HiTZ 3 71.15 60.98 66.22 68.18 66.64
Baseline 71.49 60.68 63.23 65.05 64.36
HiTZ 2 56.74 51.94 56.69 56.25 55.66

LTG 4∗ 91.84 87.56 89.00 89.82 89.38

Table 4: Results (span-F1) for slots. ∗ trained on addi-
tional Norwegian labeled data, excluded from the main
ranking.

Submission B N T V all

LTG 3 98.00 97.20 98.27 98.20 98.02
LTG 1 98.20 97.20 98.33 97.84 97.89
LTG 2 98.20 97.30 98.13 97.84 97.85
HiTZ 2 98.20 97.10 97.60 97.88 97.69
MaiNLP 3 97.80 96.90 98.00 97.68 97.64
MaiNLP 2 97.60 96.20 97.67 97.16 97.16
HiTZ 3 97.80 95.40 97.80 97.24 97.11
HiTZ 1 97.40 95.40 96.93 96.04 96.29
CUFE 1 96.40 93.30 95.80 93.56 94.38
MaiNLP 1 92.80 92.60 93.40 94.00 93.47
Baseline 86.40 82.60 83.33 84.80 84.15

LTG 4∗ 97.80 96.70 97.73 97.20 97.31

Table 5: Results (accuracy) for intents. ∗ trained on
additional Norwegian labeled data, excluded from the
main ranking.

being solved, even without any annotated training
data in the target language (cf. Bengoetxea et al.,
2025). The detailed results in Table 5 show that
the performances on the different dialects are often
similar within single submissions (i.e. systems).
The Northern varieties are slightly more challeng-
ing than the other dialects, but for all variants there
are several systems which perform > 97%. It is also
noteworthy that the additional labeled Norwegian
MASSIVE dataset provided by team LTG (Midt-
gaard et al., 2025) did not yield any improvements
for intent detection (and only marginal ones for slot
filling).

For dialect identification, all participating sys-
tems outperform the baseline. Generally, the sys-
tems struggle most with identifying Bokmål and
Nordnorsk, the two varieties with least data (1 and
2 translators, respectively). In the light of these re-

Submission B N T V all

HiTZ 2 75.40 78.44 85.95 87.45 84.17
HiTZ 3 74.91 77.50 84.29 87.08 83.32
HiTZ 1 74.10 75.72 83.97 86.61 82.71
CUFE 1 68.93 73.38 80.26 84.14 79.64
Baseline 57.38 73.46 77.76 82.59 77.42

Table 6: Results (weighted-F1) for dialects.
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Figure 3: Performance metrics for slots.

sults, data augmentation techniques targeting these
two varieties specifically appear as the most promis-
ing way forward. This should not prove too difficult
for Bokmål, which is standardized and therefore
not particularly low-resourced.

6 Analysis

Returning to the slot filling subtask, Figure 3 shows
multiple metrics for the best submission of each
team over the whole test set (all dialects). Precision
is higher compared to recall for most participants,
except LTG. We also report unlabeled F1, where
we only check if the label boundaries match and
ignore the label, and loose F1 which allows for
partial matches. The unlabeled F1 is substantially
higher for all teams, showing that finding the right
label is still an unsolved issue. The loose F1 is
always lower than the unlabeled F1, but still sub-
stantially higher than the strict span F1, showing
that also finding the exact boundaries of a span is
still challenging.

Furthermore, we looked into the most com-
monly confused intent pairs. All teams
have the same top-2 confusion pairs, namely:
SearchScreeningEvent–SearchCreativeWork and
cancel_reminder–cancel_alarm (gold–predicted).
Upon inspection, almost all mistakes in these cate-
gories are on the same instances. For example, the
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Figure 4: Confusion matrices for dialect classification.

translations of the sentence “I want to see Outcast”,
e.g. “Eg vil se Outcast.” and “Æ vil se Outcast” are
predicted as SearchCreativeWork by all teams, but
the more precise label SearchScreeningEvent was
annotated. We also found two erroneous annota-
tions for the cancel_reminder gold label, which
clearly described alarms. Other common mis-
takes included the prediction of set_alarm where
cancel_alarm was annotated, and the prediction
of PlayMusic where the true intent was Search-
ScreeningEvent (likely triggered by to the word
‘play’).

The confusion matrices for dialect classification
(Figure 4) show one clear tendency, namely that
the Northern (N) and Central (T) dialects are rarely
confused with Bokmål (B), whereas confusions
between the Western (V) dialects and Bokmål is
much more common. In fact, the highest numbers
of sentence-level overlap with Bokmål are observed
with some of the Western dialect writers. The mod-
els also struggle delimiting the three dialect areas
(N, T, V), with significant confusion between the
non-adjacent areas N and V. In comparison with
the baseline, the submitted systems improve mainly
by better distinguishing between T and V.

7 Conclusion

This paper presented an overview of the NorSID
shared task organized as part of the VarDial Evalu-
ation Campaign 2025.

The analysis of the results presented above sug-
gests that intent detection is largely a solved task,
where most of the remaining errors can be at-
tributed to ambiguous labels. On the other hand,
the other two subtasks still show room for improve-
ment. The submitted slot filling models struggle
with finding the correct slot boundaries and assign-
ing the correct slot labels. Since most submitted

models were trained without significant amounts
of Norwegian training data, the training signal may
not have been strong enough to address the first
issue. It is also expected that some inconsistencies
have remained in the NoMusic dataset as a result
of the translation and annotation.

Regarding dialect classification, the most stan-
dardized variant (Bokmål) obtains the poorest
scores, most likely due to the low amount of train-
ing data provided. More generally, it remains to be
investigated to what extent the four major dialect
areas (based on traditional dialectological research)
represent the most useful partition of our data; in
particular, the five translators of the Western dialect
area cover a relatively wide area where significant
internal variation is expected. Finally, it would be
interesting to see what levels of dialect identifica-
tion performance could be achieved by humans.

Both the slot filling and dialect identification
subtasks proved rather challenging, which opens
up opportunities for future evaluation campaigns.

Acknowledgements

We thank all the participants for their interest in the
shared task.

The NoMusic project was granted funding from
the TekstHub initiative at the University of Oslo.
We thank the many annotators who have con-
tributed to this project, and in particular Marthe
Midtgaard for help with the annotation transfer.

References
Noëmi Aepli, Antonios Anastasopoulos, Adrian-Gabriel

Chifu, William Domingues, Fahim Faisal, Mihaela
Gaman, Radu Tudor Ionescu, and Yves Scherrer.
2022. Findings of the VarDial evaluation campaign
2022. In Proceedings of the Ninth Workshop on NLP
for Similar Languages, Varieties and Dialects, pages

6



1–13, Gyeongju, Republic of Korea. Association for
Computational Linguistics.
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Abstract

We present a general analysis of the lexical and
grammatical differences between Brazilian and
European Portuguese by applying entropy mea-
sures, including Kullback-Leibler divergence
and word order entropy, across various linguis-
tic levels. Using a parallel corpus of BP and
EP sentences translated from English, we quan-
tified these differences and identified charac-
teristic phenomena underlying the divergences
between the two varieties. The highest diver-
gence was observed at the lexical level due to
word pairs unique to each variety but also re-
lated to grammatical distinctions. Furthermore,
the analysis of parts-of-speech (POS), depen-
dency relations, and POS tri-grams provided
information concerning distinctive grammati-
cal constructions. Finally, the word order en-
tropy analysis revealed that while most of the
syntactic features analysed showed similar pat-
terns across BP and EP, specific word order
preferences were still apparent.

1 Introduction

Portuguese, a Romance language from the Indo-
European family, is the eighth most spoken lan-
guage in the world according to Eberhard et al.
(2024), and the most spoken language in the South-
ern Hemisphere. It is the official language of eight
countries: Angola, Brazil, Cape Verde, Equatorial
Guinea, East Timor, Guinea-Bissau, Mozambique,
and Sao Tome and Principe. However, it is spoken,
as the native language, by more than 99% of the
population only in Portugal and Brazil. According
to Instituto Camões (2021), in 2021, Portuguese
was spoken by around 280 million people.

Due to its population size and increasing eco-
nomic importance, the Brazilian variety of Por-
tuguese has expanded its influence throughout the
twentieth and twenty-first centuries. The impact of
this variety can be seen, for instance, in the field of
Natural Language Processing (NLP), where many

tools and language models have been specifically
developed for Brazilian Portuguese (e.g., BERTim-
bau (Souza et al., 2020) and Albertina 100M PTBR
(Santos et al., 2024)). Despite Portugal’s smaller
population, the European variety of Portuguese has
maintained its prestige and significant importance
within the Lusophone community, especially in the
NLP field (Branco et al., 2023). Unfortunately,
other varieties still lack representativeness, particu-
larly in the NLP field, as described by Alves (2024).

Since the colonization period, the Portuguese
spoken in Brazil has evolved differently from Eu-
ropean Portuguese, influenced by various factors,
across multiple linguistic levels, including lexical,
grammatical, and phonological. The analysis of
these differences have been object of a large variety
of linguistic works, and the detection of these vari-
eties is a current topic in the NLP community (e.g.,
VarDial Shared Task 2023 (Aepli et al., 2023)).

Despite efforts to unify the Portuguese varieties
(e.g., the Orthographic Agreement (Pinto, 2012)),
the emphasis on differences appears to be the main
trend on social media, where users from various re-
gions engage in endless discussions about the most
correct ways to express themselves. One example
is the amount of discussion generated by the BBC
article (BBC, 2024), in which the linguist Fernando
Venâncio states that in a few decades, Brazil will
be speaking Brazilian, a different language from
Portuguese.

While linguistic papers usually focus on spe-
cific linguistic differences, often without employ-
ing corpus-based analysis, many NLP works tend
to concentrate solely on improving tools for spe-
cific applications, giving little attention to the anal-
ysis of these differences.

Therefore, the aim of this paper is to provide a
general overview of the lexical and grammatical
differences between Brazilian and European Por-
tuguese, using information theory measures such
and parallel corpus. Our objective is to quantify
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these differences and, through qualitative analysis,
identify the main lexical and grammatical aspects
responsible for the observed variations. Moreover,
we aim to show how efficient these methods are in
the identification of typical lexical and grammatical
features of different varieties of the same language.

The remainder of the paper is organized as fol-
lows. In Section 2 we discuss related work on
Brazilian and European varieties of Portuguese.
Sections 3 and 4 presents our methods and results.
We conclude with a summary and outlook (Sec-
tion 5).

2 Related Work

As previously mentioned, purely linguistic works
comparing European and Brazilian Portuguese tend
to focus on specific linguistic phenomena. For ex-
ample, the work by Kato and Martins (2016) de-
scribes what the authors refer to as a major differ-
ence in the grammar of the two varieties, namely
the placement of clitic pronouns. Moreover, they
also propose an analysis concerning information
focus, as well as contrastive and emphatic focus.

The difference between Wh-questions in both
varieties was examined diachronically by De Paula
(2017), revealing a clear temporal evolution with
noTable differences in word order patterns (e.g.,
WhV versus WhSV).

An interesting study regarding the lexical level
was conducted by Silva (2010). The authors com-
pared Brazilian and European Portuguese at the
lexical level using uniformity measures developed
by Geeraerts et al. (1999). They focused on the
lexical fields of clothing and soccer, identifying a
divergence only in the clothing category. The au-
thors examined 21 pairs of synonyms to calculate
the uniformity measures. In contrast, our approach
is broader, as our measures allow us to identify di-
vergent terms without relying on a pre-established
list and can also be used to identify typical gram-
matical patterns in each variety.

Many other studies focused on intonational and
phonological aspects (cf. Frota et al. (2015); Escud-
ero et al. (2009); Frota and Vigário (2001)), which
are not the focus of our analysis.

The focus of NLP studies on Portuguese varieties
is typically on detecting the correct variety, as seen
in the 2023 and 2024 VarDial Shared Tasks (Aepli
et al., 2023; Chifu et al., 2024). Besides specific
shared tasks organized for this purpose, variety
detection is also the subject of other studies, such

as the system proposed by (Castro et al., 2016),
which focuses on tweets from both varieties and
achieves an accuracy of 0.93.

Another valuable application of NLP tools for
different varieties of Portuguese was presented by
(Cortes et al., 2024). The authors focused on the lo-
calization task (i.e., adapting linguistic and cultural
material between different locales). Using large
language models, they achieved considerable suc-
cess in adapting machine translation to Brazilian
and European Portuguese.

Regarding the use of information theory to de-
scribe language variation, Degaetano-Ortlieb and
Teich (2018) presented a data-driven diachronic
analysis of scientific English, detecting periods of
linguistic change in terms of lexical and grammat-
ical features. Their approach is based on relative
entropy (Kullback-Leibler Divergence), comparing
temporally adjacent periods and sliding along the
timeline from past to present. In this paper, our aim
is to adopt a similar approach; however, instead
of conducting a diachronic analysis, we propose
to compare different varieties of Portuguese syn-
chronically.

Entropy measures are also relevant for compar-
ing different languages in terms of word order pat-
terns. In typology, Levshina (2019) used entropy in
quantitative studies of word order variation, mea-
suring it at different levels of granularity. Addi-
tionally, Montemurro and Zanette (2011) applied
entropy measures to demonstrate that the impact
of word order on language structure is a statistical
linguistic universal. However, these typological
studies do not address potential changes in word or-
der across different varieties of the same language.
Thus, our approach aims to use word order entropy
measures to detect syntactic variation between Eu-
ropean and Brazilian Portuguese, to assess whether
these differences should be considered in typologi-
cal studies involving Portuguese.

3 Methods

3.1 Data

For our comparative analysis, we utilized the
FRMT dataset (Riley et al., 2023), which com-
prises paired sentences in European and Brazil-
ian Portuguese. The sentences for each variant
are translations of original English sentences car-
ried out by translators specializing in the respective
Portuguese variants. Notably, the curators of the
FRMT dataset intentionally selected English sen-

10



tences that required distinct, non-optional transla-
tions for each Portuguese variant.

In this study, we concatenated all the texts from
FRMT repository, omitting the original English
sentences, thus creating a parallel corpus of aligned
sentences in European and Brazilian Portuguese,
totaling 5,478 sentences. The token distribution is
presented in Table 1.

Variety Number of Tokens
European Portuguese 138,355
Brazilian Portuguese 135,873

Table 1: Distribution of tokens in the FRMT dataset
regarding European and Brazilian varieties.

Although the size of the chosen corpus is limited,
it has the advantage of providing parallel sentences
for both varieties, thereby minimising potential lex-
ical and grammatical biases that can occur in less
homogeneous corpora. Moreover, since part of
this corpus was designed to highlight lexical differ-
ences between the varieties, it is useful for testing
the efficacy of our methods in identifying these
differences.

Our analysis focus on lemmas, parts-of-speech,
and syntactic relations. Thus, both corpora were
parsed using the Portuguese model of the Stanza
parser Qi et al. (2020). The model used was
trained with the Bosque corpus1 which contains
both Brazilian and European varieties. No manual
verification of the annotations was made, however,
in the qualitative analysis of the differences be-
tween the varieties, it was possible to notice that
the parser provided coherent results.

3.2 Relative Entropy

To quantify the lexical and grammatical differences
between the varieties of Portuguese, we used rela-
tive entropy, specifically Kullback-Leibler Diver-
gence (KLD; Kullback and Leibler (1951)). This
method compares probability distributions by cal-
culating the number of extra bits required to encode
a data set A using a model based on data set B for
a given set of elements X, as described by equation
1.

DKL(A∥B) =
∑

x∈X
A(x) log

(
A(x)

B(x)

)
(1)

1https://github.com/UniversalDependencies/UD_Portuguese-
Bosque

In our case, A and B correspond to the varieties
of Portuguese. Regarding the elements X, we con-
ducted the following analysis:

1. Lemmas

2. Parts-of-Speech (POS)

3. Dependencies Relations (deprel)

4. Parts-of-Speech tri-grams

Therefore, the idea is to analyse the lexical dis-
crepancies using the lemmas, and to use the other
analysis to examine the grammatical differences
regarding both varieties.

KLD provides a measure regarding the extent
of divergence between corpora and highlights the
features most strongly linked to these differences.2

Thus, for each feature X, we can measure the
divergence between the two corpora. Additionally,
by using pointwise KLD, i.e., the individual KLD
for each feature (lemmas, POS, deprels, and POS
tri-grams), we can identify the specific features that
are more typical for one variety or the other, with a
p-chi value < 0.001.

Due to the asymmetric characteristic of the KLD,
we are interested in both directions, i.e., the num-
ber of extra bits required to encode the Brazilian
Portuguese dataset based on data from the Euro-
pean Portuguese (DKL(BP||EP)) and vice-versa
(DKL(EP||BP)).

3.3 Word Order Entropy
To analyse possible word order differences regard-
ing Brazilian and European Portuguese, we use
the word order entropy measure as established by
Levshina (2019). The entropy is calculated for
18 different word order patterns, using POS and
deprels to define them. The list of different pat-
terns can be seen in Table 2 as defined by Levshina
(2019).

The entropy measure correspond to the one de-
fined by Shannon (1948). It reflects the variation
in word order across the twenty-four dependencies
and co-dependencies outlined in Table 2. For each
word order pattern in the corpus, the entropy was
calculated using the formula presented in (2):

H(X) =
2∑

i=1

P (Xi) log(P (Xi)) (2)

2Discrepancies in vocabulary size are addressed using
Jelinek-Mercer smoothing with a lambda value of 0.05 (see
Zhai and Lafferty (2004) and Fankhauser et al. (2014)).
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Type Label Dependent Head
Nominals nsubj_Pred Subject (noun or pronoun) root
heads nobj_pred Direct object (noun or pronoun) root

obl_pred Oblique phrase root
nmod_noun Nominal dependent (noun or pronoun) Noun

Co-dependent nsubj_obj Nominal subject and object -
nominals obj_obl Nominal object and oblique phrase root

Modifiers nummod_Noun Numeric modifier Noun
and heads amod_Noun Adjectival modifier Noun

advmod_V-Adj Adverbial modifier Verb
or Adjective

Function words det_Noun Determiner Noun
and heads adp_Noun Adposition Noun

aux_Verb Auxiliary Verb
cop_pred Copula Any nominal
mark_ccomp/advcl Subordinators Predicate

of complement
clause

Clauses csubj_pred Clausal subject Predicate
of the main clause

ccomp_pred Clausal complement Predicate
of the main clause

acl_Noun Adjectival clause Noun
advcl_pred Adverbial clause Predicate

of the main clause

Table 2: Description of the 18 syntactic features chosen for the word order entropy analysis.

Here, X is a binary variable representing two pos-
sible word orders, P (Xi) refers to the probability
of one of these orders, i.e., its relative proportion in
a given corpus. When one word order has a propor-
tion of 1 and the reverse order has a proportion of
0, or vice versa, the entropy H is 0, indicating no
variation. Conversely, if both word orders have a
proportion of 0.5, the entropy reaches its maximum
value of 1.

We calculated the entropy measures for all 18
patterns in both European and Brazilian Portuguese
to determine whether there is significant word or-
der variation across the different syntactic relations
listed in Table 2.

4 Results

4.1 Relative Entropy

As explained earlier, we calculated the Kullback-
Leibler divergence for four sets of features, cover-
ing both lexical and grammatical levels: lemmas,
parts of speech, dependency relations, and parts-of-
speech trigrams. The overall results are presented
in Figure 1.

Figure 1: Overall KLD results regarding lemmas, parts-
of-speech, dependency relations, and parts-of-speech
tri-grams.

The results show that the greatest divergence oc-
curs at the lexical level, followed by POS tri-grams.
In contrast, the usage of dependency relations and
POS do not differ significantly, with values very
close to zero.

At the lexical level (i.e., lemmas), more bits are
required to encode the BP corpus using the EP
model than vice versa, suggesting that BP has a
more complex vocabulary, at least regarding our
limited dataset.

In terms of POS tri-grams, we observe the same
phenomenon; however, both divergence measures
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are close to zero, indicating a less pronounced dis-
crepancy compared to the lexical level.

Besides the overall divergence analysis, we also
examined the pointwise KLD for each feature to
identify the most typical elements of each variety.

At the lexical level, out of the 18,439 lemmas ex-
tracted from both corpora, 271 showed a significant
KLD measure (positive for either EP or BP) with a
p-chi value below 0.001. Tables 3 and 4 shows the
30 most typical tokens for each corpus.

Lemma KLD - BP
ele 0.0066
esse 0.0060
usar 0.0059
ônibus 0.0057
equipe 0.0051
trem 0.0044
ela 0.0040
tela 0.0036
abacaxi 0.0030
suco 0.0030
pedestre 0.0028
garota 0.0028
mouse 0.0027
banheiro 0.0026
eles 0.0025
terno 0.0024
pois 0.0024
Prêmio 0.0022
sorvete 0.0020
motorista 0.0020
US$ 0.0020
gol 0.0020
videogame 0.0019
conectar 0.0019
grampeador 0.0019
isso 0.0018
usuário 0.0016
paletó 0.0016
prêmio 0.0015
controle 0.0015

Table 3: Lemmas with statistically valid differences
regarding pointwise KLD for Brazilian portuguese.

The pointwise KLD measure effectively captures
the lexical specificities of each variety. Since we
are using a parallel corpus, it is easy to identify the
pairs of words that express the same meaning in
the different varieties. The lexical differences can
be classified into different classes.

Lemma KLD - EP
este 0.0143
o 0.0122
a 0.0084
utilizar 0.0082
autocarro 0.0053
equipa 0.0052
condução 0.0048
sumo 0.0046
ter 0.0034
ecrã 0.0034
telemóvel 0.0032
golo 0.0032
comboio 0.0031
ananá 0.0028
pequeno-almoço 0.0028
0 0.0027
rapariga 0.0023
peão 0.0021
agrafador 0.0019
rato 0.0019
E.U.A. 0.0019
carta 0.0018
regressar 0.0017
registar 0.0017
utilização 0.0017
se 0.0017
normalmente 0.0017
Prémio 0.0017
isto 0.0016
videojogo 0.0016

Table 4: Lemmas with statistically valid differences
regarding pointwise KLD for European portuguese.

First, ortographic variations: even though the
Ortographic Agreement (Pinto, 2012) proposed to
unify the orthographies of the different varieties
of Portuguese, some words can still be written in
more than one form. In our analysis, we can iden-
tify: económico (EP) / econômico (BP) (economic);
facto (EP) / fato (BP) (fact); prémio (EP) / prêmio
(BP) (prize).

Additionally, regarding synonyms: different
words are used by the various varieties to express
the same meaning. In some cases, the word may
also exist in the other variety but is not necessarily
used in the same contexts. For example: autocarro
(EP) / ônibus (BP) (bus); fato (EP) / paletó (BP)
(suit); gelado (EP) / sorvete (BP) (ice cream).

Finally, concerning grammatical choices: the
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lexical analysis also indicates specific grammatical
preferences for each variety, and these cases present
the highest KLD values. For instance, the demon-
strative adjectives este and esse (this) are used to
distinguish proximity. Este is used when the object
is closer to the speaker, while esse is used when the
object is closer to the other interlocutor. However,
this differentiation is becoming less common in BP,
where the form esse is increasingly preferred, as de-
scribed by Meira and Guirardello-Damian (2018).
Moreover, we can observe the presence of the third-
person singular pronoun in the BP variety, which
relates to the loss of the pro-drop property due to
verbal simplification in BP (cf. Duarte (2000)).
Two other interesting phenomena can be noted: the
typicality of the definite article o in EP, due to its
obligatory usage with possessive determiners in
this variety (cf. Castro (2006)), and the preposition
a, also in EP. In Brazil, it has mostly been replaced
by the preposition em when combined with move-
ment verbs (Gil and da Silva, 2023). Furthermore,
the typicality of a in EP is due to its use as a subor-
dinating conjunction, combined with an infinitive
to express an ongoing action, whereas in BP, the
gerund is typically used (cf. Hricsina (2014)).

Besides the cases mentioned above, there are
other particularly interesting lexical differences:
the typical use of the explicative or conclusive con-
junction pois in BP, which is also part of the EP
vocabulary. In our corpus, when pois is used in BP,
the most common equivalent in EP is porque. Also,
there is a clear preference in the usage of the verb
usar (to use) in BP, while, in EP, the typical choice
is utilizar (to utilise). This result should be con-
firmed with a larger corpus as it could just imply
a preference of the translators who composed the
data used in this study.

It is important to note that, due to the limited size
of the corpus, while many lexical differences can
be identified, it does not encompass the full extent
of the lexical specificities of both varieties. The
texts are restricted to a particular register (written
Portuguese), so a transcribed spoken corpus could
be used to complement this lexical analysis.

Regarding the pointwise KLD values for the
parts-of-speech, we identify the following signi-
ficative differences:

• BP: Pronouns, symbols, and adverbs

• EP: Determiners

The typicality of pronouns in BP can be at-

tributed to the loss of the pro-drop phenomenon,
as previously mentioned. Symbols appear more
prominently in the Brazilian corpus, with the use
of US$ or R$ instead of dólares and reais, which
are more common in the European Portuguese data.
The frequency of adverbs is quite similar in both
corpora; however, differences arise in the choice of
adverbs used. For instance, então is more typical
in BP, while contudo is more representative of EP.
Additionally, the specificity of determiners in EP
can be attributed to their more frequent use before
possessive determiners in this variety.

Regarding the dependency relations, the follow-
ing statistically significant differences were found:

• BP: advmod, nummod, nsubj

• EP: acl:relcl, aux, det, mark, expl, iobj

Analyzing the corpora qualitatively, it is evident
that, in some cases, the adverbial modifier used
in BP is replaced by adjectival constructions in
EP (e.g., abaixo in BP (below) and inferiores in
EP (inferior)). The use of numerical modifiers in
BP is prominent in temporal constructions. For
example, no dia 6 de setembro in BP (on the 6th
of September) and a 6 de setembro in EP (on the
6th of September). In BP, the token 6 is labeled
as a numerical modifier (nummod), whereas in EP,
it is labeled as oblique (obl). The frequent use of
nominal subjects in BP was expected, given the
loss of the pro-drop phenomenon in this variety.

Regarding the more representative dependency
relations in EP, the typicality of determiners can
be attributed to the greater use of articles in this
variety, as previously explained. Additionally, the
prevalence of the "mark" relation is due to construc-
tions involving a + infinitive to express ongoing
actions, whereas BP typically uses the gerund.

In EP, adnominal relative clauses (acl) are often
replaced by adverbial clauses (advcl) or adnominal
clauses (acl) in BP. For example, que enfrentava
(who was facing) in EP becomes enfrentando (fac-
ing) in BP, and reformas que visavam (reforms that
aimed) in EP is replaced by reformas com o ob-
jetivo de melhorar (reforms with the objective of
improving) in BP.

The expletive (expl) relation in Portuguese is
used to mark reflexive pronouns with pronominal
verbs. EP clearly shows a preference for these
types of verbs. For instance, demitiu-se (he quit)
and divorciou-se (he divorced) are common in EP,
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while BP favors constructions like renunciou (he
resigned) and é divorciado (he is divorced).

Regarding the indirect object (iobj), there is no
clear preference for specific constructions in EP
compared to BP. The corpus reveals various in-
stances where the iobj is replaced by a direct object,
often due to different verb choices, which require
different arguments.

Finally, the auxiliary (aux) relation is more typ-
ical in EP within compound verb phrases (e.g.,
tendo sido (he has been) and depois de ter sido
(after having been)), whereas in BP, the auxiliary is
often omitted, with only the participle or infinitive
used directly (e.g., sido and depois de ser).

Regarding the analysis of POS 3-grams, Tables
5 and 6 present the 15 POS patterns most typical
for BP and EP.

Lemma KLD - BP
DET-NOUN-NUM 0.0028
VERB-ADP-DET 0.0021
ADP-SYM-NUM 0.0020
PRON-VERB-ADP 0.0018
AUX-VERB-ADP 0.0017
SYM-NUM-NUM 0.0016
PRON-VERB-DET 0.0014
NUM-ADP-NUM 0.0012
NOUN-ADP-PRON 0.0012
DET-NOUN-ADV 0.0011
ADJ-ADP-NOUN 0.0011
ADV-AUX-VERB 0.0010
PRON-ADV-VERB 0.0010
CCONJ-PRON-VERB 0.0009
NOUN-ADV-AUX 0.0008

Table 5: POS 3-grams with statistically valid dif-
ferences regarding pointwise KLD for Brazilian por-
tuguese.

The typical tri-grams for the different varieties
confirm the grammatical patterns already identi-
fied in the examination of POS and dependency
relations.

It is possible to identify the typical usage of two
determiners in European Portuguese (EP), specifi-
cally the article and possessive determiner, in pat-
terns such as DET-DET-NOUN and VERB-DET-
DET. Additionally, we can observe the verbal con-
struction formed by VERB-SCONJ-VERB (e.g.,
estar a fazer (to be doing)). This analysis also
reveals the syntactic preference of EP for plac-
ing oblique and direct object clitic pronouns after
the verb (e.g., VERB-PRON-ADP, NOUN-VERB-

Lemma KLD - EP
DET-DET-NOUN 0.0067
ADP-DET-DET 0.0034
VERB-DET-DET 0.0025
VERB-PRON-ADP 0.0023
AUX-VERB-DET 0.0015
DET-DET-ADJ 0.0014
PRON-ADP-DET 0.0013
NOUN-VERB-PRON 0.0011
NUM-NUM-NUM 0.0011
ADP-ADP-DET 0.0010
VERB-SCONJ-VERB 0.0009
DET-NOUN-SCONJ 0.0009
AUX-ADJ-ADP 0.0009
ADP-NUM-NUM 0.0007
VERB-PRON-ADV 0.0007

Table 6: POS 3-grams with statistically valid dif-
ferences regarding pointwise KLD for European por-
tuguese.

PRON), while in Brazilian Portuguese (BP), these
pronouns are usually placed before the verb (cf.
Kato and Martins (2016)).

Regarding the BP, the patterns PRON-VERB-
ADP and PRON-VERB-ADV indicate two differ-
ent phenomena, the more typical usage of pronouns
as nominal subjects and the usage of clitic pronouns
positioned before the verbs (also identified in pat-
terns such as PROPN-PRON-VERB). Moreover,
the typicality of the gerund is also observed (e.g.,
AUX-VERB-ADP). We can also identify a prefer-
ence in BP for the usage of constructions such as
VERB-ADP (e.g., a ele (to him)), being replaced
by a clitic pronoun in EP (e.g., lhe).

Overall, the KLD analysis at different linguistic
levels allows for the identification of a myriad of
typical features (both lexical and grammatical) for
each variety. The overall KLD indicates that most
differences occur at the lexical level. However,
by using pointwise KLD, we can examine specific
grammatical preferences more closely.

4.2 Word Order Entropy

As described in Section 3, in addition to the KLD
analysis, we also calculated word order entropy
values for a set of 18 syntactic features for both
varieties of Portuguese, as listed in Table 2. Figure
2 presents the ensemble of results.

Most of the 18 syntactic features display similar
entropy values for both EP and BP. Several features,
such as adp_NOUN, aux_Verb, mark_ccomp/advcl,
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Figure 2: Word order entropy values for the 18 syntactic features described in Table 2 for Brazilian (BP) and
European Portuguese (EP).

ccomp_pred, and det_Noun, show entropy values
close to 0, indicating a relatively fixed word order
(e.g., auxiliary verbs consistently precede the main
verb). Other features exhibit values ranging from
0.3 to 0.8, reflecting some flexibility in word order.
The feature with the entropy value closest to 1 is
obj_obl, which indicates a strong preference in
both varieties for placing the direct object before
the oblique argument.

Focusing on the features where discrepancies be-
tween the varieties can be observed, we notice that
obj_pred, nsubj_pred, nsubj_obj, nummod_Noun,
and csubj_pred show the most divergence between
the varieties.

The difference in word order between the direct
object and the predicate (root) can be attributed
to the previously discussed variation in the posi-
tion of clitic objects. While nominal objects are
consistently placed after the verb in both varieties,
pronominal objects are typically positioned before
the verb in BP and after the verb in EP. Thus, the en-
tropy in this case is closer to 0 for EP and higher for
BP, indicating more variability in the word order.

A qualitative analysis of the corpus showed that,
regarding the nsubj_pred feature, EP present more
sentences with the root preceding the nominal sub-
ject. For example, Como afirmou Galeno (EP) and
Como Galeno disse (As Galeno said), thus having

a higher entropy value.
The difference in entropy values for the

nsubj_obj feature can be attributed to subordinate
clauses where the relative pronoun que precedes
the nominal subject of the clause. This structure
occurs more frequently in BP, though it is also pos-
sible in EP. The variation may be explained by the
translator’s verb choice, i.e., in EP, the construc-
tion sometimes required an oblique complement,
whereas in BP, a direct object was necessary.

BP exhibits a word order entropy for num-
mod_Noun close to 0.5, while for EP, this measure
is lower, indicating a slightly more fixed word order.
This can be explained by the higher frequency of
expressions such as meados dos anos 2000 (in the
middle of the 2000s) and no dia 6 de setembro (on
the 6th of September) in BP, where the nouns (i.e.,
anos and dia) are often included. In EP, however,
these nouns tend to be omitted.

Finally, the last dependency relation showing
a significant difference between the varieties of
Portuguese is csubj_pred. The results indicate a
more fixed ordering in BP (i.e., the clausal subject
typically follows the predicate). In the corpus, ex-
amples from EP, such as Proteger e melhorar o
património bibliográfico do país são dois... (To
protect and improve the bibliographic patrimony of
the country are two...), show that the token labeled
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as csubj (e.g., the verb proteger) appears before the
predicate dois. In BP, however, this sentence is re-
structured with nouns instead of verbs: A proteção
e aprimoramento do legado bibliográfico do país
são outros dois... (The protection and improvement
of the bibliographic legacy of the country are two
others...), thus replacing the clausal subject with a
nominal one.

The word order entropy analysis revealed spe-
cific syntactic phenomena that differ between BP
and EP. While some of these word order tendencies
can be attributed to inherent linguistic character-
istics of the varieties (e.g., the position of clitic
objects), others may come from stylistic choices
made by the translators who created the corpora. A
more extensive analysis using larger corpora could
further complement and refine our findings.

5 Conclusion and Future Work

In this paper, we provided a general overview of
the lexical and grammatical differences between
Brazilian and European Portuguese. By apply-
ing entropy measures (i.e., Kullback-Leibler di-
vergence and word order entropy) across various
linguistic levels to a parallel corpus of BP and EP
sentences translated from English, we quantified
these differences and identified the most character-
istic phenomena underlying these divergences.

Regarding KLD, the highest divergence was ob-
served at the lexical level. The lexical analysis not
only allowed us to identify word pairs that differ
between the two varieties but also revealed spe-
cific grammatical preferences, such as the loss of
the pro-drop phenomenon in BP. Additionally, the
analysis of POS, dependency relations, and POS
tri-grams enabled a more detailed examination of
the grammatical constructions typical to each vari-
ety (e.g., the use of the gerund and the position of
clitic objects).

Finally, the word order entropy study showed
that, while the majority of the 18 features analyzed
exhibited similar results, specific word order pref-
erences were still observed between the varieties.

For future work, we aim to expand this analy-
sis using larger corpora to verify whether the ten-
dencies identified in this study (e.g., the order of
clausal subject and predicate) can be confirmed.
Additionally, as the methods used here can be ap-
plied to studies of linguistic variation in general,
we plan to extend this analysis to other varieties
of Portuguese. We also intend to complement our

study with other information-theoretic measures,
such as surprisal to help us identify what would
be the most unexpected words and grammatical
constructions in each variety when processed with
a model trained with a different one.

6 Limitations

While this study provides an overview of the lexi-
cal and grammatical differences between Brazilian
and European Portuguese, it does not encompass
the regional linguistic varieties found within Brazil
and Portugal. Additionally, due to the limited size
of the dataset and its specific register, this anal-
ysis may not capture all existing differences. As
mentioned in the paper, some linguistic phenomena
observed may be attributed to the stylistic prefer-
ences of the translators, rather than representing
typical characteristics of the varieties themselves.

7 Ethical Considerations

The dataset used for this study is publicly available
and curated by Riley et al. (2023). We are commit-
ted to maintaining transparency in our methodol-
ogy and findings throughout this research. Each
result is accompanied by examples derived from a
qualitative analysis of the corpora, allowing read-
ers to understand the context and significance of
our findings. Additionally, we have explicitly ad-
dressed potential biases and inconsistencies within
the dataset and our analysis in the text, acknowledg-
ing their implications for the interpretations drawn
from our study.
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Abstract

Native Language Identification (NLI) – the task
of identifying the native language (L1) of a
person based on their writing in the second
language (L2) – has applications in forensics,
marketing, and second language acquisition.
Historically, conventional machine learning ap-
proaches that heavily rely on extensive feature
engineering have outperformed transformer-
based language models on this task. Recently,
closed-source generative large language mod-
els (LLMs), e.g., GPT-4, have demonstrated
remarkable performance on NLI in a zero-shot
setting, including promising results in open-set
classification. However, closed-source LLMs
have many disadvantages, such as high costs
and undisclosed nature of training data. This
study explores the potential of using open-
source LLMs for NLI. Our results indicate
that open-source LLMs do not reach the ac-
curacy levels of closed-source LLMs when
used out-of-the-box. However, when fine-tuned
on labeled training data, open-source LLMs
can achieve performance comparable to that of
commercial LLMs.

1 Introduction

Native Language Identification (NLI) is the task
of automatically identifying an author’s native lan-
guage (L1) based on texts written in their second
language (L2). The task is based on the language
transfer hypothesis, the phenomenon in which char-
acteristics of L1 influence the production of texts
in L2 to the degree that L1 is identifiable (Odlin,
1989). NLI is useful for educational purposes,
forensic applications in the context of author pro-
filing, and to inform second language acquisition
research (Goswami et al., 2024).

From a machine learning (ML) perspective,
NLI is commonly framed as a supervised multi-
class classification task, where NLI systems are
trained to assign an author’s L1. While the task
has been proven difficult to perform by humans

(Malmasi et al., 2015), automated methods have
shown remarkable results using conventional ML
approaches based on extensive feature engineer-
ing, e.g., (Cimino and Dell’Orletta, 2017; Markov,
2018). Such methods rely on features that capture
L1-indicative linguistic patterns in L2 writing, e.g.,
spelling errors (Koppel et al., 2005; Chen et al.,
2017; Markov et al., 2019), word choice (Brooke
and Hirst, 2012), and syntactic patterns (Wong and
Dras, 2011).

Transformer-based encoder models, like
BERT (Devlin et al., 2019), on the other hand, have
yielded poorer performance than conventional ML
approaches for the NLI task (Markov et al., 2022;
Steinbakken and Gambäck, 2020; Goswami et al.,
2024). Previous research suggests that this is likely
because NLI concerns very specific linguistic
features that models trained on general corpora
cannot capture (Markov et al., 2022). Recent
research has shown that generative large language
models (LLMs) demonstrate promising results for
NLI. Lotfi et al. (2020) presented the first study
addressing NLI using fine-tuned GPT-2 models,
which outperformed previous traditional ML
approaches and achieved state-of-the-art results on
the NLI benchmark TOEFL11 and ICLE datasets.
Zhang and Salle (2023) explored the ability of
GPT-3.5 (Brown et al., 2020) and GPT-4 (OpenAI,
2023) to perform NLI. Their results indicate
that out-of-the-box GPT models demonstrate
outstanding performance, with GPT-4 setting a
new performance record of 91.7% accuracy on
the TOEFL11 benchmark dataset, and achieve
promising results for open-set classification
(without a predefined set of L1s), a useful setting
for real-world NLI applications.

While Zhang and Salle’s results indicate that
LLMs achieve state-of-the-art performance on NLI,
they only evaluate the performance of GPT-3.5 and
GPT-4. The closed-source nature of these mod-
els presents a multitude of limitations to research.
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Providers of closed-source models often disclose
minimal information regarding the training data
or procedure, hindering the evaluation of results
achieved with these models and obscuring biases
in training data and models (Balloccu et al., 2024).
The undisclosed nature of the training data has also
raised concerns among researchers about data con-
tamination risks, as it is challenging to determine
whether a model’s high performance on a task can
be attributed to the model’s effective generalization
or potential data leakage (Yu et al., 2023). In addi-
tion, closed-source models are typically only acces-
sible via an API, causing lack of control over model
updates, which are often communicated poorly to
users (Yu et al., 2023; Pozzobon et al., 2023). In
turn, the reproducibility of experiments cannot be
guaranteed. The usage of closed-source LLMs is
also highly costly, which negatively impacts the
accessibility of LLMs (Bender et al., 2021).

Providers of open-source LLMs, on the other
hand, often release more information regarding
training data and procedures. As model weights
are released openly, open-source LLMs can be
fine-tuned for a down-stream task, which is often
highly costly or not supported for closed-source
models. Despite these advantages, employing open-
source LLMs for NLI remains unexplored, and it is
therefore important to investigate the difference in
performance between open-source and proprietary
LLMs on this task. Hence, the research question ad-
dressed in this study is: Can open-source LLMs be
used for effective Native Language Identification?

The contributions of this work are the following:
(i) we are the first to explore the performance of
open-source LLMs on NLI and quantify the dif-
ference in performance with closed-source models,
and (ii) we investigate the impact of fine-tuning
open-source LLMs on NLI performance.

2 Data and Models

To comprehensively evaluate the ability of current
LLMs to perform NLI, we compare the perfor-
mance of two closed-source commercial LLMs
(i.e., GPT-3.5 and GPT-4) with five open-source
LLMs (§2.2), used out-of-the-box and after fine-
tuning, on two NLI benchmark datasets.

2.1 Data

TOEFL11 (Blanchard et al., 2013): the ETS
Corpus of Non-Native Written English (TOEFL11)
consists of 12,100 essays, with 1,100 essays per

L1, written by English learners with low, medium,
or high proficiency levels. The 11 L1s covered in
the data are Arabic (ARA), Chinese (CHI), French
(FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JPN), Korean (KOR), Spanish (SPA),
Telugu (TEL), and Turkish (TUR). We use the
TOEFL11 test set for evaluation, which contains
100 essays per L1. The average length of essays in
TOEFL11 is 348 words.

ICLE-NLI (Granger et al., 2009): a 7-language
subset of the ICLEv2 dataset commonly used for
NLI (Tetreault et al., 2012). The data contains 770
essays, with 110 essays per L1, written by highly-
proficient English learners. The L1s represented
in the dataset are Bulgarian (BUL), Chinese (CHI),
Czech (CZE), French (FRE), Japanese (JPN), Rus-
sian (RUS), and Spanish (SPA). We evaluate the
models on the complete ICLE-NLI dataset. The av-
erage length of essays in this corpus is 747 words.

2.2 Models

Baselines We compare the performance of LLMs
to several baseline approaches: the best-performing
feature-engineered approach (SVM) (Markov,
2018), a simple SVM approach with bag-of-words
(BoW) features, BERT and GPT-2 approaches,
with all scores directly cited from the original pa-
per (Lotfi et al., 2020).

Closed-source LLMs We rely on the results re-
ported by Zhang and Salle (2023) for GPT-3.5 (gpt-
3.5-turbo) (Brown et al., 2020) and GPT-4 (gpt-4-
0613) (OpenAI, 2023) on TOEFL11 and evaluate
their performance on the ICLE-NLI dataset.

Open-source LLMs We conduct a comparative
study of five recent open-source LLMs: LLaMA-2
(7B) (Touvron et al., 2023), LLaMA-3 (8B) (Meta,
2024), Gemma (7B) (Mesnard et al., 2024), Mistral
(7B) (Jiang et al., 2023), and Phi-3 (3.8B) (Mi-
crosoft, 2024). While there is an ongoing debate
surrounding the definition of ‘open-source’ with
the rise of LLMs (Liesenfeld and Dingemanse,
2024), for the purpose of our experiments, we con-
sider open-source models that are open in weights.
Following Zhang and Salle (2023), we carry out ex-
periments in a zero-shot setup, both for the closed-
set and open-set NLI tasks.

We run inference on the selected open-source
LLMs using the same prompt as Zhang and Salle
(2023), with the only difference that we instruct
each model to respond using JSON dictionaries to
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Model
TOEFL11

(11 L1s, test set)
ICLE-NLI

(7 L1s, 5FCV/entire)
Closed-set Open-set Closed-set Open-set

Baselines
BoW SVM (Lotfi et al., 2020) 71.1 – 80.6 –
Feature-engineered SVM (Markov, 2018) 88.6 – 93.4 –
BERT (Lotfi et al., 2020) 80.8 – 76.8 –
GPT-2 (fine-tuned) (Lotfi et al., 2020) 89.0 – 94.2 –
GPT-3.5 (Zhang and Salle, 2023) 74.0 73.4 81.2 84.2
GPT-4 (Zhang and Salle, 2023) 91.7 86.7 95.5 89.1

Open-source LLMs
LLaMA-2 (7B) (zero-shot) 29.2 ±0.9 22.1 ±0.7 29.2 ±1.0 15.5 ±0.3

LLaMA-2 (7B) (fine-tuned) 78.7 ±1.0 – 42.9 ±2.0 –
LLaMA-3 (8B) (zero-shot) 56.8 ±1.1 56.4 ±0.7 75.8 ±0.4 71.0 ±0.9

LLaMA-3 (8B) (fine-tuned) 85.3 ±0.1 – 78.5 ±2.5 –
Gemma (7B) (zero-shot) 13.6 ±0.0 7.0 ±0.0 28.2 ±0.1 13.1 ±0.0

Gemma (7B) (fine-tuned) 90.3 ±1.2 – 96.6 ±0.2 –
Mistral (7B) (zero-shot) 35.6 ±1.6 24.2 ±0.1 53.1 ±1.1 41.5 ±0.1

Mistral (7B) (fine-tuned) 89.8 ±0.8 – 83.2 ±9.4 –
Phi-3 (3.8B) (zero-shot) 18.2 ±0.3 21.6 ±1.6 33.6 ±0.4 40.9 ±2.1

Phi-3 (3.8B) (fine-tuned) 65.6 ±0.4 – 51.4 ±1.7 –

Table 1: Comparative analysis of the performance of the baseline methods and closed- and open-source LLMs on
the TOEFL11 and ICLE-NLI datasets in terms of classification accuracy (%).

restrict the model output to one L1 classification
label. For the closed-set task, we include the set
of possible L1s in the prompt. If the model clas-
sifies an L1 outside of the provided set of classes,
we apply iterative prompting up to 5 times. For
the open-set task, the prompt does not include a
set of possible L1s. For both closed- and open-set
tasks, we adapt the prompt to each model’s prompt
template. If a prediction cannot be extracted af-
ter 5 attempts, the predicted label is set to ‘other’.
The prompts for closed-set and open-set tasks are
provided in appendices C.1 and C.2, respectively.
We use 4-bit quantized instruction-fine-tuned ver-
sions of the open-source LLMs when prompting
out-of-the-box.

In addition, we fine-tune the 4-bit quantized
models on the TOEFL11 training set and under 5-
fold cross-validation (5FCV) on ICLE-NLI1 with
QLoRA (Dettmers et al., 2023), using the Hugging
Face framework and Unsloth library2. The prompts
used for fine-tuning are provided in Appendix C.3.

1We used 5-fold cross-validation for a direct comparison
with previous studies, e.g., (Lotfi et al., 2020; Markov, 2018).

2https://unsloth.ai/

3 Results

Table 1 shows the results in terms of classifica-
tion accuracy (%) for the baseline approaches and
LLMs, both out-of-the-box and after fine-tuning, in
closed-set and open-set settings. For open-source
LLMs, we provide the average score and standard
deviation over three runs to account for stochastic-
ity in model inference and training.

3.1 Closed-Source LLMs

We observe high accuracy scores on the ICLE-NLI
dataset in our experiments using the GPT-3.5 and
GPT-4 models. The results are in line with the state-
of-the-art results on the TOEFL11 dataset reported
in (Zhang and Salle, 2023) and indicate that GPT-
4 is able to identify the L1s of highly-proficient
English learners both in closed-set and open-set
classification experiments.

3.2 Open-Source LLMs Out-of-the-Box

We note a surprisingly low performance of open-
source LLMs when used out-of-the-box in a closed-
set setting, with the exception of LLaMA-3 on
ICLE-NLI. While GPT-4 achieves an accuracy
of 91.7% and 95.5% on TOEFL11 and ICLE-
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NLI, respectively, the five open-source models ob-
tain accuracy scores ranging between 13.6% and
75.8%. All open-source LLMs also perform worse
than the baseline approaches, including the sim-
ple SVM model with BoW features. Some open-
source LLMs tend to predict mostly one or two
languages, e.g., Gemma predicting mostly French
and LLaMA-2 mostly Chinese, which partially ex-
plains such low results. The large performance gap
raises the concern that closed-source LLMs might
have seen the NLI benchmark datasets in training.
Additional research is required to explore the possi-
bility of data leakage, e.g., by examining whether a
model has memorized a given text using perplexity
measurements (Carlini et al., 2021).

3.3 Fine-Tuned Open-Source LLMs vs.
Closed-Source LLMs

The results indicate that the performance of open-
source LLMs improves substantially after task-
specific fine-tuning. Fine-tuned Gemma achieves
an accuracy score of 90.3% (±1.2) on the TOEFL11
dataset, nearly matching the results of GPT-4 as
reported in (Zhang and Salle, 2023), and a near-
perfect accuracy score of 96.6% (±0.2) on the
ICLE-NLI dataset, outperforming GPT-4 by 1.1%.
We also observe that the open-source models that
perform best out-of-the-box do not necessarily
demonstrate the best performance after fine-tuning.

Previous studies comparing closed-source and
fine-tuned open-source LLMs provide contradic-
tory findings, with some researchers reporting a
drop in accuracy of 16% on sentiment classifica-
tion for fine-tuned smaller language models (Flan-
T5, 770M) compared to ChatGPT (Zhang et al.,
2024), while others report that fine-tuned open-
source LLMs (Qwen, 7B; LLaMA-3, 8B) outper-
form closed-source LLMs (GPT-3.5, GPT-4) on
text classification tasks (Bucher and Martini, 2024;
Edwards and Camacho-Collados, 2024; Wang et al.,
2024). The results presented in this study provide
evidence that fine-tuned open-source LLMs can
achieve comparable performance to closed-source
LLMs.

We also observe that LLaMA-3 stands out
with a high result on ICLE-NLI compared to
TOEFL11. While out-of-the-box LLaMA-3 ob-
tains 56.6% accuracy on TOEFL11, it achieves
a higher score of 75.8% on ICLE-NLI. In addi-
tion, while all other open-source LLMs gain a
large boost in performance after fine-tuning on both
datasets, LLaMA-3’s accuracy after fine-tuning

on ICLE-NLI increases by 2.7 percentage points
only. LLaMA-3’s relatively high performance out-
of-the-box and marginal performance boost after
fine-tuning are inconsistent with the results for
other open-source LLMs, possibly indicating that
LLaMA-3 has seen the ICLE data in training.

Comparing the confusion matrices for GPT-4
and fine-tuned Gemma, the best-performing closed-
source and open-source LLMs (Appendix B), we
note that both models tend to misclassify Hindi
texts as Telugu in the TOEFL11 dataset. Hindi and
Telugu have been considered a problematic lan-
guage pair in previous studies on TOEFL11 (Mal-
masi et al., 2013). Fine-tuned Gemma has a ten-
dency to misclassify Japanese essays as Korean.
The high degree of confusion between Korean and
Japanese has also been observed in previous re-
search (Markov et al., 2022). On ICLE-NLI, GPT-4
erroneously classifies Bulgarian as Russian, both
Slavic languages. Gemma misclassifies 14 Czech
and Russian samples as Bulgarian. In line with
previous research, we note that the confused L1s
are either related through geographical location or
belong to the same language family.

3.4 Closed-Set and Open-Set Settings

We observe a drop in performance for most open-
source LLMs from a closed-set to open-set set-
ting, similarly to closed-source LLMs. Surpris-
ingly, some of the models, i.e., GPT-3.5 and Phi-3,
perform better in the open-set than in the closed-set
setup. Further research is required to understand
the reasons for this behaviour.

4 Conclusion

We explored the performance of a variety of open-
source LLMs for the NLI task. Our results indi-
cate that open-source LLMs achieve lower perfor-
mance than closed-source LLMs for this task when
used out-of-the-box, while domain-specific fine-
tuning of open-source LLMs allows these mod-
els to achieve comparable results to the propri-
etary LLMs, such as GPT-4, on the benchmark
TOEFL11 and ICLE-NLI datasets. We believe that
our work opens up avenues for future research on
LLM-based Native Language Identification. Future
research could explore few-shot prompting and dif-
ferent prompt variations as a way to potentially
boost the performance of open-source LLMs.
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Limitations

Multilingual NLI Our study focuses purely on
native language identification in English, which is
the most well-studied L2 in the NLI task (Goswami
et al., 2024). It would be interesting to explore
whether the high performance of LLMs on NLI
holds for L2s other than English.

Fine-tuned LLMs in cross-corpus setting
While fine-tuning drastically improves the perfor-
mance of open-source LLMs, the prerequisite of
fine-tuning for optimal performance is a disadvan-
tage for open-source LLMs compared to closed-
source LLMs. Previous research has shown that
NLI models suffer from performance degradation
in a cross-corpus setting, and thus cannot be ap-
plied directly to different corpora (Markov et al.,
2022; Malmasi and Dras, 2015). Future research
could explore the use of fine-tuned open-source
LLMs for NLI in a cross-corpus setup.

Defining open-source LLMs More broadly, in
our study, we define open-source and closed-source
relatively loosely, treating the terms ‘open’ and
‘closed’ as a binary feature to perform a compar-
ative analysis between open-source and closed-
source LLMs for NLI. However, there are vari-
ous dimensions of openness, as a model release
involves different components ranging from the
disclosure of training datasets to model access (So-
laiman, 2023; Liesenfeld and Dingemanse, 2024).
Most providers of proclaimed open-source LLMs
release little to no information regarding their train-
ing data and procedure, despite framing them as
being open-source. In turn, it is difficult to deter-
mine whether an open-source model’s performance
can be attributed to the model’s learning or possi-
ble data contamination. The lack of insights into
the training data of proclaimed open-source LLMs
also hindered our evaluation of LlaMA-3 on the
ICLE-NLI dataset.
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A Hyperparameters and Computation
Time

We fine-tuned the open-source LLMs with the fol-
lowing hyperparameters: a learning rate of 1e-4,
batch size of 16, 3 epochs, and optimization via
AdamW optimizer. The experiments were con-
ducted on Google Colaboratory Pro with the A100
GPU (40 GB RAM). The models were loaded
with 4-bit NF-quantization and QLoRA adapters
were added and fine-tuned using the bitsandbytes
library3. The total computation time was roughly
120 hours. Total emissions are estimated to be 17.1
kgCO2eq of which 100% was directly offset by the
cloud provider4.

B Confusion Matrices

The confusion matrices are provided in Figure 1.
3https://huggingface.co/docs/bitsandbytes
4Estimations were conducted using the Machine Learning

Impact calculator (Lacoste et al., 2019).

C LLM Prompts

C.1 Closed-Set Prompts

For the closed-set experiments on the TOEFL11
dataset, we used the prompts below. For ICLE-NLI,
we used exactly the same prompts, with the only
difference being the set of possible L1s covered in
the dataset.

You are a forensic linguistics expert that reads
English texts written by non-native authors to
classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide
on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG”
(English). English is an invalid choice.

Valid output formats:
Class: “ARA”,
Class: “CHI”,
Class: “FRE”,
Class: “GER”

You ONLY respond in JSON files. The expected
output from you is: json {“native_lang”: The chosen
class, ARA, CHI, FRE, GER, HIN, ITA, JPN, KOR,
SPA, TEL, or TUR}

When possible, the prompt above was entered
as a System prompt. If the system role was not
supported by the prompt formatter, the prompt was
entered as part of the User prompt. We input the
given text and used the prompt below as a User
prompt:

<TOEFL11 ESSAY TEXT>
Classify the text above as one of ARA, CHI, FRE,
GER, HIN, ITA, JPN, KOR, SPA, TEL, or TUR. Do
not output any other class - do NOT choose “ENG”
(English). What is the closest native language of the
author of this English text from the given list?

In the closed-set experiments, if the L1 was in-
correctly predicted as English, we prompted the
model again using the prompt below:
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Figure 1: Confusion matrices for GPT-4 on TOEFL (Zhang and Salle, 2023) (top left), Gemma (7B) (fine-tuned) on
TOEFL (top right). GPT-4 on ICLE-NLI (bottom left), Gemma (7B) (fine-tuned) on ICLE-NLI (bottom right).

You previously mistakenly predicted this text as
“ENG” (English). The class is NOT English. Please
classify the native language of the author of the text
again.

If we were unable to parse the prediction or the
predicted L1 was not in the set of possible classes,
we prompted the model again. For the TOEFL11
experiments, we used the prompt below:

Your classification is not in the list of possible lan-
guages.
Please try again and choose only one of the follow-
ing classes: ARA, CHI, FRE, GER, HIN, ITA, JPN,
KOR, SPA, TEL, or TUR

C.2 Open-Set Prompts

For the open-set experiments, we used the prompt
below as an input prompt for all the models:

You are a forensic linguistics expert that reads texts
written by non-native authors in order to identify
their native language.
Analyze each text and identify the native language of
the author.
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide.

You ONLY respond in JSON files. The expected
output from you has to be: “json {“native_lang”:
“”}”

If the predicted L1 could not be extracted from
the generated output, we used the prompt below to
apply iterative prompting to get a valid prediction:

Your previous classification was not in the correct
format. Please only respond in the following JSON
format:
“json {“native_lang”: “”}”

27



C.3 Fine-Tuning Prompts
We used the following prompt for the fine-tuning
experiments:

### Instruction:
You are a forensic linguistics expert that reads
English texts written by non-native authors to
classify the native language of the author as one of:

“ARA”: Arabic
“CHI”: Chinese
“FRE”: French
“GER”: German
“HIN”: Hindi
“ITA”: Italian
“JPN”: Japanese
“KOR”: Korean
“SPA”: Spanish
“TEL”: Telugu
“TUR”: Turkish
Use clues such as spelling errors, word choice,
syntactic patterns, and grammatical errors to decide
on the native language of the author.

DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as “ENG”
(English). English is an invalid choice.

Valid output formats:
Class: “ARA”,
Class: “CHI”,
Class: “FRE”,
Class: “GER”

Classify the text below as one of ARA, CHI, FRE,
GER, HIN, ITA, JPN, KOR, SPA, TEL, or TUR. Do
not output any other class - do NOT choose “ENG”
(English). What is the closest native language of the
author of this English text from the given list?

### Input:
<TOEFL11 ESSAY TEXT>

### Response:
<L1 LABEL>
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Abstract
We collect novel data in the public service do-
main to evaluate the capability of the state-
of-the-art automatic speech recognition (ASR)
models in capturing regional differences in ac-
cents in the United Kingdom (UK), specifically
focusing on two accents from Scotland with dis-
tinct dialects. This study addresses real-world
problems where biased ASR models can lead
to miscommunication in public services, disad-
vantaging individuals with regional accents par-
ticularly those in vulnerable populations. We
first examine the out-of-the-box performance
of the Whisper large-v3 model on a baseline
dataset and our data. We then explore the im-
pact of fine-tuning Whisper on the performance
in the two UK regions and investigate the ef-
fectiveness of existing model evaluation tech-
niques for our real-world application through
manual inspection of model errors. We observe
that the Whisper model has a higher word error
rate (WER) on our test datasets compared to the
baseline data and fine-tuning on a given data
improves performance on the test dataset with
the same domain and accent. The fine-tuned
models also appear to show improved perfor-
mance when applied to the test data outside
of the region it was trained on suggesting that
fine-tuned models may be transferable within
parts of the UK. Our manual analysis of model
outputs reveals the benefits and drawbacks of
using WER as an evaluation metric and fine-
tuning to adapt to regional dialects.

1 Introduction

Automatic speech recognition (ASR) systems are
becoming increasingly embedded in our technolo-
gies and processes (Koenecke et al., 2020). The
ease of use of these systems (Ibrahim and Varol,
2020) combined with recent advancements in per-
formance with the use of more sophisticated mod-
els makes it particularly appealing for domains with

*Equal Contribution.

limited resources, including legal areas (Trancoso
et al., 2023), healthcare (Latif et al., 2020) and
other public services. As a result, it is important to
address potential problems, particularly those that
amplify sociolinguistic biases.

Regional and social dialects resulting in speech
of the same language having phonological, lexi-
cal and grammatical differences present significant
challenges for ASR systems (Forsberg, 2003). As
English is a high-resource language, there are copi-
ous amounts of data available to train ASR models
to recognise English. Despite this, many models
struggle with variations and dialects of English
that are underrepresented in training data (Sanabria
et al., 2023). This phenomenon is observed for mul-
tiple variations of English including decreased per-
formance for African American Vernacular English
(Koenecke et al., 2020; Martin and Tang, 2020), En-
glish as a second language or non-native English
(Chan et al., 2022; DiChristofano et al., 2022) and
variations of English within regions including the
UK (Tatman and Kasten, 2017; Markl, 2022).

The lack of inclusivity in ASR often leads to dis-
parities between users of these systems (Ngueajio
and Washington, 2022). As a result, in this work,
we investigate the performance of ASR systems on
regions in the United Kingdom (UK), specifically
areas where accents are less commonly represented
in speech datasets. The UK also has socioeconomic
links to accent (Donnelly et al., 2019; Levon et al.,
2021; Trudgill, 1974). This is something that may
be observed in other countries across languages and
so we hope this work will be transferable beyond
just English in the UK (Bourdieu, 1991).

This research focuses on the state-of-the-art
model Whisper (Radford et al., 2023), a multi-
lingual ASR system that is increasingly used in
industry settings. Whisper is trained on a diverse
set of 680,000 hours of multilingual data, mak-
ing it particularly robust for recognising speech
across languages, including those with less train-
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ing data. Whisper is designed to handle real-world
audio with noise and challenging conditions bet-
ter than many existing ASR models. The model
demonstrates lower word error rates (WER) com-
pared to earlier models across a variety of bench-
marks, including LibriSpeech, Common Voice, and
other multilingual datasets (Radford et al., 2023).
Whisper’s performance gains have been validated
through community usage and industry adoption in
particular has motivated the choice to investigate
and assess Whisper’s capabilities. In this work,
we explore Whisper’s capabilities to recognise ac-
cented speech in public service settings in two ar-
eas of the UK, South East Scotland and North East
Scotland.

1.1 Contributions
To address the aforementioned challenges, we
make the following contributions.

(a) We collect novel data from two real-world
public service organisations: a North East
Scotland Advice Charity (NESAC) and a
South East Scotland Housing Association
(SESHA).

(b) We assess Whisper’s performance on the
collected data representing two variations of
English.

(c) We fine-tune Whisper to show improved
performance on the collected data and the
potential transferability of the fine-tuned
models to other parts of the UK.

(d) We investigate the evaluation of ASR and the
impact of transcription style on the reported
performance through manual inspection of
model errors highlighting the benefits and
drawbacks of using WER as an evaluation
metric.

We make these contributions with the goal of
answering the following research questions.

1. How effective is the off-the-shelf state-of-the-
art ASR model Whisper in capturing the vari-
ations in dialects and accents across regions
in the UK?

2. Is fine-tuning an effective mechanism to adapt
models to these dialects?

3. How good are existing methods of evaluation
for real-world applications?

2 Related Work

2.1 Datasets
Existing research that examines the performance
of ASR on variations of English confirms that
models struggle with speech that does not match
what is most commonly presented as English in
speech corpora (Sanabria et al., 2023; Koenecke
et al., 2020; Martin and Tang, 2020; Chan et al.,
2022; DiChristofano et al., 2022; Tatman and Kas-
ten, 2017; Markl, 2022). Although some of these
studies make their data publicly available, many
datasets capture such a broad range of accents that
the groups we intend to focus on are not well rep-
resented. Our work specifically focuses on ac-
cented calls from within the UK. The Open-source
Multi-speaker Corpora of the English Accents in
the British Isles dataset (Demirsahin et al., 2020),
which we use as a baseline dataset in this work,
addresses this by collecting data with accents from
the British Isles. This dataset, however, does not
cover the domains we are interested in and contains
scripted speech recorded through a studio micro-
phone rather than spontaneous speech recorded
through online calls and phone calls.

2.2 Fine-tuning
Fine-tuning is the process of adapting a pre-trained
model to new data. Although it has some potential
drawbacks including overfitting and catastrophic
forgetting, previous work has shown that it is an
effective method for improving performance on
languages and dialects that are insufficiently rep-
resented during pre-training for multiple different
models. Zhao and Zhang (2022) and Liu et al.
(2024) show improved performance through fine-
tuning for low resource languages using wav2vec
(Baevski et al., 2020) and Whisper respectively and
Meyer et al. (2020) used fine-tuning to improve
the performance of DeepSpeech (Amodei et al.,
2016) on less common variations of English. We
approach variations in English using fine-tuning
and investigate how fine-tuned Whisper models
perform on two different accents from the UK.

3 Data

We collect new data to assess Whisper’s perfor-
mance on a real-world use case of call transcrip-
tion. The collected data represents two groups of
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accents from the UK and consists of calls from
two public service scenarios. The real names of
these organisations we collect data from have been
omitted throughout the paper and replaced with the
following representative terminology: North East
Scotland Advice Charity (NESAC) and South East
Scotland Housing Association (SESHA). These
charities provide critical services to the commu-
nity particularly in vulnerable populations, with
a large proportion of callers likely coming from
low socio-economic backgrounds vitally in need of
these services. NESAC and SESHA offer free legal
advice and housing support, respectively, making
accurate transcription essential for effective com-
munication and service delivery. Both charities are
located in areas with different dialects situated in
Scotland. The datasets have been manually anno-
tated with accent labels and manually transcribed
for training and comparison with the machine gen-
erated transcriptions, we refer to this as the “human
transcript”. We use a subset of our collected data
for fine-tuning and the remaining data is reserved
for testing. Additionally, we use the Open-source
Multi-speaker Corpora of the English Accents in
the British Isles dataset (Demirsahin et al., 2020)
as a baseline dataset for all models.

3.1 Data Privacy and Ethics

Given the sensitive nature of the data involved, we
take extra care to ensure its handling is secure and
ethically sound (Also see Section 10). This re-
search was conducted in collaboration with a li-
censed transcription service provider for the afore-
mentioned public service organisations. All data
collection adhered strictly to local and regional le-
gal and regulatory requirements. The data is used
specifically to reduce potential biases in the ser-
vices provided to these organisations, ensuring its
appropriate and justified use. Collected data is se-
curely stored on encrypted servers and is destroyed
within a three-month period, as mandated by the
relevant regulations. All personnel who have ac-
cess to private data are bound by agreements to
safeguard data privacy. Personnel who do not re-
quire access to private data worked with publicly
available datasets, and insights from their analyses
are shared with authorised personnel for implemen-
tation. These measures ensured that private data
remained secure and is used solely to reduce biases
in the transcription services provided.

3.2 North East Scotland Advice Charity

The North East Scotland Advice Charity data, or
NESAC, contains calls between community mem-
bers and advisors. These calls span numerous top-
ics including debt and financial advice, welfare
benefits, housing and tenancy issues, employment
issues, consumer rights, legal advice, relationship
issues, immigration and residency. Transcripts gen-
erated from these calls will then be used by the
organisation for downstream tasks including the
creation of a transcript summary for documenta-
tion and client follow-up. Given that the content
of the call contains critical information, it is es-
sential that the transcription is accurate as errors
or omissions could negatively affect the caller’s
well-being. Tables 1 and 2 show the split of the
collected NESAC data by accent and gender.

Accent Advisors Callers
Scottish 93.75 78.13
English 3.13 12.50
Other 3.13 9.38

Table 1: Percentage of accents in the NESAC dataset.

Speaker Female Male Unknown
Caller 43.75 56.25 0.00
Advisor 71.88 25.00 3.13

Table 2: Percentage of genders in the NESAC dataset.

3.3 South East Scotland Housing Association

The South East Scotland Housing Association data,
or SESHA, contains calls with advisors related
to housing and properties provided by the South
East Scotland Housing Association charity. The
calls typically include conversations about whether
someone is eligible to obtain a home through them,
if they can join the waiting list for a home, change
home, or file a complaint about a neighbour. Sim-
ilar to NESAC, these calls are transcribed and
used by the organisation for other tasks such as
summarising the transcripts for documentation and
client follow-up. The vitality of accurate transcrip-
tion also applies here due to the risk of error or
missing information resulting in well-being con-
cerns for the caller. Tables 3 and 4 show this data
split by accent and gender.
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Accent Advisors Callers
Scottish 80.69 92.84
English 18.42 2.37
Irish 0.87 0.65
Other 0.00 3.90

Table 3: Percentage of accents in the SESHA dataset.

Speaker Female Male
Caller 72.51 27.49
Advisor 81.78 18.22

Table 4: Percentage of genders in the SESHA dataset.

4 Experimental Setup

To address the research questions outlined in Sec-
tion 1.1. We run two experiments and a manual
analysis. The first experiment looks at the effective-
ness of Whisper in capturing variations in dialect
in the UK and the second explores fine-tuning as
a mechanism to adapt the Whisper model to ac-
cents. Finally, we conduct a manual analysis of
model errors to better understand the effectiveness
of our chosen evaluation metric WER. This section
describes the experimental setup for these experi-
ments.

We test the Whisper large-v3 model on a subset
of our NESAC and SESHA datasets where each
test set has approximately 5 hours of data. The
large-v3 model for Whisper was selected over the
other sizes available as it gave the best performance
in our initial experiments.

Whisper large-v3 is also used as a base model in
our fine-tuning experiment. We fine-tune two mod-
els, one using NESAC and the other using SESHA.
The same two test sets from the first experiment
are used to evaluate the performance of the fine-
tuned models as the training and test data were
separated before fine-tuning. For the training of the
fine-tuned models a learning rate of 5x10−6 and
a batchsize of 64 were used with 47 hours of the
NESAC data used to train the NESAC fine-tuned
model and 46 hours of the SESHA data to train the
SESHA fine-tuned model.

5 Experiment 1: Whisper

To answer Research Question 1 outlined in Section
1.1, this experiment focuses on the out-of-the-box
performance of the Whisper large-v3 model on
our collected data representing accents from North
East Scotland captured in NESAC and South East

Scotland captured in SESHA. The results of this
experiment are shown in Figure 1 and the first row
of Table 5.

Figure 1: Word error rate of the Whisper large-v3 model
on the baseline dataset and two test datasets NESAC
test data and SESHA test data.

5.1 Empirical Evaluation and Analysis
The performance of the Whisper large model on
the baseline dataset and test dataset is shown in fig-
ure 1. Whisper performs well on the baseline data
achieving a WER of 3.64% whereas it does com-
paratively worse on our test datasets, NESAC and
SESHA. This is a difference that is observed for
the fine-tuned models in Experiment 2 as well al-
though not to the same extent as the Whisper large
model. Since the baseline data is open source, there
is a possibility that this data may have featured in
the pre-training data for Whisper. The difference
in performance could also suggest that our data is
more difficult to transcribe than the baseline data.
This may be due to a number of factors including
accent, dialect, domain-specific language, quality
of the calls, and the conversational nature of the
calls in the test data compared to the baseline data
that involves participants to read aloud. Some of
the difference in performance may also be due to
transcription style. This is something we explore
further in Section 7.

6 Experiment 2: Fine-tuned Models

To answer Research Question 2 outlined in Section
1.1, this experiment investigates the effectiveness of
fine-tuning for improving the performance of Whis-
per on our accented public service test datasets NE-
SAC and SESHA. We fine-tune two models using
the settings described in Section 4. Figure 2 and
Table 5 compare the performance of the Whisper
large model and the two fine-tuned models where
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"NESAC ft model" is fine-tuned on our NESAC
training data and "SESHA ft model" is fine-tuned
on the SESHA training dataset.

Figure 2: WER of the Whisper large-v3 model, the
NESAC fine-tuned model and SESHA fine-tuned model
on the baseline dataset and two test datasets NESAC
test data and SESHA test data.

Model Baseline
data

NESAC
test
data

SESHA
test
data

Whisper large 0.0364 0.336 0.222
NESAC ft model 0.0398 0.240 0.208
SESHA ft model 0.0397 0.308 0.173

Table 5: WER of the Whisper large-v3 model and the
fine-tuned NESAC and SESHA models on the baseline
dataset and two test datasets NESAC and SESHA.

6.1 Empirical Evaluation and Analysis
The results of this experiment comparing the perfor-
mance of the models on the baseline dataset show
that although the Whisper model has the lowest
WER, all three models have comparable perfor-
mance on the baseline data.

Looking at performance on our accented test
data, the models that perform the best on each test
set are the models that are fine-tuned on the data
that matches the test. For the NESAC test data,
the NESAC fine-tuned model performs the best,
followed by the SESHA fine-tuned model and then
the Whisper large model. Similarly, for the SESHA
test data, the SESHA fine-tuned model performs
the best, followed by the NESAC fine-tuned model
and then the Whisper large model. This suggests
that although NESAC and SESHA contain distinct
dialects, the models may be picking up on similari-
ties in dialect resulting in better performance than

the Whisper large model. The Whisper large model
performs the worst for each test data set. This may
be due to less familiar dialects or domain-specific
language. We explore this further by conducting a
manual analysis of each model’s errors.

7 Manual Analysis

To address Research Question 3 outlined in Section
1.1 and better understand the effectiveness of WER
as an evaluation metric for our models, we manu-
ally inspect a portion of the errors from each model
on the baseline data as well as the NESAC and
SESHA test data. Since the NESAC and SESHA
datasets contain sensitive information, we mostly
present our findings with examples from the base-
line dataset. Although the fine-tuned models ex-
hibited higher WER on the baseline data compared
to the Whisper large model, our manual analysis
suggests that this does not necessarily indicate a
worse performance.

7.1 Baseline Data Error Analysis

After manually inspecting randomly selected errors
from each model, we found a few common tran-
scription style differences that were picked up as
errors. These errors include having spaces in differ-
ent places, spelling variations of words, mistakes
that are corrected in speech (reparandum) and dif-
ferences in ways of recording time. These errors
along with examples from the baseline dataset are
presented in Table 6.

We also identified cases where the fine-tuned
models made errors that the Whisper model did
not, and vice versa. These additional examples are
shown in Tables 7 and 8.

We applied several post-processing steps to the
baseline data transcripts that address some of the
common errors caused by differences in transcrip-
tion style to observe the impact on WER. Spacing
errors were initially addressed by adding a space at
every possible position in an utterance, keeping the
change only if it reduced the WER. An alternative
approach involved removing spaces between words
where it increased the alignment between the hu-
man transcript and the ASR model’s output. Addi-
tionally, we found that although the baseline dataset
contains accents from the UK, the human transcript
contained American spellings of words whereas
our model training data contains British spellings.
Addressing the American spellings involved replac-
ing occurrences of "ize" and "zation" with "ise"
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Error Type Transcript Content

Spacing
Human take the south eastern main line from charing cross station
Whisper take the south eastern main line from charing cross station
NESAC ft model take the southeastern main line from charing cross station

Common
noun
homophone

Human the participating officers exchanged flasks of whisky and
vodka

Whisper the participating officers exchanged flasks of whisky and
vodka

NESAC ft model the participating officers exchange flasks of whiskey and
vodka

SESHA ft model the participating officers exchange flasks of whiskey and
vodka

Reparandum

Human concentrated solar power uses molten salt energy storage in a
tower or in trough configurations

Whisper concentrated solar power uses molten salt energy storage in a
tower or in trough configurations

NESAC ft model concentrated solar power uses molten salt energy storage in a
tower or in trough sorry trough configurations

SESHA ft model concentrated solar power uses molten salt energy storage in a
tower or in trough sorry trough configurations

Date/Time
Formatting

Human before that on april the 7th at half past 10 you had rob is
birthday gathering

Whisper before that on april the 7th at half past 10 you had rob is
birthday gathering

NESAC ft model before that on april 7th at 10.30 you had rob is birthday
gathering

SESHA ft model before that on april 7th at 10.30 pm you had rob is birthday
gathering

Table 6: Examples where the fine-tuned model gets it wrong, and the Whisper large model gets it right, but the
errors are trivial, where it does not affect the content of the text or even a human may get it wrong.

Error Type Transcript Content

Contextual
Bias

Human mutually assured destruction is a doctrine of military strategy
and national security policy

Whisper mutually assured destruction is a doctrine of military strategy
and national security policy

SESHA ft model neutrally assured destruction is a doctrine of military strategy
and national security policy

Contextual
Bias

Human making a phone call to courtney
Whisper making a phone call to courtney
NESAC ft model making a phone call to court name

Contextual
Bias

Human yes it is snowing in copenhagen
Whisper yes it is snowing in copenhagen
NESAC ft model yes it is now ending in copenhagen
SESHA ft model yes it is 9 in copenhagen

Table 7: Evidence of a loss of contextualisation or real mistakes, where the fine-tuned model is wrong and the
Whisper large model is right.
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Error Type Transcript Content

Phonetic
discrimination

Human a bored cat laying on a couch
Whisper a bald cat laying on a couch
NESAC ft model a bored cat laying on a couch
SESHA ft model a bored cat laying on a couch

Proper noun

Human it is 18 degrees with a chance of showers in cambuslang
Whisper it is 18 degrees with a chance of showers and canvas lying
NESAC ft model it is 18 degrees with a chance of showers in cambuslang

Table 8: Examples where the Whisper large model gets it wrong, and the fine-tuned models get it right showing
evidence of tuning to UK accents or understanding place names.

and "sation". Adjustments to dates were also made
using regular expressions to capture dates in the
format “the 5th of January” and converted them to
“5th January” to match the transcription style. By
normalising these transcription style differences,
we aimed to create a fairer comparison between the
models.

Figure 3 shows a graph that illustrates the au-
tomated normalisation steps applied to address
a higher WER due to spacing errors, date for-
mats, and American spellings in the human tran-
scripts. Applying these post-processing optimisa-
tion steps also improved the WER for the Whisper
large model, however, we are particularly inter-
ested in the difference in the performance of the
fine-tuned models compared with Whisper large.
Consequently, Figure 3 shows the difference in av-
erage WER of the NESAC and SESHA fine-tuned
models when compared to the Whisper large model
with the same post-processing applied to the hu-
man transcript. The post-processing optimisations
are cumulative, so the lower bars have had all the
previous optimisations applied. We observe that
the cumulative effect of all the post-processing op-
timisations closes the gap in performance between
the Whisper model and our fine-tuned models on
the baseline dataset.

This suggests that the higher WER observed ini-
tially was largely due to transcription style discrep-
ancies rather than actual recognition errors.

These findings indicate that the fine-tuned mod-
els are indeed improving in their ability to under-
stand the target accents and proper nouns, even if
this improvement is not fully captured by WER due
to transcription style differences and occasional er-
rors.

We also identified cases where the fine-tuned
models made errors not present in the Whisper
model. These errors are shown in Table 7.

Figure 3: Difference in average word error rate (WER)
from Whisper large-v3 after cumulative automated opti-
misation steps.

From these examples, it appears that the fine-
tuning process may have introduced some contex-
tual bias, leading to a loss of contextual understand-
ing in everyday speech. For instance, in the first
example, the SESHA fine-tuned model transcribed
"neutrally assured destruction" instead of the cor-
rect "mutually assured destruction". The Whisper
large model correctly transcribed "mutually", likely
due to its broader contextual understanding of com-
mon phrases in military strategy.

This suggests that while the fine-tuned models
are improving in recognising accent-specific vocab-
ulary and slang, such as ’aye’ or ’dinnae,’ they may
become overly sensitive to certain phonetic patterns
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at the expense of general language comprehension.
The fine-tuning might have made the models more
verbatim in transcribing accent-specific pronunci-
ations, causing them to misinterpret words that
require contextual cues for accurate transcription.

Similarly, in the second example, the NESAC
fine-tuned model misrecognised "courtney" as
"court name," and in the third example, both
the NESAC and SESHA fine-tuned models mis-
heard "snowing" as "now ending" and "9," respec-
tively. These errors indicate potential overfitting to
the accent-specific data, where the models priori-
tise phonetic patterns common in the fine-tuning
datasets over contextual understanding.

These findings imply that the fine-tuned models
may exhibit a trade-off between improved accent
comprehension and maintaining contextual accu-
racy in everyday speech. The introduction of con-
textual bias through fine-tuning highlights the need
for a balanced approach that enhances accent recog-
nition without compromising the models’ ability to
utilize context for accurate transcription.

Overall, our manual analysis suggests that while
the fine-tuned models may show a higher WER,
this metric does not fully reflect their enhanced per-
formance in accent comprehension and transcrip-
tion accuracy for certain types of content. However,
it also reveals areas where fine-tuning may inadver-
tently reduce the models’ contextual understanding,
indicating a need for careful balancing during the
fine-tuning process.

7.2 Test Data Error Analysis
In evaluating the performance of our fine-tuned
Whisper models on the NESAC and SESHA test
datasets, we observed that both fine-tuned models
outperformed the Whisper large model across both
datasets. Notably, the fine-tuned models achieved
the highest performance on the dataset they were
specifically trained on, highlighting the effective-
ness of the fine-tuning process in adapting to the
unique characteristics of the target data.

However, a significant portion of the errors iden-
tified during manual analysis were attributable to
transcription style differences rather than genuine
recognition inaccuracies. For instance, variations
such as "all right" versus "alright" were frequently
noted, where the models correctly transcribed the
spoken words but differed in transcription conven-
tions. These discrepancies do not indicate a decline
in the models’ recognition capabilities but rather
reflect differences in transcription preferences or

standards.
Additionally, other transcription style variations,

such as the use of regional colloquialisms, handling
of filler words like "um" or "uh," and differences in
formatting dates and times, contributed to the error
counts. These factors can artificially inflate the
WER without representing actual misrecognitions,
underscoring the limitations of relying solely on
WER as an evaluation metric.

Despite these transcription style discrepancies,
the fine-tuned models demonstrated enhanced un-
derstanding of accent-specific pronunciations and
regional vocabulary. For example, in instances
where the Whisper large model misrecognised
words due to accent variations, the fine-tuned mod-
els accurately captured the intended words. Some
examples of this are the Whisper large model tran-
scribing ’moment’ when the word is ’minute’,
’that’ll’ when it should be ’I’ll’, ’email’ instead
of ’female’, as well as other similar mistakes. This
improvement suggests that the fine-tuning process
not only aligns the models with the transcription
style of the training data but also enhances their
ability to comprehend and accurately transcribe
speech with specific accent characteristics.

Furthermore, the fine-tuned models were better
at managing colloquial expressions and regional
terminology present in the NESAC and SESHA test
datasets. This indicates that while WER is a useful
quantitative metric, it does not fully account for the
models’ improved capabilities in understanding ac-
cented speech and adapting to varied transcription
styles.

Overall, our manual error analysis reveals that
the fine-tuned Whisper models offer superior per-
formance in accurately transcribing speech from
the NESAC and SESHA test datasets. The higher
WER observed is largely a result of transcription
style differences rather than a decline in recogni-
tion quality. This underscores the importance of
supplementing quantitative metrics like WER with
qualitative analyses to gain a comprehensive under-
standing of ASR model performance, especially in
diverse and real-world settings.

8 Conclusion and Future Work

This work uses a novel dataset to assess Whisper’s
ability to recognise speech from two dialects in the
UK. We evaluate Whisper large and fine-tuned ver-
sions of the model on a baseline dataset and our two
test datasets. We find that all of the models have
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worse performance on our North East Scottish and
South East Scottish test data compared to the base-
line data, the Whisper model performs better when
it is fine-tuned and tested on data from the same dis-
tribution and there may be evidence of dialect trans-
ferability for our fine-tuned models. We conducted
a manual analysis of the errors from each model
and found that differences in transcription style ap-
pear to negatively impact the observed WER. The
manual analysis also demonstrated evidence of the
fine-tuned models successfully adapting to the tar-
get dialect as well as cases where the fine-tuning
approach negatively impacted the models’ contex-
tual understanding. This indicates the need for a
careful balance during the fine-tuning process and
highlights both the potential and the drawback of
using fine-tuning for variations in English in public
services for vulnerable populations.

We hope to investigate the transferability of fine-
tuned Whisper models further in future work by col-
lecting more data that represents a wider range of
accents from within the UK and evaluate the trans-
ferability of fine-tuned models on accents from
these other regions. Furthermore, we aim to incor-
porate approaches that avoid the use of confidential
and sensitive data, which NESAC and SESHA are
in this case.

9 Limitations

In this research, we collect novel data to investi-
gate the ability of fine-tuning and Whisper large to
adapt to accents in the UK in a real-world public
service setting. Despite our best efforts annotation
bias may persist in our work, this however further
emphasises the need for manual analysis in our
approach. In this research, we only look at two
accents but it would be advantageous if we were
able to collect more data that had a broader range
of UK accents represented in the two public service
areas we explore. We only explore fine-tuning as
a method to address variations in English but we
choose this method over others for generalisability
as fine-tuning is a technique that can be applied
to other pre-trained models. We also only inten-
tionally look at English. Although we believe this
work may be applicable to multiple languages this
is something that should be tested across other lan-
guages. The sensitive nature of our collected data
has also meant that we are unable to publicly share
the data. Nonetheless, this work highlights both
the potential and the drawback of using Whisper,

fine-tuning and WER for variations in English.

10 Ethics

This work was done in collaboration with govern-
ment sanctioned organisations that provide legal
and housing support within the UK. These are es-
tablished structures that we cannot name for legal
reasons. Their recording of calls is strictly gov-
erned by GDPR and other legal frameworks and
goes through an independent audit process. We col-
lect data from them after careful legal and ethical
reviews. This research was funded by the EPSRC
and therefore underwent additional scrutiny with
strict legal and ethical framework to ensure the se-
curity and privacy of these calls, and is also audited.
The sections relevant to the analysis also underwent
ethical review at the university partner. People
working on this industry led project are trained to
work with private information. This information re-
mains on the company’s servers at all times and the
research institute only works on publicly available
data, transferring research methods and ideas to
the industry led partner to ensure privacy. All tran-
scripts are permanently deleted after a fixed time
period. The datasets were manually transcribed.
We hired UK-based professional annotators who
follow professional standards to transcribe the au-
dio and label accents.
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Abstract

NLP models trained on standardized language
data often struggle with non-standard varia-
tions. We assess various Large Language
Models (LLMs) for transliteration and dialec-
tal normalization. Tuning open-source LLMs
with as little as 10,000 parallel examples us-
ing LoRA can achieve results comparable to
or better than closed-source LLMs. We per-
form dialectal normalization experiments for
twelve South Asian languages and dialectal
translation experiments for six language con-
tinua worldwide. The dialectal normalization
task can also be a preliminary step for the
downstream dialectal translation task. Among
the six languages used in dialectal translation,
our approach enables Italian and Swiss Ger-
man to surpass the baseline model by 21.5 and
25.8 BLEU points, respectively.1

1 Introduction

Language variation encompasses how language
manifests across different regions, social groups,
and individual speakers. One prominent form of
this variation is dialects, distinct forms of a lan-
guage spoken by particular groups, often defined
by geographical or social boundaries. Dialects in-
clude vocabulary, pronunciation, grammar, and us-
age variations, reflecting the rich tapestry of hu-
man experience and cultural identity. Addition-
ally, we encounter phenomena such as transliter-
ation in language use, which involves converting
text from one script to another while preserving
its phonetic characteristics. Transliteration, rely-
ing on mapping the pronunciation of words (their
sounds) from one language into the orthography of
another, is common practice in contexts where lan-
guages with different writing systems interact (Ah-
madi and Anastasopoulos, 2023).

1https://github.com/mahfuzibnalam/
LLM-Normalizer-Dialectal-Transaltion

Translating language varieties presents a unique
and complex challenge for linguists and translators.
Dialects, with their distinct vocabularies, pronun-
ciations, and grammatical structures, reflect their
speakers’ cultural and regional identities. Captur-
ing these nuances in translation requires a deep
understanding of both the source and target lan-
guages and the cultural contexts from which they
arise. In the case of transliteration, unlike a few
languages where the transliterated script serves as
a standard means of input (as seen in systems like
Pinyin for Chinese), most languages lack univer-
sally established transliteration systems. When in-
dividuals use scripts other than the formal script of
the language to write, they do not always adhere to
a specific standard (Ryskina et al., 2020). Instead,
they typically employ the informal script to offer a
rough phonetic transcription of the intended word.
This transcription can vary significantly from per-
son to person due to various factors, including re-
gional or dialectal variations in pronunciation, dif-
ferent transcription conventions, or individual id-
iosyncrasies.
In the evolution of language and speech tech-

nology (LST) for a given language, varieties and
dialects that have more data are initially priori-
tized. This results in a disparity in technology
usage among speakers of different dialects of the
same language. For example, despite the ex-
tensive work done in English, only a few stud-
ies focus on dialects or varieties such as African-
American Vernacular English compared to Main-
stream American English (Blodgett et al., 2018).
Historically, Roman and related scripts have en-
joyed widespread support across various platforms
and devices for digital content creation. Although
native language keyboards in numerous languages
are available, most users still prefer using the Ro-
man keyboard due to its comfort and familiarity.
In this work, we try to address both of these

shortcomings. We build models that can translate
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dialectal varieties through a normalization step.
We also build models that will be greatly valued
by users and involve the automatic transliteration
normalization of Romanized input into the native
orthography. In summary, our contributions are:
1. We demonstrate using LLMs for two NLP

tasks: transliteration and dialectal normaliza-
tion.

2. We show that with a small amount of data,
one can easily adapt (through finetuning with
low-rank adaptors) an open-source LLM to
achieve higher performance in both tasks.

3. We demonstrate that incorporating a dialec-
tal normalization step before translation en-
hances performance for downstream dialectal
translation tasks.

2 Task Definitions and Datasets

2.1 Transliteration Normalization
The process of transliteration involves represent-
ing a word, phrase, or text in a different script or
writing system in an intentional manner. Translit-
erations aim to show how the original word sounds
in a different script so people who use that script
can get an idea of how to say the word. For exam-
ple, instead of writing the Bengali sentence “আিম
েতামােক ভােলাবািস” in Bengali script, we can translit-
erate it using the Roman script, resulting in “Ami
tomake valobashi.”
The transliteration normalization task is essen-

tially the reverse of transliteration. In this task,
given a sentence transliterated into an informal
writing system, our goal is to convert it back to the
original writing system of that language.

Dakshina Dataset For the transliteration nor-
malization task, we use the Dakshina dataset
(Roark et al., 2020) as the primary resource for
testing and training. This dataset includes three
data sources focused on transliteration: Native
Script Wikipedia, Romanization Lexicon, and Ro-
manized Wikipedia. The Romanized Wikipedia
is most relevant to our work, providing roman-
izations of complete Wikipedia sentences. The
dataset supports twelve South Asian languages:
Bengali, Gujarati, Hindi, Kannada, Malayalam,
Marathi, Punjabi, Sindhi, Sinhala, Tamil, Telugu,
and Urdu. For each language, native speakers ro-
manized 10,000 sentences. The instruction for the
annotators was to transcribe the given sentences
as they would naturally write them in the Latin
script. For our experiments, we randomly divided

the 10,000 sentences into training and testing sets
using an 80-20 split.

Aksharantar Dataset We also use the Aksha-
rantar dataset (Madhani et al., 2022) to conduct an
ablation study for the transliteration normalization
task. Aksharantar is the largest publicly available
transliteration dataset for Indian languages, cre-
ated by mining from monolingual and parallel cor-
pora and human annotators’ contributions. It con-
tains 26 million transliteration word pairs for 21 In-
dic languages, making it 21 times larger than exist-
ing datasets. However, we do not use this dataset
for training and testing because it only includes
word-level transliteration pairs, whereas our work
focuses on sentence-level transliteration.

2.2 Dialectal Normalization
A dialect is a specific form of a language unique
to a particular region or social group. Dialec-
tal normalization involves converting a dialec-
tal variation of a sentence into its standard form
within that language. For instance, the Alassio di-
alect sentence corresponding to the English sen-
tence "They stole the painting" is "I han
rubbau u quaddru". In contrast, the standard
Italian variant is "Hanno rubato il quadro".

CODET We use the CODET dataset (Alam
et al., 2024) for the dialectal translation task.
CODET is a contrastive dialectal benchmark en-
compassing 891 different varieties from 12 differ-
ent languages. In this work, we consider six lan-
guages that have a good amount of dialect cov-
erage: Arabic (25 vernaculars), Bengali (5 vari-
eties), Basque (39 varieties), Italian (439 varieties),
Kurdish (4 varieties), and Swiss German (368 vari-
eties). Even though the dataset covers a vast range
of dialects, the number of sentences for each lan-
guage is small and can only be used as a testing
set. Only five dialects of Arabic have more than
10,000 sentences, and precisely, these are the ones
for which we can create a training set.

3 Methods

3.1 Zero-shot Prompting
In NLP, zero-shot learning for a model involves
categorizing objects or concepts without having
seen examples of those categories or concepts dur-
ing training. This promising technique enhances
the utility of LLMs across various tasks. Zero-
shot prompting means that the prompt used to in-
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teract with the model does not include examples
or demonstrations. The zero-shot prompt directly
instructs the model to perform a task without pro-
viding any additional examples to guide it.

3.2 LoRA-tuning

A significant paradigm in natural language pro-
cessing involves large-scale pre-training on gen-
eral domain data followed by further adaptation to
specific tasks or domains. One adaptation method
is full fine-tuning, which retrains all model param-
eters. However, this approach becomes less feasi-
ble with the rise of large billion-parameter models,
as deploying independent instances of fine-tuned
models with billions of parameters is prohibitively
expensive.
Hu et al. (2021) introduced Low-Rank Adapta-

tion (LoRA), which addresses this issue by freez-
ing the pre-trained model weights and injecting
trainable rank decomposition matrices into each
layer of the Transformer architecture. This method
significantly decreases the number of parameters
that need to be trained for downstream tasks. Their
research demonstrates that LoRA, when compared
to fine-tuned GPT-3 175B with Adam, can re-
duce the number of trainable parameters by 10,000
times and the GPU memory requirement by three
times. Additionally, LoRA performs on par with
or better than traditional fine-tuning in model qual-
ity.

3.3 Evaluation Metrics

BLEU Bilingual Evaluation Understudy (Pap-
ineni et al., 2002) is a metric for comparing a can-
didate translation to one or more reference trans-
lations. It is quick and inexpensive to calculate,
language-independent, and highly correlated with
human evaluation.

SPBLEU This is a modified version of BLEU
where both the candidate and reference texts
are tokenized using a single language-agnostic
and publicly available fixed SentencePiece sub-
word model (Kudo and Richardson, 2018). Un-
like BLEU, which operates on words determined
by whitespace, SPBLEU calculates BLEU scores
over sub-words.

WER Word Error Rate (WER) is calculated by
dividing the number of errors by the total number
of words. Errors include substitutions, insertions,
and deletions in a sequence of recognized words.

Hyper Parameters

Sub-word Tokens 7500, 15000, 30000, 60000, 90000
Learning Rate 0.01, 0.001, 0.0001
Dropout 0.2, 0.36, 0.5
Encoder-Decoder Layers 4, 6, 8

Table 1: Hyper-parameter search space for tuning the
Scratch model.

Substitutions happen when a word is replaced, in-
sertions occur when an extra word is added, and
deletions occur when a word is omitted from the
transcript.

SPWER Similar to SPBLEU, SPWER is a mod-
ified version of WER where the calculation is
performed over sub-words rather than words. A
SentencePiece model is used to generate the sub-
words.

4 Experimental Setup

4.1 Transliteration Normalization

Baseline We use the IndicXlit model (Madhani
et al., 2022) as our baseline model. IndicXlit is a
transformer-based multilingual transliteration nor-
malization model with approximately 11 million
parameters. It supports transliteration conversions
between Roman and native scripts for 21 Indic lan-
guages. Madhani et al. (2022) use the Aksharantar
dataset to train themodel, the largest publicly avail-
able parallel corpus, containing 26 million word
pairs across 20 Indic languages.

Scratch The Scratch model employs a sequence-
to-sequence Transformer architecture (Vaswani
et al., 2017). It takes transliterated text in Ro-
man script as input to the encoder and produces
text in the original script as output from the de-
coder. The model is trained similarly to Machine
Translation, utilizing sub-word tokens during train-
ing. The encoder and decoder have separate vo-
cabularies, with the source vocabulary consisting
of English and the target vocabulary combining all
twelve languages’ scripts. To inform the model
which script to translate from Roman, we prepend
a language-specific token (e.g., < bn >) to the
source sentence.
In our experiments, we set the model dimension

to 256, attention heads to 4, and hidden dimen-
sion to 1024. We employ the Adam optimizer with
β1 = 0.9, β2 = 0.98, and ϵ = 10−6. Training lasts
for 50 epochs with a batch size of 128 and utilizes
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the GLEU activation function. We perform exten-
sive hyperparameter tuning to optimize model per-
formance. Table 1 illustrates the hyper-parameters
used. Through experimentation, we determine that
setting the sub-word tokens to 7500, learning rate
to 0.001, dropout to 0.2, and using six layers for
both encoder and decoder yields the best average
performance across all languages.

LoRA-Tuning We rely on the implementation
provided by Li et al. (2023) to perform LoRA-
tuning on our open-sourced LLMmodels. We con-
duct LoRA-tuning on ten models, with five mod-
els having 7B parameters and the remaining five
with 13B parameters. This allows us to investi-
gate any potential performance discrepancies due
to model size. These models are BactrianX 7B
and 13B (Li et al., 2023), Bloomz 7B and MT0
13B (Muennighoff et al., 2022), Gemma 7B (Team
et al., 2024), Mistral Instruct 7B (Jiang et al., 2023),
Tower Instruct 7B (Alves et al., 2024), ALMA13B
(Xu et al., 2024), Aya 13B (Üstün et al., 2024),
Llama2 Chat 13B (Touvron et al., 2023). Among
these models, Aya 13B and MT0 13B are encoder-
decoder models, while the rest are causal language
models (decoder-only).
For LoRA-tuning, we incorporate training data

from all twelve languages in a multilingual fash-
ion. We train the model for two epochs with a
3 × 10−4 learning rate. LoRA’s rank, alpha, and
dropout are configured to 64, 16, and 0.05, respec-
tively. Furthermore, we convert the loaded model
into a mixed-8bit quantized model. Prompt used
during LoRA-tuning and to perform inference:

Transliteration Normalization:
1: Given a phonetic transcription of a Bengali sen-
tence into Roman script. Translate it to Bengali
script. Show just the translation. Roman: Trimatrik
gathane dimatrik pristho katake ched bole.
2: Given a phonetic transcription of a Hindi sentence
into Roman script. Translate it to Devanagari script.
Show just the translation. Roman: 1947 men Dara
Singh Singapore aa gaye.

4.2 Dialectal Normalization

LoRA-Tuning We employ the same implemen-
tation and settings as described in subsection 4.1.
However, in this scenario, only data from five Ara-
bic dialects was sufficient for LoRA-tuning. Thus,
we train the model multilingually using the com-
bined data from these five dialects. Prompt exam-
ples:

Dialectal Normalization:
1: Given an Italian sentence from Alassio. Translate
it to standard Italian. Show just the translation. Alas-
sio: Quelle garçune i fumman tante sigarette.
2: Given a German sentence from Aarau. Translate
it to standard German. Show just the translation. Aa-
rau: Oh, sie ist nicht da, sie ist einkaufen gegangen.

4.3 Dialectal Translation

In this downstream task, our objective is to demon-
strate the benefit of incorporating a normalization
step before translation instead of directly translat-
ing the dialectal variation. We utilize the NLLB-
200 3.3B model (NLLB Team et al., 2022) for
translation. Following the approach outlined in
(Alam et al., 2024), our baseline model does not in-
corporate the normalization step before translation.
This baseline model is referred to as “Without Nor-
malization” in our study.

4.4 Evaluation Metrics

For evaluation, we utilize four metrics. The BLEU
score is calculated using the SacreBLEU library
(Post, 2018). We compute the WER score us-
ing the JiWER Python package2. To calculate
SPBLEU and SPWER, we tokenize the texts us-
ing the SentencePiece model from FLORES-2003.
This model trains a single SentencePiece (SPM)
model for all 200 languages, ensuring representa-
tion across a broad spectrum of languages. It em-
ploys a vocabulary size of 256,000 to adequately
cover both low- and high-resource languages, with
careful down-sampling and up-sampling to bal-
ance representation.

5 Results

5.1 Transliteration Normalization

Zero-Shot Table 3 showcases our zero-shot
prompting analysis outcomes across ten publicly
available LLMs and one proprietary LLM. This
experiment was conducted exclusively in Bengali
to gauge the performance of open-source LLMs
against both the Baseline and Scratch models. As
anticipated, the open-source LLMs yield subpar re-
sults, with BLEU scores consistently below nine
across all instances. Particularly noteworthy is the
superior performance of the GPT4 model within
this framework, surpassing the Baseline model by

2https://pypi.org/project/jiwer/
3https://github.com/facebookresearch/flores/

blob/main/flores200/README.md
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BN GU HI KN ML MR PU SD SI TA TE UR Average

Baseline 53.8 53.6 63.5 69.5 47.7 62.1 50.0 35.4 37.4 54.6 65.9 30.0 52.0

Scratch 54.7 69.7 65.2 57.8 44.4 57.7 59.1 62.0 51.3 51.0 51.8 65.1 57.5

BactrianX 7B 39.5 22.7 49.8 19.4 29.3 49.3 23.4 45.3 21.6 37.2 18.9 53.5 34.2
Bloomz 7B 42.0 47.6 58.6 31.0 26.3 45.1 44.6 45.1 19.6 29.2 31.6 55.4 39.7
Gemma 7B 62.8 72.5 72.0 63.0 52.9 62.5 62.2 60.4 51.1 57.9 58.2 70.7 62.2
Llama 7B 41.1 22.6 50.7 19.9 30.1 49.2 24.6 46.8 22.6 37.4 19.2 53.6 34.8
Mistral 7B 54.0 34.7 57.3 44.8 20.8 58.8 27.4 54.6 31.3 46.0 38.8 61.7 44.2
Tower 7B 48.0 26.4 54.9 23.4 38.1 56.2 28.4 53.2 27.7 43.3 23.3 59.7 40.2

ALMA 13B 46.7 26.3 54.0 23.1 37.0 55.9 27.8 50.7 26.1 41.0 22.4 58.3 39.1
Aya 13B 52.3 62.0 67.8 46.7 39.5 56.0 57.0 51.2 33.6 40.9 42.4 67.4 51.4
BactrianX 13B 45.9 25.5 53.4 22.5 36.9 53.9 26.9 50.1 25.8 41.0 22.3 57.4 38.5
Llama 13B 44.9 24.8 52.0 21.2 31.7 52.6 26.0 48.5 23.9 29.8 20.1 55.4 35.9
Llama 13B 46.0 25.4 51.5 21.9 35.2 54.0 26.8 49.9 25.2 40.4 22.3 57.9 38.0
MT0 13B 52.7 60.9 68.3 46.4 38.9 55.7 57.0 50.7 34.3 38.9 43.8 67.5 51.3

GPT4 Turbo 67.0 70.7 77.6 67.2 53.6 70.7 59.6 27.8 42.0 60.0 68.3 77.3 61.8

Table 2: LoRA-tuned performance of the open-sourced LLMs in BLEU ↑ metric. The performances of the open-
sourced LLMs improved greatly compared to their zero-shot performance. Gemma 7B and GPT4 models outper-
form the Baseline model. Gemma 7B is the best-performing model.

SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓
Baseline 67.8 53.8 21.47 24.41

Scratch 66.2 54.7 22.08 23.94

BactrianX 7B 11.3 3.5 83.37 88.94
Bloomz 7B 1.4 0.3 153.50 166.54
Gemma 7B 17.6 7.0 77.00 77.38
Mistral 7B 7.4 2.5 128.40 130.31
Tower 7B 16.9 5.9 81.21 78.49

ALMA 13B 13.7 5.5 96.18 99.51
Aya 13B 18.3 8.3 83.16 94.31
BactrianX 13B 16.5 5.9 83.18 82.96
Llama2 13B 21.1 8.8 73.49 74.45
MT0 13B 6.5 2.1 114.16 121.17

GPT4 Turbo 77.7 67.0 14.37 17.41

Table 3: Zero-shot performance of the LLMs in Bengali
transliteration normalization task. All open-sourced
LLMs perform poorly. GPT4 is the only LLM to out-
perform the Baseline model.

14.2 BLEU points. However, owing to the propri-
etary nature of GPT4, it remains uncertain whether
the model was exposed to the test set during train-
ing. In subsequent phases, we aim to explore strate-
gies to improve the performance of both the Base-
line and GPT4 models utilizing open-source alter-
natives.

LoRA-Tuning Tables 2, 7, 8, 9 show the re-
sults of the open-sourced LLMmodels after LoRA-
tuning (Hu et al., 2021) using the training data for
four evaluation metric. For space constraint, the
results with the SPBLEU, WER, and SPWERmet-
rics are in the Appendix A. In the case of BLEU,

Table 2 we can see that the Gemma 7B model
outperforms the Baseline model. It even outper-
forms the GPT4 model on average for all twelve
languages. Individually, we see the Gemma 7B
model perform better for languages like Gujarati,
Punjabi, and Sindhi, probably because the GPT4
has not seen much data in those languages. Results
are consistent across all metrics.

Ablation Study The data in Table 2 indicates
that the average BLEU score is higher for the
Scratchmodel than the Baselinemodel. This raises
an intriguing question: Why is this happening?
One plausible explanation could be attributed to
the phenomenon of “word leakage” between the
training and testing data of the Scratch model, both
originating from the same source. By its nature,
transliteration lacks a predefined structure, leav-
ing the form of writing entirely to the author’s dis-
cretion. Given that both the training and test sets
stem from the same dataset, there exists a likeli-
hood that certain transliterated words remain con-
sistent across both sets.
Consequently, it is plausible that the Scratch

and LoRA-tuned models may become accustomed
to normalizing specific variations and struggle to
generalize to alternative transliterated forms of the
same word. To illustrate, consider the Bengali
word সঙ্গীত, which can be transliterated in various
ways; two commonly used forms are “songit” and
“sangeet”. Our hypothesis regarding the Scratch
model posits that if the model encounters a partic-
ular variation during training and subsequently en-
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Original Dakshina Modified Dakshina

Scratch Leakage Baseline Leakage Gemma 7B Scratch Leakage Baseline Leakage Gemma 7B

Bengali 66.2 47.5 67.8 26.9 72.3 54.6 33.8 61.8 27.4 66.7
Gujrati 77.3 48.1 67.5 26.5 78.6 65.8 37.3 64.7 26.6 69.6
Hindi 66.8 51.5 67.4 20.6 73.3 56.0 43.9 61.5 21.3 70.1
Kannada 73.9 38.8 82.0 34.0 75.5 69.9 31.2 79.3 33.7 72.4
Malayalam 68.1 30.9 73.1 29.5 73.2 65.7 25.5 72.0 29.5 71.3
Marathi 66.9 44.4 74.3 26.6 70.9 61.3 35.3 71.0 26.8 67.4
Punjabi 65.9 49.8 60.2 18.7 68.1 59.5 41.3 56.0 19.4 63.1
Sindhi 66.8 54.4 45.7 - 64.4 58.9 48.4 43.7 - 57.0
Sinhala 68.4 50.1 60.2 - 66.5 65.4 43.2 60.1 - 64.1
Tamil 68.3 33.5 72.2 31.4 72.3 64.2 26.3 69.3 31.4 68.8
Telegu 68.3 37.5 80.1 33.1 72.3 63.2 28.0 77.8 34.0 69.3
Urdu 66.0 59.3 38.6 18.4 70.9 55.3 43.8 36.1 20.0 64.3

Average 68.6 45.5 65.8 26.6 71.5 61.7 36.5 62.8 27.0 67.0

Table 4: Ablation study for the high-performance of the Scratch model on the Dakshina test-set in SPBLEU ↑
metric. When the leakage decreases, the performance of the Scratch model also decreases drastically. Whereas the
Gemma 7B model still outperforms the Baseline model.

counters the same variation in the test set, it would
yield a higher score. Conversely, the score would
likely be lower if, during inference, we encounter
a different variation.
We introduce a novel metric termed “Leakage”

to quantify the percentage of words from the test
set present in the training set. As depicted in Table
4, on the left side, the Scratch model exhibits an av-
erage leakage of 45.48% for the Original Dakshina
test set. In contrast, the Baseline model demon-
strates an average leakage of 26.57%. We utilize
the Aksharantar training data to ascertain the base-
line model’s leakage. To validate our hypothesis,
we construct a new dataset derived from the Origi-
nal test set, the Modified Dakshina test set. Lever-
aging the same Aksharantar training data, which
lists several variations of each word, we replace
any word appearing in the Dakshina test set with
an alternative variation found in the Aksharantar
dataset. For instance, if “songit” appears for the
Bengali word সঙ্গীত in the test set, we substitute it
with “sangeet” based on the Aksharantar dataset.
In Table 4, on the right side, for the Modified Dak-
shina test set, we observe that the average leak-
age for the Scratch model decreases by 9%. How-
ever, the leakage for the Baseline model remains
unchanged.
Now, let us examine the scores of three mod-

els for these two test sets. Notably, the SPBLEU
score decreases by 9 points for the Scratch model,
confirming our hypothesis that the model tended
to replicate specific variations rather than general-
ize to different ones. Consequently, the Scratch
model fails to surpass the baseline model’s perfor-
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Figure 1: Correlation between∆Leakage and∆BLEU
of the three models (Scratch, Baseline, and Gemma
7B).

mance on this new test set. While a similar trend is
evident for the Baseline and The Gemma 7B mod-
els, the disparity is less substantial than observed
with the Scratch model. Furthermore, the Gemma
7B model consistently outperforms the Baseline
model, underscoring the robust generalization abil-
ity of these open-source LLM models across vari-
ous transliterated variations.

Figure 1 shows the correlation between leak-
age and the models’ performance (We calculate∆
Leakage and BLEU by subtracting scores from the
Original Dakshina to theModified Dakshina). Our
hypothesis again gets verified by the trendline of
the models. The Scratch model correlates higher
with leakage than the Gemma 7B model. The
Gemma 7B model has a higher generalizing abil-
ity for different variations than the Scratch model.
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Arabic Variety Zero Shot LoRA Tuned

Gemma 7B Aya 13B MT0 13B GPT4 Turbo Gemma 7B Aya 13B MT0 13B

Cairo SPBLEU↑ 5.8 8.8 9.3 21.0 24.6 24.6 25.0
BLEU↑ 3.2 4.2 5.6 14.2 16.7 22.6 23.4

Tunis SPBLEU↑ 3.0 5.3 6.2 14.3 21.6 19.1 19.1
BLEU↑ 1.7 2.1 3.2 8.7 14.6 17.9 17.8

Rabat SPBLEU↑ 3.2 6.6 7.8 17.4 23.4 20.9 20.8
BLEU↑ 2.0 2.9 4.7 11.9 16.0 19.5 19.3

Beirut SPBLEU↑ 4.0 6.7 7.3 18.0 24.0 22.3 22.8
BLEU↑ 2.0 2.5 3.7 11.6 16.3 20.8 21.5

Doha SPBLEU↑ 7.8 9.5 10.3 19.6 25.2 24.3 24.7
BLEU↑ 3.4 4.4 5.9 13.1 17.0 22.7 22.9

Average SPBLEU↑ 4.8 7.5 8.2 18.1 23.8 22.2 22.5
BLEU↑ 2.5 3.2 4.6 11.9 16.1 20.7 21.0

Table 5: Zero-shot and LoRA-tuned performance of the open-sourced LLMs in Arabic normalization task. The
LoRA-tunedmodels outperform the base models like before. In this task, the open-sourcedmodels even outperform
the GPT4 model.

5.2 Dialectal Normalization
Zero-shot and LoRA-tuned Among the six lan-
guages involved in the Dialectal normalization
task, only five Arabic dialects possess sufficient
data to enable LoRA-tuning of an open-source
LLM. In light of this, for experiments within this
setup, we solely consider three open-source LLMs,
a decision informed by the outcomes of the pre-
vious task. Table 5 illustrates the results for
these three open-source models. Analogous to the
transliteration normalization task, the performance
of the open-source models in zero-shot prompting
scenarios proves subpar compared to GPT4. How-
ever, the LoRA-tuned variants perform superior to
the GPT4 model across the five dialects.
Conversely, the remaining five languages need

more training data to facilitate the LoRA-tuning
of an open-source model. Consequently, to utilize
normalization as a precursor to the downstream di-
alectal translation task, we will employ the best-
performing zero-shot model, GPT4.

5.3 Dialectal Translation
Table 6 conveys the results of the downstream
task for all six languages. We average the scores
of the overall dialects of the language. As men-
tioned, we performed the normalization step using
the LoRA-tuned MT0 model for Arabic. We did
the normalization step for the other languages us-
ing the GPT4 model. The BLEU score, on aver-
age, for all six languages goes up by 9.56 points
when we complete the normalization step before-
hand. Apart from Kurdish, the BLEU score goes

Language
Without With

Normalizing Normalizing
(BLEU ↑) (BLEU ↑)

Arabic* 37.90 42.93
Bengali 17.04 20.06
Basque 13.51 16.24
Italian 21.90 43.45
Swiss German 47.77 73.56
Kurdish 9.35 8.60

Average 24.58 34.14

Table 6: performance of the translation task with or
without the normalization step. We had the data for Ara-
bic to do LoRA-tuning on an open-sourced LLM for
that language. For the other languages, we did the nor-
malization using the GPT4model in a zero-shot manner.
The normalization step helps outperform the previous
baseline (without normalization) model for all the lan-
guages except Kurdish.

up for all five languages. The jump in quality for
Italian and Swiss German is enormous, 21.55 and
25.79 BLEU points, respectively. We believe this
is because of the vast amount of data available on
the internet for these two languages, as GPT4 is
likely being trained on data from all these varieties.
For space constraint we show the performance of
individual dialects of six languages in Tables 11,
12, 13, 14, 15, 16 of Appendix A.

6 Related Work

6.1 Dialectal
Most of the previous work on developing machine
translation (MT) technologies for dialects and va-
rieties has focused on Arabic (Zbib et al., 2012;
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Harrat et al., 2019), Swiss German (Garner et al.,
2014; Honnet et al., 2017), Kurdish (Ahmadi
et al., 2022), Portuguese (Fancellu et al., 2014),
and French (Garcia and Firat, 2022). One of the
main challenges in this field is identifying poten-
tial translation sources and creating corpora and
datasets for translating these dialects and varieties
(Zampieri et al., 2020). Considering this, Alam
et al. (2023) attempted to quantify dialectal trans-
lation disparities across as many languages as pos-
sible. Their study shows that general machine
translation systems struggle to comprehend and ac-
curately translate dialectal varieties. Building on
their work, we propose a prior step of dialectal nor-
malization before performing translation.

6.2 Transliteration
Several transliteration systems were recently pro-
posed during the Named Entities Workshop evalu-
ation campaigns in 2018 (Chen et al., 2018). These
campaigns comprise transliterating tasks from En-
glish to other languages with various writing sys-
tems. The transliteration models typically men-
tioned in the literature include a combination of
neural and non-neuralmodels. Kundu et al. (2018);
Le and Sadat (2018) used deep attention-based
RNN encoder-decoder models and Merhav and
Ash (2018); Roark et al. (2020); Moran and Lig-
nos (2020) used neural transformer-based models.
Kunchukuttan et al. (2021) use multilingual train-
ing to train their transliteration system. They rec-
ommend using single-script models to train sepa-
rate models for two different language families. To
our knowledge, we are the first ones to use LLMs
for transliteration.

6.3 Using Large Language Models for
Translation

Using LLMs for multilingual machine translation
is garnering increasing attention. Lin et al. (2022)
evaluate GPT-3 and XGLM-7.5B across 182 trans-
lation directions. Similarly, Bawden and Yvon
(2023) assess BLOOM in 30 directions. Evalua-
tions of ChatGPT by Bang et al. (2023); Jiao et al.
(2023); Hendy et al. (2023) cover 6 to 18 direc-
tions. Zhu et al. (2023) comprehensively evalu-
ates multilingual translation performance for pop-
ular LLMs in 102 languages and 606 directions,
comparing them with state-of-the-art translation
engines like NLLB and Google Translate. This
extensive benchmark highlights the challenges in
optimizing this emerging translation paradigm.

Significant efforts have focused on designing ex-
emplar selection strategies to improve in-context
learning (ICL) for machine translation. Agrawal
et al. (2023); Zhang et al. (2023); Moslem et al.
(2023) contribute to this area, with Zhang et al.
(2023) finding that random selection can be a sim-
ple yet effective strategy. Wei et al. (2022) demon-
strate that few-shot exemplars enhance translation
performance. Moreover, Vilar et al. (2023) note
that selecting ICL examples from a high-quality
pool, such as a development set, is more benefi-
cial, and (Zhang et al., 2023) analyze the impor-
tance of exemplar quality in translation outcomes.
In this work, we do not use large language mod-
els (LLMs) to translate sentences directly. Instead,
we employ LLMs as a preliminary step for normal-
ization, which then facilitates further downstream
translation tasks.

7 Conclusion

In this work, we show that it is possible to use the
closed-sourced LLM for the new tasks: translit-
eration normalization and dialectal normalization,
even if we do not have data for training. We
also show that if we have a small quantity of data
for training (ten thousand), we can LoRA-tune
open-sourced LLMs to be on par or even better in
performance than the closed-source ones. These
open-sourced models are significantly smaller and
cheaper to run than closed-source ones. Finally,
one can use the dialectal normalization step as a
prior step for the dialectal translation task.
Regarding the transliteration, we only use the

Romanized Wikipedia data from the Dakshina
dataset. We do not use other data sources like na-
tive script Wikipedia or the Romanization lexicon.
The Aksharantar dataset also contains 26 million
Romanization lexicon pairs for 21 Indic languages.
In this work, we focused on sentence-level translit-
eration. In the future, we plan on using these vast
data sources for model training.

Limitations

One limitation of our approach to dialectal nor-
malization is the usage of a closed-sourced model
like GPT4, which can be very expensive. As men-
tioned earlier, one way around this is to use open-
sourced models for fine-tuning. However, this
can not be done for dialects as very few training
datasets exist. For our dialectal experiments, we
spent around a thousand dollars.
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BN GU HI KN ML MR PU SD SI TA TE UR Average

Baseline 67.8 67.5 67.4 82.0 73.1 74.3 60.2 45.7 60.2 72.2 80.1 38.6 65.8

Scratch 66.2 77.3 66.8 73.9 68.1 66.9 65.9 66.8 68.4 68.3 68.3 66.0 68.6

Bactrian 7B 50.7 32.6 52.1 31.5 50.6 58.9 29.0 50.1 35.8 52.6 32.3 55.0 44.3
Bloomz 7B 51.5 56.1 59.2 46.0 44.9 53.3 49.1 49.7 34.7 43.1 47.0 54.8 49.1
Gemma 7B 72.3 78.6 73.3 75.5 73.2 70.9 68.1 64.4 66.5 72.3 72.3 70.9 71.5
Llama 7B 52.0 32.7 52.9 32.0 51.4 59.1 30.3 51.2 36.5 53.2 32.8 55.4 45.0
Mistral 7B 63.9 43.9 59.5 57.4 38.1 67.7 32.8 58.3 45.3 60.5 52.8 63.1 53.6
Tower 7B 58.3 35.6 57.0 34.7 58.7 65.5 34.0 56.9 41.4 58.1 35.8 61.3 49.8

ALMA 13B 57.0 35.3 56.3 34.3 57.8 65.3 33.3 54.7 40.1 56.1 35.1 60.0 48.8
Aya 13B 63.1 70.1 68.2 62.9 59.7 64.1 62.3 55.5 57.1 55.3 59.0 67.0 62.0
Bactrian 13B 56.3 35.2 55.7 34.5 57.1 63.2 32.6 54.2 39.6 56.3 35.6 58.8 48.3
Llama 13B 55.4 34.5 54.2 32.7 50.8 61.6 31.1 52.3 36.8 40.7 32.5 56.6 44.9
Llama2 13B 56.3 34.7 53.9 33.5 56.4 63.8 32.2 54.1 39.2 55.7 34.8 59.5 47.8
MT0 13B 63.1 68.9 68.8 63.4 59.6 63.9 62.7 54.9 58.6 54.2 60.1 67.2 62.1

GPT4 Turbo 77.7 78.5 79.8 79.7 75.1 78.1 69.8 34.1 62.4 74.6 81.1 78.7 72.5

Table 7: LoRA-tuned performance of the open-sourced LLMs in SPBLEU ↑ metric. The performance of the open-
sourced LLMs improved a lot compared to their zero-shot performance. Gemma 7B and GPT4 models outperform
the Baseline model. GPT4 is the best-performing model.

BN GU HI KN ML MR PU SD SI TA TE UR Average

Baseline 24.4 25.6 18.5 17.3 29.4 20.2 26.7 36.4 36.5 26.1 19.2 41.7 26.8

Scratch 23.9 16.3 17.9 25.5 32.9 23.0 21.4 21.6 28.3 28.5 30.1 20.8 24.2

Bactrian 7B 40.2 64.8 35.5 65.1 48.9 31.9 62.7 38.4 61.1 43.9 65.2 33.5 49.3
Bloomz 7B 36.3 31.5 22.9 46.1 52.0 33.9 31.9 34.4 61.1 51.1 47.7 28.6 39.8
Gemma 7B 20.7 16.8 15.4 22.5 27.5 21.1 22.5 24.7 30.9 25.1 26.2 18.6 22.7
Llama 7B 39.4 65.0 35.1 64.6 48.2 32.1 62.1 37.8 60.3 43.3 64.9 33.4 48.8
Mistral 7B 29.8 54.3 30.7 40.4 61.7 25.7 61.3 33.2 52.7 37.1 45.6 28.6 41.8
Tower 7B 34.8 62.2 32.7 61.7 41.6 27.4 59.4 34.2 56.4 39.2 61.4 30.2 45.1

ALMA 13B 36.1 62.5 33.7 62.2 42.7 27.9 60.2 36.2 57.9 41.3 62.2 31.3 46.2
Aya 13B 27.0 21.5 17.8 34.4 39.4 25.8 24.8 29.9 48.8 38.7 37.8 20.7 30.6
Bactrian 13B 36.3 62.9 33.5 62.6 42.8 28.9 60.5 35.9 57.8 40.6 62.3 31.4 46.3
Llama 13B 37.2 63.6 35.4 64.4 49.0 30.6 62.3 38.3 60.8 57.1 65.5 34.0 49.9
Llama2 13B 36.6 63.2 35.9 63.0 44.0 28.8 60.9 36.5 58.4 41.4 62.5 31.6 46.9
MT0 13B 26.0 22.2 17.4 34.0 39.4 25.8 24.7 30.4 47.6 39.5 36.9 20.6 30.4

GPT4 Turbo 17.4 15.9 11.2 19.5 28.0 16.4 21.6 46.5 35.0 24.3 19.4 13.5 22.4

Table 8: LoRA-tuned performance of the open-sourced LLMs in WER ↓ metric. The performance of all the open-
sourced LLMs improved a lot compared to their zero-shot performance. Gemma 7B and GPT4 models outperform
the Baseline model. GPT4 is the best-performing model.
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BN GU HI KN ML MR PU SD SI TA TE UR Average

Baseline 21.5 21.7 21.3 12.1 17.3 16.6 28.2 38.2 25.7 18.3 13.0 42.8 23.1

Scratch 22.1 14.8 21.9 17.4 20.3 21.1 22.3 23.1 20.2 20.1 20.9 24.2 20.7

Bactrian 7B 38.5 60.7 38.1 61.0 37.4 29.7 61.9 39.8 54.0 36.9 58.9 35.5 46.0
Bloomz 7B 37.8 32.7 29.2 41.9 44.6 35.0 37.1 38.1 53.4 46.3 40.8 34.9 39.3
Gemma 7B 19.2 15.6 18.2 17.7 17.8 20.3 22.5 26.7 23.5 18.6 19.5 21.2 20.1
Llama 7B 37.4 60.8 37.5 60.6 36.5 29.4 60.9 39.1 53.5 36.4 58.7 35.2 45.5
Mistral 7B 27.3 50.7 32.1 36.0 53.6 23.2 60.0 34.0 46.2 30.6 39.3 29.4 38.5
Tower 7B 32.6 58.7 34.3 58.7 31.2 24.9 58.2 35.3 50.0 32.6 56.7 31.1 42.0

ALMA 13B 33.9 59.1 35.2 59.2 32.1 25.4 59.0 37.2 51.4 34.6 57.5 32.1 43.1
Aya 13B 26.2 20.4 21.5 26.3 28.8 24.9 26.4 33.1 30.6 32.7 29.2 24.1 27.0
Bactrian 13B 34.0 58.9 35.4 58.8 32.5 26.4 59.1 37.1 51.3 34.1 56.5 32.8 43.1
Llama 13B 35.0 59.5 37.1 60.8 39.4 28.3 61.2 39.4 54.8 51.9 60.2 35.5 46.9
Llama2 13B 34.5 59.6 37.6 59.9 33.1 26.1 59.8 37.4 51.9 34.7 57.5 32.7 43.7
MT0 13B 25.5 21.0 21.0 25.5 28.2 24.6 26.0 33.5 28.7 33.1 28.3 23.7 26.6

GPT4 Turbo 14.4 13.7 12.7 13.7 16.0 14.0 20.0 54.2 24.8 16.6 12.7 14.9 19.0

Table 9: LoRA-tuned performance of the open-sourced LLMs in SPWER ↓metric. The performance of all the open-
sourced LLMs improved a lot compared to their zero-shot performance. Gemma 7B and GPT4 models outperform
the Baseline model. GPT4 is the best-performing model.

Zero Shot LORA Tuned

Gemma 7B Aya 13B MT0 13B GPT4 Turbo Gemma 7B Aya 13B MT0 13B

Cairo SPWER↓ 115.96 88.12 90.01 70.7 67.69 62.66 62.09
WER↓ 101.76 90.41 93.55 76.6 64.25 65.70 65.60

Tunis SPWER↓ 134.16 103.61 100.20 79.96 72.20 69.01 69.31
WER↓ 110.55 97.19 96.72 82.4 66.57 69.93 70.41

Rabat SPWER↓ 145.09 99.27 91.91 75.37 69.10 67.85 67.98
WER↓ 112.96 95.12 94.15 79.15 65.27 69.29 69.73

Beirut SPWER↓ 131.98 89.80 88.88 73.99 69.16 65.15 64.21
WER↓ 113.20 92.98 92.56 79.14 64.00 67.13 66.47

Doha SPWER↓ 105.21 83.18 82.71 70.02 65.59 61.95 61.56
WER↓ 97.96 89.66 89.25 76.87 62.33 65.09 64.79

Average SPWER↓ 126.48 92.80 90.74 74.01 68.75 65.32 65.03
WER↓ 107.29 93.07 93.24 78.83 64.49 67.43 67.40

Table 10: Zero-shot and Lora-tuned performance of the open-sourced LLMs inArabic normalization task. The Lora-
tuned models outperform the base models same as before. In this task the open-sourced models even outperform
the GPT4 model.
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Vernacular Without Normalizing With Normalizing

SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓ SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓
Cairo* 45.1 43 43.07 49.38 47.1 45.8 39.7 46.11
Tunis* 28.7 27.2 60.23 66.7 36.3 35.5 48.4 55.62
Rabat* 35.5 33.7 53.62 59.4 39.7 38.4 45.65 53.13
Beirut* 36.8 34.5 50.88 57.71 42.9 41.6 42.32 49.08
Doha* 38.1 36.7 47.92 53.68 45.8 44.7 39.35 45.54
Aleppo 38.4 36.2 50.56 56.84 46.2 45.8 40.18 46.17
Aswan 41.8 39.5 45.91 52.67 46.7 35.5 39.56 46.18
Benghazi 37.5 35.2 50.31 56.53 45.9 38.4 39.99 46.3
Fes 43.5 42 45.47 50.29 47.2 41.6 39.33 45.69
Muscat 45.6 44.2 41.13 46.63 49.1 44.7 37.39 43.43
Sanaa 41.7 39.6 44.9 51.25 45.9 45.1 39.93 46.92
Mosul 43.5 41.8 43.8 49.29 43.2 45.4 42.59 49.11
Salt 44.9 43 42.68 49.19 47.4 44.6 38.38 44.52
Tripoli 34.2 32.2 53.7 59.81 42.4 45.9 43.43 50
Alexandria 47.3 45.1 40.11 45.96 50.7 47.7 36.11 41.78
Baghdad 42.1 40.2 45.58 51.28 44.6 44 41.21 47..34
Jeddah 38.4 36.7 47.85 54.12 44.5 42.1 39.89 46.18
Algiers 29.6 28.3 59.77 66.38 38.2 46.1 47.52 54.79
Basra 40.4 38.8 46 51.44 42.1 41.2 42.97 49.59
Damascus 40.8 39 47.58 53.6 46.8 49.5 38.85 45.09
Jerusalem 39.5 37.6 46.53 53.5 45.9 43.4 38.97 45.23
Sfax 24 22.6 64.97 71.55 31.9 43.3 53.36 61.54
Amman 42.8 40.8 44.75 51.25 47.3 36.9 38.5 44.95
Khartoum 44 42 44.13 48.93 48 40.7 38 44.06
Riyadh 49.2 47.7 37.06 42.35 50.7 45.3 36.42 42.1

Average 39.74 37.90 47.94 53.99 44.66 42.93 41.12 47.63

Table 11: Performance of the translation task with or without the normalization step in Arabic. *: for these vernac-
ulars we had the data to do LoRA-tuning on an open-sourced LLM for those vernaculars. For the other languages,
we used the LoRA-tuned model thus can be said we are normalized in a zero-shot setup. The normalization step
helps outperform the previous baseline(without normalization) model in all the vernacular except Mosul.

Dialect Without Normalizing With Normalizing

SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓ SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓
Barisal 11.1 9.1 92.17 97.27 16.5 14.1 74.99 83.37
Dhakaiya 18 15.5 77.81 86.56 22.3 20.1 67.3 75.05
Jessore 23.8 21.6 67.64 73.92 24.5 22.5 64.91 72.79
Khulna 22 19.4 71.39 78.78 23.4 21.2 65.35 72.99
Kushtia 22.5 19.6 69.98 76.71 25.3 22.4 62.34 69.66

Average 19.48 17.04 75.80 82.65 22.4 20.06 66.98 74.77

Table 12: Performance of the translation task with or without the normalization step in Bengali. The normalization
step helps outperform the previous baseline(without normalization) model in all the dialects.

Dialect Without Normalizing With Normalizing

SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓ SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓
Hewlêr 10.1 8.4 84.59 91.33 9 7.7 89.47 96.34
Mehabad 11.3 10.5 86.54 89.78 9.6 8.7 83.11 89.66
Silêmanî 12.7 11.6 84.44 88.64 10.7 9.6 87.05 93.2
Sine 8.6 6.9 93.14 96.09 10.1 8.4 85.83 92.79

Average 10.67 9.35 87.18 91.46 9.85 8.6 86.37 93.0

Table 13: Performance of the translation task with or without the normalization step in Kurdish. The normalization
step helps outperform the previous baseline(without normalization) in just one dialect (Sine).
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Dialect Without Normalizing With Normalizing

SPBLEU ↑ BLEU ↑ SPWER ↓WER ↓ SPBLEU ↑ BLEU ↑ SPWER ↓WER ↓
Ahetze 15.07 15.80 82.41 79.41 17.37 18.46 78.96 76.77
Bidarrai 12.85 14.30 85.71 79.94 15.12 16.30 82.95 79.40
Iholdi 11.09 11.71 94.92 88.70 13.19 13.65 84.36 80.55
Mitikile 9.53 10.46 94.87 87.40 15.72 16.73 82.28 79.70
Uharte-Garazi 13.00 13.84 84.11 79.17 16.97 18.39 81.02 77.02
Aloze 7.13 6.94 107.14 78.57 11.04 11.04 71.43 78.57
Bidarte 13.95 15.30 84.37 79.80 17.69 18.52 78.94 75.33
Isturitze 8.36 9.37 95.96 84.89 13.21 14.38 87.87 81.19
Mugerre 14.58 15.71 84.23 78.63 17.23 18.46 80.69 77.25
Urdinarbe 3.69 3.75 114.29 97.97 7.31 7.35 102.43 90.69
Amenduze-Unaso 16.09 17.63 80.69 76.17 18.61 19.40 76.06 74.79
Donibane-Lohizune 12.39 13.11 89.96 86.70 18.37 20.13 77.93 75.10
Itsasu 15.16 15.68 83.91 79.40 5.60 6.01 105.41 100.31
Muskildi 4.71 4.71 124.18 102.96 8.22 8.41 100.34 89.93
Urepele 13.57 14.01 85.80 82.10 16.04 16.95 83.15 80.09
Arbona 15.82 17.12 79.99 75.76 17.85 18.83 77.37 74.28
Ezpeize-Undureine 7.56 8.35 102.19 95.50 12.77 13.92 89.11 85.94
Jatsu 10.69 11.75 94.14 87.01 13.78 14.67 86.55 82.55
Pagola 5.45 5.84 100.19 92.75 9.02 8.58 88.57 87.19
Urruna 19.76 21.42 73.88 70.09 22.15 23.67 71.79 70.01
Azkaine 17.42 18.66 79.21 74.79 18.82 19.83 75.10 72.64
Gabadi 11.99 12.97 86.72 80.48 19.33 20.82 78.30 73.97
Jutsi 16.32 18.01 80.05 75.94 18.22 19.92 76.58 73.64
Ziburu 15.19 16.75 80.89 75.51 16.96 18.04 77.86 74.75
Baigorri 13.52 14.41 85.39 80.63 17.19 18.58 79.09 76.10
Garruze 17.01 18.52 79.67 74.48 17.33 19.25 78.25 73.71
Larraine 5.87 5.82 102.73 93.36 10.06 9.72 91.88 86.18
Sara 16.32 17.19 82.82 78.55 20.71 21.67 72.84 70.33
Barkoxe 7.27 7.10 99.29 92.93 11.59 11.93 86.10 82.63
Hazparne 11.81 13.10 90.48 78.93 12.35 12.98 90.30 79.12
Larzabale-Arroze 14.93 15.90 81.72 77.63 17.52 18.17 80.05 75.79
Senpere 16.61 17.44 79.09 75.56 7.44 8.38 103.99 99.15
Behorlegi 16.63 17.25 79.09 76.56 18.36 19.31 75.55 74.17
Heleta 14.19 15.69 81.47 77.17 18.24 18.85 78.76 76.79
Luhuso 15.68 16.91 79.47 75.63 18.00 19.79 80.44 75.48
Beskoitze 16.38 17.52 80.17 75.64 20.38 21.75 77.00 73.86
Hendaia 15.39 16.62 82.20 78.45 19.53 20.75 79.23 75.62
Maule-Lextarre 5.77 6.49 118.66 106.23 11.59 12.48 90.73 88.01
Suhuskune 13.00 13.84 84.11 79.17 16.58 17.47 82.11 79.17

Average 12.61 13.51 89.13 82.32 15.32 16.24 83.11 79.43

Table 14: Performance of the translation task with or without the normalization step in Basque. The normalization
step helps outperform the previous baseline(without normalization) model in all the dialects except Senpere, and
Itsasu.
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Agugliaro 35.93 33.42 56.72 66.67 60.23 55.03 25.37 31.11
Alassio 21.73 24.11 83.91 75.15 47.96 45.66 47.15 50.00
Alba 18.96 17.31 79.51 81.93 49.40 48.00 43.85 47.26
Albosaggia 12.37 11.30 86.84 90.64 28.82 27.10 65.15 70.18
Aldeno1 33.66 32.25 60.24 64.72 51.52 49.95 39.36 44.27
Aldeno2 32.66 31.22 59.17 64.81 55.13 53.47 37.81 42.59
Aldeno3 35.74 34.02 56.86 62.09 55.35 53.69 37.92 42.60
Altare 8.26 7.94 94.40 97.69 27.84 26.67 64.89 70.44
Altavilla_Vicentina 33.59 31.15 57.66 61.40 60.34 58.33 30.86 34.63
Alte_Ceccato 38.22 36.31 55.87 59.13 64.80 63.30 29.27 32.34
Amblar 20.56 19.40 74.53 78.14 46.85 45.63 47.37 51.20
Andreis 18.31 16.11 78.44 85.18 45.02 43.58 48.72 52.25
Aquilano 42.73 42.73 20.00 25.00 100.00 100.00 0.00 0.00
Aquileia 16.20 14.24 80.29 85.25 38.45 35.88 53.88 59.19
Arcola 16.71 15.81 81.44 86.04 38.70 36.95 52.77 57.86
Arenzano 11.82 10.72 90.65 94.78 28.98 27.02 66.28 71.15
Ariano_Irpino 24.76 23.22 67.71 74.78 56.97 54.32 34.10 40.06
Arsiero 40.87 39.50 49.64 52.98 63.15 61.93 27.91 31.29
Arzeno 20.01 18.62 79.15 85.08 44.00 42.24 47.44 52.78
Bagnoli_Irpino 17.61 14.65 83.29 87.76 47.97 45.08 41.86 48.44
Bagnolo_S._Vito 14.83 15.13 84.77 89.14 42.74 41.94 49.68 53.05
Bagnoregio 39.59 36.93 51.84 58.80 56.84 52.72 35.59 41.39
Barcis 20.04 19.04 76.09 79.94 50.45 48.20 42.68 47.01
Bari 13.48 10.33 80.88 86.69 24.81 20.27 68.27 77.13
Bergantino 13.15 11.93 86.65 92.47 30.43 28.49 63.56 70.26
Biancavilla 37.92 36.58 51.41 56.52 69.20 67.26 24.47 28.31
Bitti 9.77 8.98 94.79 102.38 34.17 32.04 56.65 64.41
Bologna1 2.39 3.02 96.77 95.65 20.09 19.40 158.06 160.87
Bondeno 17.86 16.91 78.77 82.05 44.40 43.21 49.34 53.66
Borghetto_di_Vara 23.31 20.75 70.35 74.76 45.37 43.12 46.30 50.84
Borgo_San_Martino 10.74 10.20 89.21 97.22 44.63 43.72 48.66 55.50
Borgofranco_dIvrea 11.66 9.88 83.71 86.46 35.25 34.42 56.58 59.51
Borgomanero 11.98 12.36 92.13 88.85 33.33 32.05 61.75 66.48
Borgonato1 13.68 11.93 84.36 88.77 27.40 25.67 71.84 76.65
Borgonato2 16.72 14.54 82.79 87.43 33.35 31.99 60.56 64.37
Borgonato3 17.17 14.81 79.55 83.23 37.87 35.80 57.09 61.53
Borgonato4 14.37 12.45 82.01 85.93 33.88 33.38 60.34 63.77
Borgonato5 16.42 14.24 79.78 83.83 30.98 29.40 65.59 69.16
Borgonato6 16.33 14.33 90.61 98.80 31.35 30.21 62.79 65.72
Borgonato7 15.00 12.59 84.58 87.57 26.68 24.66 70.73 76.65
Borgoricco_1 37.59 36.29 54.53 56.59 60.42 59.61 31.84 32.49
Bormio 13.03 12.82 85.76 93.17 44.42 42.66 46.26 50.49
Bovolone 36.74 35.05 54.19 58.98 56.86 54.55 35.42 38.02
Briana 37.09 35.76 54.86 56.59 56.29 54.56 37.77 41.17
Brione 18.62 17.13 81.76 83.24 41.89 41.23 50.14 55.77
Cairo_Montenotte 16.69 16.86 79.23 83.83 35.23 33.16 56.47 62.28
Calalzo_di_Cadore 26.54 23.94 65.94 72.66 47.46 44.38 41.53 48.92
Calcinate 10.24 8.83 83.13 88.47 22.97 21.73 71.96 76.50
Caldogno 38.66 36.61 54.30 58.38 58.90 56.72 35.42 39.22
Calitri 13.94 11.41 81.38 86.74 34.03 31.38 54.89 62.61
Calizzano 14.26 13.65 85.92 90.95 38.44 36.68 53.49 57.75
Calliano 23.66 22.46 74.53 80.09 42.91 41.37 51.40 56.59
Camisano_Vicentino 33.74 32.34 55.20 59.28 63.55 61.50 26.93 30.99
Campagnola 33.49 32.46 60.11 62.50 63.18 61.83 29.10 31.48
Campi_Salentina 28.64 26.29 66.13 72.43 43.63 41.24 53.15 59.19
Campobasso 18.47 15.67 77.09 81.08 30.73 29.43 71.16 76.99
Capurso 10.66 8.45 86.10 94.74 28.66 25.87 62.23 72.37
Carcare 16.21 14.82 91.11 98.50 36.06 33.99 57.47 62.19
Cardito 15.56 15.24 81.93 88.79 43.12 41.70 53.01 57.72
Cardito1 16.32 13.03 80.67 87.78 42.57 39.42 51.39 59.92
Cardito2 15.32 13.88 82.20 89.15 44.31 41.74 50.07 56.25
Cardito3 18.24 16.20 78.63 86.68 44.43 41.73 49.32 56.47
Cardito4 17.86 16.70 83.78 91.80 47.07 43.87 51.35 58.20
Carife 9.39 8.46 96.74 101.81 39.74 37.66 50.67 56.73
Carmignano_di_Brenta 23.33 22.56 82.28 89.21 46.64 45.33 48.95 55.36
Carmignano_di_Brenta1 35.31 33.44 56.76 58.98 65.20 63.23 28.49 32.04
Carosino 20.08 17.96 76.43 83.15 31.70 29.58 65.40 71.72
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Carpi 18.24 17.12 81.11 85.73 48.87 47.05 43.78 49.18
Carrara 7.74 7.50 95.26 101.85 47.34 45.83 44.60 49.21
Casalmaggiore 11.13 11.78 101.64 97.34 31.32 31.00 60.38 64.95
Casarza_Ligure 19.56 18.31 77.52 82.91 39.36 36.76 53.68 58.77
Castellano 38.80 40.37 55.69 56.36 52.35 51.62 38.84 42.95
Castiglione_Messer_Marino 7.92 6.43 95.50 98.87 14.40 13.19 94.82 101.13
Castrignano_del_Capo 21.76 20.53 71.81 77.02 43.27 40.95 46.44 53.24
Catania1 25.63 24.29 66.22 73.78 51.13 49.37 39.79 45.68
Catania2 20.88 17.53 71.64 81.00 42.93 39.95 47.09 54.14
Catania3 14.04 12.02 83.56 92.87 27.80 24.79 63.67 73.41
Catania4 17.65 16.58 78.09 83.43 39.53 36.17 52.61 58.36
Cazet 16.04 14.62 81.88 88.22 33.51 31.51 61.88 66.33
Cencenighe_Agordino 17.67 17.30 80.43 81.18 37.52 35.80 56.36 60.51
Ceneda 32.79 29.88 58.61 66.21 54.27 51.82 38.32 43.87
Cesarolo1 30.01 29.25 62.58 68.40 47.85 47.25 48.23 50.72
Cesarolo2 20.22 18.66 78.96 82.77 41.23 38.30 49.70 56.18
Cesena2 14.45 12.55 82.28 87.28 38.53 36.67 56.40 61.13
Cesesa1 5.48 5.79 98.09 99.86 19.73 17.93 74.35 80.74
Cesiomaggiore 37.07 35.15 54.94 60.42 62.87 61.08 28.70 31.60
Chiavari1 23.21 21.16 74.33 78.67 56.15 54.18 37.06 40.63
Chiavari2 21.25 19.41 80.16 82.86 46.24 43.00 45.99 50.71
Chies_dAlpago 33.42 31.34 57.73 64.20 60.24 58.24 31.75 36.08
Chioggia 41.23 38.89 48.13 54.92 64.04 62.25 28.76 31.55
Cicagna 15.56 13.37 81.95 85.50 35.38 34.16 58.17 63.15
Cimolais 18.89 18.51 78.10 80.99 42.97 42.24 53.52 55.09
Cirvoi 27.34 25.94 65.14 72.07 54.00 52.30 36.85 42.01
Cividale 18.18 17.75 78.42 82.53 38.48 36.19 53.77 59.31
Civita_di_Bagnoregio_1 35.49 33.15 58.53 64.07 41.91 39.54 55.49 63.67
Claut 14.82 12.37 81.11 85.33 40.43 36.93 49.32 54.61
Colle_Val_dElsa 49.77 50.79 49.08 49.54 44.73 45.84 67.23 66.51
Collina 11.06 10.88 91.25 95.28 34.72 32.36 58.06 64.81
Colognola_ai_Colli 23.55 22.53 72.63 77.25 42.47 40.46 49.16 53.14
Comano 16.84 16.69 79.34 82.58 38.56 37.30 52.70 56.60
Copertino 17.72 15.74 81.83 86.11 31.98 30.65 68.55 75.64
Cordenons 18.38 17.22 82.25 87.21 44.87 43.21 46.33 50.39
Corigliano_dOtranto 30.42 28.92 58.97 66.00 51.31 49.74 40.00 45.35
Corleone 32.60 30.60 56.33 62.18 57.03 56.07 34.10 39.05
Correzzola 43.07 41.78 48.94 51.18 66.37 65.21 26.12 28.66
Corvara 10.53 8.81 87.55 95.19 27.35 25.24 68.56 77.66
Cosenza 23.66 23.33 70.40 76.94 49.68 47.34 41.00 47.24
Crotone 14.60 14.32 80.90 85.01 47.56 45.94 41.65 47.62
Cutrofiano 21.32 20.42 77.64 81.80 21.66 19.80 87.15 92.83
Due_Carrare 38.54 37.46 54.53 57.34 63.74 62.56 29.05 31.89
Due_Carrare2 37.37 36.33 54.30 56.89 60.39 59.39 32.85 35.63
Due_Carrare3 34.58 32.77 56.98 60.48 58.73 56.42 33.18 35.18
Facca 36.99 36.55 57.54 60.78 64.57 63.78 28.49 30.99
Faggiano 16.58 14.81 79.79 85.85 30.41 28.64 61.31 68.75
Falzè_di_Piave 34.38 32.53 59.11 60.93 61.93 59.32 30.84 34.43
Farra_di_Soligo 34.51 32.76 59.48 64.77 52.98 50.66 40.01 45.66
Favale_di_Malvaro 18.79 16.35 76.58 80.78 39.00 36.46 52.84 58.22
Ferrara1 15.93 14.59 74.08 80.71 42.47 40.94 47.63 52.75
Ferrara2 8.98 8.89 101.79 105.06 33.81 32.44 61.32 66.99
Finale_Ligure 14.94 14.88 90.87 88.79 39.16 38.30 51.89 55.74
Firenze 64.54 65.27 31.38 29.52 73.62 72.36 22.06 25.12
Forlì 13.23 13.37 86.30 89.64 37.62 36.50 56.57 61.57
Francavilla_Fontana 19.77 16.76 79.52 85.85 44.69 43.54 50.74 56.25
Frontale_di_Sondalo 20.02 18.31 76.68 81.36 38.18 36.19 56.94 63.43
Galliera_Veneta 36.14 34.59 58.10 60.93 64.13 62.14 28.38 31.14
Galliera_Veneta1 34.98 34.56 59.55 61.68 62.39 60.45 32.07 36.23
Gallipoli1 15.58 13.98 77.07 85.37 41.27 38.78 49.10 57.20
Gazzo 29.45 27.22 63.58 66.32 54.72 52.68 38.55 43.41
Gazzolo 32.65 30.11 61.56 64.37 55.17 52.26 38.66 42.51
Ghizzole_di_Montegaldella 36.78 32.97 54.19 59.88 63.21 59.96 28.72 32.49
Giazza 2.88 3.89 91.67 113.33 2.94 3.47 83.33 106.67
Gorizia 24.08 22.35 68.19 73.64 43.70 41.86 50.17 54.67
Gragnano 11.45 9.27 85.71 92.16 34.01 32.21 68.44 74.44
Granarola 15.82 14.27 77.85 82.54 43.36 41.95 44.83 49.40
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Grosio 18.60 17.70 74.10 80.93 48.10 47.52 45.80 49.53
Grottaglie 16.84 12.89 80.59 90.63 30.32 27.38 68.27 75.00
Iglesias 9.65 7.61 95.85 101.84 34.49 31.62 58.37 67.65
Illasi 23.21 21.32 72.38 78.57 48.53 46.42 46.62 51.87
Iseo1 19.53 17.86 74.19 78.14 36.86 35.34 55.64 60.78
Iseo2 16.98 14.71 79.33 83.83 36.20 34.81 56.98 62.13
Iseo3 13.51 11.39 85.47 90.12 29.62 27.96 65.03 69.31
Iseo4 15.85 14.08 78.32 82.19 34.69 33.98 58.99 63.02
Iseo5 17.64 16.74 89.39 91.77 37.70 35.67 56.09 59.43
Iseo6 17.48 15.45 78.77 80.84 38.12 37.38 57.65 61.98
Iseo7 18.07 15.50 78.10 82.78 33.09 32.56 61.45 65.12
Iseo8 14.95 13.47 88.38 91.32 33.22 33.24 61.23 63.02
Jesolo 34.11 32.01 57.73 61.84 57.34 55.57 33.24 37.81
La_Spezia 19.40 19.53 79.86 81.11 43.52 41.98 48.69 53.35
Laino_Castello 24.18 21.33 66.84 73.41 48.72 46.47 40.69 48.09
Lamon 23.60 22.33 68.94 75.92 51.98 49.64 39.53 46.72
Lanciano 19.22 16.55 74.03 81.99 30.65 29.41 76.17 83.46
Laste_di_Rocca_Pietore 15.21 14.64 83.15 85.80 39.01 37.84 53.38 58.59
Lecce 16.36 13.88 78.24 84.42 32.79 29.00 64.05 71.06
Lecce2 23.05 21.42 73.20 79.81 48.33 46.30 45.71 51.96
Lecco 20.94 19.70 74.30 76.54 38.81 37.21 53.03 58.85
Lesina 15.48 13.77 77.74 85.37 41.42 38.42 48.28 56.82
Lion 32.11 29.18 59.44 63.17 60.47 58.99 32.07 33.68
Liscia 3.57 2.47 106.92 114.00 15.14 12.09 76.88 84.79
Livigno1 11.59 10.04 86.82 91.28 32.27 29.89 64.19 68.81
Livigno2 9.77 8.63 93.68 98.72 22.16 20.16 71.51 78.87
Lizzano 7.35 5.67 90.91 85.71 7.16 8.91 118.18 114.29
Locorotondo 7.30 5.48 92.48 100.66 23.24 20.77 67.86 74.63
Locri 23.50 21.60 66.26 73.38 41.08 39.40 47.06 53.74
Lonato 18.02 16.69 76.05 79.95 41.49 39.55 52.09 56.63
Longare 35.51 34.33 58.79 61.31 58.41 56.82 35.51 38.58
Lubriano 20.15 18.46 74.93 84.50 33.40 30.51 57.18 68.60
Lucanico 18.20 18.12 75.20 80.99 42.09 40.38 51.40 54.19
Lucinico 14.18 11.97 86.00 90.79 35.72 31.77 55.33 64.04
Lughignano 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lupia_di_Sandrigo 38.97 37.33 51.96 55.24 65.61 64.12 26.15 28.74
Luserna 2.38 1.89 158.33 146.67 0.00 0.00 100.00 100.00
Luzzara1 12.85 11.19 84.02 91.77 41.28 39.13 53.63 58.68
Macerata 24.69 23.05 72.00 76.66 48.24 44.83 41.60 48.63
Maglie 29.22 25.70 64.76 71.72 46.36 44.50 48.03 54.12
Malonno 12.46 11.33 90.15 94.83 28.09 26.46 66.03 71.37
Mantova 17.07 16.40 78.46 77.56 34.70 33.21 55.47 59.64
Marchigiano 33.60 28.72 57.49 65.21 50.92 45.65 39.34 46.12
Marcianise 35.22 33.66 53.62 59.80 56.56 53.64 34.89 40.27
Marostica 37.08 35.34 55.53 60.13 63.18 61.37 28.87 32.84
Marostica2 35.82 35.10 59.55 63.92 60.05 58.40 33.30 36.53
Martina_Franca 4.40 2.64 98.53 102.57 15.72 13.23 97.86 105.51
Martinsicuro 11.24 9.57 91.21 98.68 32.76 29.34 65.80 73.35
Maserà_di_Padova 35.00 33.82 57.88 60.63 63.42 61.37 28.60 31.59
Mason_Vicentino 35.15 33.20 57.11 61.79 66.29 65.07 25.98 28.21
Massafra 10.00 7.68 95.05 100.55 23.25 21.52 88.62 94.67
Mazara_del_Vallo 20.90 18.68 74.97 79.23 46.55 45.57 49.53 55.51
Melfi 16.60 13.98 75.85 83.48 41.84 38.37 50.32 56.18
Mellame_d’Arsiè 25.01 24.45 66.84 69.96 58.77 55.96 31.94 36.71
Messina1 28.41 26.24 59.79 67.80 54.53 52.23 35.48 41.43
Messina2 25.02 23.45 66.91 74.28 53.50 51.28 37.29 43.37
Messina3 24.61 22.63 67.50 74.64 51.85 49.61 39.68 45.89
Mestre 37.21 38.40 55.80 57.59 50.62 50.13 42.30 46.65
Milano1 19.55 18.10 73.26 76.31 40.76 38.13 46.52 52.48
Milano2 17.62 16.30 78.53 82.18 38.88 36.85 53.72 59.47
Milano3 26.71 25.64 66.03 70.36 53.77 53.29 40.67 44.31
Milano4 17.64 16.76 75.73 80.24 43.07 41.29 50.08 55.08
Milano5 17.01 17.05 77.04 83.30 37.61 35.09 50.42 58.90
Mirano 40.96 38.30 49.69 57.13 61.66 60.24 30.16 34.21
Moimacco 21.74 21.05 72.12 76.01 40.83 38.53 49.77 55.39
Molfetta1 7.80 6.72 101.39 103.34 31.80 29.61 58.91 65.82
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Molfetta2 8.39 6.92 92.07 98.34 30.19 27.49 60.43 68.23
Molfetta3 9.21 8.79 93.88 96.33 37.63 35.85 53.62 60.16
Molfetta4 9.61 8.27 92.45 96.76 35.40 32.87 54.89 61.24
Molfetta5 9.00 8.47 88.56 93.66 36.43 34.45 55.37 62.46
Molfetta6 8.87 7.81 92.34 96.18 33.19 30.86 57.61 65.49
Molfetta7 9.69 8.00 92.71 96.40 33.47 30.07 56.76 65.13
Monasterace1 24.08 22.72 65.69 73.70 46.59 44.20 42.82 50.79
Monasterace2 19.27 18.08 72.61 80.19 39.10 37.45 51.54 57.93
Moncalieri 14.15 13.89 83.37 84.40 40.14 38.88 50.22 53.35
Mondovì 12.60 12.42 87.16 85.71 31.54 30.13 59.71 64.82
Monno 11.21 11.09 93.77 94.28 27.09 25.55 68.81 75.46
Monselice 32.27 29.69 58.32 63.17 55.92 53.33 35.42 38.62
Montecalvo_Irpino 17.88 16.58 75.96 82.42 46.39 43.66 46.60 52.38
Montecchio_Precalcino 31.76 28.21 58.44 65.42 61.73 59.62 31.06 35.93
Monteiasi 21.38 18.73 77.91 84.19 35.83 34.41 54.89 60.48
Monteiasi_2 17.60 14.63 80.59 88.24 34.69 32.25 58.90 64.52
Montella 17.38 14.60 81.86 90.32 38.62 34.70 51.17 59.03
Montereale_Valcellina 24.46 23.36 67.76 71.71 47.17 45.94 43.21 47.66
Monteroni 17.57 16.47 80.29 85.37 39.69 36.38 55.74 62.93
Monterotondo 55.69 53.13 40.88 47.93 58.46 55.72 34.16 40.63
Montesover 37.50 37.56 56.25 57.73 55.58 55.55 36.72 38.85
Morolo 34.21 32.22 57.43 63.12 42.18 39.27 46.32 54.44
Motta_di_Livenza 39.14 38.60 53.18 55.82 62.59 60.82 28.84 32.26
Mussomeli 20.65 19.68 80.86 83.46 42.41 40.78 54.08 58.82
Napoli 12.42 10.10 84.45 90.42 38.38 36.31 53.50 61.11
Nardò 18.80 17.20 80.68 86.27 35.10 32.00 61.35 69.20
Nimis 21.76 21.29 71.63 78.23 47.17 44.47 43.17 49.88
Noale 33.88 31.80 57.77 59.43 63.29 60.29 29.27 32.34
Nones_ 18.85 17.68 73.22 80.17 43.51 40.38 44.85 54.21
Novi_Ligure 8.65 5.73 100.35 101.40 21.10 18.66 93.75 98.60
Oneglia 22.07 21.34 73.42 77.69 49.67 47.78 43.61 47.62
Ortelle 29.42 28.06 61.12 67.94 49.91 47.98 40.64 46.69
Ortisei 7.72 8.39 92.04 95.95 7.49 6.37 123.88 129.73
Orvietano 34.45 31.90 56.06 62.42 51.33 48.12 44.91 49.67
Osimo 34.15 35.56 61.08 63.35 61.58 59.74 33.86 37.56
Ossi 14.64 13.83 82.83 89.86 39.57 37.66 51.58 59.06
Paciano 45.17 44.14 43.62 46.97 65.86 64.07 27.66 32.06
Padola 9.09 8.33 119.24 117.30 29.82 28.17 67.84 73.36
Padova1 29.92 30.49 71.65 75.10 46.19 45.27 49.33 55.68
Padova100 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00
Padova3 36.43 34.78 55.26 59.94 65.95 65.04 25.29 28.95
Padova4 33.09 31.56 61.79 64.37 61.76 61.58 31.28 33.98
Padova5 32.88 32.59 59.58 61.51 54.08 52.24 37.60 42.11
Padova6 40.19 38.68 53.25 56.05 61.32 60.44 31.36 33.92
Padova7 38.05 35.60 53.68 57.55 63.46 61.15 26.97 30.54
Padova8 36.94 34.71 55.64 59.88 62.82 60.21 28.27 32.04
Padova9 38.52 36.51 54.08 57.04 63.02 60.82 29.50 32.04
Palazzolo_dello_Stella_ 13.43 13.41 81.92 83.31 34.45 32.36 56.81 61.83
Palermo10 21.34 19.60 78.91 81.87 50.75 49.87 43.40 47.66
Palermo2 14.12 13.28 75.63 83.59 45.92 42.05 45.29 53.89
Palermo3 20.78 19.46 75.81 80.15 51.35 49.01 43.65 48.42
Palermo4 18.37 17.50 85.81 88.13 43.79 42.32 54.73 59.74
Palermo5 20.24 18.31 78.78 82.62 49.45 48.37 42.86 47.85
Palermo6 15.44 13.97 83.47 91.75 46.83 43.94 42.77 50.52
Palermo7 16.70 15.30 76.55 84.54 46.33 43.68 45.20 52.31
Palermo8 18.26 16.18 75.25 82.83 49.18 45.85 40.51 48.64
Palermo9 13.14 10.99 77.95 85.18 39.34 35.23 50.61 58.68
Palmanova 42.89 43.23 47.99 51.71 57.74 56.85 34.04 37.07
Palù_del_Fersina 2.42 2.69 95.83 113.33 4.68 3.30 95.83 100.00
Papasidero 20.33 17.27 75.45 83.81 40.61 36.39 52.38 60.32
Peaio 20.75 18.92 71.72 78.95 44.11 42.15 45.45 53.23
Pennapiedimonte 6.68 6.08 95.29 100.28 27.08 24.69 62.97 69.73
Pescara1 15.64 13.75 79.65 86.21 35.52 32.85 62.25 71.32
Pianella1 13.29 12.13 89.02 97.43 36.02 34.01 60.78 66.36
Pianella10 9.54 9.11 115.24 106.37 27.02 24.65 68.98 75.66
Pianella2 11.18 12.53 108.82 100.20 35.25 32.23 63.87 72.60
Pianella3 11.42 10.81 104.86 99.07 33.92 31.70 65.54 71.24
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Pianella4 7.98 7.08 101.81 111.35 27.61 25.87 71.55 75.96
Pianella5 13.24 11.45 95.14 105.75 26.21 24.13 75.54 83.49
Pianella6 9.86 9.52 108.51 102.23 32.41 31.35 64.46 69.20
Pianella7 10.45 9.23 98.78 108.99 30.06 26.58 70.48 79.59
Pianella8 7.51 4.58 106.42 113.81 21.00 18.44 91.49 98.57
Pianella9 8.02 6.38 101.81 109.93 26.59 23.81 72.56 78.41
Pianiga 35.93 34.36 56.42 58.83 60.64 59.54 32.07 34.73
Pianiga1 39.56 39.18 53.63 55.69 62.56 61.64 30.50 32.19
Pianiga2 34.61 33.08 56.20 58.38 57.27 55.78 34.64 37.43
Pianiga3 34.12 33.05 58.32 59.88 58.96 56.53 32.96 36.98
Piove_di_Sacco 38.66 38.72 54.56 55.81 63.30 61.09 29.36 33.48
Piove_di_Sacco2 37.70 37.15 52.92 55.12 59.17 57.58 32.36 35.39
Piove_di_Sacco3 37.02 35.48 55.64 58.08 62.22 60.67 29.05 33.08
Poirino 12.63 11.10 87.73 89.76 35.67 33.69 55.67 62.30
Pontevigodarzere_1 36.39 34.24 54.19 57.34 64.43 63.01 27.82 29.94
Pontevigodarzere_2 35.73 32.69 56.74 62.89 57.81 56.04 32.48 35.05
Pontevigodarzere_3 41.49 39.86 50.61 52.84 63.85 63.32 28.83 30.24
Pontinvrea 14.76 13.90 82.51 87.24 39.85 38.02 52.46 57.00
Posada 12.81 11.33 95.85 100.07 37.12 35.15 54.21 61.63
Pozza_di_Fassa 11.78 11.17 86.98 93.68 34.58 32.41 60.57 64.74
Pozzale_di_cadore 24.01 22.00 69.83 75.86 44.22 42.20 48.11 54.67
Pramaggiore 35.50 34.17 55.51 58.94 56.51 54.50 34.83 39.08
Prà_del_Torno 10.56 9.03 86.44 90.32 26.62 23.96 61.69 64.98
Puos_dAlpago 31.10 29.26 60.69 66.98 56.95 54.63 34.64 39.41
Qualso 16.75 15.96 81.26 86.03 5.72 4.95 101.81 108.26
Quinto_Vicentino 31.69 29.06 62.57 66.77 59.91 57.33 33.85 39.07
Ragusa 10.01 9.86 97.88 99.76 38.34 35.61 56.71 66.34
Ramats 5.78 5.60 100.94 105.54 17.44 16.60 78.69 87.23
Redondesco 13.70 12.41 84.47 90.68 34.51 33.65 61.26 68.15
Reisoni 24.37 22.35 68.94 73.57 48.35 46.67 43.01 47.09
Remanzacco 14.62 13.86 82.31 85.88 33.78 31.37 57.80 63.55
Revò 19.08 17.50 80.11 81.89 38.49 36.20 53.52 59.43
Rimini 11.21 11.54 85.94 86.46 27.48 26.63 67.19 70.04
Riomaggiore 17.50 16.80 82.56 85.35 36.45 35.44 55.47 59.37
Riva_presso_Chieri 15.55 13.95 81.08 83.86 38.18 36.87 55.80 60.44
Rivai_di_Arsiè 25.50 23.44 64.22 69.49 57.88 54.95 31.24 36.59
Rivarossa_Canavese 15.51 15.30 81.03 81.94 38.80 37.57 53.24 57.87
Rocca_Pietore 14.51 13.02 85.56 88.65 33.06 31.70 57.95 63.74
Rodoretto 8.72 8.66 93.82 93.57 31.58 31.42 62.29 63.94
Roma 100.00 100.00 0.00 0.00 37.00 69.14 57.14 40.00
Romanesco 39.07 37.75 52.05 60.24 55.62 52.57 39.96 47.48
Romano_DEzzelino 40.93 38.83 49.90 54.21 68.86 66.93 24.26 28.40
Ronzone 13.63 11.69 87.15 91.47 26.75 24.45 67.60 73.80
Ronzone_2 24.33 23.63 73.30 75.45 47.45 46.06 43.91 48.50
Rovereto 41.33 42.19 52.79 53.63 58.24 56.85 32.70 36.25
Rovigo 41.07 39.46 49.68 52.64 66.40 64.82 26.68 30.45
Rovolon 37.92 36.83 52.92 55.81 59.91 58.04 31.00 33.53
Salerno 7.65 5.88 109.01 118.16 33.32 32.86 62.72 69.73
Salzano 38.60 38.18 54.30 58.17 57.75 56.58 35.19 38.90
San_Cesario_di_Lecce 30.41 27.77 59.23 67.01 51.83 48.69 37.96 45.28
San_Leonardo 13.31 11.44 82.66 89.71 27.07 24.15 66.11 74.88
San_Marco_in_Lamis 24.07 22.75 68.01 73.46 51.35 48.56 38.42 44.12
San_Marco_in_Lamis2 14.48 14.23 83.57 85.96 36.34 35.50 52.83 57.38
San_Martino_di_Lupari 29.83 29.44 62.35 64.22 62.17 61.97 29.16 31.29
San_Martino_di_Lupari1 33.97 32.21 59.66 62.28 61.25 58.16 33.41 37.13
San_Martino_di_Lupari2 31.95 30.18 60.67 63.47 63.84 61.38 29.94 32.63
San_Martino_di_Lupari_4 31.33 30.49 62.68 64.82 57.12 55.82 34.30 36.98
San_Martino_di_Lupari_5 36.77 34.90 56.31 58.98 62.88 62.22 30.61 31.59
San_Martino_di_Lupari_6 37.00 35.49 55.75 58.23 66.63 64.69 26.26 29.34
San_Martino_di_Lupari_7 36.40 35.43 56.09 60.18 59.78 58.24 33.52 36.08
San_Martino_in_Pensilis 9.39 9.71 89.47 93.13 24.70 22.57 71.62 79.38
San_Michele_al_Tagliamento1 15.09 15.29 86.72 85.88 39.21 37.68 53.93 58.72
San_Michele_al_Tagliamento2 21.88 20.67 71.60 76.94 44.66 41.91 47.31 53.18
San_Pietro_in_Gu 37.23 35.31 54.09 59.30 68.21 66.91 24.74 27.94
San_Pietro_in_Gu1 38.27 37.24 55.08 58.23 66.21 64.30 27.60 31.74
San_Pietro_in_Gu2 32.41 30.96 58.77 62.13 56.69 55.29 34.08 36.83
San_Valentino 7.39 5.84 91.92 96.31 21.54 18.21 82.59 94.33
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San_Valentino_in_Abruzzo 8.22 7.66 88.57 90.56 19.33 16.70 73.06 81.11
San_martino_di_lupari_3 35.48 35.23 58.88 61.08 65.99 64.91 27.04 29.34
Santa_Croce_Bigolina 31.43 29.67 62.12 66.47 63.31 61.76 29.83 32.49
Santa_Maria_di_Sala 37.10 35.70 54.75 57.49 59.27 57.53 31.51 34.73
Santa_Maria_di_Sala_1 28.05 23.97 64.00 69.20 52.32 47.67 38.37 44.16
Santa_Maria_di_Sala_2 37.96 36.46 55.64 57.63 65.24 63.66 27.15 29.49
Santa_Maria_di_Sala_3 25.92 23.24 64.87 69.47 47.56 44.77 44.00 48.42
Santa_Maria_di_Sala_4 48.95 48.52 42.79 44.11 69.71 68.97 23.09 24.54
Santa_Maria_di_Sala_5 35.65 33.80 55.92 59.83 66.82 65.82 26.32 28.40
Savona 22.31 20.14 74.47 82.25 50.33 47.54 42.33 47.91
Scampitella 9.96 8.63 94.52 100.14 33.63 31.81 59.79 66.43
Schenone 7.09 6.19 108.59 111.47 31.47 31.17 63.09 68.46
Schio 34.64 33.12 56.87 60.33 60.87 58.94 31.28 35.48
Sciacca 20.44 19.69 68.62 75.15 49.42 47.32 41.06 46.12
Scorzé 39.57 39.54 49.78 53.21 52.99 52.32 35.83 39.81
Selva_di_Val_Gardena 9.80 7.62 103.37 109.41 20.37 18.72 79.43 83.77
Selvazzano_Dentro 36.24 34.60 56.65 59.73 61.30 58.85 29.27 32.78
Semogo 16.25 15.49 84.62 90.93 35.44 34.41 55.69 62.27
Sinagra 22.64 21.21 75.31 78.19 38.56 35.95 62.79 66.67
Solesino 34.05 32.74 59.78 62.28 67.88 66.28 24.58 27.40
Soleto 25.53 24.07 72.44 75.79 40.46 38.40 55.83 60.53
Squinzano 16.04 13.47 88.55 92.16 39.44 36.83 56.71 62.50
Standard 100.00 100.00 0.00 0.00 75.64 74.10 22.12 25.23
Sutrio 14.00 16.41 87.88 87.50 43.46 39.96 57.58 62.50
Tabarchino 8.15 7.28 91.55 102.73 28.51 26.01 68.91 78.36
Taggia 29.14 27.58 61.76 68.97 60.31 58.63 30.77 35.51
Taglio_di_Po1 22.97 22.27 70.24 76.63 39.07 37.90 52.70 58.50
Taglio_di_Po2 26.67 25.77 67.71 72.59 43.10 40.76 47.38 53.87
Tai_di_Cadore 31.85 29.15 59.95 67.51 58.27 55.84 31.34 36.10
Taranto 7.76 5.75 95.94 102.42 28.95 27.48 74.38 78.69
Teglio_Veneto 20.31 18.65 79.03 86.57 47.85 45.58 42.40 46.64
Teolo 28.41 25.66 70.39 79.79 55.33 52.70 36.20 39.82
Termoli 16.37 14.17 72.07 77.59 37.13 36.71 52.31 56.64
Terranegra 34.05 31.87 57.65 61.53 64.55 62.24 28.04 30.54
Terravecchia 14.39 12.57 80.56 89.33 33.37 29.67 58.55 68.65
Tezze_sul_Brenta 35.43 34.56 57.15 60.02 55.82 54.16 36.12 39.44
Tignes_di_Pieve_dAlpago 32.85 31.38 60.85 65.61 57.97 55.76 35.76 41.40
Tollegno 13.40 12.34 86.60 93.78 37.46 35.14 54.03 62.32
Torino 15.07 16.25 86.57 82.35 43.02 41.42 48.11 53.22
Torino1 12.55 13.45 90.55 86.31 36.77 34.46 55.47 61.73
Torino2 14.18 13.61 87.64 88.62 42.23 40.03 49.69 54.86
Torino3 15.63 16.64 87.05 81.49 43.74 41.36 47.63 52.11
Torino4 16.20 15.93 81.35 82.56 40.75 39.14 50.84 55.68
Torino5 18.25 17.48 86.55 89.86 50.21 48.22 40.96 46.06
Torino6 16.57 15.53 88.87 93.48 39.05 36.03 47.42 55.16
Torre_del_Greco 11.51 10.42 87.77 91.44 32.37 30.77 61.31 67.76
Torre_del_Greco1 16.92 15.97 80.74 84.99 37.39 34.62 63.96 69.49
Trecate 7.98 8.00 99.00 95.62 20.45 18.90 73.88 77.56
Treia 38.06 38.04 59.44 62.57 66.53 64.86 28.49 32.34
Trepuzzi 21.22 19.31 78.37 83.97 43.41 41.05 49.27 56.55
Trevico 15.02 13.89 80.37 85.59 37.68 35.24 53.99 61.46
Treviso 37.75 37.90 54.46 57.05 58.28 57.10 33.48 36.66
Tricase 22.54 21.41 67.86 71.22 44.42 43.02 46.00 50.51
Trieste1 34.29 33.95 66.23 67.95 55.12 53.82 38.59 43.40
Trieste2 40.32 37.88 49.37 55.70 60.56 58.62 33.12 36.94
Triggiano 9.80 9.75 89.42 95.74 43.33 41.21 49.48 55.50
Trissino 43.95 43.86 47.68 50.18 59.86 58.71 31.27 34.95
Troina1 22.42 20.85 69.47 76.22 48.13 45.53 43.14 49.78
Troina10 29.36 27.30 61.76 67.87 54.70 52.50 35.64 41.07
Troina2 25.91 24.54 65.21 73.13 52.92 49.35 37.55 45.32
Troina3 21.32 19.11 69.52 78.10 43.20 40.01 47.82 54.97
Troina4 26.46 24.43 66.12 72.77 54.11 52.06 38.40 43.52
Troina5 27.23 25.96 63.72 69.73 51.52 48.52 36.01 42.19
Troina6 20.45 18.46 71.15 79.97 43.17 40.37 46.61 54.74
Troina7 26.50 24.74 63.88 71.04 54.52 51.98 35.90 43.23
Troina8 29.59 28.39 62.07 68.37 58.22 55.03 33.40 39.84
Troina9 25.86 24.75 64.80 70.95 55.50 53.65 34.88 40.82
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Udine 10.68 14.43 114.29 120.00 100.00 100.00 0.00 0.00
Valdagno 33.94 32.69 56.89 63.17 59.45 57.54 31.50 35.76
Valfurva1 13.99 13.26 82.58 88.80 40.82 39.83 51.14 57.41
Valfurva2 16.21 15.36 79.59 84.47 41.77 39.63 48.06 54.98
Vallecrosia 18.99 18.08 79.51 83.15 43.83 41.51 47.66 52.15
Valmorbia 34.79 32.04 58.06 64.44 61.01 57.43 30.07 35.81
Vaprio_dAdda 13.93 12.27 85.43 90.15 35.42 33.51 59.71 66.12
Venezia1 39.23 38.71 53.07 54.49 61.90 59.94 30.28 34.73
Venezia_6 38.16 36.02 52.59 57.02 67.87 64.89 27.36 31.62
Veneziano 40.61 38.97 51.11 53.32 67.49 65.98 27.84 30.42
Venosa 9.13 6.75 89.84 96.54 25.57 22.54 67.71 75.65
Verona 34.53 33.75 59.04 62.26 57.91 56.55 34.71 38.71
Veternigo 33.92 32.32 56.86 60.31 66.78 64.67 26.14 29.72
Vicenza 36.81 34.22 55.29 59.62 66.49 64.87 29.93 32.52
Vicenza2 35.46 33.18 57.39 61.89 63.28 60.29 31.63 35.31
Vidor 37.65 37.95 55.42 57.87 56.71 55.51 36.08 39.51
Vidor2 35.64 35.71 57.25 61.89 60.41 57.52 33.46 38.46
Villa_di_Chiavenna 10.72 10.95 94.34 101.12 29.84 28.37 66.24 71.30
Villa_di_Tirano 16.39 15.61 82.58 87.73 40.66 39.60 50.28 56.84
Villacidro 7.78 5.09 99.10 102.73 33.72 31.49 64.62 71.22
Villafranca_Padovana 31.99 31.15 61.57 62.06 62.05 59.92 30.72 33.57
Villaverla 30.60 29.56 62.09 66.78 59.17 58.30 32.68 34.79
Villorba 34.67 33.02 53.77 61.15 60.65 59.25 30.09 34.68
Vione 13.86 14.42 84.71 82.49 28.78 26.95 60.27 65.53
Vitigliano 17.23 12.93 82.33 89.26 32.72 28.96 59.26 67.34
Vodo_Di_Cadore 0.00 0.00 133.33 150.00 0.00 0.00 133.33 200.00
Vodo_di_Cadore 15.96 14.35 84.36 88.73 45.92 42.32 51.65 59.72
Zero_Branco 36.28 36.17 55.82 57.34 65.79 64.41 29.02 30.24
Zianigo 38.13 36.64 52.94 55.42 66.44 65.36 28.37 29.90
Zianigo2 37.88 35.96 52.55 54.20 64.59 62.10 28.89 32.87
Zianigo3 40.16 37.52 49.02 53.50 67.42 64.60 26.27 29.55
Zianigo4 37.84 35.43 53.07 55.59 71.12 69.50 24.18 27.27
Zianigo5 33.52 32.09 57.25 59.27 60.66 57.96 30.46 34.79
Zianigo6 32.21 30.64 61.31 64.34 56.61 54.05 34.25 38.11
padova2 37.06 36.35 55.80 58.28 49.67 47.58 41.63 45.83

Average 23.21 21.90 73.32 77.68 45.31 43.45 48.27 53.46

Table 15: Performance of the translation task with or without the normalization step in Italian. The normalization
step helps outperform the previous baseline(without normalization) model in all the dialects.
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Aarau,AG 51.08 47.46 35.88 43.13 78.10 76.37 15.20 18.13
Aarberg,BE 51.27 47.93 35.46 42.40 77.43 75.54 15.33 17.91
Aarburg,AG 51.08 48.02 34.89 41.67 74.35 72.62 18.81 22.60
Adelboden,BE 45.40 42.92 41.66 48.04 77.16 75.41 16.86 20.28
Aedermannsdorf,SO 49.27 46.19 37.19 44.21 77.07 75.29 16.44 19.57
Aesch,BL 49.79 46.35 36.84 44.21 75.74 73.65 17.67 21.46
Aeschi,SO 49.43 46.35 37.46 44.41 73.06 70.58 19.80 24.25
Agarn,VS 47.62 45.70 40.93 46.25 71.78 69.48 20.02 23.25
Alpnach,OW 49.68 47.90 37.54 42.91 73.09 71.46 19.83 22.73
Alpthal,SZ 48.71 46.17 38.37 44.83 73.75 72.45 18.81 22.15
Altdorf,UR 50.08 47.54 36.56 43.18 73.78 71.42 19.25 22.94
Altstätten,SG 50.80 47.37 37.06 44.09 75.34 73.45 17.17 20.20
Amden,SG 53.99 50.05 33.18 40.18 76.00 75.14 16.35 19.12
Amriswil,TG 52.00 48.03 35.42 41.95 75.51 73.93 17.38 20.71
Andelfingen,ZH 54.43 50.68 32.83 39.48 75.77 73.60 17.12 20.65
Andermatt,UR 49.28 47.46 38.55 44.34 75.11 73.33 18.06 21.59
Andwil,SG 52.19 49.21 35.85 42.73 79.19 77.48 15.01 17.70
Appenzell,AI 53.42 49.29 33.58 41.05 71.96 69.66 19.91 23.79
Arosa,GR 50.60 47.20 35.96 43.22 74.89 72.47 17.71 21.61
Ausserberg,VS 50.24 47.68 37.60 44.35 74.94 72.69 18.35 22.11
Avers,GR 50.82 47.79 35.86 43.74 73.13 71.31 19.49 23.58
Baldingen,AG 53.24 50.78 35.51 41.01 74.93 72.45 17.84 22.01
Basadingen-Schlattingen,TG 53.35 49.89 34.23 41.57 77.15 75.21 16.33 19.69
Basel,BS 53.06 49.29 33.95 41.09 76.57 74.59 16.56 19.77
Bassersdorf,ZH 52.91 49.32 34.43 41.53 76.89 75.14 16.10 19.16
Bauma,ZH 51.93 48.73 35.66 42.65 75.94 73.65 16.85 20.68
Belp,BE 52.68 49.89 34.87 41.18 75.24 73.50 17.95 20.78
Benken,SG 55.41 52.45 32.64 38.34 82.87 80.90 11.57 13.66
Bern,BE 50.35 47.44 36.13 43.12 78.30 76.68 15.50 18.83
Berneck,SG 49.71 46.68 37.57 44.52 76.20 74.42 17.67 20.84
Betten,VS 47.50 45.54 40.81 46.89 77.46 75.22 16.95 20.40
Bettingen,BS 53.35 50.17 34.06 40.68 78.16 76.75 16.04 19.04
Bettlach,SO 48.77 46.21 38.16 45.15 75.00 73.11 16.86 20.19
Bibern,SH 51.39 48.12 35.76 42.93 77.89 75.38 15.59 19.07
Bibern,SO 75.98 59.46 16.67 33.33 54.11 35.36 33.33 33.33
Binn,VS 50.60 48.39 37.33 43.39 76.95 74.89 16.13 19.51
Birmenstorf,AG 52.77 49.23 34.51 41.04 77.58 75.33 15.62 19.32
Birwinken,TG 53.36 49.32 33.64 40.31 74.13 71.73 18.44 22.46
Blatten,VS 48.09 45.82 40.14 46.78 78.08 76.06 16.13 18.71
Bleienbach,BE 48.67 45.50 36.77 43.43 79.09 77.17 14.42 17.53
Boltigen,BE 46.85 44.34 39.59 47.10 75.70 73.34 18.07 21.64
Boniswil,AG 49.73 46.93 37.25 44.04 76.93 75.46 16.94 20.48
Boswil,AG 49.75 47.01 37.35 44.13 77.37 75.63 17.02 20.28
Bottighofen,TG 52.81 48.62 34.14 41.37 76.61 74.75 16.70 19.84
Bremgarten,AG 52.56 49.84 34.20 40.82 75.47 73.92 17.10 19.81
Brienz,BE 49.08 46.49 37.88 43.93 75.50 73.31 17.27 21.03
Brig-Glis,VS 48.14 46.33 40.05 45.92 78.77 76.99 14.80 17.60
Brugg,AG 52.10 48.24 34.50 41.09 74.37 71.77 18.01 22.03
Brunegg,AG 50.22 46.83 36.31 42.80 76.09 74.25 17.09 20.46
Brunnadern,SG 52.53 48.75 35.03 41.49 75.01 73.40 17.98 21.26
Buchberg,SH 52.49 49.51 34.60 41.92 75.00 72.72 17.89 21.21
Buckten,BL 48.20 46.13 39.12 45.35 73.21 70.98 19.61 23.59
Buochs,NW 48.82 46.75 38.48 44.66 76.53 74.95 16.97 19.89
Bäretswil,ZH 52.22 49.20 35.42 41.72 74.66 72.89 18.73 21.95
Bühler,AR 51.42 47.62 36.49 43.31 74.35 72.89 18.39 21.52
Bülach,ZH 53.34 49.41 33.30 40.60 77.87 76.11 15.61 18.80
Bürchen,VS 49.68 46.71 38.32 45.36 79.10 76.75 14.86 18.04
Chur,GR 52.60 48.71 34.85 42.42 79.65 77.54 15.15 18.05
Churwalden,GR 52.81 49.95 35.10 41.55 76.77 74.84 17.08 20.00
Dagmersellen,LU 49.65 46.90 37.32 43.95 78.78 76.81 16.02 19.21
Davos,GR 50.54 47.75 37.09 43.39 72.88 71.36 20.75 23.83
Degersheim,SG 52.73 48.82 35.42 41.41 72.63 70.60 19.83 23.04
Densbüren,AG 50.22 47.26 37.50 43.63 76.11 74.09 16.94 20.81
Diemtigen,BE 48.05 45.88 39.74 45.32 77.02 75.46 16.94 19.62
Diepoldsau,SG 52.11 48.78 35.35 42.15 75.56 73.80 17.29 20.21
Düdingen,FR 50.41 47.39 36.47 42.38 75.10 73.02 18.04 22.16
Ebnat-Kappel,SG 51.42 47.77 35.70 42.89 77.48 75.43 15.92 19.62
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Egg,ZH 52.35 49.32 35.73 41.56 72.44 69.69 19.55 23.55
Eglisau,ZH 54.02 51.05 33.99 39.79 78.47 76.77 15.46 18.35
Einsiedeln,SZ 50.35 47.75 37.30 43.89 73.10 70.72 19.46 23.22
Elfingen,AG 51.80 48.77 35.32 42.08 77.11 74.80 15.71 19.05
Elgg,ZH 52.29 48.74 34.62 41.98 78.57 76.37 15.70 18.58
Elm,GL 52.81 50.20 35.92 41.95 73.73 71.33 18.86 22.47
Engelberg,OW 49.32 46.96 37.84 43.26 73.28 70.96 19.06 23.77
Engi,GL 51.32 48.82 36.45 42.86 74.99 72.68 17.95 21.49
Entlebuch,LU 50.84 48.14 36.73 43.04 78.59 77.63 15.58 18.50
Erlach,BE 49.92 46.53 36.69 44.11 77.04 75.68 16.67 19.76
Ermatingen,TG 51.88 48.02 35.23 42.97 77.28 75.79 16.34 19.92
Erschwil,SO 49.61 47.11 37.40 44.09 74.66 73.28 18.31 22.25
Eschenbach,LU 51.54 48.33 35.64 41.49 77.12 75.29 16.43 20.21
Eschenbach,SG 3.63 3.75 333.33 225.00 5.26 3.39 216.67 225.00
Escholzmatt,LU 49.99 47.45 37.11 43.43 77.40 75.99 16.37 20.19
Ettingen,BL 52.41 48.33 34.89 42.88 74.92 72.61 17.45 21.10
Ferden,VS 48.66 47.09 41.02 46.75 76.39 74.08 17.68 21.15
Fiesch,VS 47.61 46.26 41.10 46.22 77.59 76.25 15.76 18.78
Fischingen,TG 54.15 50.41 33.30 39.66 76.07 74.18 16.70 20.29
Flaach,ZH 52.01 48.63 35.27 42.29 76.93 74.90 16.78 20.61
Flawil,SG 51.87 48.18 35.65 41.78 74.01 71.33 18.48 22.06
Flums,SG 52.59 49.74 34.19 40.82 75.27 73.80 17.73 20.15
Fläsch,GR 52.11 48.46 34.85 42.29 75.86 74.08 17.24 20.18
Flühli,LU 48.07 46.08 40.25 45.77 76.28 74.87 17.14 20.24
Frauenfeld,TG 51.18 48.38 36.40 42.46 76.36 74.76 17.24 20.69
Frauenkappelen,BE 50.60 47.27 35.73 43.43 76.54 74.22 16.53 19.85
Fribourg,FR 49.39 46.68 37.44 44.36 74.25 72.08 18.67 22.44
Frick,AG 51.72 48.20 35.46 42.14 73.92 71.06 18.58 22.82
Frutigen,BE 47.79 45.90 39.71 44.60 74.45 72.43 19.21 21.86
Fällanden,ZH 51.57 48.32 35.71 42.11 75.03 72.95 18.41 21.82
Gadmen,BE 50.04 46.97 36.83 43.28 79.94 77.59 13.91 17.54
Gais,AR 52.84 48.77 34.05 41.30 76.15 73.88 17.07 20.52
Gelterkinden,BL 49.88 46.90 36.92 43.85 76.94 74.71 15.98 19.76
Giffers,FR 48.93 46.16 38.50 44.76 76.65 74.99 17.13 20.16
Giswil,OW 49.76 47.43 37.38 43.60 74.71 73.11 18.79 21.80
Glarus,GL 53.97 51.84 33.99 39.60 74.71 73.18 19.06 22.04
Gossau,ZH 50.98 48.62 37.18 43.14 74.07 71.83 19.04 22.52
Grabs,SG 52.10 48.19 34.82 42.48 74.62 72.48 18.60 21.77
Grafenried,BE 49.48 46.35 37.47 44.71 76.20 73.70 16.96 21.02
Grindelwald,BE 50.70 48.38 36.55 43.58 75.47 73.73 17.63 20.71
Grosswangen,LU 48.99 46.20 37.59 44.18 74.79 72.65 18.09 21.16
Gsteig,BE 47.22 44.60 39.57 45.50 77.72 75.60 15.86 18.90
Guggisberg,BE 46.95 43.73 39.67 46.50 71.51 69.49 21.24 25.74
Gurmels,FR 52.52 49.87 35.53 41.58 74.06 71.17 19.69 24.11
Gurtnellen,UR 51.20 48.92 37.41 43.63 72.21 70.06 19.60 24.01
Guttannen,BE 48.12 45.30 38.45 45.24 74.37 72.62 18.32 22.06
Guttet-Feschel,VS 49.62 47.70 38.80 43.70 76.88 74.34 15.87 18.89
Gächlingen,SH 50.09 47.36 37.07 44.37 73.18 71.37 20.15 23.66
Göschenen,UR 51.56 49.00 35.93 42.36 77.76 75.85 15.69 19.43
Habkern,BE 46.60 43.99 40.10 46.85 75.98 73.94 17.00 20.62
Hallau,SH 51.84 47.93 35.04 42.91 75.27 73.30 18.55 21.72
Hedingen,ZH 52.85 50.16 34.80 40.86 76.04 74.22 17.17 19.97
Heiden,AR 52.28 48.18 34.64 41.40 74.51 72.71 18.11 21.60
Heitenried,FR 47.71 45.58 39.72 45.42 72.73 70.59 19.81 23.90
Herisau,AR 52.22 48.13 34.14 41.10 75.61 73.90 17.21 20.62
Homburg,TG 53.04 48.46 33.83 40.85 74.16 72.33 18.10 21.60
Horw,LU 50.70 47.55 36.24 43.20 75.16 73.23 18.12 21.53
Huttwil,BE 49.30 46.11 36.86 44.04 77.48 75.74 16.45 19.92
Hägglingen,AG 49.81 46.60 36.40 43.33 78.58 76.81 15.23 18.27
Hölstein,BL 49.54 46.44 36.82 43.79 76.17 73.91 17.17 20.36
Hünenberg,ZG 50.90 48.24 36.42 43.07 75.09 73.63 17.78 21.20
Hütten,ZH 52.47 49.38 35.09 41.47 76.27 74.50 16.36 19.85
Hüttwilen,TG 54.20 50.27 32.86 39.74 76.04 73.78 16.43 20.00
Illnau-Effretikon,ZH 51.21 48.02 36.80 43.32 76.47 75.01 17.27 20.15
Inden,VS 50.42 47.39 37.06 43.51 76.61 74.27 15.80 19.80
Ingenbohl,SZ 51.13 48.94 36.01 42.27 73.84 71.45 18.47 22.81
Innerthal,SZ 49.78 47.67 38.71 44.13 76.08 73.85 17.99 21.72
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Innertkirchen,BE 47.47 44.14 38.12 45.25 74.33 72.19 18.97 23.07
Ins,BE 49.28 46.51 37.39 44.28 77.26 75.86 16.36 19.48
Interlaken,BE 48.74 45.32 37.44 44.55 77.75 75.74 16.71 20.08
Iseltwald,BE 48.50 45.78 38.39 45.68 77.12 75.30 16.74 20.00
Isenthal,UR 53.47 50.90 34.33 40.34 70.44 68.58 21.14 25.16
Ittigen,BE 49.77 46.60 36.58 43.82 78.47 76.59 15.64 18.41
Jaun,FR 46.37 43.78 40.68 47.94 74.17 71.63 19.68 24.44
Jenins,GR 51.76 48.47 36.18 42.78 76.80 74.89 16.42 19.39
Kaiserstuhl,AG 53.66 49.56 33.27 39.97 74.23 72.71 18.39 21.07
Kaisten,AG 53.74 50.30 33.73 40.45 74.27 71.85 18.40 22.24
Kandersteg,BE 48.33 45.60 38.17 45.38 77.75 75.58 16.94 20.52
Kerns,OW 49.84 47.59 37.08 43.63 73.69 71.56 19.26 22.94
Kesswil,TG 52.08 48.46 34.60 41.53 75.49 73.48 17.30 20.63
Kirchberg,SG 53.97 50.02 33.24 40.45 76.36 74.10 16.57 20.29
Kirchleerau,AG 50.87 47.81 36.12 43.25 77.87 75.80 15.61 18.79
Kleinlützel,SO 48.61 45.22 37.88 45.48 77.94 75.94 15.46 18.35
Klosters-Serneus,GR 53.19 50.84 34.31 40.43 74.13 71.74 18.62 22.45
Konolfingen,BE 49.42 46.92 37.40 44.80 79.91 77.85 14.69 17.87
Kradolf-Schönenberg,TG 52.59 48.47 34.20 41.18 72.55 70.11 19.32 23.28
Krauchthal,BE 50.18 47.20 36.61 43.78 76.63 74.55 16.56 20.24
Krinau,SG 51.55 47.81 35.58 42.06 76.60 74.98 16.73 19.63
Küblis,GR 52.57 49.44 34.74 41.23 72.63 70.04 20.31 23.96
Küsnacht,ZH 53.65 50.53 33.33 40.45 75.19 73.30 17.39 20.97
Lachen,SZ 54.91 51.52 32.68 38.87 75.70 74.01 17.04 20.59
Langenbruck,BL 50.56 48.09 36.34 42.48 78.09 76.22 16.73 19.86
Langenthal,BE 49.55 46.02 36.33 43.26 73.82 71.40 19.61 24.12
Langwies,GR 52.12 48.50 35.11 42.13 74.20 72.44 19.39 22.85
Laufen,BL 49.08 46.25 37.97 45.06 74.57 71.58 18.84 22.60
Laupen,BE 48.78 45.65 37.68 45.44 77.44 75.85 15.92 19.30
Lauterbrunnen,BE 48.38 46.31 38.77 45.00 75.69 73.71 17.63 20.49
Leibstadt,AG 53.08 49.15 34.47 41.23 75.96 74.02 17.37 21.18
Leissigen,BE 46.79 43.46 39.01 47.19 75.77 73.80 17.77 22.22
Lenk,BE 48.30 45.85 38.91 45.32 76.91 74.58 16.00 19.24
Lenzburg,AG 50.80 47.65 37.17 43.56 73.98 71.74 19.22 23.74
Liesberg,BL 48.96 46.18 37.69 45.03 77.52 75.11 16.11 19.74
Liestal,BL 49.51 46.95 37.30 44.41 77.82 75.74 16.59 20.59
Ligerz,BE 49.60 46.45 38.32 46.79 83.84 82.44 11.43 13.55
Linthal,GL 51.57 49.32 36.61 42.42 76.41 74.75 16.85 19.95
Luchsingen,GL 54.02 51.10 33.01 39.31 77.78 76.30 15.61 18.55
Lungern,OW 49.04 46.02 37.66 44.77 75.62 73.95 17.96 21.58
Lupfig,AG 50.72 47.32 35.46 42.21 76.57 74.95 17.09 20.36
Luzern,LU 50.53 47.42 36.25 43.04 78.37 76.56 15.84 19.25
Lützelflüh,BE 47.57 44.46 38.58 45.90 74.97 72.35 18.64 23.28
Magden,AG 49.45 46.28 37.04 44.22 76.42 74.22 16.57 20.41
textbfMaisprach,BL 49.34 47.00 37.94 44.34 77.94 76.42 16.68 19.97
Malans,GR 52.56 49.13 34.36 42.74 77.52 75.11 16.12 19.35
Malters,LU 48.60 45.51 38.39 44.46 72.15 69.57 20.95 25.73
Mammern,TG 53.87 50.37 33.88 40.30 75.34 73.18 17.75 21.28
Marbach,LU 51.03 48.60 37.05 42.63 76.55 74.27 17.05 20.32
Marthalen,ZH 53.57 49.63 34.22 41.11 76.79 74.75 16.59 20.69
Maur,ZH 52.90 50.55 35.42 41.56 73.67 71.47 19.11 22.42
Meikirch,BE 48.66 45.45 37.34 44.59 74.02 71.36 18.91 22.83
Meilen,ZH 50.25 46.98 37.24 44.44 74.86 72.75 18.84 22.72
Meiringen,BE 48.31 45.23 38.19 44.80 74.46 72.51 18.22 21.95
Melchnau,BE 49.44 45.99 36.09 42.91 78.82 77.55 15.56 18.22
Mels,SG 51.37 48.31 36.33 42.75 72.06 70.15 19.58 22.48
Menzingen,ZG 52.57 49.63 34.38 40.29 76.44 74.21 16.86 20.08
Merenschwand,AG 49.20 46.68 38.39 44.39 74.73 72.28 18.33 21.93
Merishausen,SH 52.14 49.47 35.25 42.08 75.70 73.28 17.25 21.11
Metzerlen,SO 53.41 50.65 34.78 40.93 76.88 74.87 17.04 20.47
Mollis,GL 52.78 50.35 35.17 40.86 73.19 71.46 19.01 22.33
Mosnang,SG 51.58 48.18 36.27 42.43 75.25 72.88 17.99 21.80
Muhen,AG 48.97 45.83 36.98 44.15 79.00 77.21 15.39 18.30
Muotathal,SZ 48.64 46.25 37.88 44.50 72.00 70.09 20.21 23.95
Murgenthal,AG 50.92 47.71 35.86 43.20 76.65 74.27 17.03 20.85
Murten,FR 48.81 45.91 37.33 44.59 75.18 73.33 17.70 21.35
Mutten,GR 54.23 51.70 33.56 39.76 77.47 75.62 15.90 19.00
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Muttenz,BL 52.98 49.66 34.21 40.63 78.88 76.73 15.14 18.36
Möhlin,AG 50.40 47.72 37.51 43.84 74.21 71.43 18.67 23.12
Mörel,VS 49.70 46.72 37.79 44.32 74.95 72.81 17.52 21.36
Mörschwil,SG 52.20 48.27 35.32 41.69 73.80 71.87 18.73 21.82
Mümliswil-Ramiswil,SO 49.39 45.84 37.17 44.16 73.60 71.98 19.32 22.69
Münchenbuchsee,BE 50.43 47.37 35.74 42.55 76.44 74.63 16.86 20.40
Neftenbach,ZH 53.21 49.76 34.01 40.87 78.58 76.72 15.06 18.25
Neuenegg,BE 49.76 46.42 36.02 43.49 80.49 78.33 14.46 17.32
Neuenkirch,LU 50.62 47.16 35.92 41.97 76.43 74.63 17.09 20.24
Niederbipp,BE 49.15 46.14 37.42 44.53 75.88 73.48 17.99 21.47
Niederrohrdorf,AG 52.09 48.43 35.09 42.30 76.02 74.71 16.41 19.19
Niederweningen,ZH 51.84 49.33 36.16 42.05 74.93 72.95 17.68 21.52
Nunningen,SO 48.66 46.08 38.70 44.99 73.34 71.31 19.16 23.59
Näfels,GL 53.95 51.09 34.32 40.08 73.13 70.88 18.73 22.15
Oberhof,AG 47.99 44.62 38.56 45.76 72.63 70.11 19.79 24.51
Oberiberg,SZ 48.89 46.83 38.60 44.84 75.60 73.73 17.88 21.16
Oberriet,SG 51.66 48.07 35.17 42.26 73.42 71.51 19.27 22.63
Obersaxen,GR 51.38 47.89 35.87 43.52 77.43 74.59 15.94 19.50
Oberwald,VS 46.84 45.06 41.30 46.86 71.23 68.68 21.22 25.90
Oberwichtrach,BE 49.46 46.01 36.41 43.84 77.09 75.10 17.11 20.13
Oberägeri,ZG 49.90 47.65 37.68 43.39 73.00 71.15 19.64 23.81
Obstalden,GL 51.42 48.43 36.02 42.91 79.01 77.01 14.93 17.59
Pfaffnau,LU 51.63 48.42 35.10 41.50 77.12 75.45 16.49 19.28
Pfäfers,SG 52.07 49.43 36.11 42.77 77.01 75.40 15.63 18.65
Pfäffikon,ZH 54.18 50.39 33.55 39.82 74.76 72.69 17.94 21.66
Pieterlen,BE 49.23 46.25 37.09 44.46 76.12 74.16 16.88 20.40
Plaffeien,FR 47.32 44.32 39.23 45.92 70.75 68.54 21.06 25.27
Pratteln,BL 48.95 45.45 37.42 45.17 73.73 71.81 19.54 23.04
Quarten,SG 53.60 50.60 34.86 40.99 76.31 74.30 17.01 19.97
Rafz,ZH 51.94 49.24 36.05 42.24 76.83 74.74 16.49 19.42
Ramsen,SH 52.11 49.13 35.12 42.22 76.38 74.42 17.37 20.52
Randa,VS 49.35 47.20 38.67 45.01 79.19 77.18 15.07 18.11
Rapperswil,BE 52.94 49.93 34.51 40.96 78.87 77.09 15.63 18.60
Reckingen,VS 49.60 48.28 39.17 44.49 76.91 75.29 15.96 18.72
Regensberg,ZH 53.82 50.69 34.06 40.81 75.88 73.97 17.49 20.91
Reutigen,BE 50.11 46.74 36.87 43.71 74.24 71.68 19.12 23.00
Rheineck,SG 53.21 50.00 34.55 40.41 75.10 73.20 17.46 20.33
Rickenbach,SO 47.98 45.09 39.31 45.81 74.65 72.32 18.49 22.58
Rifferswil,ZH 53.11 49.05 33.65 40.21 74.51 72.36 18.81 22.19
Risch,ZG 51.15 49.30 37.12 42.88 77.42 75.49 16.95 20.32
Roggenburg,BL 50.19 47.29 36.53 44.00 76.95 75.07 16.44 19.72
Roggwil,TG 51.72 47.81 35.24 42.47 78.34 76.36 15.04 18.15
Romanshorn,TG 53.99 50.15 33.09 39.51 75.82 73.63 17.29 20.59
Rorbas,ZH 53.17 50.40 34.62 40.18 76.46 74.68 17.31 20.66
Rubigen,BE 49.50 45.81 36.95 44.87 78.22 75.96 16.48 20.64
Ruswil,LU 52.29 49.43 35.05 42.22 77.73 76.19 16.87 19.74
Römerswil,LU 49.47 46.63 37.44 44.39 76.83 74.59 16.91 20.59
Rüeggisberg,BE 52.22 49.39 34.68 40.77 76.64 75.10 16.71 19.79
Rümlang,ZH 53.25 49.98 34.39 40.88 79.13 77.58 14.88 17.74
Rüte,AI 51.14 47.70 35.96 42.31 74.39 72.26 18.03 21.68
Saanen,BE 46.01 43.37 40.81 47.67 79.39 77.98 14.50 17.31
Safien,GR 51.46 48.47 37.07 44.61 78.63 76.33 15.52 19.14
Salgesch,VS 49.32 47.48 38.76 44.21 76.67 74.37 15.76 19.43
Sarnen,OW 49.04 46.63 38.49 44.72 75.31 73.43 18.02 21.37
Schaffhausen,SH 54.64 51.03 33.24 40.03 77.25 75.78 15.38 18.23
Schangnau,BE 50.94 48.26 35.50 41.84 77.19 75.34 16.17 19.34
Schiers,GR 51.70 48.57 35.47 41.71 74.71 73.14 19.24 22.33
Schlatt-Haslen,AI 50.59 46.47 36.63 43.15 73.35 71.01 19.36 22.82
Schleitheim,SH 53.00 49.61 34.72 41.93 75.01 73.88 17.93 20.50
Schnottwil,SO 50.07 47.05 36.72 43.94 80.20 78.52 14.33 17.71
Schwanden,GL 53.29 50.37 34.13 40.68 74.95 73.13 17.75 21.42
Schwyz,SZ 50.79 48.08 35.89 41.69 70.91 68.64 20.84 25.06
Schänis,SG 53.65 50.13 33.62 40.79 77.61 75.56 14.94 18.15
Schönenbuch,BL 49.18 46.62 38.12 45.01 77.79 75.94 16.92 19.84
Schüpfheim,LU 49.72 46.71 36.95 44.28 74.79 72.14 18.47 22.34
Seftigen,BE 50.33 47.29 36.12 43.27 77.66 75.80 16.72 20.25
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Sempach,LU 50.38 47.51 36.54 43.80 76.88 75.58 17.00 19.66
Sennwald,SG 51.43 48.11 36.28 42.95 74.94 73.24 17.68 21.22
Sevelen,SG 51.34 47.73 35.21 43.35 76.53 74.71 16.41 19.44
Siglistorf,AG 54.08 51.04 33.96 40.23 76.92 74.85 16.14 19.66
Signau,BE 50.68 47.66 35.79 42.50 80.33 78.83 13.96 16.81
Silenen,UR 51.75 48.92 35.73 41.66 78.80 77.25 15.78 18.66
Simplon,VS 51.72 49.26 36.96 43.04 78.45 76.27 14.66 17.69
Solothurn,SO 51.37 48.86 35.47 41.33 73.06 71.61 19.65 22.80
Spiez,BE 48.74 46.07 39.35 46.48 76.41 75.05 17.49 20.70
St.Antönien,GR 51.72 48.70 35.63 42.65 75.05 73.07 18.34 22.05
St.Gallen,SG 52.35 48.71 33.93 41.54 75.83 74.34 17.71 20.70
St.Niklaus,VS 46.72 44.95 41.37 47.03 73.69 71.24 19.26 23.25
St.Stephan,BE 48.03 45.60 39.48 45.42 74.42 72.74 18.44 21.16
Stadel,ZH 54.74 51.75 33.39 38.90 78.48 77.14 15.04 17.73
Stallikon,ZH 50.79 47.79 36.90 43.70 76.74 75.09 16.83 19.60
Stans,NW 50.74 48.22 36.16 42.75 74.20 72.44 18.55 22.67
Steffisburg,BE 49.21 46.28 37.11 44.28 75.92 74.24 17.94 22.21
Steg,VS 50.21 47.60 37.89 44.44 78.20 76.49 14.97 17.39
Stein,AG 53.70 50.01 33.61 40.36 72.89 70.17 18.89 23.52
Stein,SG 75.98 59.46 16.67 33.33 54.11 35.36 33.33 33.33
Sternenberg,ZH 51.21 47.78 35.59 42.86 76.06 73.77 17.11 21.05
Stüsslingen,SO 50.31 46.73 35.87 42.70 75.26 73.52 18.13 21.02
Sumiswald,BE 48.45 45.13 37.04 44.23 76.34 74.83 16.96 19.67
Sursee,LU 49.88 46.95 37.25 43.69 77.47 74.66 15.78 19.38
Tafers,FR 46.87 43.99 39.90 46.38 73.70 71.71 19.51 23.74
Tamins,GR 53.34 50.51 34.17 41.83 76.63 74.41 17.63 21.11
Teufenthal,AG 49.87 46.27 36.29 43.47 74.39 72.36 18.47 22.12
Thalwil,ZH 55.16 51.65 32.50 38.77 77.24 75.43 16.06 19.26
Thun,BE 48.64 45.51 37.55 45.09 77.76 75.85 15.87 18.83
Thundorf,TG 53.81 50.17 32.93 39.84 76.69 75.10 16.23 19.01
Thusis,GR 52.90 50.06 34.70 41.89 77.86 75.72 15.72 18.81
Triengen,LU 49.09 45.48 37.50 44.60 76.25 74.01 17.82 21.85
Trimmis,GR 52.15 49.04 34.99 42.28 77.10 74.97 16.60 19.71
Trogen,AR 51.82 47.51 34.67 42.36 73.94 71.89 19.20 22.41
Trub,BE 49.65 46.52 36.35 42.84 74.79 72.83 18.42 22.09
Tuggen,SZ 52.72 49.37 34.33 41.09 76.97 74.64 16.49 19.60
Turbenthal,ZH 53.34 50.44 35.14 41.04 77.47 75.95 15.93 18.42
Täuffelen,BE 47.94 44.82 38.27 46.19 78.86 77.15 14.92 18.37
Tüscherz-Alfermée,BE 50.89 47.56 35.87 43.06 78.52 76.75 14.93 18.19
Ueberstorf,FR 51.30 48.25 35.86 41.92 77.71 76.02 15.63 18.69
Unterschächen,UR 46.26 43.88 40.96 46.98 75.76 74.56 17.53 20.72
Unterstammheim,ZH 51.61 48.52 36.26 43.42 74.70 72.77 17.94 21.84
Untervaz,GR 52.49 49.39 35.17 42.46 76.12 73.40 17.54 21.98
Urdorf,ZH 53.93 50.36 33.24 39.61 75.54 73.82 17.33 21.05
Urnäsch,AR 50.43 46.40 36.96 44.39 73.70 71.96 18.76 21.80
Ursenbach,BE 48.82 45.98 36.97 44.31 77.64 75.43 16.40 19.71
Uster,ZH 53.74 50.91 34.35 39.95 74.22 72.83 18.65 21.64
Utzenstorf,BE 49.12 45.76 37.32 44.49 77.83 75.81 15.86 19.12
Vals,GR 50.36 47.32 36.71 43.64 73.41 70.90 19.82 24.68
Villigen,AG 51.58 47.85 35.40 41.94 76.91 74.48 16.08 20.20
Visp,VS 48.83 46.94 39.04 44.72 76.38 74.45 17.23 19.69
Visperterminen,VS 47.76 45.96 40.32 46.01 75.07 72.52 18.02 21.54
Wahlern,BE 49.44 45.85 36.56 43.49 73.64 70.96 19.44 24.03
Walchwil,ZG 51.13 48.53 35.96 42.66 75.51 73.66 17.31 20.73
Wald,ZH 53.70 49.85 33.55 40.10 75.08 72.98 17.34 20.70
Waldstatt,AR 51.26 47.32 35.07 42.29 76.25 74.67 17.58 21.01
Walenstadt,SG 51.12 48.42 36.72 43.05 76.85 74.83 16.42 19.56
Wartau,SG 50.55 47.73 37.38 43.91 76.27 74.56 16.71 19.70
Wattwil,SG 51.72 48.00 35.53 42.06 76.20 74.15 16.88 20.13
Wegenstetten,AG 51.43 48.42 35.75 42.75 74.26 71.83 17.70 21.31
Weggis,LU 49.25 47.10 38.09 43.77 76.34 74.46 17.82 20.84
Weinfelden,TG 52.70 48.50 34.30 41.25 76.09 74.70 16.87 20.23
Welschenrohr,SO 47.81 44.35 38.34 45.73 77.41 76.16 15.64 18.47
Wengi,BE 48.76 45.30 37.49 44.94 76.51 74.20 17.12 20.78
Wiesen,GR 54.81 51.74 32.64 39.19 75.83 73.46 17.31 20.84
Wil,SG 53.23 48.53 33.33 41.01 73.54 71.06 19.18 23.03
Wilchingen,SH 51.08 47.21 35.89 43.79 76.92 74.80 16.97 20.36
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Dialect Without Normalizing With Normalizing

SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓ SPBLEU ↑ BLEU ↑ SPWER ↓ WER ↓

Wildhaus,SG 51.41 47.79 36.68 43.28 74.72 72.69 18.53 22.24
Winterthur,ZH 52.18 48.17 34.59 41.90 79.25 78.02 14.66 17.54
Wolfenschiessen,NW 50.33 48.56 37.64 43.37 74.40 71.93 18.16 21.88
Wolhusen,LU 50.43 48.38 37.75 43.46 77.22 75.36 17.09 20.16
Wollerau,SZ 51.66 48.68 35.92 42.57 76.83 75.69 16.31 18.81
Worb,BE 49.12 45.73 36.80 44.23 74.77 72.27 17.98 21.79
Wynigen,BE 48.64 45.86 38.06 44.63 76.45 74.69 16.85 20.31
Wädenswil,ZH 54.59 51.57 33.83 40.15 78.84 77.56 15.11 17.76
Wängi,TG 53.83 50.26 33.05 39.32 72.36 70.64 21.03 25.00
Würenlos,AG 53.78 50.19 33.90 40.77 78.12 76.38 15.43 18.34
Zell,LU 50.53 47.29 36.22 42.46 77.99 76.37 16.52 19.92
Zermatt,VS 49.41 48.10 39.46 45.06 71.04 69.22 21.53 25.41
Ziefen,BL 49.03 45.76 37.58 44.76 75.32 73.18 18.09 22.12
Zihlschlacht-Sitterdorf,TG 53.39 49.19 33.36 40.13 77.43 75.24 16.36 19.61
Zofingen,AG 51.06 47.32 35.57 41.98 76.47 74.57 16.79 20.05
Zug,ZG 51.45 49.06 36.12 41.62 74.88 73.21 18.64 22.30
Zunzgen,BL 49.98 46.42 36.46 43.70 78.05 76.09 15.60 19.17
Zweisimmen,BE 48.59 45.73 38.97 45.48 76.02 73.90 16.54 19.62
Zürich,ZH 52.56 48.98 34.83 41.65 75.52 73.39 17.73 21.65

Average 50.88 47.77 37.06 43.46 75.63 73.56 17.98 21.39

Table 16: Performance of the translation task with or without the normalization step in Swiss German. The normal-
ization step helps outperform the previous baseline (without normalization) in all the dialects.
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Abstract

This study evaluates the performance of
large language models (LLMs) on benchmark
datasets designed for dialect-specific NLP tasks.
Dialectal NLP is a low-resource field, yet it
is crucial for evaluating the robustness of lan-
guage models against linguistic diversity. This
work is the first to systematically compare state-
of-the-art instruction-tuned LLMs—both open-
weight multilingual and closed-weight genera-
tive models—with encoder-based models that
rely on supervised task-specific fine-tuning for
dialectal tasks. We conduct extensive empiri-
cal analyses to provide insights into the current
LLM landscape for dialect-focused tasks. Our
findings indicate that certain tasks, such as di-
alect identification, are challenging for LLMs
to replicate effectively due to the complexity of
multi-class setups and the suitability of these
tasks for supervised fine-tuning. Additionally,
the structure of task labels—whether categor-
ical or continuous scoring—significantly af-
fects model performance. While LLMs excel
in tasks like machine reading comprehension,
their instruction-following ability declines in
simpler tasks like POS tagging when task in-
structions are inherently complex. Overall, sub-
tle variations in prompt design can greatly im-
pact performance, underscoring the need for
careful prompt engineering in dialectal evalua-
tions.1

1 Introduction

Natural Language Processing (NLP) systems have
traditionally focused on high-resource languages,
leaving dialectal variations underexplored (Kan-
tharuban et al., 2023). In this work, we address this
gap by evaluating large language models (LLMs)
on task-specific benchmark datasets curated for
various dialects. Dialectal tasks often lack the
resources available for standard languages, but

1Code repository: https://github.com/ffaisal93/
DialectBench

they provide critical insights into a model’s ro-
bustness across linguistic diversity (Joshi et al.,
2024). To our knowledge, no prior studies have sys-
tematically assessed LLM performance on dialect-
focused NLP tasks. We compare LLMs such as
GPT-4 (OpenAI, 2023) and Aya-101 (Üstün et al.,
2024) with state-of-the-art multilingual encoder
models like mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020) to establish new baselines
and identify areas where LLMs either excel or fall
short.

Our Contributions: We make several key contri-
butions to the understanding of LLM performance
in dialect-specific tasks:

• We conduct the first systematic evaluation of
LLMs on dialectal NLP tasks across seven NLP
tasks, comparing instruction-tuned models (GPT-
4, Aya-101) with fine-tuned encoder models
(mBERT, XLM-R) to establish new baselines.

• Our findings reveal significant limitations of
LLMs in complex multi-class dialect identifica-
tion tasks, where in-context learning with large
LLMs falls short compared to fine-tuned en-
coders. Adding more prompt examples yields
only slight gains, while Aya-101 shows a strong
bias, frequently misclassifying Arabic varieties
as Sudanese Arabic.

• We show that LLM performance is influenced
by task label structure (e.g., categorical vs. con-
tinuous), with challenges arising in score-based
sentiment classification for specific dialects.

• LLMs excel in Machine Reading Comprehension
but struggle with simpler tasks like POS tagging
when instructions are complex, underscoring the
need for clear task framing.

Overall, this study contributes to a deeper under-
standing of LLM behavior in low-resource, dialect-
rich environments and emphasizes the need for
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tailored approaches when working with dialectal
NLP tasks.

2 Dialectal Datasets and Benchmarking

DIALECTBENCH: To evaluate LLMs on dialect-
specific tasks, we utilize the design framework
and task dataset collections from DIALECT-
BENCH (Faisal et al., 2024), a benchmark that
focuses on language varieties organized into struc-
tured language clusters. In this benchmark, a lan-
guage cluster is a group of related language vari-
eties that share a common linguistic origin and ex-
hibit similarities in grammar and vocabulary. Each
cluster includes several language varieties with
shared ancestry, based on the Glottocode classi-
fication (Hammarström and Forkel, 2022). Within
each cluster, a cluster representative is selected to
serve as a standardized reference point for eval-
uating the entire group. This makes it easier to
compare model performance across different di-
alects within the same cluster. For example, in the
Arabic language cluster, Modern Standard Arabic
(MSA) often acts as the representative variety when
it is available for a task. This method allows for
consistent and efficient evaluation of models across
various dialectal forms.

Task Selection: We experiment with seven tasks
from the DIALECTBENCH task collections. These
tasks are:

1. Parts-of-Speech (POS) Tagging
2. Dialect Identification (DId)
3. Sentiment Analysis (SA)
4. Topic Classification (TC)
5. Natural Language Inference (NLI)
6. Multiple-Choice Machine Reading Compre-

hension (MRC)
7. Extractive Question Answering (EQA)

Table 1 provides an overview of the datasets used
for each task, including the number of language
clusters and varieties covered. These tasks were
selected based on their data availability across di-
verse dialectal varieties. For instance, POS tag-
ging, as a structured prediction task, utilizes the
Universal Dependency dataset, which includes 11
clusters and 25 varieties. Classification tasks, such
as Dialect Identification (DID), Sentiment Anal-
ysis (SA), Topic Classification (TC), and Natu-
ral Language Inference (NLI), draw from datasets
like MADAR, DSL-TL, and TSAC, among oth-
ers. Similarly, for question answering tasks, in-

cluding Machine Reading Comprehension (MRC)
and Extractive Question Answering (EQA), we uti-
lize datasets like Belebele and SDQA, with these
tasks covering between 4 to 5 clusters and multiple
varieties. In Appendix Table 6, we report all the
language clusters and their varieties explored in
this study.

3 Experimental Setup

This section outlines the selected language models
for evaluation, along with the training and evalua-
tion configurations.

3.1 Models

We utilize four models with varying sizes and ca-
pabilities: mBERT (Devlin et al., 2019), XLM-
R (Conneau et al., 2020), GPT-4 (OpenAI, 2023),
and Aya-101 (Üstün et al., 2024). The first two,
mBERT and XLM-R, are multilingual encoder-
based models trained using masked language mod-
eling and next-token prediction tasks across hun-
dreds of languages. We finetune these pretrained
models on task-specific datasets using supervised
setups.

In contrast, GPT-4 and Aya-101 are large-scale
generative models designed for instruction fol-
lowing. Aya-101 is an open-weight multilingual
instruction-tuned model built on the T5 (Raffel
et al., 2020) encoder-decoder architecture, and it
has been trained on data covering 101 languages.
On the other hand, GPT-4 is a closed-weight model.
Due to GPT-4’s large scale and diverse data expo-
sure, we hypothesize that it may exhibit strong
robustness across multilingual settings.

3.2 Training Configuration

DIALECTBENCH datasets have an uneven distribu-
tion of training data availability across tasks and
varieties. As a result, we opted for a diverse set of
task-specific finetuning configurations best suited
for the available resource utilization. A summary
of these configurations is reported in Table 2. The
following subsections further clarify the different
experimental setups:

1. Cross-Lingual Transfer from English: For
several tasks, we faced low-resource train-
ing data for certain varieties. As a result, it
wouldn’t be a fair comparison to fine-tune
some varieties on high-resource data while
others are fine-tuned on low-resource data. To
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Category Task Metric #Clusters #Varieties Source Dataset

Structured
Prediction

POS tagging F1 11 25 Universal Dependency (Zeman et al., 2021), Singlish (Wang et al., 2017)

Classification DId F1 6 45 MADAR (Bouamor et al., 2018), DMT (Jauhiainen et al., 2019), Greek (Sababa and Stassopoulou, 2018),
DSL-TL (Zampieri et al., 2023), Swiss Germans (Scherrer et al., 2019)

SA F1 1 9 TSAC (Medhaffar et al., 2017), TUNIZI (Fourati et al., 2021), DzSentiA (Abdelli et al., 2019),
SaudiBank (Alqahtani et al., 2022), MAC (Garouani and Kharroubi, 2022), ASTD (Nabil et al., 2015),
AJGT (Alomari et al., 2017), OCLAR (Al Omari et al., 2019)

TC F1 15 38 SIB-200 (Adelani et al., 2023)
NLI F1 15 38 XNLI (Conneau et al., 2018) translate-test

Question MRC F1 4 11 Belebele (Bandarkar et al., 2024)
Answering EQA Span F1 5 24 SDQA (Faisal et al., 2021)

Table 1: DIALECTBENCH tasks used to evaluate generative models against multilingual encoders. This table
presents selected dialectal and variety-specific datasets, highlighting task metrics, number of language clusters, and
varieties. The study extends the original benchmark to compare instruction-tuned LLM performance with traditional
multilingual models.

Task Encoder (finetune) LLM (k-shot ICL)
English Cluster-rep. Variety Combined English Cluster-rep. Variety Combined

SA - - - ✓ - - - ✓
TC ✓ ✓ - - ✓ - ✓ -

NLI ✓ - - - ✓ - - -

MRC - - - ✓ - - - ✓
EQA ✓ - - ✓ ✓ - - ✓
POS tagging ✓ - - - ✓ - - -

DId - - - ✓ - - - ✓

Table 2: Task-specific experimental configurations: Encoder models are fine-tuned on English data, representative
languages of each cluster, or a mixture of language varieties. In contrast, LLMs employ k-shot In-Context
Learning (ICL) using prompts in English, the representative language of the cluster, the target language variety, or a
combination of these language varieties.

address this, we adopted a more practical ap-
proach: fine-tuning on standard English task
data, which is almost always available, and
performing zero-shot evaluations on all target
varieties. We applied this method for POS
tagging, Topic Classification, Extractive QA,
and NLI.

2. Finetuning on Cluster-representative: In
addition to cross-lingual transfer from stan-
dard English, we conducted an experiment
where encoder models were fine-tuned on
cluster representatives within the Topic Clas-
sification dataset. This approach was feasible
because all cluster-representative training data
for this task was equal in size. The result is a
set of cluster-specific, fine-tuned Topic Classi-
fication models, which we then used to eval-
uate performance on their respective cluster
varieties.

3. Combined Fine-tuning: Instead of fine-
tuning on a single variety, for tasks such as
Sentiment Classification and Dialect Identifi-
cation, we fine-tune using a combined dataset

from all varieties to create a supervised classi-
fication model. For tasks like Extractive QA
and Machine Reading Comprehension, the
training data is limited to multiple standard
varieties. Consequently, for these tasks, we
also fine-tune on the available combined train-
ing data and then evaluate performance on the
other available dialects.

4. In-Context Learning: For LLMs, we skip
fine-tuning and rely on in-context learning
(ICL) with randomly chosen k-shot exam-
ples (k=3) in either English, the target cluster-
representative, or the target variety itself. For
classification tasks with a large number of cat-
egories (e.g., Dialect Identification), we pro-
vide one example per class to keep the prompt
sequence manageable. Additionally, for tasks
involving combined training data (e.g., Ex-
tractive QA and Machine Reading Compre-
hension), we sample out our k-shot examples
from this aggregated set.
For all instruction prompts used in task-
specific in-context learning, we keep the in-
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structions as straightforward as possible, opt-
ing for the simplest form of task description.
This approach ensures that the model’s perfor-
mance is primarily a reflection of its inherent
capabilities rather than prompt engineering.
All task-specific instruction prompts can be
found in Appendix A.

3.3 Evaluation Criteria
Our study is structured to empirically identify fail-
ure cases in LLM performance using encoder mod-
els as baselines. In-context learning via prompt-
ing is exclusively employed for LLMs (Aya-101
and GPT-4). On the other hand, encoder models
are evaluated using supervised fine-tuning setups,
which are deterministic, unlike LLMs which can ex-
hibit variability in responses depending on prompt
phrasing and context. When we observe inconsis-
tencies or failures, we analyze these cases further
in the task analysis section to hypothesize potential
root causes and conduct targeted ablation studies
to investigate specific issues.

Metrics: For task-specific comparative evalua-
tion, we calculate metrics such as F1 score and
Accuracy for different tasks, as presented in Ta-
ble 1. Guided by the task configurations outlined
in Table 2, we identify the highest achievable per-
formance for each language variety and task com-
bination, comparing smaller, encoder-based mod-
els with larger LLMs. Using these performance
scores, we establish two comparative metrics based
on performance deltas, denoted as ∆LLM-enc and
∆closed-open:

• ∆LLM-enc: This metric represents a global com-
parison across all model types, measuring the
performance difference between the best small-
sized, non-instruction-tuned encoder models and
instruction-tuned large language models (LLMs).

• ∆closed-open: This metric is a local comparison
within the LLM category, representing the perfor-
mance gap specifically between a closed-weight
instruction-tuned LLM (GPT-4) and an open-
weight multilingual instruction-tuned LLM (Aya-
101).

These two metrics are used to pinpoint anomaly
cases and to identify general trends and differ-
ences when transitioning from non-instruction-
tuned small-sized encoder models to instruction-
tuned LLMs, as well as when comparing closed-
weight and open-weight instruction-tuned LLMs.

Task Metric mBERT XLM-R GPT4 AYA

SA Acc 78.8 80.1 69.1 65.8
TC F1 75.3 73.1 84.9 79.2
NLI F1 58.4 63.3 68.9 63.6
MRC F1 39.4 40.3 80.8 71.7
EQA F1 69.2 67.2 53.8 73.1
POS
tagging

F1 52.5 51.2 59.8 15.9

DId F1 65.7 59.3 27.9 16.4

Table 3: Average maximum task performance for each
model under various configurations (e.g., transfer from
English, in-cluster tuning, ICL). The bold values indi-
cate the highest performance achieved for each task,
while underlined values mark the lowest performance.
GPT-4 generally outperforms other models across most
tasks, while AYA struggles significantly with POS tag-
ging and LLM generally fails on the multi-label Dialect
Identification task.

4 Takeaway from Task-Specific Results

Table 3 presents a summary of average maximum
task performance across various models. We ob-
serve that GPT-4 generally performs well in Ma-
chine Reading Comprehension (MRC) and Natural
Language Inference (NLI) tasks, outperforming
smaller encoder-based models in these areas. How-
ever, GPT-4 lags in tasks such as Parts of Speech
(POS) tagging and Extractive Question Answering
(EQA), where encoder-based models like mBERT
and XLM-R outperform it. Aya-101, despite being
multilingual, consistently struggles, especially in
complex tasks like POS tagging and Dialect Identi-
fication (DID).

Table 4 highlights the variability in model perfor-
mance based on different language varieties. For
certain tasks like MRC and NLI, the performance
gap between LLMs and encoder models is positive,
indicating superior results for LLMs. However,
for tasks like DID and POS tagging, LLMs under-
perform significantly compared to encoder-based
models, especially when tasked with handling di-
verse or low-resource language varieties.

We provide detailed task-specific results in Ap-
pendix D Tables 8 to 14. Based on these results,
our key takeaways are as follows:

Classification Gap Due to Label Differences
The sentiment analysis task aggregates data at the
level of different Arabic varieties from various
sources, which contain a diverse set of task labels
per dialect, significantly contributing to the differ-
ences in performance across dialects. The results
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∆LLM-enc

Task Avg Min_Variety Min Max_Variety Max

SA -8.90 arabic, egyptian arabic -41.79 arabic, arabic (a:jordan) 3.34
TC 7.70 sinitic, cmm sinitic (o:traditional) -4.41 kurdish, central kurdish 58.85
NLI 6.59 sinitic, cantonese -3.33 sotho-tswana (s.30), southern sotho 26.69
MRC 42.31 sotho-tswana (s.30), northern sotho 31.00 arabic, egyptian arabic 50.61
EQA 2.27 anglic, indian english (a:south) -6.88 korean, korean (a:south-eastern,

m:spoken)
47.45

POS
tagging

3.61 anglic, english -9.40 saami, north saami 20.76

DId -38.15 (sinitic, m. chinese (a:taiwan, o:simp.)) -87.58 (anglic, north american) -4.20

∆closed-open

Task Avg Min_Variety Min Max_Variety Max

SA 3.29 arabic, moroccan arabic -9.45 arabic, south levantine arabic 36.59
TA 5.08 sotho-tswana (s.30), northern sotho -6.81 arabic, standard arabic 9.55
NLI 5.39 latvian, east latvian -16.74 sw. shif. romance, portuguese

(a:european)
20.42

MRC 9.14 sotho-tswana (s.30), northern sotho -14.85 arabic, egyptian arabic 18.21
EQA -17.46 bengali, vanga (a:west bengal) -32.75 anglic, philippine english -8.62
POS
tagging

43.86 tupi-guarani subgroup i.a, old guarani -0.55 high german, german 76.53

DId 11.47 (southwestern shifted romance, spanish) -32.74 (arabic, rabat-casablanca arabic) 41.65

Table 4: Task-specific performance summary across ∆LLM-enc and ∆closed-open metrics. A positive ∆LLM-enc indicates
that LLMs with in-context learning (ICL) outperform supervised fine-tuning of smaller encoders, while a negative
value suggests the opposite. A positive ∆closed-open indicates GPT-4’s closed-weight superiority over the open-weight
Aya-101, whereas a negative value favors Aya-101. For each task, the table shows the average delta, along with
minimum and maximum values across language varieties, identifying the language cluster and delta.

in Table 9 show that, in two cases—Tunisian Ara-
bic and Egyptian Arabic—we observe a more pro-
nounced performance gap (∆LLM-enc) between the
LLMs and encoder models. We find that the clas-
sification labels are [’positive’, ’neutral’,
’objective’, ’negative’] and [’neutral’,
’positive’, ’negative’] for these two dialects,
respectively. The results suggest that LLMs, es-
pecially when using in-context learning, struggle
with the increased number of classification labels,
which is further compounded by their limited grasp
of these specific Arabic dialects.

Moreover, considering ∆closed-open for South
Levantine Arabic, we observe a notable gap be-
tween the two LLMs, GPT-4 and Aya-101. The
classification labels for this dialect are [1, 2, 3,
4, 5]. Despite being a multilingual instruction-
tuned model, it becomes evident that Aya-101 strug-
gles with score-based sentiment classification. In
contrast, GPT-4 does not face the same difficulty
level, indicating a more robust ability to manage
such tasks effectively.

Performance Disparity in Complex vs. Simplis-
tic Classification Tasks In our experiment with
sentiment classification and dialect identification,

we observe that LLMs struggle with extreme multi-
label classification using only in-context learning
(ICL). This is largely due to label variation and
the challenges of intensity-score-based evaluation.
These factors result in performance gaps between
different LLMs.

In contrast, we see superior performance from
LLMs in natural language inference (NLI) and
topic classification tasks. These tasks are also
classification-based, but they are simpler. NLI
has three classes, and topic classification involves
seven topic classes. As a result, LLMs perform well
and significantly surpass supervised encoder fine-
tuning for low-resource languages such as Central
Kurdish and Sotho dialects. The variety understand-
ing gap becomes less apparent due to the LLMs’
robust ability to handle simpler classification tasks
effectively.

Machine Reading Comprehension: A Challenge
for Fine-Tuned Encoder Models This task con-
sists of a question, a context passage, and four
answer options. For supervised fine-tuning with
encoder models, each option was appended to the
question and context, treating the task as a four-
class classification problem. This setup led to
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suboptimal performance for fine-tuned encoder
models. In contrast, both Aya-101 and GPT-4
performed moderately well with just in-context
learning, similar to their success in topic classi-
fication and natural language inference (NLI). This
improved performance can be attributed to the
fact that LLMs can leverage their superior text-
understanding capabilities to read the context, in-
terpret the question, and select the correct answer,
making the MRC task relatively easier for them.

LLMs Often Struggle With Complex Instruc-
tion Following and Output Formatting The
task of Parts of Speech (POS) tagging uses a simple
token classification setup for fine-tuning encoder-
based models. However, transforming this task
into an in-context learning scenario requires mod-
erately complex instructions, including detailed
descriptions of token tags, input formats, and out-
put formats. When evaluating zero-shot perfor-
mance, where encoder-based models are fine-tuned
on English and LLMs are prompted with three-shot
examples, GPT-4 outperforms the other models.
In contrast, Aya-101, despite being a multilingual
model, falls significantly behind. A deeper inves-
tigation reveals that Aya-101 struggles to consis-
tently follow complex instructions and often fails
to properly format the output, which contributes to
its poor performance.

Interestingly, Aya-101 performs the best in the
extractive question answering (QA) task, surpass-
ing GPT-4. Surprisingly, GPT-4 also scores lower
compared to smaller encoder-based models. Upon
investigation, we find that, as with the POS tagging
task, output formatting issues contribute to this
discrepancy. Extractive QA with encoder-based
models involves retrieving an answer span from
the given context. To emulate this scenario for gen-
erative models, we instructed both Aya-101 and
GPT-4 to provide only the specific answer from the
given context. While Aya-101 adhered strictly to
the instructions, GPT-4 often included additional
tokens or information, resulting in subpar perfor-
mance when evaluated under the same criteria as
the other models.

LLMs Struggle With Dialect Identification In
encoder-based models, dialect identification is gen-
erally approached as a supervised classification
task, where the model is fine-tuned on labeled di-
alectal sentences and tasked with predicting the
correct dialect class for each input sentence dur-
ing evaluation. To adapt this setup for generative

LLMs, we provided each model with at least one ex-
ample sentence paired with its dialectal label, then
asked the model to classify additional sentences.
However, this method did not yield results com-
parable to those achieved by fine-tuned encoder
models. On average, GPT-4 performed better than
Aya-101, though this may be influenced by data
contamination, as GPT-4 could have had prior ex-
posure to some of the labeled datasets. Despite
these advantages, generative models still struggled
significantly with city-level Arabic dialect classifi-
cation, failing to accurately identify the dialects in
most cases.

The primary reason for this failure lies in the lim-
itations of extreme multi-label classification when
relying solely on in-context learning (ICL). Unlike
tasks such as common-sense reasoning or senti-
ment analysis—where ICL has shown success in
identifying familiar, intuitive categories—dialect
classification requires distinguishing between sub-
tle, complex labels that demand a deeper under-
standing of linguistic differences. As a result, us-
ing only ICL for this task proves suboptimal, as
it lacks the structure and specificity necessary to
accurately classify fine-grained dialectal variations.
Prior research has demonstrated that a combination
of candidate shortlisting with re-ranking (Zhu and
Zamani, 2024) or the use of retriever-based mod-
els (D’Oosterlinck et al., 2024) is more effective.
Given the task’s complexity—26 distinct Arabic
dialect classes—simply providing class labels and
a single example per class proved insufficient for
accurate identification.

5 Investigating Dialect Identification
Failure

Including Explanation-Prompt Yields No Im-
provement To investigate further the challenges
faced by LLMs in dialect identification task, we
conducted an ablation study on prompt-engineering
to improve dialect identification performance. The
experiment involved presenting varying numbers
of example sentences n=(1, 3, 10, 30, and 50 ex-
amples) per city-level dialect to GPT-4 and sub-
sequently prompting it to generate refined instruc-
tions for the classification task (presented in Fig. 2).
We then used these refined prompts to evaluate the
performance of Aya-101. Table 5 presents the re-
sults of this prompt refinement study. Despite the
iterative refinement process, the overall results did
not show significant improvements. The highest
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Figure 1: Confusion matrices for Arabic dialect classification across two LLMs: Aya-101 (prompting with one
example per class as well as with additional explanation) and GPT-4. Here 26 city-level dialects are grouped into
seven regional categories, providing a high-level view of model misclassifications and within-group confusions.
Notably, Aya-101 shows a strong bias toward predicting Sudanese Arabic regardless of the true label, while the
addition of explanation in the prompt reduces misclassification but introduces some "No Prediction" responses.
GPT-4 demonstrates more balanced performance, with fewer confusions across dialect groups.

score was achieved with the "n=30" setup, which
showed only a marginal improvement in F1 score.
While most dialects exhibited limited gains, there
were some exceptions, such as Rabat-Casablanca
and Modern Standard Arabic (MSA) showed a
slight increase in accuracy when more examples
were provided. For instance, the score for MSA
reached up to 17.0 with n=30, highlighting that
some dialects might benefit from increased expo-
sure during prompt refinement. This also suggests
that the relatively better performance for these vari-
eties might be attributed to Aya-101’s prior expo-
sure or broader representation of these dialects in
the training data.

Nevertheless, the performance of LLMs for di-
alect identification remains inadequate, especially
when relying solely on ICL for a large number of
dialect classes.

Aya-101’s Strong Bias Toward Sudanese Ara-
bic In our initial setup, we began with a detailed
set of 26 city-level Arabic dialects. To simplify
analysis and improve model interpretability, we
grouped these dialects into broader regional cate-
gories, such as Maghreb, Gulf Arabic, Levantine
Arabic, and Egyptian Arabic, as reported in Ta-
ble 7. This grouping provides a clearer perspective
on how models handle regional dialect distinctions
rather than granular city-level variations, allowing
us to assess the models’ generalization capabilities

across similar dialects. Upon grouping the dialect
classes, we visualized the confusion matrices for
Aya-101, Aya-101 with explanation (n=50), and
GPT-4 in Fig. 1.

We observe, Aya-101, without additional expla-
nations, exhibits a strong tendency to misclassify a
wide range of dialects as Sudanese Arabic, despite
Sudanese Arabic representing only a small fraction
(200 instances) of the dataset. This misclassifi-
cation does not align with the true label distribu-
tion, where Maghreb (1400 instances), Gulf Arabic
(1200), and Levantine Arabic (1000) are among
the most represented dialects. Aya-101’s errors
are predominantly concentrated within Maghreb
and Gulf Arabic groups, leading to a significant
over-prediction of Sudanese Arabic.

When provided with a longer prompt including
additional explanations, Aya-101 demonstrates im-
proved differentiation, particularly in distinguish-
ing Levantine and Egyptian Arabic from other
groups. However, this extended prompting intro-
duces a new issue: a portion of predictions are
left blank, marked as "No Prediction", indicating
instances where Aya-101 fails to respond with a
specific classification. This is a significant limi-
tation, as such non-responses reduce the model’s
effective prediction rate. Furthermore, Aya-101
continues to show substantial within-group confu-
sion, especially among dialects within the Gulf and
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(n-shot) With Explanation (n-shot)
n=1 n=1 n=2 n=10 n=30 n=50

Variety

aleppo 2.9 3.0 5.0 7.0 6.0 6.0
algerian 0.0 0.0 1.0 11.0 4.0 2.0
ara. peninsula (a:yemen) 0.0 0.0 4.0 1.0 3.0 0.0
egyptian (a:alx) 0.0 2.0 0.0 0.0 0.0 0.0
egyptian (a:asw) 0.9 1.0 3.0 0.0 0.0 0.0
egyptian (a:cai) 6.4 7.0 0.0 11.0 13.0 12.0
egyptian (a:kha) 6.8 7.0 7.0 8.0 7.0 8.0
fez. meknes 0.7 4.0 1.0 8.0 4.0 0.0
gilit mesop. 4.8 4.0 9.0 5.0 6.0 3.0
gulf (a:doh) 4.0 4.0 0.0 4.0 4.0 0.0
gulf (a:jed) 1.5 8.0 12.0 8.0 0.0 3.0
gulf (a:mus) 0.0 0.0 3.0 0.0 0.0 0.0
gulf (a:riy) 2.5 0.0 0.0 0.0 0.0 0.0
levan. (a:north-dam) 2.7 6.0 10.0 7.0 7.0 10.0
libyan (a:ben) 1.6 0.0 0.0 0.0 2.0 3.0
north mesop. (a:bas) 1.0 0.0 0.0 0.0 0.0 0.0
north mesop. (a:mos) 0.0 2.0 0.0 8.0 20.0 0.0
rabat-casablanca 0.9 1.0 2.0 13.0 24.0 23.0
sfax 6.8 3.0 8.0 8.0 3.0 9.0
s. levan. (a:south-amm) 1.7 0.0 1.0 2.0 0.0 0.0
s. levan. (a:south-jer) 5.4 1.0 1.0 2.0 3.0 1.0
s. levan. (a:south-sal) 0.0 1.0 4.0 0.0 1.0 0.0
standard 1.9 11.0 16.0 11.0 17.0 14.0
sunni beiruti 5.0 1.0 1.0 14.0 14.0 14.0
tripolitanian 0.0 0.0 0.0 2.0 3.0 9.0
tunisian (a:tun) 1.0 3.0 9.0 16.0 6.0 0.0

Avg. 2.2 2.7 3.7 5.6 5.7 4.5

Table 5: Dialect Identification Results for Aya-101 with
GPT-4 Explanation-Prompting. This table presents the
F1 scores for dialect identification using Aya-101, where
the model was prompted with explanations generated by
GPT-4. The explanations were provided with varying
numbers of examples (n-shots), from 1 to 50, for each
dialect. The average F1 score across dialects is shown
at the bottom, indicating limited improvements with
increased examples.

Maghreb regions, even with additional explanation.
In comparison, GPT-4 demonstrates the most ro-

bust performance across dialects. It closely aligns
with the true label distribution and shows higher ac-
curacy in identifying key groups such as Maghreb,
Levantine Arabic, and Modern Standard Arabic.
Although GPT-4 still exhibits within-group mis-
classification—such as confusing Gulf Arabic with
Iraqi Arabic—it effectively differentiates between
dialects overall. This indicates that, while longer
prompts with explanations enhance Aya-101’s per-
formance to some extent, GPT-4’s inherent under-
standing of dialectal distinctions remains signifi-
cantly stronger.

6 Related Work

The evaluation of language models has been a criti-
cal component in advancing natural language pro-
cessing (NLP). Evaluation benchmarks are neces-
sary to provide standardized, reproducible compar-
isons across models, ensuring that improvements
in architecture or training result in tangible per-
formance gains on a variety of tasks (Wang et al.,
2018). Popular benchmarks such as XTREME (Hu
et al., 2020) and GLUE (Wang et al., 2018) are

designed to assess models, primarily focusing on
standard language varieties and tasks like text clas-
sification and structural prediction.

With the development of large language mod-
els (LLMs), recent benchmarks have expanded to
include reasoning capabilities and expert domain
knowledge. Examples include benchmarks like
SuperGLUE (Wang et al., 2019), BigBench (Sri-
vastava et al., 2023), and MMLU (Hendrycks et al.,
2021), which evaluate models on complex reason-
ing, knowledge-intensive tasks, and multi-domain
expertise. These benchmarks are increasingly mul-
tilingual, but they still largely overlook dialectal
and non-standard language varieties across diverse
tasks.

Efforts in dialectal NLP have emerged, such
as the Arabic dialect corpus MADAR (Bouamor
et al., 2018) and resources developed through the
VARDIAL workshop (Scherrer et al., 2024), such
as DSL-TL (Zampieri et al., 2023) and Dialect-
COPA (Ljubešić et al., 2024). However, these
datasets remain largely scattered, and no unified
benchmark exists to comprehensively evaluate lan-
guage models on dialectal and non-standard va-
rieties across multiple languages and tasks. DI-
ALECTBENCH (Faisal et al., 2024) attempts to ad-
dress this by aggregating dialectal datasets using
a standardized approach with Glottocode mapping
for language clusters and varieties. However, it
primarily evaluates smaller encoder models and
does not comprehensively explore dialectal tasks
using recent advancements in large language mod-
els. Structured studies that leverage LLMs to eval-
uate a broad range of dialectal tasks remain largely
unexplored.

7 Conclusion

In this study, we evaluated the performance
of encoder-based models and LLMs on various
dialect-specific NLP tasks. Our results indicate
that while LLMs such as GPT-4 and Aya-101 ex-
cel in tasks like topic classification and natural
language inference, they struggle with complex in-
structions and formatting, particularly in Parts of
Speech (POS) tagging and dialect identification.
In contrast, fine-tuned encoder models outperform
LLMs in highly structured tasks such as POS tag-
ging and extractive question answering. These find-
ings suggest that while LLMs have potential, task-
specific fine-tuning or hybrid approaches are still
necessary for effectively handling nuanced, low-
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resource dialects.

Limitations

This study examines a limited selection of LLMs
(one closed-weight and one open-weight) and
solely relies on datasets provided by DIALECT-
BENCH.
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Jana Thompson, Janelle Wingfield, Jared Kaplan,
Jarema Radom, Jascha Sohl-Dickstein, Jason Phang,
Jason Wei, Jason Yosinski, Jekaterina Novikova,
Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen
Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Ji-
aming Song, Jillian Tang, Joan Waweru, John Bur-
den, John Miller, John U. Balis, Jonathan Batchelder,
Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose
Hernandez-Orallo, Joseph Boudeman, Joseph Guerr,
Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl
Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva,
Katja Markert, Kaustubh D. Dhole, Kevin Gim-
pel, Kevin Omondi, Kory Mathewson, Kristen Chi-
afullo, Ksenia Shkaruta, Kumar Shridhar, Kyle Mc-
Donell, Kyle Richardson, Laria Reynolds, Leo Gao,
Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
Ochando, Louis-Philippe Morency, Luca Moschella,

Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng
He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem
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Appendix

A Task-Specific In-Context Learning Prompts

A.1 Parts of Speech Tagging (POS)

Instruction:
Given a sentence as space -separated tokens , predict the Part of Speech

↪→ (PoS) tags for each token. You will need to use the tags defined
↪→ below:

TAGS: [’NOUN ’, ’PUNCT ’, ’ADP ’, ’NUM ’, ’SYM ’, ’SCONJ ’, ’ADJ ’, ’PART ’,
↪→ ’DET ’, ’CCONJ ’, ’PROPN ’, ’PRON ’, ’X’, ’_’, ’ADV ’, ’INTJ ’, ’VERB ’,
↪→ ’AUX ’, ’CONJ ’, ’root ’]

Input format:
Sentence: [space -separated tokens]
Output format:
1 [token1] [predicted_tag1]
2 [token2] [predicted_tag2]
...
n [tokenn] [predicted_tagn]

Input:
Sentence: {sentence}
Output: <entities to predict >

A.2 Natural Language Inference (NLI)

Instruction:
Given a premise and a hypothesis , determine the relationship between them.
The possible relationships are:
- Entailment: The hypothesis follows logically from the premise.
- Neutral: The hypothesis may or may not be true given the premise.
- Contradiction: The hypothesis contradicts or is inconsistent with the

↪→ premise.

Premise: {premise}
Hypothesis: {hypothesis}
Relationship: <relation to predict >

A.3 Sentiment Analysis (SA)

Instruction:
Given a sentence , predict its sentiment as either {sentiment labels}

Sentence: {input_sentence}
Sentiment: <sentiment to predict >

A.4 Topic Classification (TC)

Instruction:
Given a sentence , predict its topic from one of the following categories:

↪→ <topic classes >

Sentence: {sentence}
Topic: <topic to predict >
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A.5 Extractive QA (EQA)

Instruction:
Given a context and a question , provide an answer to the question based

↪→ on the information in the context.
The answer should be a span of text extracted directly from the context.
If the context does not contain enough information to answer the

↪→ question , respond with "No answer ".
Answer as concisely as possible in the same format as the examples below:

Context: {context}
Question: {question}
Answer: <answer to predict >

A.6 Dialect Identification (DID)

A.6.1 Standard

Instruction:
Given a sentence , predict in which dialect it is written. The options

↪→ are: {dialect classes}

Sentence: {input_sentence}
Dialect: <dialect to predict >

A.6.2 GPT4-Refined Prompt from 50 Examples

In Fig. 2, we present the dialect markers obtained through prompting GPT-4 with 50 instances per Arabic
dialect class. We utilize these dialect markers to design our prompt for dialect identification using Aya-101.
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Figure 2: Dialect markers generated by GPT-4 for different Arabic dialects based on vocabulary,
pronunciation, grammar, and cultural context, intended to assist in dialect identification tasks.

A.7 Machine-Reading Comprehension (MRC)

Instruction:
Given a passage and a question , select the correct answer from the

↪→ provided options. Read the passage carefully and choose the option
↪→ that best answers the question based on the information given in
↪→ the passage. Answer as concisely as possible in the same format as
↪→ the examples below:

Passage: {flores_passage}
Question: {question}
Options:
1. {answer1}
2. {answer2}
3. {answer3}
4. {answer4}
Answer: <answer to predict >
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B Clusters and Varieties

Table 6: Language clusters and varieties.

Lang-group Variety Count

albanian
albanian 2
gheg albanian

anglic

philippine english 15
english (a:scotland)
southeast american english
indian english (a:north)
north american english
australian english
english
southern african english
nigerian english
kenyan english
new zealand english
english (a:uk)
indian english (a:south)
singlish
irish english

arabic

libyan arabic (a:ben) 39
aleppo
south levantine arabic (a:south-jer)
arabian peninsula arabic (a:yemen)
south levantine arabic (a:south-amm)
ta’izzi-adeni arabic
north mesopotamian arabic
levantine arabic (a:north)
najdi arabic
north mesopotamian arabic (a:bas)
gulf arabic (a:jed)
south levantine arabic (a:south-sal)
gulf arabic (a:mus)
tunisian arabic
standard arabic
fez. meknes
algerian arabic
levantine arabic (a:north-dam)
arabic (a:bahrain)
egyptian arabic (a:kha)
south levantine arabic
tripolitanian arabic
egyptian arabic (a:alx)
arabic (a:saudi-arabia)
sunni beiruti arabic
moroccan arabic
gulf arabic (a:doh)
rabat-casablanca arabic
tunisian arabic (a:tun)
egyptian arabic
sfax
arabic (a:jordan)
gilit mesopotamian arabic
gulf arabic (a:riy)
tunisian arabic (r:casual, o:latin)
north mesopotamian arabic (a:mos)
egyptian arabic (a:asw)
north african arabic
egyptian arabic (a:cai)

bengali
vanga (a:dhaka) 2
vanga (a:west bengal)

common turkic
south azerbaijani 3
central oghuz (m:spoken)
north azerbaijani

eastern-western armenian
eastern armenian 2
western armenian

gallo-italian
ligurian 3
venetian
lombard

Table continued on next page.
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Table continued on next page.

Lang-group Variety Count

gallo-rhaetian

french (a:paris) 4
friulian
old french (842-ca. 1400)
french

greek
cypriot greek (r:casual, m:written, i:twitter) 3
modern greek (r:casual, m:written, i:twitter)
cypriot greek (r:casual, m:written, i:other)

high german

luxemburgish 7
central alemannic (a:bs)
central alemannic (a:be)
german
central alemannic (a:zh)
central alemannic (a:lu)
limburgan

italian romance

italian (r:formal, m:written, i:essay) 5
sicilian
italian
continental southern italian
italian (r:casual, m:written, i:tweet)

komi
komi-zyrian (m:spoken) 3
komi-zyrian (m:written)
komi-permyak

korean
korean (a:south-eastern, m:spoken) 2
seoul (m:spoken)

kurdish
central kurdish 2
northern kurdish

latvian
latvian 2
east latvian

neva
finnish 2
estonian

norwegian
norwegian bokmål (m:written) 3
norwegian nynorsk (m:written)
norwegian nynorsk (m:written, i:old)

saami
skolt saami 2
north saami

sinitic

mandarin chinese (a:mainland, o:simplified) 9
mandarin chinese (a:taiwan, o:simplified)
classical chinese
classical-middle-modern sinitic (a:hongkong, o:traditional)
classical-middle-modern sinitic (o:traditional)
mandarin chinese (a:taiwan, o:traditional, i:synthetic)
cantonese
classical-middle-modern sinitic (o:simplified)
mandarin chinese (a:mainland, o:traditional, i:synthetic)

sotho-tswana (s.30)
southern sotho 2
northern sotho

southwestern shifted romance

portuguese (i:mix) 9
spanish
portuguese (m:written)
occitan
portuguese (a:european)
spanish (a:europe)
latin american spanish
galician
brazilian portuguese

swahili
swahili (a:tanzania) 2
swahili (a:kenya)

tupi-guarani subgroup i.a
mbyá guaraní (a:paraguay) 3
mbyá guaraní (a:brazil)
old guarani

Total 126 varieties in 23 clusters

Table 6: Language clusters and varieties.
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C Arabic Dialect Identification Grouped Classes

Group Region/Influence Dialects

Maghreb (North African
Arabic)

Morocco, Algeria,
Tunisia, Libya

RAB (Rabat), FES (Fes), ALG
(Algiers), TUN (Tunis), SFX (Sfax),
BEN (Benghazi), TRI (Tripoli)

Egyptian Arabic Egypt
CAI (Cairo), ALX (Alexandria), ASW
(Aswan)

Levantine Arabic Lebanon, Palestine, Syria,
Jordan

BEI (Beirut), JER (Jerusalem), DAM
(Damascus), ALE (Aleppo), AMM
(Amman)

Gulf Arabic Arabian Peninsula
RIY (Riyadh), JED (Jeddah), DOH
(Doha), MUS (Muscat), SAL (Salalah),
SAN (Sanaa)

Iraqi Arabic Iraq
BAG (Baghdad), BAS (Basra), MOS
(Mosul)

Sudanese Arabic Sudan KHA (Khartoum)

Modern Standard
Arabic (MSA) Pan-Arab MSA (Modern Standard Arabic)

Table 7: Grouped Regional Classes for Arabic Dialects Based on Linguistic and Cultural Similarities

For Arabic dialect identification, starting with an initial set of 26 city-level dialect labels, each representing
a unique Arabic dialect from specific cities or regions, we aimed to simplify and organize these labels
based on linguistic and cultural similarities. Recognizing that certain dialects share regional and linguistic
traits, we grouped them into broader categories to provide a more manageable and insightful analysis as
reported in Table 7. For instance, North African dialects like those in Morocco, Algeria, and Tunisia (RAB,
ALG, TUN) share common influences, such as French loanwords and distinctive vocabulary, allowing us
to consolidate them into a "Maghreb" category. Similarly, dialects from the Levant (Lebanon, Palestine,
Syria, Jordan) and the Gulf region (Saudi Arabia, Oman, Qatar) exhibit shared linguistic features within
their respective areas, making them natural groups.

D Task-Specific Results

D.1 Parts of Speech Tagging (POS)

The detailed results for the Parts of Speech tagging task, including performance metrics and analysis, are
presented in Table 8.

D.2 Sentiment Analysis (SA)

The comprehensive results for the Sentiment Analysis task, showcasing model performance and evaluation,
are provided in Table 9.

D.3 Dialect Identification (DID)

The results for the Dialect Identification task, highlighting key metrics and comparisons, can be found in
Table 10.
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mBERT XLM-R GPT-4 Aya-101 ∆LLM-enc ∆closed-open
Cluster Variety Eng Eng Eng Eng

FT FT k-shot ICL k-shot ICL

albanian
albanian 75.80 84.41 0.00 9.51 -74.90 -9.51
gheg albanian 48.96 55.84 56.37 11.36 0.53 45.01

anglic
english 96.41 97.16 87.76 22.86 -9.40 64.90
singlish 76.27 77.55 78.91 24.16 1.35 54.75

arabic
south levantine arabic 51.99 61.84 74.61 20.36 12.77 54.26
standard arabic 39.74 56.67 62.81 9.89 6.14 52.92
north african arabic 28.30 26.01 24.03 16.62 -4.27 7.41

eastern-western armenian
eastern armenian 71.78 82.63 0.00 13.89 -68.75 -13.89
western armenian 70.27 75.31 77.19 11.92 1.88 65.27

gallo-italian ligurian 58.90 52.78 58.93 14.47 0.03 44.45

gallo-rhaetian
french 84.36 85.47 88.40 21.08 2.93 67.32
french (a:paris) 81.37 82.77 87.69 15.07 4.92 72.61
old french (842-ca. 1400) 64.70 59.41 72.93 21.85 8.23 51.07

high german
german 87.08 88.36 86.16 9.62 -2.20 76.53
central alemannic (a:zh) 62.56 47.18 61.32 11.85 -1.24 49.47

italian romance

italian 81.09 83.12 0.00 11.61 -71.51 -11.61
italian (r:formal, m:written,
i:essay)

80.00 81.87 79.09 20.23 -2.79 58.86

italian (r:casual, m:written,
i:tweet)

73.71 76.45 76.89 20.93 0.45 55.96

continental southern italian 30.00 57.14 76.19 0.00 19.05 76.19

komi
komi-zyrian (m:spoken) 41.25 46.66 49.17 13.37 2.51 35.80
komi-permyak 29.52 43.67 47.16 15.87 3.49 31.29
komi-zyrian (m:written) 20.40 35.12 37.55 13.37 2.43 24.18

neva
finnish 81.29 86.21 83.63 16.92 -2.57 66.71
estonian 80.34 85.17 85.23 14.79 0.06 70.44

norwegian
norwegian bokmål
(m:written)

88.53 89.55 88.12 21.85 -1.43 66.28

norwegian nynorsk
(m:written)

85.06 85.81 0.00 24.50 -61.32 -24.50

norwegian nynorsk
(m:written, i:old)

73.25 79.29 71.57 23.43 -7.73 48.13

saami
north saami 35.92 32.13 56.68 20.73 20.76 35.95
skolt saami 20.26 34.15 41.95 12.11 7.80 29.84

sabellic umbrian 11.90 5.44 0.00 3.44 -8.46 -3.44

sinitic
classical-middle-modern
sinitic (a:hongkong,
o:traditional)

68.99 35.49 78.19 20.78 9.20 57.41

classical-middle-modern
sinitic (o:simplified)

58.26 30.92 71.46 17.04 13.21 54.42

classical chinese 35.80 20.85 40.33 30.73 4.53 9.59

southwestern shifted romance

portuguese (a:european) 80.08 81.38 80.36 19.30 -1.02 61.06
brazilian portuguese 78.63 80.12 80.31 18.94 0.19 61.37
portuguese (i:mix) 78.48 79.85 0.00 19.48 -60.37 -19.48
portuguese (m:written) 76.19 78.76 78.53 11.43 -0.24 67.09

tupi-guarani subgroup i.a
mbyá guaraní (a:paraguay) 27.89 28.77 33.27 13.66 4.49 19.61
old guarani 8.96 10.30 10.26 10.81 0.51 -0.55
mbyá guaraní (a:brazil) 1.94 0.59 0.32 0.00 -1.61 0.32

west low german west low german 69.65 54.93 75.94 10.07 6.29 65.87

Table 8: Comparison of F1 scores for Part-of-Speech (POS) tagging across various language clusters and varieties.
We compare smaller, encoder-based models (mBERT and XLM-R) that were fine-tuned on English and evaluated
on all available varieties, with closed-source LLM (GPT-4) and an open-weight multilingual LLM (Aya-101). For

GPT-4 and Aya-101, we employed in-context learning with k=3 shots based on English examples.
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mBERT XLM-R GPT-4 Aya-101 ∆LLM-enc ∆closed-open

Cluster Variety Combined Combined Combined Combined
k-shot k-shot

FT FT ICL ICL

arabic

tunisian arabic 94.55 94.61 86.95 77.66 -7.66 9.29
algerian arabic 84.98 84.70 85.77 87.54 2.56 -1.77
arabic (a:jordan) 82.96 89.07 91.30 92.41 3.34 -1.11
arabic (a:saudi-arabia) 81.38 83.40 75.93 79.03 -4.37 -3.10
tunisian arabic
(r:casual, o:latin)

80.95 79.80 59.13 59.08 -21.82 0.05

standard arabic 80.63 83.96 71.56 77.48 -6.48 -5.92
moroccan arabic 78.08 77.41 61.65 71.10 -6.98 -9.45
egyptian arabic 67.03 69.03 27.24 22.18 -41.79 5.06
south levantine arabic 58.38 58.90 62.04 25.45 3.14 36.59

Average Average 78.77 80.10 69.06 65.77 -8.90 3.29

Table 9: Comparison of accuracy scores for sentiment analysis task across various language clusters and varieties.
We compare smaller, encoder-based models (mBERT and XLM-R) that were fine-tuned on supervised classification
task, with closed-source LLM (GPT-4) and an open-weight multilingual LLM (Aya-101). For GPT-4 and Aya-101,

we employed in-context learning with k=3 shots example per class based on the specific variety of examples.

D.4 Natural Language Inference (NLI)
Detailed results for the Natural Language Inference task, including accuracy and other metrics, are
outlined in Table 11.

D.5 Topic Classification (TC)
The results for the Topic Classification task, along with an evaluation summary, are presented in Table 12.

D.6 Extractive QA (EQA)
Comprehensive results for the Extractive QA task, covering key performance measures, are provided in
Table 13.

D.7 Machine-Reading Comprehension (MRC)
The results for the Machine-Reading Comprehension task, including detailed analysis, are summarized in
Table 14.
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mBERT XLM-R GPT-4 Aya-101 ∆LLM-enc ∆closed-open
Cluster Variety Support Combined Combined Combined Combined

k-shot k-shot
FT FT ICL ICL

anglic
english (a:uk) 249 90.00 79.58 79.84 77.33 -10.16 2.51
north american english 349 88.05 85.01 83.85 82.31 -4.20 1.54

arabic

aleppo 200 59.50 52.94 7.87 2.94 -51.63 4.93
algerian arabic 272 66.95 64.06 38.91 0.00 -28.04 38.91
arabian peninsula arabic (a:yemen) 177 64.19 56.06 0.00 0.00 -64.19 0.00
egyptian arabic (a:alx) 192 71.94 70.45 0.00 0.00 -71.94 0.00
egyptian arabic (a:asw) 221 53.21 48.26 0.00 0.92 -52.29 -0.92
egyptian arabic (a:cai) 130 43.03 48.50 26.32 6.36 -22.19 19.95
egyptian arabic (a:kha) 244 57.21 49.12 7.33 6.75 -49.88 0.58
fez. meknes 196 60.61 57.91 10.96 0.73 -49.65 10.23
gilit mesopotamian arabic 203 57.07 48.47 35.69 4.79 -21.38 30.91
gulf arabic (a:doh) 205 49.38 44.50 7.21 3.97 -42.17 3.25
gulf arabic (a:jed) 196 58.59 43.29 11.22 1.47 -47.36 9.75
gulf arabic (a:mus) 178 40.74 45.83 0.00 0.00 -45.83 0.00
gulf arabic (a:riy) 311 48.53 45.38 4.84 2.48 -43.69 2.36
levantine arabic (a:north-dam) 148 43.10 31.21 0.00 2.68 -40.43 -2.68
libyan arabic (a:ben) 238 51.60 50.00 0.94 1.59 -50.00 -0.65
north mesopotamian arabic (a:bas) 186 51.30 43.70 0.95 0.99 -50.31 -0.04
north mesopotamian arabic (a:mos) 188 73.71 69.65 11.16 0.00 -62.55 11.16
rabat-casablanca arabic 153 56.66 48.19 42.57 0.92 -14.09 41.65
sfax 215 60.24 55.13 11.11 6.78 -49.13 4.33
south levantine arabic (a:south-
amm)

177 42.97 35.26 12.79 1.66 -30.18 11.13

south levantine arabic (a:south-jer) 202 48.26 43.42 5.00 5.41 -42.85 -0.41
south levantine arabic (a:south-sal) 167 50.14 62.59 0.00 0.00 -62.59 0.00
standard arabic 244 67.57 96.79 39.09 1.86 -57.70 37.23
sunni beiruti arabic 192 59.18 59.32 25.31 4.96 -34.01 20.34
tripolitanian arabic 201 65.84 60.15 0.00 0.00 -65.84 0.00
tunisian arabic (a:tun) 164 57.69 44.71 41.60 1.00 -16.09 40.61

greek
cypriot greek (r:casual, m:written,
i:other)

81 61.87 67.59 60.87 38.99 -6.72 21.88

cypriot greek (r:casual, m:written,
i:twitter)

36 56.79 54.05 48.57 38.71 -8.22 9.86

modern greek (r:casual, m:written,
i:twitter)

94 69.28 69.41 44.16 3.33 -25.26 40.82

high german

central alemannic (a:be) 389 72.04 56.48 30.71 0.00 -41.33 30.71
central alemannic (a:bs) 340 74.67 59.44 33.09 17.41 -41.58 15.68
central alemannic (a:lu) 335 74.19 62.17 42.18 0.57 -32.01 41.61
central alemannic (a:zh) 359 77.27 68.19 35.13 38.72 -38.56 -3.59

sinitic

mandarin chinese (a:mainland,
o:simplified)

986 98.59 93.30 67.51 66.51 -31.08 1.00

mandarin chinese (a:mainland,
o:traditional, i:synthetic)

977 97.93 93.88 67.24 66.71 -30.69 0.53

mandarin chinese (a:taiwan,
o:simplified)

1014 98.61 92.89 11.03 1.77 -87.58 9.26

mandarin chinese (a:taiwan,
o:traditional, i:synthetic)

1023 97.97 94.11 11.31 1.19 -86.67 10.12

southwestern shifted romance

brazilian portuguese 627 93.83 88.51 82.29 55.50 -11.54 26.78
latin american spanish 207 84.79 16.80 61.33 54.81 -23.46 6.52
portuguese (a:european) 349 79.61 72.46 65.27 51.00 -14.34 14.28
portuguese (m:written) 15 17.45 0.00 2.98 1.60 -14.47 1.38
spanish 290 77.63 58.16 8.89 41.63 -36.00 -32.74
spanish (a:europe) 492 86.32 81.05 79.40 43.86 -6.92 35.54

Table 10: Results for the dialect identification task (F1 scores) across various language clusters and dialect varieties.
The encoder-based models (mBERT and XLM-R) were fine-tuned separately on supervised classification tasks for

each language cluster. In contrast, the closed-weight LLM (GPT-4) and the open-weight multilingual LLM
(Aya-101) were evaluated using in-context learning with k=3 shot examples per class (with an exception of k=1 for

Arabic clusters due to the larger number of varieties).
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mBERT XLM-R GPT-4 Aya-101 ∆LLM-enc ∆closed-open
Cluster Variety Eng Eng Eng Eng

k-shot k-shot
FT FT ICL ICL

anglic english 81.95 83.43 88.17 70.07 4.74 18.10

arabic

standard arabic 65.57 73.85 78.27 66.43 4.42 11.83
najdi arabic 59.14 68.94 78.99 69.48 10.05 9.51
ta’izzi-adeni arabic 58.64 68.62 74.26 66.51 5.64 7.75
moroccan arabic 54.61 58.14 72.15 63.66 14.01 8.49
egyptian arabic 53.86 65.70 77.94 63.78 12.24 14.16
south levantine arabic 53.42 63.81 74.80 64.89 10.99 9.91
north mesopotamian arabic 52.84 58.75 71.84 62.45 13.09 9.38
levantine arabic (a:north) 51.40 61.31 75.55 64.14 14.24 11.42
tunisian arabic 47.42 50.20 57.17 57.26 7.06 -0.09

common turkic
north azerbaijani 59.20 73.17 72.00 63.81 -1.17 8.20
central oghuz (m:spoken) 58.37 74.52 78.78 65.59 4.25 13.19
south azerbaijani 44.58 39.24 47.03 57.40 12.82 -10.36

gallo-italian
venetian 64.99 68.55 70.97 64.32 2.42 6.65
lombard 59.34 56.16 66.77 63.60 7.44 3.18
ligurian 56.70 57.16 53.39 61.73 4.57 -8.34

gallo-rhaetian friulian 54.01 54.56 53.48 60.15 5.59 -6.67

high german
luxemburgish 60.01 46.21 69.21 66.34 9.20 2.86
limburgan 50.31 59.75 65.44 56.44 5.69 9.00

italian romance
italian 73.71 78.19 76.06 69.06 -2.13 7.00
sicilian 62.66 55.82 71.45 63.30 8.79 8.15

kurdish
central kurdish 37.40 39.59 57.35 63.37 23.78 -6.02
northern kurdish 33.93 63.26 60.33 62.77 -0.49 -2.44

latvian
latvian 59.95 73.63 73.93 66.19 0.30 7.75
east latvian 47.02 53.54 37.31 54.05 0.51 -16.74

modern dutch dutch 71.77 76.45 81.95 68.20 5.50 13.75

norwegian
norwegian bokmål (m:written) 72.45 79.51 83.11 69.12 3.60 13.99
norwegian nynorsk (m:written) 68.10 71.06 70.28 64.97 -0.78 5.31

sardo-corsican sardinian 56.63 58.32 58.36 62.05 3.73 -3.69

sinitic
classical-middle-modern sinitic
(o:simplified)

68.54 72.57 72.00 65.10 -0.57 6.90

classical-middle-modern sinitic
(o:traditional)

61.48 64.49 62.40 56.68 -2.10 5.72

cantonese 60.27 67.41 64.08 63.50 -3.33 0.58

sotho-tswana (s.30)
northern sotho 35.06 35.98 55.33 60.11 24.13 -4.78
southern sotho 34.62 34.16 48.44 61.31 26.69 -12.87

southwestern shifted romance

spanish 75.15 79.09 84.25 66.64 5.16 17.61
portuguese (a:european) 73.73 79.22 84.95 64.53 5.73 20.42
galician 73.39 78.55 78.48 68.50 -0.06 9.99
occitan 68.47 62.96 73.15 57.28 4.68 15.87

Average Average 58.44 63.31 68.93 63.55 6.59 5.39

Table 11: Results for the natural language inference (NLI) task. We compute F1 scores across various language
clusters and dialect varieties. The encoder-based models (mBERT and XLM-R) were fine-tuned in Standard

English and evaluated on all available varieties. In contrast, the closed-weight LLM (GPT-4) and the open-weight
multilingual LLM (Aya-101) were evaluated using in-context learning with k=3 shot English examples.
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mBERT XLM-R mBERT XLM-R GPT-4 GPT-4 Aya-101 Aya-101 ∆LLM ∆closed
Cluster Variety Eng Eng Cluster-rep Cluster-rep Eng Cluster-rep Eng Cluster-rep -enc -open

k-shot k-shot k-shot k-shot
FT FT FT FT ICL ICL ICL ICL

anglic english 89.74 89.21 89.74 89.21 86.67 83.05 77.84 77.59 -3.07 8.83

arabic

standard arabic 85.25 83.96 86.71 82.27 87.40 88.73 79.17 78.57 2.01 9.55
ta’izzi-adeni arabic 84.96 82.05 86.44 81.98 86.03 82.80 78.22 81.22 -0.41 4.81
najdi arabic 84.80 84.39 87.41 83.33 85.35 85.51 80.53 80.44 -1.90 4.97
north
mesopotamian
arabic

82.97 80.95 84.77 80.36 86.15 87.42 79.55 79.61 2.65 7.81

south levantine ara-
bic

81.82 80.16 84.16 79.05 86.67 83.53 80.81 80.59 2.50 5.86

levantine arabic
(a:north)

81.59 80.15 83.76 79.88 87.47 86.41 76.63 80.25 3.71 7.22

egyptian arabic 81.02 76.38 84.43 81.03 87.34 83.09 82.53 78.93 2.91 4.81
tunisian arabic 79.45 72.88 83.97 77.33 85.14 81.46 78.87 79.04 1.17 6.10
moroccan arabic 73.87 79.14 78.76 78.55 87.58 87.70 80.68 79.95 8.56 7.02

common turkic
north azerbaijani 80.46 79.87 82.00 79.55 86.78 82.96 81.24 82.34 4.78 4.44
central oghuz
(m:spoken)

79.10 84.41 80.61 79.51 87.97 86.41 81.87 79.26 3.56 6.10

south azerbaijani 65.90 67.08 69.71 68.37 77.86 74.65 74.23 83.27 13.56 -5.41

gallo-italian
venetian 76.72 70.68 75.07 74.28 85.98 81.70 77.50 77.09 9.26 8.47
lombard 69.92 59.90 70.65 64.56 86.45 82.96 77.67 78.46 15.80 7.99
ligurian 66.81 63.42 74.03 57.78 80.08 76.96 76.76 77.25 6.05 2.83

gallo-rhaetian friulian 68.79 64.66 67.69 63.14 86.32 77.05 79.40 76.90 17.52 6.92

high german
luxemburgish 74.74 58.50 77.86 64.83 86.33 83.37 77.15 79.83 8.47 6.50
limburgan 71.09 65.83 71.12 65.73 86.06 80.47 79.55 75.59 14.95 6.52

italian romance
italian 87.67 84.92 86.68 85.83 89.39 85.87 84.05 81.32 1.73 5.35
sicilian 75.22 59.71 72.70 59.47 88.30 80.20 79.73 80.02 13.08 8.28

kurdish
northern kurdish 33.23 68.21 10.45 5.71 86.13 74.18 79.25 75.02 17.91 6.87
central kurdish 13.10 19.37 16.86 12.38 75.54 78.22 76.37 77.61 58.85 0.61

latvian
latvian 76.35 83.75 80.63 82.80 87.15 86.46 76.95 81.52 3.40 5.64
east latvian 55.67 65.02 63.69 67.42 79.68 72.95 78.05 75.60 12.26 1.63

modern dutch dutch 88.97 83.37 89.55 84.51 85.99 85.05 79.89 81.11 -3.56 4.88

norwegian
norwegian nynorsk
(m:written)

85.66 79.94 89.20 79.06 87.30 85.24 79.47 79.70 -1.90 7.60

norwegian bokmål
(m:written)

83.81 82.90 83.82 84.14 86.70 81.21 78.17 79.74 2.56 6.96

sardo-corsican sardinian 71.03 66.89 69.65 62.49 84.40 79.15 79.72 81.22 13.37 3.19

sinitic
classical-middle-
modern sinitic
(o:traditional)

89.82 86.80 89.02 86.39 84.91 85.41 79.78 78.23 -4.41 5.63

cantonese 89.45 86.46 88.71 87.64 85.46 83.99 77.90 79.63 -4.00 5.82
classical-middle-
modern sinitic
(o:simplified)

88.74 86.38 88.86 89.15 85.64 84.36 74.74 80.21 -3.51 5.43

sotho-tswana (s.30)
northern sotho 35.62 28.16 34.86 13.55 72.19 70.28 78.87 79.01 43.39 -6.81
southern sotho 32.55 32.31 39.93 19.08 72.23 70.45 74.79 75.15 35.22 -2.92

swe. shift. romance

portuguese
(a:european)

88.13 89.10 88.10 87.74 86.31 84.97 77.94 81.35 -2.79 4.96

galician 86.99 89.00 86.93 87.83 87.82 87.27 79.59 80.78 -1.19 7.04
spanish 86.74 85.93 84.87 86.55 86.95 85.74 80.23 77.86 0.21 6.72
occitan 84.12 74.80 78.53 62.56 84.12 80.51 79.34 77.80 -0.00 4.79

Average Average 74.52 73.07 75.31 70.40 84.89 82.05 78.82 79.19 7.70 5.08

Table 12: Topic Classification (TC) task results, displaying F1 scores across different language clusters and dialect
varieties. Encoder-based models (mBERT and XLM-R) were fine-tuned in either Standard English or a

representative language of the target cluster and evaluated on all available varieties. In contrast, the closed-weight
LLM (GPT-4) and open-weight multilingual LLM (Aya-101) were evaluated through in-context learning with

3-shot examples, either in English or the target variety.
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mBERT XLM-R mBERT XLM-R GPT-4 Aya-101 GPT-4 Aya-101 ∆LLM-enc ∆closed-open
Cluster Variety Combined Combined Eng Eng Combined Combined Eng Eng

k-shot k-shot k-shot k-shot
FT FT FT FT ICL ICL ICL ICL

anglic

english
(a:scotland)

76.38 70.34 71.82 63.15 56.94 74.23 64.11 72.07 -2.15 -10.12

southern
african
english

76.66 71.18 71.49 63.87 59.66 73.40 60.89 73.65 -3.01 -12.76

new
zealand
english

76.71 71.39 71.22 63.69 53.90 76.95 66.03 75.49 0.24 -10.92

australian
english

75.66 70.89 71.20 62.28 61.22 73.73 57.86 72.47 -1.93 -12.52

southeast
american
english

77.26 71.50 71.17 63.71 63.35 76.46 62.46 76.31 -0.80 -13.10

irish en-
glish

75.52 70.73 70.92 62.15 57.71 73.28 59.30 70.87 -2.24 -13.98

philippine
english

76.37 70.64 70.47 62.22 64.94 73.56 58.55 72.35 -2.81 -8.62

nigerian en-
glish

73.61 68.33 69.10 61.27 59.01 67.68 57.63 67.04 -5.93 -8.67

indian
english
(a:north)

74.62 68.03 68.84 61.25 54.62 68.13 60.46 69.24 -5.38 -8.78

kenyan en-
glish

72.59 66.68 68.72 58.64 53.86 67.60 46.55 68.13 -4.46 -14.28

indian
english
(a:south)

71.93 66.88 66.49 60.36 56.03 65.05 51.03 64.87 -6.88 -9.02

arabic

arabic
(a:bahrain)

77.52 72.11 53.25 53.28 44.72 76.58 49.31 74.39 -0.94 -27.28

arabic
(a:jordan)

77.35 71.29 52.72 53.72 48.15 73.75 44.81 74.37 -2.98 -26.22

arabic
(a:saudi-
arabia)

77.88 72.11 52.72 53.24 47.66 75.68 45.36 74.56 -2.20 -28.02

algerian ara-
bic

77.85 72.34 52.56 53.52 44.05 74.67 48.77 74.69 -3.16 -25.92

tunisian ara-
bic

76.72 71.64 52.28 52.94 42.52 73.67 54.13 73.09 -3.05 -19.54

moroccan
arabic

76.73 71.57 51.86 52.17 46.67 74.57 50.74 71.89 -2.16 -23.83

egyptian
arabic

76.53 70.75 51.80 51.99 44.10 72.93 41.43 73.32 -3.21 -29.22

bengali
vanga
(a:west
bengal)

68.62 73.27 32.30 36.39 54.69 87.44 49.66 85.58 14.17 -32.75

vanga
(a:dhaka)

67.37 74.24 31.79 35.52 55.13 84.99 59.58 84.64 10.75 -25.41

korean
seoul
(m:spoken)

10.15 31.91 7.26 19.62 60.74 76.13 58.36 76.14 44.23 -15.40

korean
(a:south-
eastern,
m:spoken)

9.92 31.01 7.22 20.08 64.43 68.08 61.91 78.46 47.45 -14.03

swahili
swahili
(a:tanzania)

63.54 62.30 38.24 39.38 48.19 59.30 38.64 56.85 -4.24 -11.10

swahili
(a:kenya)

72.25 70.53 37.97 41.59 49.88 67.42 39.46 66.76 -4.83 -17.55

Average Average 69.16 67.15 53.89 51.92 53.84 73.14 53.63 72.80 2.27 -17.46

Table 13: Results for the Extractive Question Answering (EQA) task, showing F1 scores across various language
clusters and dialect varieties. Encoder-based models (mBERT and XLM-R) were fine-tuned on Standard English or
combined training data and evaluated on all available varieties. In contrast, the closed-weight LLM (GPT-4) and
open-weight multilingual LLM (Aya-101) were assessed using in-context learning with 3-shot examples from

English or the combined training data.
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mBERT XLM-R GPT-4 Aya-101 ∆LLM-enc ∆closed-open

Cluster Variety Combined Combined Combined Combined
k-shot k-shot

FT FT ICL ICL

anglic english 51.97 53.44 95.65 84.34 42.20 11.31

arabic

standard arabic 39.01 43.78 93.04 78.31 49.26 14.74
levantine arabic
(a:north)

38.64 40.71 81.02 71.04 40.32 9.98

north
mesopotamian
arabic

37.99 41.35 78.55 63.72 37.20 14.83

moroccan arabic 36.94 37.61 80.52 66.02 42.91 14.50
egyptian arabic 36.21 37.98 88.59 70.38 50.61 18.21
najdi arabic 36.05 38.16 85.12 71.47 46.96 13.66

sinitic
classical-middle-
modern sinitic
(o:simplified)

49.79 47.10 93.88 80.66 44.10 13.23

classical-middle-
modern sinitic
(o:traditional)

46.88 44.76 93.07 76.89 46.19 16.19

sotho-tswana (s.30)
northern sotho 31.18 29.72 47.34 62.18 31.00 -14.85
southern sotho 28.52 29.00 52.40 63.62 34.62 -11.21

Average Average 39.38 40.33 80.84 71.69 42.31 9.14

Table 14: Results for the Machine Reading Comprehension (MRC) task, showing F1 scores across various language
clusters and dialect varieties. Encoder-based models (mBERT and XLM-R) were fine-tuned on the combined

training data and evaluated on all available varieties. Whereas, the closed-weight LLM (GPT-4) and open-weight
multilingual LLM (Aya-101) were assessed using in-context learning with 3-shot examples drawn from similar data.
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Abstract
This paper addresses the challenges in develop-
ing language models for less-represented lan-
guages, with a focus on Luxembourgish. De-
spite its active development, Luxembourgish
faces a digital data scarcity, exacerbated by
Luxembourg’s multilingual context. We pro-
pose a novel text generation model based on
the T5 architecture, combining limited Luxem-
bourgish data with equal amounts, in terms of
size and type, of German and French data. We
hypothesise that a model trained on Luxem-
bourgish, German, and French will improve the
model’s cross-lingual transfer learning capa-
bilities and outperform monolingual and large
multilingual models. To verify this, the study
at hand explores whether multilingual or mono-
lingual training is more beneficial for Luxem-
bourgish language generation. For the evalua-
tion, we introduce LuxGen, a text generation
benchmark that is the first of its kind for Lux-
embourgish.

1 Introduction

Recent advances in deep learning have made it
extremely popular to use language models (LMs)
such as BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2020) for many tasks in natural language
processing (NLP) (Lin et al., 2022). The tasks
range from text classification tasks, such as senti-
ment analysis (Zhang et al., 2024b) and offensive
language detection (Zampieri et al., 2023), to text
generation tasks, such as machine translation (Zhu
et al., 2024; Wang et al., 2023) and text summari-
sation (Zhang et al., 2024a; Liu et al., 2024). LMs
have achieved state-of-the-art results in many of
these tasks (Islam et al., 2024).

Even though these LMs are multilingual by de-
sign, their support and performance can suffer with
languages that are not as well represented (Blasi
et al., 2022). A lot of focus of these LMs tends to
fall on English, as well as other high-resource lan-
guages (Pires et al., 2019). This fact is evidenced

by the amount of data used for training certain mod-
els. For example, MT5 (Xue et al., 2021), which is
trained using the Oscar common crawl data, con-
tains roughly 3.4TB for English, 1.4TB for Chinese,
1.1TB for Russian, 600GB for German and 430GB
for Spanish1. By contrast, Luxembourgish only has
18MB, and is therefore not well-supported by many
current LLMs. However, initial testing has shown
that GPT-4o (Achiam et al., 2023) models can pro-
duce Luxembourgish very well, demonstrating the
positive effects of cross-lingual transfer-learning
(Chen and Ritter, 2021) at an immense scale.

More data would certainly improve the situa-
tion, but this may not always be possible, meaning
that other options need to be considered. Luxem-
bourgish, a West Germanic language, is spoken by
around 400,000 people, primarily in Luxembourg
(Gilles, 2019). In addition to the small number of
speakers, Luxembourg is home to a complex soci-
etal multilingualism that, historically, has favoured
French and German as official languages, espe-
cially in formal and written communication. Only
since the advent of digital and social media, and
as a result of the active language policy to support
Luxembourgish, have more significant amounts of
text data been produced and therefore made avail-
able. As this situation is surely similar with other
small varieties, means of finding and using more
data are necessary.

Continuing with the example of Luxembour-
gish, models such as LUXEMBERT (Lothritz et al.,
2022) have used data augmentation, in this case
translating from German (Olariu et al., 2023). Mod-
els such as LUXGPT2 (Bernardy, 2022) rely on
transfer learning. However, none of these meth-
ods have provided state-of-the-art performance like
models for other languages. In fact, Ranasinghe
et al. (2023) has shown that multilingual models

1https://oscar-project.github.io/
documentation/versions/oscar-2301/

93



outperform existing monolingual Luxembourgish
models in a text classification task. We, therefore,
propose to fill this gap by combining the largest
collection of data for the Luxembourgish language
available with carefully considered transfer learn-
ing. In this case, in particular, we seek to answer
the question of whether similar languages included
in the training can improve performance. Recent re-
search has shown that careful selection of multilin-
gual training data improves models for 16 African
languages (Oladipo et al., 2023). We therefore
hypothesise that equal amounts, in terms of size
and composition, of Luxembourgish, German, and
French will outperform monolingual and multilin-
gual models on Luxembourgish NLP tasks.

In this paper, we address the gap in Luxembour-
gish NLP and present a novel generative model
that is based on the multilingual T5 architecture
(Xue et al., 2021). Moreover, we run multiple eval-
uations on downstream tasks to ascertain whether
multilingual or monolingual pre-training is more
beneficial for a Luxembourgish model. To this
end, we obtain training data for both German
and French, the geographical and socio-cultural
neighbours of Luxembourg(ish), and aim to learn
more about treating these languages equally in
pre-training. In doing so, we also discuss the
data compilation, specifically the equivalency of
data. For evaluation purposes, due to the cur-
rent under-represented situation of Luxembourgish
NLP, we re-use classification tasks (Lothritz et al.,
2022) and introduce new generative tasks, includ-
ing news article headline generation, paraphrasing
and Wikipedia biography summaries.

Our main contributions are:

1. Two new generative language models for Lux-
embourgish, one pre-trained with just Lux-
embourgish, one pre-trained with Luxembour-
gish, German and French textual data.2

2. The introduction of LuxGen, the first text gen-
eration benchmark for Luxembourgish, in-
cluding four new text generation tasks.

3. An evaluation of various language models in
terms of performance in Luxembourgish.

4. Valuable insights into training data compo-
sition to increase the performance of a low-
resource language.

2All material will be available via https://huggingface.
co/instilux

2 Related Work

The expansion of language models to encompass
European languages beyond English has been a
focal point in recent NLP research. The T5 (Raf-
fel et al., 2020), BERT (Devlin et al., 2019), and
ELECTRA (Clark et al., 2020) architectures have
been adapted to create not just multilingual (Xue
et al., 2021) but also monolingual models that cap-
ture the linguistic nuances of individual languages.
For example, Chan et al. (2020) developed GBERT
and GELECTRA, and later GERMANT5, a ver-
sion of T5 pre-trained exclusively on a large Ger-
man corpus. Similarly, Le et al. (2020) introduced
FLAUBERT, a French language model based on the
BERT architecture.

In addition to these, Carmo et al. (2020) intro-
duced PTT5, a Portuguese T5 model that outper-
formed previous models in Portuguese text gen-
eration and comprehension tasks. Araujo et al.
(2024) trained a similar T5 model for Spanish, and
Daðason and Loftsson (2022) evaluated various
classification tasks on monolingual Icelandic mod-
els based on ELECTRA and CONVBERT (Jiang
et al., 2020). For the Russian language, Zmitrovich
et al. (2024) developed RUT5, among many others,
achieving new benchmarks in Russian NLP tasks.
These models underline the importance of tailoring
language models to specific languages to capture
their unique syntactic and semantic properties.

As a relatively small language, Luxembourgish
is less represented in NLP, particularly in com-
parison to French and German, its socio-cultural
neighbours. Luxembourgish has developed in close
contact with French and German and today shares
grammatical features as well as parts of the lexi-
con with those languages. This is especially true
of German, due to Luxembourgish having devel-
oped from the Moselle Franconian dialect (Gilles,
2019), but is also true of French. While not typo-
logically, Luxembourgish has been in close contact
with French, exhibiting the borrowing of grammat-
ical structures and lexical items, as well as a lot
code-switching in written texts. Research in NLP
for Luxembourgish has started only recently, with
some early exceptions: Adda-Decker et al. (2008)
introduce various resources for NLP tasks for Lux-
embourgish; Snoeren et al. (2010) analyse typical
writing patterns (contextual n-deletion) in written
transcripts of speech, and Lavergne et al. (2014)
introduce a manually annotated corpus of mixed
language sentences to test a word-based language
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identification system. Recently, Sirajzade et al.
(2020) and Gierschek (2022) introduced a state-of-
the-art pipeline for sentiment analysis, Purschke
(2020) published a pipeline for the automatic ortho-
graphic correction of text data and Philippy et al.
(2024) introduced a new approach to Zero Shot
Classification based on a task-specific dictionary
for topic classification. For spoken data, Gilles et al.
(2023a) and Gilles et al. (2023b) develop LUX-
ASR, a performant Automatic Speech Recognition
for Luxembourgish. For automatic comment mod-
eration (Ranasinghe et al., 2023) and orthographic
normalization (Lutgen et al., 2024), models based
on the T5 architecture have shown to perform well
for Luxembourgish.

Looking at language models for Luxembour-
gish, various strategies have been tested. Some
have been trained using transfer-learning from Ger-
man, such as LUXGPT (Bernardy, 2022). Another
model for Luxembourgish exists in LUXEMBERT
(Lothritz et al., 2022), which used augmentation
techniques to produce more Luxembourgish data,
and which performs on par with multilingual BERT
on Luxembourgish language tasks such as part-
of-speech tagging, named entity recognition and
news classification (Lothritz et al., 2023). To this
end, the authors of the afore mentioned model also
introduced the corresponding resources. Anasta-
siou (2022) introduced ENRICH4ALL, another
BERT model for the development of a multilingual
chatbot in administrative contexts, trained with a
specifically annotated corpus. These models all
demonstrate the various strategies used to create
the models.

Nevertheless, it is clear that not enough re-
sources for Luxembourgish exist yet, and that re-
search related to NLP in Luxembourgish is limited.
Both of these reasons explain why there are only
some benchmarks for classification tasks in Lux-
embourgish, and none for generative tasks. The
absence of benchmarks, small amounts of data, and
lack of more generative models are areas we hope
to address with this research.

3 Data

Data is essential to training a language model and
plays a critical role in this research, as outlined in
the introduction. Because we wanted to investi-
gate specifically the composition of the data used
for training, we explain the choices made in this
section.

It would be reasonable to assume a typical ap-
proach of simply using all the data one can find. Be-
cause Luxembourgish only has a minimal amount
of data available compared to German and French,
this would lead to a large imbalance in the data,
calling into question whether the Luxembourgish
part would even be worth including. As stated pre-
viously, we therefore aimed to match the German
and French data largely to mirror that of the Lux-
embourgish data in terms of size, type, and domain.
We consciously set out to collect roughly equal
amounts of data for each language to test specifi-
cally how much better the language model would
perform in comparison to a monolingual Luxem-
bourgish model. Table 1 presents an overview of
the different areas and the number of tokens from
these areas, which will be described in the follow-
ing paragraphs for each language.

Domain LB DE FR
Radio 17,5M 1,3M -
News 42,5M 71,7M 62,1M
Parl. 17,4M 31,2M 40,0M
Web 84,9M 56,2M 83,0M
Wiki 7,4M 16,4M 18,6M
Total 169,7M 176,8M 203,7M

Table 1: Token counts for texts from each domain for
each language covered in the training data selection.

Luxembourgish For Luxembourgish, we opted
to compile the dataset ourselves, as opposed to just
using crawl data. This is due to reasons pointed out
in previous sections, as well as affording us more
control over the incoming data and allowing a more
controlled compilation of corresponding data in the
other languages. To this end, we aimed to collect
all data as it is available to us (un-normalized) from
known collections. This includes news articles
(News), transcribed radio interviews (Radio) and
user comments (Coms.) from the country’s largest
public news broadcaster, RTL Lëtzebuerg (RTL).
As seen in Table 2, this forms the bulk of the Lux-
embourgish data in terms of the number of tokens.
The RTL data spans the years 2008 until 2023 and
has been used for many other Luxembourgish NLP
research (Lothritz et al., 2022, 2023; Gierschek,
2022; Purschke, 2020; Ranasinghe et al., 2023).
In terms of news related text, we also added data
from the Leipzig (Lpzg) collection (Goldhahn et al.,
2012) which includes data from other Luxembour-
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gish news sites.3

For web content, we also made use of data from
the Leipzig collection using specifically 1 million
sentences from the latest web crawl, excluding
RTL. In addition, we use text from Luxembourgish
chat rooms. Encyclopaedic text was also used in
the form of Wikipedia articles, which we obtained
from the latest dump as of the time of training. This
spans roughly 70,000 articles about various topics,
but mainly biographies and information about lo-
cations. Similarly, we used all example sentences
from the Luxembourgish online dictionary (LOD).4

Finally, political speeches and debates are also rep-
resented in the corpus, which are transcribed for
the Chambre des Députés (Chamber), the national
legislature chamber of Luxembourg.

Resource Tokens Types TTR
RTL Radio 17,5M 741,000 .0423
RTL News 36,7M 1,46M .0398
RTL Coms. 55,8M 2,58M .0463
Lpzg. News 5,85M 677,000 .1158
Lpzg. Web 17,1M 1,83M .1074
Chat Logs 12,1M 659,000 .0545
Chamber 17,4M 404,000 .0233
Wikipedia 6,87M 576,000 .0839
LOD 0,5M 44,000 .0874
Total 169,73M 8,87M .0628

Table 2: Token counts, type counts, and Type-Token
Ratio (TTR) for Luxembourgish language resources.

German For German, we aimed to collect the
closest corpora to the Luxembourgish corpora.
Starting with news related text, we again made use
of parts of the Leipzig corpus, specifically from
German news sites (in roughly equal token quan-
tities) as well as the Ten Thousand German News
Articles Dataset (10kGNAD) dataset5, which con-
sists of over 10,000 articles from an Austrian news-
paper across nine topics. As such, these articles are
the unused part of the One Million Posts Corpus
(OMPC) (Schabus et al., 2017), which we use to
replicate the situation in Luxembourgish, where we
have news articles and the user discussion under
each article. We also use the Potsdam Commentary
Corpus (PCC) (Bourgonje and Stede, 2020) to add
further user comments from German newspaper

3https://corpora.uni-leipzig.de/
4https://lod.lu
5https://tblock.github.io/10kGNAD/

websites. For the transcribed radio interviews in
Luxembourgish, we found the closest equivalent
in the German Radio Interviews (GRAIN) corpus
(Schweitzer et al., 2018), which comprises a small
amount of transcribed radio interviews.

For web content, we used the Leipzig Corpus
web crawl data for German. We could not repli-
cate chat room data for German, and decided to
leave this, as it only makes up a small amount of
the Luxembourgish data. For encyclopaedic text
we naturally used Wikipedia again, selecting the
Leipzig Corpus Wikipedia selection for ease of
use, and since one year is almost equivalent to the
whole Luxembourgish Wikipedia corpus. To add
political speeches and debates, we used the Ger-
man section of the Digital Corpus of the European
Parliament (DCEP) (Hajlaoui et al., 2014), specif-
ically the AGENDA, IM-PRESS, MOTION and
REPORT subsections, as these contained the most
relevant textual data.

French For French, we also aimed to collect
the most related textual data; however, we found
the situation to be somewhat different to German,
with not as many resources easily available. We
used again Leipzig Corpora for news, French News
2010 and 2022 1M sentences, as well as French
Newscrawl 2020 1M sentences. In addition, we
used French Mixed Typical 2012 1M sentences to
represent typical web data. To supplement web
data and more comment style content, we used the
French Reddit dataset from Kaggle.6

As for both previous languages we used an ex-
tract of Wikipedia articles for encyclopaedic text,
making use of the Leipzig Corpora yet again, the
French Wikipedia 2021 1M sentences collection.
For political speeches and discussion, we used the
French section of the DCEP, with the same subsec-
tions as for German.

4 Models

We leverage our unlabelled data described in Sec-
tion 3 to pretrain two models: LUXT5 on Luxem-
bourgish data and LUXT5-GRANDE on Luxem-
bourgish, German and French data using the T5-
BASE encoder-decoder architecture (Raffel et al.,
2020). Each of the encoder and decoder compo-
nents contains 12 layers, each with 12 attention
heads and 768 hidden units. In total, this results in
a model with 220 million parameters.

6https://www.kaggle.com/datasets/breandan/
french-reddit-discussion
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Task Train Test Type
News Title 162,882 13,852 RTL news articles
Positive comment 3,236 810 RTL articles & comments
Negative comment 3,236 810 RTL articles & comments
Description 11,858 2,094 Wikipedia articles

Table 3: Overview of the data for the four different LuxGen tasks, including no. of training and test instances, as
well as the types of instances.

We used the same objective as the original T5
models (Raffel et al., 2020). The main idea is to
feed the model with corrupted (masked) versions of
the original sentence and train it to reconstruct the
original sequence. This denoising objective works
by randomly sampling and dropping out 15% of
tokens in the input sequence. All consecutive spans
of dropped-out tokens are then replaced by a single
sentinel token.

For both of our pre-trained models, we use a
learning rate of 1e-4, a batch size of 128 sequences,
and a maximum sequence length of 512. We pre-
train each model for 1M steps.

5 LuxGen: Text Generation Benchmark
for Luxembourgish

To evaluate the LUXT5 and LUXT5-GRANDE

models, we defined LuxGen: A text generation
benchmark for Luxembourgish, consisting of four
text generative tasks. Due to data being limited for
Luxembourgish, especially in terms of benchmarks,
we derive these tasks mainly from RTL data, as this
already has the most metadata available. The gen-
erative tasks are all novel for Luxembourgish. We
believe these tasks to be the best currently avail-
able to evaluate the performance of text generation
models, including recent large language models for
NLP tasks in Luxembourgish. An overview of the
available data is presented in Table 3.

5.1 News Headline Generation

In this task, the model is trained to generate a head-
line for a specific news article. We created this
task as it offered itself as a straight-forward task
from the data. Similar tasks have been proposed by
Hettiarachchi et al. (2024), Nagoudi et al. (2022),
and Aralikatte et al. (2023).

We used news articles taken from the RTL col-
lection that we used for pre-training the models. It
should be made clear at this point that we removed
the article headlines at the point of pre-training so
that we could obtain unbiased results. The exact

number of training and testing instances can be
seen in Table 3.

5.2 Positive and Negative Comment
Generation

For this task, we utilise user voting on the RTL user
comments dataset to extract the most upvoted and
downvoted comments. Using the corresponding
RTL article that a given user comment was made
on, the task is to generate the most upvoted and the
most downvoted comment.

The datasets used for this task are the RTL
user comments dataset and the RTL news articles
dataset. Matching the comments with the cor-
responding article by ID, we then calculate the
up/down ratio and determine the most upvoted and
most downvoted comments. Since the voting on
user comments feature was only introduced in 2019,
our data is partially limited for this task, especially
as not every article has user comments that have
votes. The comments have also been moderated by
RTL to remove harmful or offensive language and
anonymise users. We have 4044 comments each
for most upvoted and most downvoted, utilising an
85% to 15% train test split in order to retain the
maximum amount for training (see also Table 3).

5.3 Short Description Generation

We define the final generative task as description
generation. We utilise Wikipedia and its structured
equivalent, Wikidata, for this task. The task for
the model is to generate a short description of a
Wikipedia article.

For this task, we use all Luxembourgish
Wikipedia articles that have a short description
on Wikidata. These descriptions can almost be
seen as short labels; nevertheless, we use this data
for a generative task. As the number of articles
in Luxembourgish is quite small, we collected
roughly 14,000 articles with descriptions. An ex-
act overview of the training and test instances is
presented in Table 3.
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Group Model Headline Positive Negative Wiki

Prompt
GPT-4O-2024-05-13 0.0482 0.0032 0.0017 0.1001
LLAMA-3.1-8B-INS. 0.0359 0.0037 0.0028 0.0268

Pre + Fine
LUXT5-GRANDE 0.2130 0.0810 0.0780 0.1100
LUXT5 0.1680 0.0450 0.0320 0.0280

Fine-tuning

MT5-BASE 0.1820 0.0009 0.0006 0.0230
MT5-SMALL 0.1650 0.0003 0.0003 0.0160
BYT5-BASE 0.0310 0.0000 0.0000 0.0002
BYT5-SMALL 0.0320 0.0000 0.0000 0.0001

Table 4: BLEU scores for different tasks in LuxGen. The best result for each task is in bold.

6 Evaluation

In this section, we evaluate the performance of our
proposed models, LUXT5 and LUXT5-GRANDE,
on Luxembourgish text generation tasks encom-
passed in the LuxGen dataset, and a classification
task for Luxembourgish introduced by Ranasinghe
et al. (2023). We compare our models against sev-
eral baselines, including the non fine-tuned large
language models (LLMs) LLAMA 3 (Dubey et al.,
2024), GPT-4O (Achiam et al., 2023), and MIS-
TRAL, as well as fine-tuned versions of mT5 (Xue
et al., 2021) and BYT5 (Xue et al., 2022). Our
evaluation comprises both automatic metrics, us-
ing BLEU scores (Papineni et al., 2002) due to the
lack of advanced NLG metrics for Luxembourgish,
standard metrics for classification, and a manual
analysis to provide a comprehensive understanding
of each model’s capabilities in generating accurate
and fluent Luxembourgish text.

6.1 LuxGen

For all tasks in LuxGen, we compare LUXT5 and
LUXT5-GRANDE to Llama 3 and GPT 4o (non
fine-tuned), as well as several fine-tuned variants
of mT5 (Xue et al., 2021) and ByT5 (Xue et al.,
2022). All the tasks were considered sequence-to-
sequence tasks. For all the T5-based models, we
used the same configurations: a batch size of 8,
Adam optimiser with learning rate 1e-4, and a lin-
ear learning rate warm-up over 10% of the training
data and trained the models over ten epochs. For
Llama 3 and GPT 4o, we used prompts in English
and optimised them to achieve the best output. Ex-
act prompts are listed in Appendix A. MISTRAL

did not produce any outputs in Luxembourgish.
For the automatic evaluation, we utilised BLEU

score (Sharma et al., 2019). While there are ad-
vanced NLG metrics such as BLEURT (Sellam
et al., 2020) and BERTScore (Zhang et al., 2019),

they do not currently support Luxembourgish. The
results are shown in Table 4. As can be seen in
Table 4, LUXT5-GRANDE outperforms LuxT5 and
other baselines in all the tasks in LuxGen. The key
findings of the results are listed below.

LUXT5-GRANDE As stated previously, LUXT5-
GRANDE outperforms all models in the LuxGen
tasks. For the tasks with more training instances,
such as headline generation, the gap between the
mT5 models and LUXT5-GRANDE is low. How-
ever, for the tasks where the number of training
instances is lower, there is a larger gap between
LUXT5-GRANDE and the mT5 models. We be-
lieve that when there are a large number of training
instances, MT5 can come close to specific T5 mod-
els. However, they are unable to train their weights
properly when there are fewer training instances.
We also see that the LLMs do not perform as well,
except GPT-4O in the Wikipedia description task,
which could very well be due to the overlap of
training data, i.e. GPT having seen Wikipedia in
training.

Monolingual Training LUXT5, which we only
trained using Luxembourgish data, does not con-
sistently outperform mT5 models in LuxGen. We
believe that this shows the Luxembourgish data on
its own is simply insufficient. Since there was not
much data to train LUXT5, the model might be
inconsistent in some tasks. This is also shown by
the LLM results, which do not reach the perfor-
mance of LUXT5, but come close even without
fine-tuning (but having many times more data in
pre-training).

BYT5 models Previous research suggested that
ByT5 models will perform well in Luxembourgish
tasks (Ranasinghe et al., 2023). Surprisingly, the re-
sults in Table 4 suggest that ByT5 models perform
poorly in Luxembourgish text generation tasks. We
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Model Archived Published Weighted Average F1 MacroP R F1 P R F1 P R F1
MBERT 0.58 0.06 0.12 0.77 0.97 0.86 0.72 0.77 0.70 0.49
LUXEMBERT 0.60 0.08 0.15 0.78 0.98 0.87 0.73 0.77 0.70 0.51
BYT5 LARGE 0.67 0.20 0.31 0.79 0.98 0.88 0.77 0.78 0.74 0.59
LUXT5-GRANDE 0.69 0.15 0.25 0.79 0.98 0.88 0.77 0.79 0.73 0.56

Table 5: Results for the moderation classification task.

assume that this is due to the model architecture
not being as well suited to generative tasks in the
LuxGen settings.

6.2 Classification Evaluation

The classification task we evaluate involves pre-
dicting whether a given user comment is Archived
or Published, as first introduced by Ranasinghe
et al. (2023), for which we reproduced the same
data splits for comparability. This task presents sig-
nificant challenges due to class imbalance and the
subtle distinctions between the two categories, mak-
ing it a valuable benchmark for assessing model
performance on Luxembourgish text classification.

The results presented in Table 5 indicate
that our proposed model, LUXT5-GRANDE, out-
performs the previously released Luxembour-
gish modelLUXEMBERT (Lothritz et al., 2022)
across multiple evaluation metrics. Specifically,
LUXT5-GRANDE achieves higher precision for
the "Archived" class and a better weighted average
precision. While BYT5 LARGE attains the high-
est overall performance with an F1 Macro score
of 0.59, LUXT5-GRANDE comes close with an
F1 Macro of 0.56, despite not being optimized for
classification tasks.

We attribute the superior performance of BYT5
LARGE in this classification task to its architec-
ture, which is well-suited for handling character-
level information — a critical factor for languages
with rich morphological structures like Luxem-
bourgish. The byte-level tokenization employed
by BYT5 LARGE enables it to capture subtle tex-
tual nuances essential for accurate classification.
In contrast, LUXT5-GRANDE was primarily de-
veloped as a generative model. Despite this, its
competitive performance underscores the effective-
ness of our pre-training and fine-tuning approach.
With further optimization targeted at classification,
LUXT5-GRANDE has the potential to surpass ex-
isting models by combining strong generative ca-
pabilities with robust classification performance.

6.3 Manual Evaluation

Due to the fact that the BLEU score does not of-
fer complete insight into the performance of the
models for Luxembourgish, we also completed a
manual investigation and evaluation of some sam-
ple sentences to gain more insight into the gener-
ated text. As we observed during the evaluation,
the two evaluated LLMs produced seemingly good
Luxembourgish, although often having sentences
with reversed logic to that of the real test output
(for example, team B lost to team A versus team
A won against team B). Because of BLEU’s eval-
uation on word alignment, this impacts the scores
heavily. Therefore, we have opted to include our
analysis of a sample of the output predictions for
LuxGen. Since our pre-trained LUXT5-GRANDE

model performed best in terms of BLEU out of the
T5-based models, we selected its output, alongside
the monolingual LUXT5 to directly compare the
effects of adding more languages in pre-training,
as well as the two LLMs, for further analysis.

For the analysis, we took 20 random sentences
per task in LuxGen, and evaluated the predictions
by taking three categories into account: task, con-
tent, and correctness. With task, we checked
whether the task had been completed, e.g. has
a headline been generated? Is the length appro-
priate?. For content, we compared not only the
target text but also the input text to check whether
the model has reproduced appropriate content or
not. Finally, for correctness, we checked the output
according to Luxembourgish grammar and orthog-
raphy rules, as well as whether the model stayed in
the correct language. We summarise our findings
per model group.

LLMs As part of the evaluation, we prompted
GPT-4O and LLAMA-3.1-8B-INSTRUCT to gener-
ate predictions for LuxGen. Looking at the outputs,
we consistently saw that both models were able
to complete the assigned tasks, which is to be ex-
pected. It was observed that although both models
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tended to generate texts that were longer than the
target outputs (see example outputs below), the
tasks were still completed, usually displaying more
information than the targets. This relates also to
content, which was generally reproduced correctly,
although headlines tended to contain much more
information than the target headlines, but the ar-
ticles did contain this information. In terms of
correctness, GPT-4o was mainly able to produce
correct Luxembourgish, only rarely switching to
German or hallucinating Luxembourgish forms, as
indicated in the example outputs in red. LLAMA-
3.1-8B-INSTRUCT, on the other hand, did not pro-
duce correct Luxembourgish, often switching mid-
way through predictions to German, highlighted
in the example sentence below in blue. Compared
with the other two models, the LLMs produced
more passive constructions than active ones. On
the whole, it is fair to say the BLEU scores do not
accurately reflect the quality of the output of these
models in terms of task and language.

Example Outputs:

• Llama: Bolivien: Dausende Polizisten jagen
international gesuchten Drogeboss Sebastian
Cabrera.

• GPT: Dausende Polizisten an Bolivien op déi
grofl Botter - International gesichte Drogeboss
entkommt nach ëmmer.

• LuxT5: Dausende Poliziste kämpfe géint Dro-
geboss Sebastian Cabrera.

• Original: Police sicht no Drogeboss Sebas-
tian Cabrera.

LuxT5s Looking at the results of our LUXT5
models, we saw that both models were able to com-
plete the various tasks. In fact, both models gener-
ated outputs that were much more similar in length
and style to the target outputs, which is to be ex-
pected due to these models being fine-tuned for
the various tasks. In terms of content, we often
found that LUXT5 would often add random bits
of information that it did not reproduce from the
text inputs, making it factually incorrect in places.
LUXT5-GRANDE did not suffer from this, demon-
strating that adding more language data in addition
to the Luxembourgish base to be beneficial. We
also saw that both models do not switch around the
sentence logic, as observed with the LLMs, but did
slightly change the meaning, as highlighted in the
example outputs above in gold. Finally, in terms

of correctness, both models generated Luxembour-
gish without switching to German, with only minor
mistakes. It should be noted, however, that both
models suffered slightly from finishing the genera-
tion too early, therefore leaving unfinished words
in places.

Overall We saw that all four models produced
much better output than the automatic evaluation
would indicate. It seems clear that this has much to
do with the fact that the outputs, while addressing
the task, being factually correct, and linguistically
correct, often look nothing like the target predic-
tions. Because this would mean that many words
are misaligned, the BLEU scores would suffer from
this. Although this is not optimal, the targets that
we have are the only ones that we can work with
that have been produced by real humans. Never-
theless, with these results, we see that including
similar languages in the pre-training process can
improve the performance in language models.

7 Conclusion

This paper has demonstrated the performance of
multiple language models for the Luxembourgish
language. The models demonstrated are all capa-
ble of both text classification and text generation
tasks. While we have presented a detailed evalua-
tion of the various models, we have also described
the different datasets with which the models were
trained. In doing so, we have shown that large,
massively multilingual models do not necessarily
perform best for small, low-resource languages. In
fact, we think it is clear that smaller models, trained
on the limited amount of data available for a given
low-resource language, can benefit from the ad-
dition of equal amounts of linguistically related
languages. Our results indicate that such models
can outperform larger multilingual language mod-
els consistently and can come very close to the
performance of LLMs, like GPT, although at a con-
siderably lower cost in terms of training data size
and training time. With these findings in mind, we
plan ablation studies in the future to determine the
exact effects more precisely.

The findings of this paper further suggest that
there may be positive implications for not just low-
resource languages that can benefit from socio-
cultural neighbours or contact languages, but also
for all kinds of varieties within a given language,
such as regional dialects. Nonetheless, these find-
ings require further research, which will shape our

100



future outlook on the topic of this paper. We plan
to experiment with adding and removing further
languages to and from our models to assess the
performance impact. We also want to look more
closely at the precise quantities and composition
of added data, as well as the balances in relation to
other languages. Furthermore, we plan to test our
approach for regional varieties of German and other
languages, to determine whether this approach of
adding linguistically related languages or language
varieties to a model can help performance.

Limitations

It is clear that using BLEU score is not an ideal
metric, especially given the fact that Luxembour-
gish is not widely standardised in practice, meaning
that character variation is always present, making
a character-based metric difficult to interpret for
evaluation. However, due to Luxembourgish being
a low-research language, we could not determine a
more suitable metric. The fact that there is limited
data for Luxembourgish, and that there is only a
tiny amount of human annotated data, exacerbates
this problem.

Ethics Statement

This research was conducted using existing anno-
tated datasets and did not involve the creation of
any new human annotations. All data utilized in
this study was previously publicly available and did
not require any new data collection. The datasets
employed in this research are properly licensed for
this use.
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A List of Prompts

A.1 GPT-4o
• You are an editorial assistant for a Luxembour-

gish news outlet. Your task is to generate a
news headline for a news article, based on the
content of the article.

• You are a Luxembourgish social media user.
Your task is to generate a positive user com-
ment in response to a news article. The com-
ment should be closest to a comment that is
most likely to get the most upvotes or thumbs
up from other users.

• You are a Luxembourgish social media user.
Your task is to generate a user comment in re-
sponse to a news article. The comment should
be closest to a comment that is most likely to
get the most downvotes or thumbs down from
other users.

• Based on a Luxembourgish Wikipedia article
as input, your task is to generate a short de-
scription in Luxembourgish of the thing that
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is being described. The description can be as
short as a word, and no longer than a short
sentence.

A.2 Llama 3
• You are an editorial assistant for a Luxembour-

gish news outlet. Your task is to generate a
news headline for the following news article,
based on the content of the article. Only return
the title.

• You are a Luxembourgish social media user.
Your task is to generate a user comment in re-
sponse to a news article. The comment should
be closest to a comment that is most likely to
get the most upvotes or thumbs up from other
users. Only return the comment.

• You are a Luxembourgish social media user.
Your task is to generate a user comment in re-
sponse to a news article. The comment should
be closest to a comment that is most likely to
get the most downvotes or thumbs down from
other users. Only return the comment.

• Based on a Luxembourgish Wikipedia arti-
cle as input, your task is to generate the cor-
responding short Wikipedia description in
Luxembourgish of the thing that is being de-
scribed. The general description should not
be longer than a couple of words. Only return
the description.
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Abstract

The goal of our study is to identify paralleliz-
able texts for Church Slavic, across chrono-
logical and regional variants. Next to using
a benchmark text, we utilize a recently digi-
tized, large text collection and compile new
resources for the retrieval of similar texts: a
ground truth dataset holding a small amount
of manually aligned sentences in Old Church
Slavic and in Old East Slavic, and a large un-
aligned dataset that has a subset of ground
truth (GT) quality texts but contains noise from
handwritten text recognition (HTR) for the ma-
jority of the collection. We discuss prepro-
cessing challenges in the data and the impact
of sentence segmentation on retrieval perfor-
mance. We evaluate sentence snippets mapped
across these two diachronic variants of Church
Slavic, expressed by mean reciprocal rank, us-
ing embedding representations from large lan-
guage models (LLMs) as well as classical string
similarity based approaches combined with k-
nearest neighbor (kNN) search. Experimental
results indicate that in the current setup (short
text snippets, off-the-shelf multilingual embed-
dings), classical string similarity based retrieval
can still outperform embedding based retrieval.

1 Introduction

Despite recent successes of large language model-
ing and transformer-based representation of texts,
for historical languages and dialectal varieties these
techniques suffer from the lack of training data,
leaving their text representation capabilities and
generative functionalities weak. Furthermore, this
field suffers from human insight due to the scarcity
of historical linguists, making it challenging to
compile benchmark resources and evaluate exper-
imental results. Our work seeks to automatize

and scale the mapping of parallel texts for di-
achronic variants of Old and Premodern Church
Slavic. Since systematic standardization or normal-
ization of Church Slavic has never taken place, we
are confronted with the typical challenges associ-
ated with non-standard text variation in historical
natural language processing (NLP).

Old Church Slavic got established in the 9th
century C.E. during the christianization of Slavic
language territories in Europe, primarily to trans-
late from Byzantine (Koine) Greek into a language
of the local people, and functioned as a liturgical
written language with strong resemblance to Greek
constructions as well as theological and philosoph-
ical terminology, sounding artificial to the Slavic
ear. Despite conservative efforts and archaizing
endeavours that regarded the texts as sacrosanct
and thus unalterable, Church Slavic underwent con-
siderable modification throughout its history: both
spontaneous and dedicated adaptations occurred
in morphosyntax and lexicon, as Slavic dialectal
vernaculars themselves have evolved into separate
languages. In addition to the changes resulting
from the gradual divergence of dialects, a number
of unintentional modifications occurred during the
copying process, as well as a number of intentional
redactions. These factors contributed to the emer-
gence of a significant number of textual variants
and manuscript copies.

1.1 NLP for Church Slavic
Two variants of Church Slavic are increasingly
present in the NLP landscape: Old Church Slavic
(ISO 639-3 language code: chu) and Old East
Slavic (language code: orv), a.o. via the Universal
Dependency Treebank and its tooling1 and Stanza

1https://github.com/ufal/udpipe
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resources2. More recent work, primarily on lan-
guage identification, reported about their incorpo-
ration in text classification models and downstream
tasks (Kargaran et al., 2023) and a recent shared
task focusing on evaluation of embeddings learned
from historical language data included Church
Slavic as well (Dereza et al., 2024). It is indicative
that the authors of one of the systems submitted
for the shared task, Dorkin and Sirts (2024), note
that custom tokenizers as well as custom embed-
dings need to be created for these languages as off
the shelf tokenizers do not cover chu and orv and
output a large amount of unrecognized symbols.

Resources related to large language models
(LLMs) such as benchmark data, tasks, or trained
models for both of these Church Slavic variants are
scarce. Typical benchmark tasks, e.g. for evaluat-
ing embeddings – cf. e.g. Muennighoff et al. (2022)
–, are not applicable to the historical languages of
our focus, for example since our type of data fea-
ture specific genres of religious texts and thus do
not enable creating or translating texts for typical
benchmark tasks for contemporary languages, such
as product reviews, social media messages, image
captions, etc.

Neither has it been systematically explored
which generative capacities of LLMs may be rel-
evant for this field, but we note that the shared
task of Dereza et al. (2024) includes masked word
and masked character prediction. Retrieval aug-
mented generation and embedding-based similarity
are powerful for modern languages, but likely less
so for diachronic linguistic research purposes, since
the primary goal of diachronic studies is to reveal
orthographic and grammatical variation patterns
and mechanisms in the data, and not to enable ac-
cess to document content via semantic question
answering as for historical and cultural studies.

Moreover, temporal and geographical variation
within chu and orv are under-explored; our pre-
vious work includes a study using BERT (Devlin
et al., 2018) to classify temporal-spatial dimen-
sions of Church Slavic data on the sentence level,
utilizing document level annotation as ground truth
labeling of manuscript copying time and language
region (Lendvai et al., 2023).

1.2 Our Goals and Contributions

In the current study we use the retrieval paradigm
in order to identify parallelizable Church Slavic

2https://github.com/stanfordnlp/stanza

texts and to collect insights across two temporal-
dialectal varieties, chu and orv. We create new
datasets that can serve in future work as training
resources both for machines and for Slavicists who
can view and examine variation. Effectively, this
could be considered a cross-lingual retrieval setting,
as the textual variants exhibit significant differences
due to temporal and regional distance: chu repre-
sents the original text tradition from the 10th-11th
centuries in South Slavic regions, while orv rep-
resents later copies from the 15th-17th centuries,
influenced by vernacular elements characteristic of
East Slavic regions.

We use a set of classical string representation
(character n-grams, TF-IDF) and similarity compu-
tation approaches (sequence matching, local align-
ment, and kNN similarity search). We contrast
these with neural methods of string representa-
tion (text embedding vectors, BERT pooling and
SBERT), and retrieve and rank candidates based
on cosine vector similarity with kNN. We discuss
the potentials and implications of our findings in
the NLP parallel text compilation context.

1.3 Related Work
Measuring semantic textual similarity (STS), and
more recently conditional STS, has been the topic
of vast amounts of previous work, cf. e.g. Desh-
pande et al. (2023) and their references. Likewise,
the construction of aligner systems and comparable
corpora, such as those used in machine translation,
has been a focus of research since several decades,
cf. e.g. Zweigenbaum et al. (2017). Recent ad-
vancements in this area, including applications un-
der sparse data conditions, have been explored b
cf. e.g. Lin et al. (2024) and others. Dense text
retrieval, particularly leveraging pretrained large
language models (LLMs), is an emerging field of
research. For a comprehensive survey, see cf. Zhao
et al. (2022).

General purpose sentence representation learn-
ing has been extensively studied and is supported
by a large body of literature, e.g. Artetxe and
Schwenk (2018); Reimers and Gurevych (2019).
Adaptation of LLMs to historical languages has
been tackled by several works, cf. e.g. Dereza et al.
(2023) and their references. Note that orthographic
normalization, as utilized by the latter study, is not
a feasible approach for us, since certain patterns of
non-normalized orthography encode important tem-
poral or geolocational attributes across diachronic
language variants that can help retrieving paral-
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lelizable texts. Our work is rooted in a narrow,
applied use case, focusing on the exploration of
approaches that can be utilized for data filtering in
order to boost resource compilation for historical
variants of Church Slavic.

2 Data Preparation and Characteristics

We identified a (relatively) sizeable text, versions
of which are present both in a chu manuscript and
in an orv manuscript: the Vita of Paul and Ju-
liana3. The goal of our initial experiments was
to use the sentences of the older text version as
queries and the newer text version as answers to be
found, which we scaled up afterwards. To create
a benchmark dataset, manual alignment was done
first on the word level and subsequently on the
(sub)sentential level. Neither steps were straight-
forward.

Identifying a text that occurs in several
manuscripts is so far a manual process – until a ro-
bust retriever has been developed for Church Slavic
–, since manuscripts typically do not have associ-
ated metadata on the individual text level, and in
the digitized collection are often segmented only
on word and manuscript page level, so it is not
visible where texts or sentences start and end.

First and foremost, one needs to be able to read
and understand the historical languages to a certain
extent, and such experts are rarely available, e.g.
to decide if the corresponding words are in a one-
to-one or one-to-many/many-to-one relationship
to each other across the two texts. Typically, we
have seen one-to-one correspondences, but the two
focus text variants are not completely parallel, thus
there are phrases or sentences or entire passages
that have no equivalents.

The text sources are in different initial formats;
some in-house texts are plain text with linebreaks
using hyphenation (inserted by human editors or
HTR tools earlier), some are scattered across sev-
eral consecutive page-based files, yet others are in
CONLL-U format. We converted the texts to Fo-
LiA format using the tooling from that ecosystem,
cf. Lendvai et al. (2024), and reconstructed words
split across manuscript pages using scripts.

2.1 Codex Suprasliensis

The Vita of Paul and Juliana is the first text in the
collection Codex Suprasliensis, which is one of

3https://en.wikipedia.org/wiki/Paul_and_
Juliana

the oldest attestations of Church Slavic from the
10th century. The Codex Suprasliensis itself is part
of the Universal Dependencies (UD) Treebank4,
encompassing 9,854 sentences compiled from 48
texts by different authors, serving to be a liturgical
reader for the month of March. The manuscript’s
geographical origin in the strict sense is still dis-
puted, it is likely from the South Slavic area, its
language of its texts is said to be closest to the
Old East Bulgarian literary language. Since the
Suprasliensis contains translations of various ori-
gins, linguistic properties exhibited by the texts
are heterogeneous and additionally chronologically
ambiguous5. We had access to the Suprasliensis in
ground truth (GT) quality, although we note that
its character base is slightly different from online
versions (cf. Figure 1).

2.2 Great Menaion Reader

Importantly, some texts that are part of the
Suprasliensis, a.o. the Vita of Paul and Juliana, can
also be found in a compilation of Church Slavic
texts from ca. 500 years later (16th c.), originat-
ing from a different geographic-cultural area (Mus-
covy, East Slavic area): the Great Menaion Reader6

(GMR). While the Suprasliensis only contains texts
designated for readings for the month of March, the
GMR is a collection of volumes for each month of
the year, each consisting of a patchwork of trans-
lated and copied versions of biblical, hagiographic,
ecclesiastic texts of Church Slavic. Of the three
surviving copies of the GMR, the Uspensky copy
preserved the monthly volume of March and is
available to us in digital form. Consequently, we
use the Uspensky version of the Vita of Paul and
Juliana, from Weiher et al. (1997-2001), sub mar.
4, fols. 33c 1 – 41b 19, to explore parallels with its
counterpart in the Suprasliensis manuscript. Note
that the GMR text is much longer, as it holds a
part that was lost from Suprasliensis, which we
excluded from alignment.

The GMR March volume was prepared by us
both in ground truth (GT) quality, based on Weiher
et al. (1997-2001), as well as in raw HTR (handwrit-
ten text recognition) quality; for details about the
latter cf. Rabus (2019); Rabus et al. (2023); Lend-

4https://torottreebank.github.io
5cf. https://textualheritage.

org/bl/el-manusctipt-2012/
codex-suprasliensis-full-text-electronic-corpus.
html

6https://en.wikipedia.org/wiki/Great_Menaion_
Reader
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vai et al. (2024). In the raw HTR data, noise in-
cludes character misrecognitions as well as falsely
split or joined words.

2.3 Word Level Alignment
We manually aligned the text variants of the Vita of
Paul and Juliana on the word token level. In fact,
we aligned two different versions of each of the two
text variants of the text, which enables pointing out
similarities and differences of resources. The four
column alignment is illustrated by Figure 1.

1. Of the chu Vita of Paul and Juliana text vari-
ant from the Suprasliensis, the character set
is slightly different across resources, thus we
aligned

(a) in-house version based on http://
suprasliensis.obdurodon.org

(b) UD Treebank version7.

2. Besides, of the orv Vita of Paul and Juliana
text variant from the GMR we aligned

(a) GT of the GMR text (Weiher et al., 1997-
2001)

(b) in-house raw HTR output of the GMR
text (Rabus et al., 2023).

Altogether, the length of the word level aligned
dataframe is 2,538. Word overlap between the in-
house chu texts (1,169 words) and orv texts (1,256
words) is low (85 words), indicating that these two
language variants differ substantially, most typi-
cally orthographically but often also lexically.

2.4 Breathmark Based Subsentential Snippet
Segmentation

Next, we needed to create the same sentence bound-
aries across each of the text versions chu, orv, and
orv-htr. This was not a trivial exercise, given
that Church Slavic manuscripts do not use inter-
punction in the modern sense, neither whitespace
between the words. We made an empirically based
decision for the current study regarding sentence
segmentation, since sentence boundaries in exist-
ing treebank data resp. created by such tools are not
clearly defined, as we had earlier found (Jouravel
et al., 2024). We note that some available sentence
splitters create very long segments; these would
clearly be suboptimal as input to string based simi-
larity approaches. We tested simple chunking, e.g.

7https://github.com/UniversalDependencies/UD_
Old_Church_Slavonic-PROIEL

Figure 1: Word level alignment: for each of the chu
and orv variants of the Vita of Paul and Juliana text, we
aligned two different versions: the chu versions from
the UD Treebank resp. obdurodon.org, which show char-
acter encoding discrepancies (e.g. of superscript char-
acters), as well as the in-house orv versions in ground
truth (GT) vs. text recognition (HTR) quality. Note that
across the chu and orv variants, the absence and pres-
ence of (presumed) breathmarks (rendered as full stops)
differs. Breathmarks were used for snippet segmen-
tation when they occurred in either the Suprasliensis
(column A) or the GMR GT (column C).

creating snippets of word 6-grams and 10-grams
(without overlap windowing), but these semanti-
cally random units did not prove to be robustly
matchable in pilot experiments, neither convenient
for human evaluation, nor well motivated by our
core benchmark creation goal.

Therefore, snippet level segmentation was done
using the following heuristics: (1) end-of-sentence
full stop characters were manually inserted in the
word aligned file for the UD Treebank column (col-
umn A in Figure 1, whenever the token was the last
one of a sentence in the treebank data. After some
noise cleanup, this yielded a sentence boundary
count of 243.8 (2) Subsequently, we observed the
location of (presumed) breathmarks in the in-house
Suprasliensis text (column B). These marks were
coded as bullet point characters or as full stop char-

8We tried to obtain information about the
segmentation guidelines, see https://github.
com/UniversalDependencies/UD_Old_Church_
Slavonic-PROIEL/issues/3.
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acters, or more rarely, as commas or colons (398
periods, 17 commas). About half of these bound-
aries overlapped with the UD Treebank sentence
boundaries. (3) We observed the location of (pre-
sumed) breathmarks in the in-house GMR version
of the ground truth Vita of Paul and Juliana text
(column C). (4) We sliced each of the three token
aligned texts in columns B, C, and D at the same
positions, whenever there was a full stop character
seen either at step (1) or (3). Note that this bound-
ary setting method often (or typically) does not
yield syntactically or semantically complete sen-
tences but rather subsentential text snippets, which
are typically coherent but short and out-of-context,
which might be suboptimal input to LLMs, espe-
cially to sentence-based LLMs. After segmentation
all punctuation marks were removed from the texts.

2.5 Snippet Level Ground Truth Alignment
Small Benchmark Dataset This slicing procedure
created 409 snippets. The mean snippet lengths
were uniformly 5 tokens across each of the three
text versions. The mean edit distance between chu
and orv snippets was 40. From this set, we re-
moved snippets that were shorter than 3 words, in
order to focus on creating parallel data with size-
able sentence snippets. The mean snippet lengths
changed uniformly to 6 tokens across each of the
three text versions (see Table 1).

Our resulting ground truth dataset consisted of
359 snippets, where chu, orv, and orv-htr are par-
allelized (i.e., columns B, C, and D). For examples
see Figure 2.5. We provided English translations9

for each snippet to additionally illustrate their se-
mantics and syntactical complexity.
Large Benchmark Dataset We created breath-
mark based snippets from the entire large orv re-
source (GMR for the month March), both for the
hand corrected quality (GT) and the uncorrected
HTR version. These feature some orders of mag-
nitude more data but similar snippet lengths as the
small dataset. Table 1 shows a basic description of
the resulting data sizes.

Note that in a recent shared task dataset based a.o.
on the UD Treebank Dereza et al. (2024), reported
mean sentence lengths are 9 words for chu and 10
words for orv10; the authors note that "sentences
from historical texts are often much shorter than in
modern language due to their genre or purpose.

9based on http://suprasliensis.obdurodon.org/01_
paragraphed.html

10https://github.com/sigtyp/ST2024

Data- Lang Quality Snippets Words mean
set ISO W/S
Small chu GT 359 2,120 5.9

orv GT 359 2,037 5.7
orv HTR 359 2,090 5.8

Large orv GT 57,803 340,925 5.9
orv HTR 55,041 350,910 6.4

Table 1: Breathmark based snippet segmentation statis-
tics for our chu and orv datasets.

3 Experimental Setup

For the task of identifying parallelizable snippets,
we took the list of snippets from the chu Church
Slavic language variant of our benchmark text as
search queries. For each query, its aligned orv
Old East Slavic language variant was regarded as
the ground truth (or benchmark) reference answer
in the retrieval process. We submitted each snip-
pet from chu as a query to several retrieval proce-
dures (or systems) that processed one of the orv
datasets at a time, and we evaluated the top k re-
trieved orv snippets the systems returned as most
similar matches, setting k = 1 as well as k = 3.

3.1 Evaluation

Below we list the evaluation metrics that were used
to score retrieved snippets, as well as the five sys-
tems we tested for retrieval. For the task at hand, it
is not straightforward to establish a baseline, since
retrieval combines both similarity scoring as well
as candidate ranking, and our results show that sim-
ple approaches currently outperform sophisticated
ones.

3.1.1 Mean Reciprocal Rank

Top k snippets were evaluated using Mean Recip-
rocal Rank11 (MRR). MRR is used for expressing
retrieval quality in scenarios where there is a single
relevant result to a query. Over all queries for a task
for a system, MRR counts if the GT answer was
present or not in the set of k most similar snippets
that a system returned. According to our matrix of
experiments, we measured MRR @1 and MRR @3,
so the closer the corresponding MRR score is to
1, the more often the correct parallel snippet was
returned as the highest ranked (top 1) answer, resp.
was returned in the set of the top 3 highest ranked
answers, over all queries.

11https://en.wikipedia.org/wiki/Mean_
reciprocal_rank
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Figure 2: Alignment of sentence snippets for the languages chu and orv, the latter in ground truth (GT) and HTR
(handwritten text recognition) quality: six consecutive snippet pairs from our new dataset, created from the text Vita
of Paul and Juliana present in the manuscripts Codex Suprasliensis and Great Menaion Reader (GMR). The English
translation is for illustrative purposes and was not part of the experiments.

3.1.2 Evaluative Similarity Score: Local
Alignment

As a cumulative metric on the character level, we
also expressed the mean similarity of all pairs of
query string – candidate string retrieved at rank 1
in terms of local alignment (Localign). We defined
the Localign similarity as the proportion of charac-
ters in the query text that has been matched with
the retrieved text by the following method.

Local alignment was carried out based on an
adaption of the Smith-Waterman algorithm (Smith
and Waterman, 1981). The chosen score function
rewards zero substitutions by +2, punishes non-
zero substitutions by −1 and insertions and dele-
tions by −2, respectively. The minimum required
length for aligned subsequences is set to 1 charac-
ter, and cross alignment is prohibited. For details
see Lendvai and Reichel (2016). In order to ac-
count for orthographic variation, we established
single character equivalence classes in a joint table
for both chu and orv, e.g. the numerous spelling
variants of the ’i’ character, of the ’ya’ character,
and so forth. We relaxed the zero substitution cri-
terion not only to cover exact character matches
but any match of characters within the same ortho-
graphic equivalence class.

3.1.3 Evaluation Quality: Gold, Silver, Bronze
Small Benchmark Dataset Besides evaluating re-
trieval between the small GT aligned data of chu
and orv (rows 1 and 2 in Table 1), which we re-
gard as having gold evaluation quality, we also
assessed retrieval from noisy HTR data (row 3).
This evaluation is however suboptimal – therefore
we regards its representativeness as silver quality
–, a.o. since the degree of HTR noise and the actual
noisy strings may not be reproducible. e.g. if they
originate from a different HTR engine across query
and reference set.
Large Benchmark Dataset Next, we scaled up the
orv data (rows 4 and 5 in Table 1) and assessed
how this impacts retrieval quality. These data hold

texts for the entire month of March, in both GT and
uncorrected HTR quality. MRR scores for these
experiments likely express tentative trends, there-
fore we regard these as having silver resp. bronze
evaluation quality.

There are duplicate snippets in the data (e.g. ’and
he said’), both due to the repetitive way of story-
telling in the specific text genres at hand and the
way how the snippets were segmented. During
evaluation, in case a duplicate snippet was retrieved
(i.e., its positional index was not the expected GT
index), this was counted as if the snippet with the
correct index value would have been matched.

3.2 Systems for Similarity Scoring and
Ranking

Below we list the systems used for parallel snippet
retrieval. Each of them perform similarity scoring
and ranking between the chu queries and one of
the orv reference datasets. We used two Python
packages that implement classical approaches for
representing string similarity, and three systems
that utilize embedding vectors from LLMs for text
representation. They transformed each snippet in
the query resp. reference data into a fixed-length
vector. For vector dimensions see column Text
encoding (dim) in Table 2 resp. Table 3.

3.2.1 TF-IDF on Character 3-grams and kNN
Search

A Python package12 was used for n-gram-based
string matching: splitting the orv reference corpus
into character 3-grams and transforming it into a
sparse matrix of features computed based on impor-
tance, i.e. on term frequency - inverse document fre-
quency13 (TF-IDF). An unsupervised nearest neigh-
bor search model was fitted on this matrix14, using

12https://github.com/LouisTsiattalou/tfidf_
matcher

13https://scikit-learn.org/1.5/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

14https://scikit-learn.org/stable/modules/
neighbors.html
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cosine as distance metric between the k-matches
nearest neighbors for the chu queries; queries got
vectorized in terms of the TF-IDF sparse matrix
features constructed from the orv reference cor-
pus.

3.2.2 Character 3-gram Based Approximate
Matching

The second system also used a Python library15 and
implemented character 3-gram based approximate
matching. This system divided each snippet in
the reference collection into character 3-grams and
computed similarity based on common 3-grams,
combined with an inverted index, mapping charac-
ter 3-grams to the strings that contain them. For
each query snippet, it retrieved a subset of snippets
in the corpus based on shared n-grams, and used
SequenceMatcher to calculate string similarity ra-
tio only for the selected candidates, avoiding costly
pairwise comparisons for unlikely pairs.

3.2.3 GlotLID Embeddings with PCA and
kNN Search

The third system used GlotLID16, a FastText lan-
guage identification model that supports a large
amount of languages, including chu and orv (Kar-
garan et al., 2023). Importantly, FastText allows to
build vectors for nonstandard spellings since word
vectors are built from character substring vectors17.
GlotLID is a character n-gram embedding based
model; we used version 3 to generate embeddings
from our data. Next, we applied principal com-
ponent analysis18 (PCA) to reduce the dimension-
ality of the embeddings and found it to improve
performance in general, so only scores with PCA
incorporated are reported. The number of kept prin-
ciple components was chosen to explain 95% of the
reference data embedding variance. Cosine similar-
ity and kNN search was used to retrieve and rank
candidates.

3.2.4 mBERT Embeddings with PCA and
kNN Search

The fourth system also expresses text similarity in
terms of vector similarities, but of pretrained mul-
tilingual BERT embeddings (Devlin et al., 2018);
we used bert-base-multilingual-uncased that had

15https://docs.python.org/3/library/difflib.
html#difflib.SequenceMatcher.ratio

16https://huggingface.co/cis-lmu/glotlid
17https://fasttext.cc/docs/en/faqs.html
18https://scikit-learn.org/dev/modules/

generated/sklearn.decomposition.PCA.html

been pretrained on the largest 100+ Wikipedia lan-
guages. The vector representations of reference
and query texts were derived by mean pooling of
the final hidden layer output of the encoder over all
tokens in a snippet, selected by the attention mask.
We expected mean pooling (opposed to e.g. CLS
pooling) to be more robust against the type of the
processed text units – in our case snippets rather
than sentences. Subsequently, we calculated the
cosine similarity between the query and reference
text embeddings. We fitted a PCA model on the
reference data the same way as for the GlotLID
based system explained in Section 3.2.3, and used
kNN search.

3.2.5 SBERT with T5-based Dual Retriever
Model

For the fifth system we evaluated several mod-
els from the SBERT framework (Reimers and
Gurevych, 2019) applied in a zero-shot way, using
the default cosine similarity. SBERT provides a
large amount of sentence transformers models. For
our task, the XL version of the pretrained commu-
nity model – gtr-t5-xl19 – outperformed others, thus
we only report the scores for this specific model.
It is a large-scale dual encoder retrieval model in-
troduced by (Ni et al., 2021), initialized from the
pretrained T5 model family that uses mean pooling
gained from the encoder part of the T5 architecture.

4 Results and Discussion

For the tasks of identifying parallelizable candi-
dates for our small set of queries, results are listed
in Table 2 for the tasks using the small bench-
mark data and in Table 3 for the tasks using the
large GMR orv data. The best MRR score was
achieved by character 3-gram based approximate
matching (2nd row, difflib system). The results in-
dicate that systems using character n-gram based
methods worked well for the tasks at hand. This is
not very surprising, since the chu and orv text vari-
ants have strong character-level correspondences,
being snapshots of a language taken at different
times and locations.

The tested LLM-based systems and embedding
representations seem not to be able to supersede
classical string similarity based methods. This is
likely due to chu and orv not being languages cov-
ered by the out of the box models we used, except
for GlotLID. Similar to the finding of (Dorkin and

19https://huggingface.co/sentence-transformers/
gtr-t5-xl
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Similarity scoring Text encoding Eval quality MRR @1 MRR @3 Localign @1
& ranking (dim) mean
kNN, Cosine char3grams, tf-idf (3.4k) GT (gold) .70 .76 .83

(3.3k) HTR (silver) .66 .74 .80
Approx. seq. match char3grams, GT (gold) .87 .90 .93
(difflib) (inverted index) HTR (silver) .86 .89 .92
kNN, Cosine + PCA GlotLID (256) GT (gold) .10 .14 .40

HTR (silver) .11 .15 .43
kNN, Cosine + PCA mBERT (768) GT (gold) .18 .22 .47

HTR (silver) .18 .21 .45
SBERT, Cosine gtr-t5-xl (768) GT (gold) .58 .62 .73

HTR (silver) .48 .55 .67

Table 2: Results from five systems for parallel snippet retrieval using the small datasets. Evaluation both in gold
quality (on aligned GT pairs) and in silver quality (on gold-aligned pairs of noisy orv HTR data): each featuring
359 chu-orv query-answer snippet pairs.

Similarity scoring Text encoding Eval quality MRR @1 MRR @3 Localign @1
& ranking (dim) mean
kNN, Cosine char3grams, tf-idf (25k) GT (silver) .21 .26 .55

(22.6k) HTR (bronze) .19 .23 .53
Approx. seq. match char3grams GT (silver) .58 .61 .83
(difflib) (inverted index) HTR (bronze) .51 .54 .80
kNN, Cosine + PCA GlotLID (256) GT (silver) .03 .03 .36

HTR (bronze) .02 .02 .36
kNN, Cosine + PCA mBERT (768) GT (silver) .05 .07 .42

HTR (bronze) .03 .04 .40
SBERT, Cosine gtr-t5-xl (768) GT (silver) .23 .27 .57

HTR (bronze) .14 .18 .51

Table 3: Results from five systems for parallel snippet retrieval using the large reference datasets. Evaluation both
in silver quality, using gold-aligned pairs from the small dataset as reference, i.e. 359 chu query snippets used to
retrieve answers from ca. 58k orv snippets, as well as in bronze quality: 359 chu query snippets used to retrieve
answers from ca. 55k HTR orv snippets, for which we have HTR alignment in the small dataset as reference.

Sirts, 2024), the tokenizers typically yielded a vast
amount of unknown tokens as well as character
unigram or bigram tokens on our data, which could
be detrimental for LLM based representation.

The snippets aligned in our benchmark datasets
typically exhibit full semantic overlap by defini-
tion; however, due to historical semantic change
as well as text modifications, they also regularly
differ on the level of the lexicon or morphosyn-
tax (e.g. when a prepositional phrase got modified
into a construction involving a verbal prefix). It
is left for future research to find ways to adapt
LLMs to these specific languages and tasks. In
qualitative evaluation, we noticed nevertheless that
the LLM based systems tended to retrieve seman-
tically closer matches than string based methods,
yielding a more interesting pool of examples for
humanist research on language change. We also
note that filtering out short snippets (as described
in Section 2.5) helped the systems improve their
performance. HTR data quality had an expected
lowering on the scores, which was slight for the
small data and more impactful on the large data.

5 Conclusion

Our work is strongly anchored in the benchmark
data compilation scenario: the goal was to devise
ways to identify parallelizable text snippets from
one historical variant to another across temporal
and regional-cultural variants of Church Slavic, a
low resource historical language. We recast this
goal in a document retrieval setup and organized
the data to allow for a two-step procedure: (1) snip-
pet representation by classical as well as neural
text representation techniques: n-gram vectors vs.
embedding vectors, and (2) the retrieval and rank-
ing of most similar snippets, as expressed by string
distance metrics or by nearest neighbor vector dis-
tances.

We created and utilized a new data source for
Church Slavic historical language variants: a large
subset of the GMR corpus; we explored retrieval
of similar snippets both from GT tokens and HTR
versions of this subset, based on a new, manually
aligned benchmark set of chu and orv subsentential
snippets.

112



Our investigation provided insights into textual
similarity and its representation for two diachronic,
thus closely related, variants of the Church Slavic
language. Experimental results indicate that on
our Church Slavic data, the performance of tested
LLMs is superseded by classical approaches, pre-
sumably since only customized tokenizers and em-
bedding models would be able to create meaning-
ful representations for these language variants; and
perhaps partly because salient information for this
particular language pair that are diachronic variants
of each other is tied to the surface level and is less
effectively expressed by composite sentence repre-
sentation. This line of research should be given a
focused effort in future work.

In the current setup, string-based classical meth-
ods combined with kNN search worked best, how-
ever, this method might not generalize to other data,
or to other languages. Presumably, the current low
LLM performance will in the future benefit from
the emergence of large parallel resources involving
historical Slavic languages, which is the goal we
are working towards.

6 Limitations

Our evaluation scenario for the low resource lan-
guage of Church Slavic was realistic, i.e. we had a
large dataset from which to mine parallel sentences,
and little ground truth to evaluate on, thus results,
especially on the small aligned benchmark, might
not be robust. The queries were created from a
single text, and aligned resources were created by
versions of this text by a single person manually.
The resources are currently under revision, includ-
ing the preparation of alignment guidelines, they
can be released to the community with a delay.

Sentence segmentation was done on the basis of
(presumed) breathmarks, which might be subopti-
mal for embeddings. Neither the LLMs nor their
tokenizers were finetuned on the focus languages,
which entails that character-level and UNK tokens
were abunded and semantic information could not
be utilized to full potential. Application of exist-
ing tools and previous approaches from the liter-
ature, including overlap-enabled text chunking or
aligner systems, were beyond the scope of the cur-
rent study.
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Abstract

Orthographic variation is very common in Lux-
embourgish texts due to the absence of a fully-
fledged standard variety. Additionally, devel-
oping NLP tools for Luxembourgish is a diffi-
cult task given the lack of annotated and par-
allel data, which is exacerbated by ongoing
standardization. In this paper, we propose the
first sequence-to-sequence normalization mod-
els using the ByT5 and mT5 architectures with
training data obtained from word-level real-
life variation data. We perform a fine-grained,
linguistically-motivated evaluation to test byte-
based, word-based and pipeline-based models
for their strengths and weaknesses in text nor-
malization. We show that our sequence model
using real-life variation data is an effective ap-
proach for tailor-made normalization in Lux-
embourgish.

1 Introduction

Automatic text normalization is the task of mapping
non-standard spellings to a standard (Han and Bald-
win, 2011; van der Goot, 2019). Normalization
thus reduces orthographic variation and noise in
language data. It can serve as a pre-processing step
to facilitate downstream tasks like POS-tagging and
NER (e.g. Küçük and Steinberger, 2014; van der
Goot and Çetinoğlu, 2021).

In this paper, we address orthographic normal-
ization for Luxembourgish, a Germanic language
currently in the process of political development, in-
cluding orthographic standardization (Gilles, 2019).
Spelling norms for Luxembourgish are not a nov-
elty, however, due to a lack of language teaching
in school, written Luxembourgish today is charac-
terized by vast amounts of variation, e.g., ortho-
graphic, lexical, syntactical or regional. This has
led to written Luxembourgish texts adhering to the
standard orthography to be rare, even in formal con-
texts. For this reason, we develop an automatic text
normalization model for Luxembourgish to reduce

variation in written data as a pre-processing step
for NLP tasks.

Luxembourgish is an under-researched language,
and as such there is a lack of annotated parallel data
for training and fine-tuning normalization models.
To tackle this problem, our proposed solution uses
word-level real-life variation data to create training
data sequences and fine-tune multilingual sequence-
to-sequence models. In this paper, we use ByT5
(Xue et al., 2022) and mT5 (Xue et al., 2021) mod-
els and in addition, we benchmark the generative
models GPT-4o and Llama and a word-based Lux-
embourgish correction pipeline, spellux.1

We evaluate model performance using both quan-
titative metrics and a tailored qualitative evaluation
of linguistic contexts. Then, we compare byte-
based, word-based and pipeline-based models to
identify linguistic contexts in which models per-
form particularly well or struggle.

Our main contributions are therefore twofold:

(1) The first generative normalization model for
Luxembourgish, trained on real-life variation
data obtained from an online spellchecker.

(2) A linguistically-informed qualitative test set
tailored for Luxembourgish orthography, be-
sides a comprehensive quantitative evaluation.

2 Related Work

Luxembourgish, a relatively small language, is less
represented in NLP compared to its linguistic neigh-
bors, French and German. Research in NLP for
Luxembourgish has only recently gained momen-
tum, with a few earlier works: Adda-Decker et al.
(2008) introduced various resources for NLP tasks
in Luxembourgish; Snoeren et al. (2010) analyzed
typical writing patterns (contextual n-deletion) in
transcribed speech; and Lavergne et al. (2014)

1https://github.com/questoph/spellux
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Figure 1: Illustration of the creation of training data with the Luxembourgish Online Dictionary (LOD) sentence
‘Drink milk with honey, then your throat will no longer hurt.’ and the variational statistical data for ‘milk’. The
algorithm processes every word sequentially, this illustrates only the replacement process for the word ‘milk’.

presented a manually annotated corpus of mixed-
language sentences to test a word-based language
identification system. Additionally, the first tree-
bank for Luxembourgish Luxbank was recently re-
leased (Plum et al., 2024a).

Other developments include Sirajzade et al.
(2020) and Gierschek (2022), who tested various
approaches for performing sentiment analysis on
Luxembourgish, including training BERT-based
models. Philippy et al. (2024) proposed a new
approach to zero-shot classification using a task-
specific dictionary for topic classification. For spo-
ken data, Gilles et al. (2023a) and Gilles et al.
(2023b) developed LUX-ASR, an efficient Au-
tomatic Speech Recognition system for Luxem-
bourgish. Additionally, Ranasinghe et al. (2023)
fine-tuned language models for automatic com-
ment moderation. Some language models have
been trained using transfer learning from German,
such as LUXGPT (Bernardy, 2022). Other models
developed for Luxembourgish are LUXEMBERT
(Lothritz et al., 2022) and ENRICH4ALL (Anas-
tasiou, 2022).

Various T5 (Raffel et al., 2020) and ByT5 (Xue
et al., 2022) architectures have been developed for
lexical normalization. Samuel and Straka (2021)
pre-trained a ByT5 model for 12 languages with
synthetic data as part of the shared task Multi-
LexNorm (van der Goot et al., 2021). Similarly,
Rothe et al. (2021) fine-tuned a mT5 model using
synthetic parallel data for German, English, Czech
and Russian. Kuparinen et al. (2023) evaluated
different sequence-to-sequence models including
ByT5 for dialect-to-standard normalization in Nor-
wegian, Swiss German, Slovene and Finnish.

Lusetti et al. (2018) developed an encoder-
decoder architecture for text normalization in Swiss
German by using sequence-to-sequence models but
not T5 architectures. Similarly, Bollmann (2018)
worked on historical text normalization, compar-
ing encoder-decoder architectures to statistical ma-
chine translations.

For pipeline-based normalization, van der Goot
(2019) developed MoNoise, which has long been
regarded as the state-of-the-art text normalization
tool. This pipeline operates at a word level using a
spelling correction module and word embeddings
for various languages. Furthermore, van der Goot
(2019) introduced the error reduction rate (ERR)
as an evaluation metric for normalizers. MoNoise
has also been used on the task of nested named
entities in Danish (Plank et al., 2020) and for code-
switching data (van der Goot and Çetinoğlu, 2021).
For Luxembourgish, Purschke (2020) published
spellux a pipeline for automatic orthographic cor-
rection of text data, the first text normalization tool
for Luxembourgish.

3 Methodology

This section describes the methodology for fine-
tuning and evaluating our normalization model for
Luxembourgish. This includes the creation of train-
ing data, the experimental setup for the model train-
ing and benchmarking, and the model evaluation
process.

3.1 Creating Training Data
The lack of annotated and parallel datasets in Lux-
embourgish is a challenge for developing tailored
NLP solutions. This not only applies to text normal-
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ization but also, for example, to NER and machine
translation tasks. Creating parallel datasets man-
ually or via crowdsourcing is not a viable option
for Luxembourgish, as the majority of the popula-
tion has no formal training in orthography due to
the lack of extensive grammar teaching in school
contexts. Luxembourgish has only recently been
integrated more into the school curriculum to foster
the societal anchoring of the spelling rules. As a
consequence, corpus data for Luxembourgish writ-
ten in the standard orthography are scarce. The
solution applied in this paper is to create training
data based on real-life variation data obtained from
an online spellchecking tool.

Creating training data from synthetic data for
normalization has been used on multiple occasions,
as in Samuel and Straka (2021) and Rothe et al.
(2021). However, using only synthetic data may
be problematic as it does not accurately represent
real-life language use. For this paper, we use
data provided by the spelling correction website
Spellchecker.lu2 as a basis for the creation of train-
ing data. Users on the website can manually cor-
rect written Luxembourgish text based on context-
sensitive suggestions offered by the system. Pairs
of entered and corrected words are then logged
and statistically aggregated. As a consequence,
this dataset offers a unique real-life dictionary of
spelling variants per lemma, including their fre-
quency of use.

Using real-life variation to create training data
ensures that each variant in the data has actually
been used by people and is not just a random char-
acter replacement. Additionally, the frequency of
use of these variants can be represented in the data
realistically. Since the baseline for the replace-
ments mirrors a realistic distribution of spelling
variants based on actual texts written by people,
this approach is considered superior to using syn-
thetic data. The training data, hence, captures the
actual patterns of variation in Luxembourgish and
is not a randomly assembled approximation of non-
standard texts.

As the website is widely known and used in the
country,3 Spellchecker.lu provides us with an exten-
sive overview of the orthographic variation space

2https://spellchecker.lu
3The popularity of the website can be explained by the

recent increase in the use of written Luxembourgish in the
population, without having formal orthography training. The
website provides a helpful tool for writing Luxembourgish
correctly, e.g., in formal contexts.

in Luxembourgish. The variant dictionary includes
138,802 different lemmas with numerous variants
per lemma. Figure 1 illustrates an example with
the word Mëllech (‘milk’) and its most frequent
variations in the Spellchecker data.

We use transcriptions of discussions in the Cham-
ber of Deputies in Luxembourg as a source of ortho-
graphically correct Luxembourgish for the training
data.4 These transcriptions are from 2002-2012
and 2019-2020 and are produced by trained writers,
ensuring the correctness of the texts.

Combining the Spellchecker.lu variant dictio-
nary and the transcriptions then allows for the cre-
ation of parallel training data using correct Luxem-
bourgish texts and real-life variation patterns. We
apply an algorithm that processes every word in the
original sentence sequentially and looks up the vari-
ants in the Spellchecker.lu data. If the lemma is part
of the variant dictionary, it is replaced by a variant
based on its frequency of use. This process results
in around 833,000 parallel standard/non-standard
sentence pairs with a mean token difference of 19
tokens being changed per sentence pairs that can
be used as training data. Figure 1 illustrates this
process with an example sentence taken from the
Luxembourgish Online Dictionary (LOD).5

3.2 Experimental Setup

We fine-tune two multilingual sequence-to-
sequence models, ByT5 and mT5. For benchmark-
ing the task, we prompt Llama6 and GPT7, as well
as using the word-based normalization tool spellux.
In this way, we test various approaches for Lux-
embourgish text normalization, i.e., a byte-based
sequence-to-sequence and word-based sequence-to-
sequence method, as well as generative models and
a word-based pipeline. Due to a lack of training
data we did not opt for pre-training a sequence-to-
sequence model ourselves for this task. However,
recently Plum et al. (2024b) pre-trained a T5-based
model with multilingual data to improve perfor-
mance for Luxembourgish.

ByT5 is a multilingual byte-based sequence-to-
sequence model which encodes the input sequence
to UTF-8-encoded bytes and produces an output
sequence of UTF-8-encoded bytes (Xue et al.,
2022). The robustness to noise and variation of
byte-based and character-based models (Xue et al.,

4https://www.chd.lu/de/chamberblietchen
5https://lod.lu
6Llama-3.1-8B-Instruct
7gpt-4o-2024-08-06
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2022) makes them ideal models to fine-tune for
normalization in Luxembourgish. mT5 is a multi-
lingual transformer encoder-decoder model trained
on 101 languages (Xue et al., 2021). While ByT5 is
the focus of our experiment, the word-based model
mT5 is used as a comparison to the byte-based
approach for a sequence-to-sequence task.

The fine-tuning setup stays the same for the
ByT5 and mT5 models. Our experiments focus
on testing the experimental method (real-life train-
ing data and comprehensive performance testing)
rather than producing an optimized model, al-
though we did perform some hyperparameter tun-
ing, where we were not constrained by hardware
limitations. Using the ByT5 base model with 582M
parameters, the best performing model has a batch
size of 16, a learning rate of 1e-4, and a sequence
length of 256 trained on 3 epochs. We also fine-
tune the ByT5 large model with 1.23B parameters
to test the influence of parameter size on task per-
formance. We restrict the hyperparameter setup
for fine-tuning to a sequence length of 128 and
an epoch number of 1. The mT5 model is fine-
tuned using the base variant with 582M parameters.
Additionally, we fine-tune one mT5 model with
the same hyperparameters as the ByT5 model, a
sequence length of 128, 1 epoch and batch size 2.

Benchmarking is done by prompting GPT-4o
and Llama 3.1. The setup is the same for both
models, using the following prompt: “You are a
Luxembourgish teacher. Your task is to correct
these sentences on a word level based on the cor-
rect Luxembourgish orthography. Please only write
the corrected sentence and no explanation”. For
this task, we use the same evaluation sentences as
for the other models. The main focus of the setup
lies on models that are developed specifically for
Luxembourgish, nonetheless we include GPT-4o
and Llama for completeness reasons as the results
are not reproducible and there is a lack of knowl-
edge concerning the training data (see Section 5).

Our main comparison of the models is with the
spellux text correction pipeline, which is devel-
oped specifically for Luxembourgish. The tool
implements a combination of correction algorithms
for candidate evaluation: a word-based embedding
model trained on the entire archive from RTL.lu
(journalistic texts and user comments), an adapted
version of the spelling correction tool written by
Peter Norvig8, and an ngram-based tf-idf similarity

8https://norvig.com/spell-correct.html

matrix based on the RTL corpus. spellux also in-
cludes an adapted version of the variant dictionary
created from the Spellchecker data. For benchmark-
ing, we use the default settings of the pipeline.

3.3 Evaluation

We perform a comprehensive evaluation of the mod-
els based on both quantitative metrics and a qual-
itative analysis, where we compare the output of
different models to gain more insight into how well
the different models solved the task. First, we per-
form a quantitative evaluation using a wide array
of evaluation metrics, then, we develop a set of
qualitative tests tailored to the normalization task,
inspired by CheckList (Ribeiro et al., 2020). This
allows for a linguistically informed and systematic
analysis of the output and performance of the used
models.

Quantitative For the quantitative evaluation, we
create a corpus consisting of random user com-
ments from the RTL media platform, as they con-
tain a high amount of variation (Purschke, 2020),
and correct them manually. This results in an eval-
uation corpus consisting of 459 sentences from the
comments, equalling 7,146 tokens.

The evaluation metrics used for the fine-tuned
models and benchmarking include accuracy, recall,
precision, F1-score, and error reduction rate (ERR)
at the word-level, and character error rate (CER)
at the character level. To calculate the word-level
metrics, we align the original sentences, the pre-
dicted output sentences and the orthographically
correct sentences at the word-level. The alignment
is done by repurposing the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970) with
Kamil Slowikowski’s code for 3D alignment and
string alignment9, using the Levenshtein distance
for fuzzy string matching. Although other distance
metrics are available, we did not carry out any ex-
periments with these as this was not within the
scope of our research. We therefore opted for the
Levenshtein distance, since it is well established.

The most important metric for the normalization
task is the ERR, introduced by van der Goot (2019)
as an evaluation metric for normalizers, and used
as the main evaluation metric in van der Goot et al.
(2021). It captures the accuracy normalized over
the number of words to be corrected (van der Goot,
2019). The ERR normally has a value between 0

9https://gist.github.com/slowkow/
06c6dba9180d013dfd82bec217d22eb5
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Category Test Sentence

Quantity rule
writing of long vowels depending on stressed vowels & consonants Wou ass d’Bischt fir ze kieren?
(Gilles, 2015) Correction: Biischt

Where is the broom to sweep (with)?

Short Vowels
stressed short vowels and consonants D’Haus ass op mech geschriwen.
(Gilles, 2023) Correction: geschriwwen

The house is written under my name.

Table 1: Selection of test units for Luxembourgish. Full set of rules with examples provided in the Appendix.

and 1. Zero represents the leave-as-is baseline, a
negative value indicates that the model performs
worse than the baseline, and a positive value means
that the model normalizes more words correctly.
The comparability across multiple corpora is the
main advantage of using this metric, as the ERR is
a normalized value (van der Goot, 2019).

Besides word-level metrics, the character-level
metric CER is included so that the evaluation be-
comes more granular. This means being able to
not only distinguish between words that are either
simply correct or incorrect, but also by how many
characters words have changed (Kuparinen et al.,
2023). While this is by no means an indicator for
degrees of correctness, the metric does allow for
gauging how far away a predicted sentence is from
its correct form.10

Qualitative For the qualitative evaluation, we use
a setup similar to CheckList (Ribeiro et al., 2020), a
methodology to systematically test NLP models, to
evaluate the performance of the normalizer. Specif-
ically, we use the Minimum Functionality test to
probe the model as to the handling of Luxembour-
gish orthographic rules and to gain more linguistic
insights into the strengths and weaknesses of the
different models. These tests include two different
setups and implement 21 orthographic rules. These
rules are implemented based on the official Lux-
embourgish orthography.11 The first setup tests the
traditional application of a normalizer by correct-
ing an incorrect target word, therefore checking
corrections systematically against the backdrop of
orthographic rules. The target word is corrupted
systematically by applying the orthographic rule in
reverse.

10The CER is calculated using the implementation avail-
able at https://github.com/nsmartinez/WERpp following
Kuparinen et al. (2023)

11D’Lëtzebuerger Orthografie, ZLS 2022.

The second setup tests false positives by giving
a correct input and examining the number of false
corrections proposed by the model. We include
this test because of the known issues with auto-
matic text normalization, which might increase the
number of incorrect forms in a given text. This is
also captured in the ERR, as a value under 0 indi-
cates more mistakes than before. We include 10
sentences per test setup per category, which results
in 420 sentences.12

Table 1 shows selected categories, with a short
description and a test sentence from the first setup.
Appendix A includes the full table with the 21 rules
following the same format. The tables also include
references to linguistic literature for each respective
phenomenon. The first category in Table 1 is the
quantity rule which describes the use of the long
vowels <a, i, o, u, ä, ö, ü>. The test sentence stems
from the first setup and the underlined word Bischt
(‘broom’) is the target word, that the model should
correct into the correct form Biischt.

4 Results

This section illustrates the results from the
comprehensive quantitative evaluation and the
linguistically-informed qualitative tests. The eval-
uated models include fine-tuned ByT5 and mT5
models, generative models GPT and Llama and the
pipeline-based spellux.

4.1 Quantitative

Table 2 shows all the models trained on the nor-
malization task for Luxembourgish, including the
benchmarking with GPT, Llama and spellux. It is
a comparison between a byte-based, word-based,
generative-based and pipeline-based normalization
method for Luxembourgish. As already established,

12All sentences are taken from the LOD.
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Model Accuracy Recall Precision F1-Score ERR CER
ByT5 base 78.8 54.8 65.9 59.8 0.26 11.7
ByT5 large 71.8 51.3 49.6 50.4 -0.01 20.4
mT5 27.6 35.5 5.7 9.7 -5.70 22.2
Llama 63.7 0.0 0.0 0.0 -0.15 10.7
GPT-4o 84.8 66.0 77.5 71.3 0.46 7.2
spellux 82.2 46.8 86.3 60.7 0.39 7.5

Table 2: Evaluation of models, scores are in percentages except ERR.

the ERR is the most important metric for normal-
ization.

The ByT5 base model is the best performing
model using T5 architecture for Luxembourgish,
with an ERR of 0.26, an accuracy of 78.79% and
a precision of 65.9%, taking into account that this
model is pre-trained on multilingual data. In com-
parison, ByT5 large, for which we did not perform
any hyperparameter optimization, only reproduces
the leave-as-is baseline with an ERR of -0.01. In
contrast, mT5 performs the worst among the T5
architectures. Accuracy and precision are very low,
as is the ERR. Additionally, the CER is the lowest
for the ByT5 base model, indicating fewer mistakes
in a corrected corpus than in other models. Hence,
the byte-based model is more suitable for Luxem-
bourgish text normalization than the other tested
models.

Recurring issues with both ByT5 models are hal-
lucination, including the repetition of training data
and stopping early with long sentences. Kupari-
nen et al. (2023) encountered similar issues with
stopping early. However, an increase in epochs
and sequence length when training the ByT5 base
model reduces the hallucination rate to 5% and the
stopping rate to 2%.

The benchmarked generative models perform
very differently from each other. Llama shows an
even worse performance than mT5 with an ERR of
-0.15. The accuracy of 63.7% is not much lower
than the other models, but Llama achieves 0 true
positives and therefore a F1-score of 0. In com-
parison, GPT-4o performs well, with the highest
ERR score for this task. An important factor to con-
sider is the rapid progress of GPT and therefore the
issue of reproducibility with these generative mod-
els. The benchmarking results using the 3 month
older gpt-4o-2024-05-13 are much lower than the
current results with an ERR of 0.12. This demon-
strates how quickly GPT has improved, albeit with
a lack of transparency.

In contrast, the pipeline-based model spellux has

a good performance overall. In particular, the high
ERR rate of 0.39 indicates a high correction rate.
Only recall is lower than for the ByT5 base model.

4.2 Qualitative

In a second step, we evaluate ByT5 base, mT5
and the spellux pipeline qualitatively, focusing on
models that are specifically trained for Luxembour-
gish, to compare the linguistic performance of each
approach: byte-based, word-based and pipeline-
based. Table 3 shows the results of this evalua-
tion, with the scores indicating the success rate for
the first (correct columns) and second (preserve
columns) test setup. As described in Section 3.3,
the first setup tests the correction of target words
and the second setup the handling of false positives.

Although ByT5 and spellux have the same score
in 7 categories, ByT5 performs better in 9 cate-
gories. In comparison, spellux only performs better
than ByT5 in 5 categories. The starkest differences
in performance are present in the category <s> and
<g>. ByT5 has a success rate of 80% in compari-
son to the 40% of spellux in the <s> category. This
category describes the orthographic rule for the
unvoiced and voiced <s>, a phenomenon also in-
fluenced by the orthography of a related German
word. Instead of correcting the incorrect form, spel-
lux keeps the input form, creating a false negative,
or changing the word into a different word with
a different meaning. For instance, in the test sen-
tence with the target word iesen, where the correct
form would be iessen (‘to eat’), it corrects the word
to eisen (‘ours’). On the other hand, spellux has a
higher success rate in the category <g> with 80%
compared to ByT5 with 30%. This category de-
scribes the difference between the realization of
<g> as a plosive and as a fricative (Gilles and Trou-
vain, 2013). When the grapheme is realized as a
fricative, the <g> is never doubled, as opposed to
when the <g> is realized as a plosive. When look-
ing into the output of ByT5, it can be seen that
ByT5 keeps the target word the same instead of
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Category ByT5 base mT5 spellux
correct preserve correct preserve correct preserve

Quantity Rule 80 80 20 100 80 100
Short Vowels 70 100 20 100 50 100
Short Open Vowel [æ] 50 100 10 100 50 100
Short Closed Vowel [e] 70 90 20 100 40 100
Neutral Short Vowel [@] 90 100 40 100 70 100
Long Vowel [e:] 40 100 0 100 30 100
Diphthongs 60 100 20 100 50 100
r-Rule 70 100 0 100 60 100
Final Devoicing 60 100 30 90 40 100
Consonants <f, v, w> 10 90 10 100 30 100
Consonant <g> 30 100 10 100 80 100
Consonants <g, ch> 50 90 0 100 50 100
Consonant <h> 50 70 20 100 50 100
Consonants <j, sch> 20 100 0 100 20 100
Consonants <k, x> 50 100 10 100 40 100
Consonant <s> 80 90 10 100 40 100
Consonant <z> 30 100 0 100 40 100
n-Rule 40 90 20 100 40 90
French Loanwords 50 90 20 100 60 90
Silent <e> 20 90 0 100 30 100
Plural French Loanwords 10 100 0 100 10 100

Table 3: Success rate of Performance Tests, all scores are in percentages. The correct columns refer to sentences,
where a correction is necessary, the preserve columns to sentences that should not be corrected. Results in bold are
discussed in Section 4.2.

correcting it, creating a false negative.

Interestingly, both the ByT5 and spellux show
the same low success rate of 10% with the plu-
ral of French loanwords. French and German are
both contact languages to Luxembourgish, which
allowed for a rich borrowing history from both
languages (Conrad, 2023). This resulted in the or-
thographic inclusion of those words, particularly
for French loanwords. Morphologically, the plural
forms in Luxembourgish (<-en, -er>) are applied to
French loanwords instead of French plural forms
(<-s>). Due to the phonological phenomenon of
deleting the <-n> ending before specific conso-
nants, the <-e(n)> is replaced with <-ë> to avoid
ambiguity (Gilles, 2015). This rule is limited to
French loanwords and both ByT5 and spellux have
a very low score. However, considering that the
training data (the Chamber texts) contain many
French loanwords – they are frequent in the politi-
cal domain – it is somewhat surprising that ByT5
does not perform better in this category and spel-
lux might have achieved better results using the
advanced correction modes.

While ByT5 and spellux perform similarly, mT5
shows low scores in every category. This aligns

with our expectations based on the low perfor-
mance in the quantitative evaluation. The best
score for mT5 is 40% in the neutral short vowel
[@] category, a frequently realized sound in Luxem-
bourgish (Gilles and Trouvain, 2013). This is the
written equivalent of the schwa, which is <e> for an
unstressed syllable or <ë> for a stressed syllable.

Overall, the second test setup (preserve columns)
indicates near perfect scores for all three models.
Only ByT5 has a lower score of 70% for the cat-
egory <h> (vowel lengthening through <h> inser-
tion) which is not used in written Luxembourgish
but common in German. The lower performance in
this category might be explained by the pre-training
of the ByT5 model on different languages, includ-
ing German. It is possible that false transfer learn-
ing from German to Luxembourgish could cause a
lower performance.

5 Discussion

Automatic text normalization is a challenging task
whose success depends on a number of factors, in-
cluding a societally-anchored orthographic norm as
the target of the correction task, the availability of
large and standard-adherent datasets, suitable tech-
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nical approaches for implementing the task, and a
thorough understanding of the respective strengths
and weaknesses of each approach. Given the cur-
rent situation of written Luxembourgish – with a
standard under development and limited amounts
of correctly spelled text – in this paper we investi-
gate text normalization approaches and present a
comprehensive evaluation suite.

One of the challenges in developing text normal-
ization tools is the use of synthetic data. While
these are easy to produce based on existing corpora
and orthographic rule sets, they do not represent
the variation that would occur in real texts. To
overcome these shortcomings, we present a new
approach to generating training data with real-life
variation data derived from actual texts written and
corrected by writers of Luxembourgish. This ap-
proach has a clear advantage over synthetic data
or prompting LLMs, as it represents the variation
space of a language realistically, according to the
actual writing practices of its speakers. In particu-
lar, the combination of variants and their frequency
of use allows the creation of training data that re-
flect the variation patterns found in real-life texts.

Another problem with automatic text normaliza-
tion is model evaluation. Given the large amount of
variation found in written Luxembourgish, our ap-
proach to model evaluation includes a comprehen-
sive set of quantitative and qualitative tests. These
allow for a more fine-grained and linguistically
informed analysis of the model output, e.g. by
comparing success rates for specific orthographic
rules. In this way, our evaluation suite increases
the transparency of traditional evaluation metrics.

The results of the evaluation experiments show
that the tested approaches not only perform differ-
ently in terms of quantitative success, e.g. ERR,
but also show particular strengths and weaknesses
for specific orthographic rules and contextual phe-
nomena. In general, the latest version of GPT
(October 2024) outperforms all other approaches,
both model-based and pipeline-based. At the same
time, the ByT5 model presented in this paper and
the spellux correction pipeline show individual
strengths for certain sets of orthographic phenom-
ena. Nevertheless, we believe that working with a
technical solution tailored to Luxembourgish can
be advantageous. First, our approach allows us to
control all aspects of model training, i.e., training
data, model parameters, and task implementation.
Second, the use of real-life variation data as a basis
for model training brings our approach closer to

the actual variation space found in writing practice.
Third, since the standard orthography is still under
development, we can easily adapt and optimize our
approach to future versions of the standard. Fourth,
by combining linguistic analysis and hyperparame-
ter optimization, our approach offers great potential
for future iterations.

Looking beyond the task of text normalization,
our approach can also serve as a linguistic analysis
tool for detecting and classifying variation patterns
in written Luxembourgish, for example in the con-
text of the research project Tracing Attitudes And
Variation In Online Luxembourgish Text Archives
(TRAVOLTA).13 Using journalistic texts and user
comments from the media platform RTL.lu, we
can trace the development of individual as well as
group-based writing practices outside the official
spelling norm. Since there is hardly any research
on the development of the written domain in Lux-
embourgish, the project can contribute to a better
understanding of individual writing practices as
well as the structure and dynamics of its variation
space in general.

6 Conclusion

In this paper, we present the first generative nor-
malization model for Luxembourgish by creating
training data from real-life variation data. More im-
portantly, we develop performance tests for this nor-
malizer to achieve a comprehensive, linguistically-
informed evaluation using both quantitative and
qualitative metrics. For the creation of training
data, we use a variant dictionary with frequency
information to create parallel training data with in-
correct and correct sentence pairs. This training
data is then used to fine-tune a ByT5 model and a
mT5 model: the first sequence-to-sequence models
fine-tuned for this task. Additionally, benchmark-
ing is performed to compare byte-based (ByT5),
word-based (mT5), LLM-based (Llama, GPT) and
pipeline-based (spellux) approaches. Furthermore,
performance tests for Luxembourgish text normal-
ization offer a deeper insight into the strengths and
weaknesses of the models, as we compare ByT5,
mT5 and spellux.

As the performance of ByT5 shows, our ap-
proach to the generation of training data is an ef-
fective method to train models while preserving a
realistic variation space in the data. Furthermore,

13https://www.uni.lu/fhse-en/research-projects/
travolta/
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the ByT5 base model achieves comparable per-
formances to other approaches with an ERR of
0.26. Overall, this paper shows that normaliza-
tion for Luxembourgish is possible and achieves
good results, either with prompting LLMs, using
an already established pipeline, or with a ByT5
architecture.

Limitations

Due to the lack of a full-fledged standard in Lux-
embourgish, there is a very broad variation space
with overlapping spelling variants. Therefore, the
Spellchecker.lu variants should not be taken to re-
flect all possible variants in the variation space in
Luxembourgish as they only reflect the users of the
website.

We have limited computing resources concern-
ing specifically GPU space which results in a lim-
ited hyperparameter optimization setup. The GPU
nodes available and used for the experiments are
Dual CPU with 4 Nvidia accelerators and 768 GB
RAM.
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Category Test Sentence

Quantity rule
writing of long vowels depending on stressed vowels & consonants Wou ass d’Bischt fir ze kieren?
(Gilles, 2015) Correction: Biischt

Where is the broom to sweep (with)?

Short Vowels
stressed short vowels and consonants D’Haus ass op mech geschriwen.
(Gilles, 2023) Correction: geschriwwen

The house is written under my name.

Short Open Vowel [æ]
distinction between <e> and <ä> D’Mässere si frësch geschlaff!
(Gilles, 2015) Correction: Messere

The knives have been sharpened.

Short Closed Vowel [e]
distinction between <e> and <é> Meng Wunnéng ass um drëtte Stack.
(Gilles, 2015) Correction: Wunneng

My flat is on the third floor.

Neutral Short Vowel [@]
distinction between <e> and <ë> for schwa sound Kämm der deng Hoër!
(Gilles, 2014) Correction: Hoer

Comb your hair!

Long Vowel [e:]
distinction between <e> and <ee> Mäi beschte Frënd ass Chines.
(Gilles, 2015) Correction: Chinees

My best friend is chinese.

Diphthongs
distinction between the 8 diphthongs Firwat hues de dat net gleich gesot?
(Gilles and Trouvain, 2013) Correction: gläich

Why didn’t you say that straight away?

r-Rule
distinction between consonant <r> and vocalized De Poulet ass nach net ganz durch.
(Gilles, 2015) Correction: duerch

The chicken is not quite done yet.

Final Devoicing
distinction of voiced and unvoiced final consonants Eise Projet huet eng zolitt Basis.
(Gilles and Trouvain, 2015) Correction: zolidd

Our project has a solid base.

Consonants <f, v, w>
distinction between <f, v, w> based on German Du waars e brawe Jong.
(Gilles, 2015) Correction: brave

You were a good boy.

Consonant <g>
distinction between <g> as a plosive and fricative Hues du mech op dëser Foto getagt?
(Conrad, 2017) Correction: getaggt

Did you tag me on this photo?

Table 4: Performance test units (part 1).
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Category Test Sentence

Consonants <g, ch>
distinction between writings of fricatives after vowels Ech wunnen an der Buerch.
(Gilles, 2015) Correction: Buerg

I live next to the castle.

Consonant <h>
consonant <h> and non-existent expansion <h> All eis Méih war ëmsoss!

Correction: Méi
All our effort was for nothing.

Consonants <j, sch>
writing of fricatives Am Zuch hunn e puer Leit Kaart geschpillt.
(Conrad, 2017) Correction: gespillt

A few people were playing cards on the train.

Consonants <k, x>
writing of consonants <k,x> Dat Kand huet e gudde Karakter.

Correction: Charakter
This child has a good character.

Consonant <s>
distinction of voiced and unvoiced <s> Mir iesen de Mëtteg Nuddelen.
(Gilles, 2015) Correction: iessen

We’re having pasta for lunch.

Consonant <z>
distinction between <z> and <tz> Hie geréit fënnef Keele mat enger Klaz.

Correction: Klatz
He knocked down 5 pins with one ball.

n-Rule
deletion of final <-n> before specific characters De Theo war am Orall op Zak.
(Gilles, 2006) Correction: De

Thea was quick to answer in his oral exam.

French Loanwords
writing of French loanwords Hues du deng Valise scho gepaakt?
(Conrad, 2023) Correction: Wallis

Have you packed your case already?

Silent <e>
silent <e> of French loanwords Ech ginn ni ouni Necessair op d’Rees.
(Gilles, 2014) Correction: Necessaire

I will never go without my sewing kit on vacation.

Plural French Loanwords
plural of French loanwords <-er, -en, -ë, -éen, -éë> Mir kréien am Fréijoer nei Faccen.
(Conrad, 2023) Correction: Facen

We are getting a new facade in spring.

Table 5: Performance test units (part 2).
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Abstract

Reliable slot and intent detection (SID) is
crucial in natural language understanding for
applications like digital assistants. Encoder-
only transformer models fine-tuned on high-
resource languages generally perform well on
SID. However, they struggle with dialectal data,
where no standardized form exists and training
data is scarce and costly to produce. We explore
zero-shot transfer learning for SID, focusing on
multiple Bavarian dialects, for which we re-
lease a new dataset for the Munich dialect. We
evaluate models trained on auxiliary tasks in
Bavarian, and compare joint multi-task learn-
ing with intermediate-task training. We also
compare three types of auxiliary tasks: token-
level syntactic tasks, named entity recognition
(NER), and language modelling. We find that
the included auxiliary tasks have a more pos-
itive effect on slot filling than intent classifi-
cation (with NER having the most positive ef-
fect), and that intermediate-task training yields
more consistent performance gains. Our best-
performing approach improves intent classifi-
cation performance on Bavarian dialects by 5.1
and slot filling F1 by 8.4 percentage points.

1 Introduction

Most research on natural language processing
(NLP) for digital assistants has focused on stan-
dardized languages, despite the large degree of
dialectal variation exhibited by many languages
and the positive attitude towards dialectal versions
of such technologies expressed by some speaker
communities (Blaschke et al., 2024b).

A core task of natural language understanding
(NLU) is to detect the intent of an input to a digital
assistant (e.g., the instruction “delete all alarms”
belongs to the cancel alarm class) and to tag it
for specific slots (e.g., “all” should be tagged as
the reference associated with the intent). How-
ever, classifying dialectal inputs is still challenging

*Equal contribution.

PLM

PLM

PLM

SID

aux SID

aux
SID

SID

SID

SID

Finetuning Eval

a)

b)

c)

Figure 1: Overview of evaluated setups. We fine-
tune pre-trained language models (PLMs) on English
SID data (grey ○) and evaluate them on Bavarian
(red ○). We compare multiple setups: a) no auxiliary
tasks, b) multi-task learning by jointly training on En-
glish SID data and Bavarian auxiliary tasks (“aux”),
c) intermediate-task training on Bavarian, then fine-
tuning on English SID data.

as contemporary models are less proficient due
to the scarcity of low-resource and especially di-
alectal training data (Zampieri et al., 2020). To
overcome this issue, transferring task knowledge
cross-lingually from high-resource language data
to low-resource varieties is a strategy widely used
in NLU (Upadhyay et al., 2018; Schuster et al.,
2019a; Xu et al., 2020, inter alia). While many
approaches have focused on cross-lingual transfer
via embedding transmission and machine transla-
tion, van der Goot et al. (2021a) use non-English
auxiliary task data for zero-shot transfer to other
languages.

Inspired by this setup and by intermediate-task
training procedures (Pruksachatkun et al., 2020),
we use auxiliary tasks to analyze and improve zero-
shot transfer learning for slot and intent detection
(SID) for Bavarian dialects (Figure 1). To account
for intra-dialectal variation, we evaluate on two pre-
viously released Bavarian datasets and introduce a
third test set. For the auxiliary tasks, we use three
recent Bavarian datasets for syntactic annotations,
named entity recognition (NER), and masked lan-
guage modelling (MLM).
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We make the following contributions:

• We release a new Bavarian slot and intent de-
tection evaluation dataset (§4.1).1

• We examine how training on auxiliary
NLP tasks in Bavarian affects SID perfor-
mance (§6.2). We compare both the in-
tegration of the auxiliary tasks into the
training setup (joint multi-task learning vs.
intermediate-task training) and the tasks them-
selves.

• To analyze the robustness of the results, we
examine performance and data differences be-
tween the dialectal test sets (§6.3, 6.4) and
include additional datasets (§6.5).

We share our code publicly.2

2 Related Work

Slot and intent detection for dialects and non-
standard varieties Research on SID for low-
resource languages, including non-standard and
dialectal varieties, has started receiving more at-
tention. This trend starts with van der Goot et al.
(2021a), who introduce a multilingual SID dataset,
xSID, containing South Tyrolean, a Bavarian di-
alect (more details in §4.1). xSID has since been
extended with dialectal data from Upper Bavaria
(Winkler et al., 2024), data in Bernese Swiss Ger-
man and Neapolitan (Aepli et al., 2023), and eight
Norwegian dialects (Mæhlum and Scherrer, 2024).

Similarly to our study, van der Goot et al. (2021a)
experiment with multi-task learning, although they
only have Standard German auxiliary data at their
disposal for the South Tyrolean test data. Other
approaches focus on tokenization issues or data
augmentation. Srivastava and Chiang (2023) tackle
tokenization issues caused by spelling differences
by injecting character-level noise into standard-
language training data, which improves the per-
formance on the dialectal test sets. Muñoz-Ortiz
et al. (2025) find that encoding text with visual rep-
resentations (rather than ones based on subword
tokens) improves transfer from Standard German to
German dialects for intent classification. Abboud
and Oz (2024) fine-tune a masked language model
on dialectal data to generate synthetic training data
for German and Arabic dialects. Malaysha et al.

1To be included in https://github.com/mainlp/xsid.
2https://github.com/mainlp/

auxtasks-bavarian-sid

(2024) organized a shared task on intent detection
in four Arabic dialects, where the top systems all
involve model ensembling and translating the train-
ing data into the test dialects (Ramadan et al., 2024;
Elkordi et al., 2024; Fares and Touileb, 2024).

In the context of spoken intent classification,
other work focuses on variation in spoken Italian
(Koudounas et al., 2023) and English (Gerz et al.,
2021; Rajaa et al., 2022; He and Garner, 2023).

Multi-task learning (MTL) Joint MTL learn-
ing involves jointly training a model on several
tasks. Ruder (2017) provides a general overview.
Martínez Alonso and Plank (2017) find that tasks
with non-skewed label distributions lend them-
selves best as auxiliary tasks for sequence tagging.
Schröder and Biemann (2020) show that auxiliary
tasks which are more similar to the target tasks
result in better target performance.

Regarding MTL for SID, Wang et al. (2021) train
a transformer model on dependency parsing, POS
tagging, and SID, with different layers attending
to the different tasks. They find that the syntactic
tasks improve SID performance (especially when
both are included), and that jointly producing slot
and intent labels is also beneficial.

Van der Goot et al. (2021a) use English training
data for SID but additionally exploit non-English
auxiliary task data, hypothesizing that this helps
their models to learn additional linguistic proper-
ties of the target language. They find syntactic
tasks to be useful for slot filling for one pre-trained
language model but not another, and harmful for
intent detection. Similarly, they find masked lan-
guage modelling (MLM) to be of use for slot filling
but not intent classification. Machine translation as
auxiliary task yielded worse performance.

Intermediate-task training While MTL is about
fine-tuning a model simultaneously on multiple
tasks, intermediate-task training concerns first fine-
tuning a model on one or more auxiliary tasks and
subsequently fine-tuning it on the target task. In
a similar vein to some MTL results, Poth et al.
(2021) and Padmakumar et al. (2022) find the simi-
larity between the intermediate and target task to be
important. Similarly, Pruksachatkun et al. (2020)
evaluate models on inference and reading under-
standing tasks and find including intermediate tasks
also related to reasoning to be useful. Padmakumar
et al. (2022) further find that including multiple in-
termediate tasks at once often yields better results
than only including one, although the interactions
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Figure 2: The Upper German dialect groups Bavar-
ian (blue, right) and Alemannic (green, left), based on
Wiesinger (1983). The red dots show the xSID datasets
included in this study and our new dataset, de-muc.

of tasks are difficult to predict.
In the context of cross-lingual evaluation,

Samuel et al. (2022) find that continued pre-
training via target-language MLM has mixed re-
sults. Phang et al. (2020) show that even in cross-
lingual scenarios, intermediate-task learning on the
source language can be beneficial.

Some recent studies include both MTL and
intermediate-task training. Weller et al. (2022) find
that MTL with several auxiliary tasks tends to per-
form worse than with just one additional task, and
that MTL beats intermediate-task training when
the target task has less data than the auxiliary task.
Montariol et al. (2022) focus on cross-lingual hate
speech detection and add auxiliary tasks in multi-
ple languages (including the target language). They
find joint MTL setups to outperform intermediary
task training, and semantic auxiliary tasks to be
more beneficial than syntactic ones.

3 Background: Bavarian Dialects

Bavarian dialects differ from Standard German
in phonetics, phonology, word choice, and mor-
phosyntax (Merkle, 1993). There is no estab-
lished orthography or standard variety of Bavar-
ian. The Bavarian dialects belong to the Upper
German dialect group and are split into three ma-
jor subgroups (Northern, Central, and Southern
Bavarian; Figure 2), mostly based on sound differ-
ences (Wiesinger, 1983). There is also phonetic/
phonological and lexical variation within these
groups (Rowley, 2023, passim). The pronuncia-
tion differences are also reflected in the spelling
choices made in the different training and evalua-
tion datasets in our study, although the spellings

also reflect idiosyncratic preferences. We compare
the Bavarian SID test sets in §6.4.

Some of the morphosyntactic differences be-
tween Bavarian and Standard German (cf. Blaschke
et al., 2024a) are relevant for SID, and recent work
(Artemova et al., 2024) has shown that slot filling
performance in German is negatively affected by
dialectal syntactic structures. Person names are typ-
ically preceded by definite articles, and the given
name generally follows the family name (Weiß,
1998, pp. 69–71) – this has been analyzed in the
context of NER (Peng et al., 2024) and might also
be relevant for slot filling. Furthermore, many NLU
queries contain infinitive constructions of the form
“remind me to [do X]”. Such cases are often ex-
pressed with a nominalized infinitive construction
(Bayer, 1993; Bayer and Brandner, 2004; see, e.g.,
Table 10) that does not exist in Standard German.

Additionally, as in many other German dialects
(Weise, 1910), temporal expressions (relevant for
datetime slots) can be expressed in ways that are
not grammatical in Standard German, e.g., fia fünfe
heid auf Nacht “for 5PM tonight” (lit. “for five
today at night”) or um 3 nammiddog “at 3PM” (lit.
“at 3 afternoon”).

4 Data

4.1 Slot and Intent Detection Data
xSID We use xSID 0.5 (van der Goot et al.,
2021a; CC BY-SA 4.0), which provides develop-
ment and test sets (300 and 500 sentences, respec-
tively) for slot and intent detection in a range of
languages, as well as a large English training set
(44k sentences). It covers 16 intents and 33 differ-
ent slot types. The data consist of re-annotated En-
glish sentences from SNIPS (Coucke et al., 2018)
and a Facebook dataset (Schuster et al., 2019b).
The non-English development and test splits are
translations.

xSID 0.5 contains multiple Upper German di-
alects (Figure 2), none of which are standardized:
South Bavarian as spoken in South Tyrol (de-st; in-
cluded in the first xSID release), Central Bavarian
as spoken in Upper Bavaria (de-ba; Winkler et al.,
2024), and Swiss German as spoken in Bern (gsw;
Aepli et al., 2023). We focus on the Bavarian test
sets, but include the Swiss German data as well
as the Standard German (de) and English (en) test
sets in an additional evaluation (§6.3).

Munich Bavarian evaluation data To investi-
gate the effect of intra-dialectal variation and differ-
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ent translation choices, we create a second Cen-
tral Bavarian translation. The new test and de-
velopment set is in the dialect spoken in Munich
(de-muc), translated by a native speaker (one of the
authors). The translation is directly from English,
without referencing either the Standard German or
dialectal versions, as was also done for the other di-
alect translations. The (sentence-level) intent labels
are the same as in English and the other languages;
the (token-level) slot spans were annotated by the
translator. As there is no Bavarian orthography,
de-muc represents the spelling preferences of the
translator. The grapheme–phoneme mapping is
similar to that of Standard German and reflects the
translator’s pronunciation. Most words are lower-
cased, also nouns that would be capitalized in Ger-
man. Named entities are left untranslated and, per
the xSID guidelines, grammatical mistakes in the
original sentences are also adopted in the transla-
tions.

Our Munich Bavarian translations are the most
similar to the other Central Bavarian ones (de-ba)
on a word and character level (see Appendix A).

We share a data statement (Bender and Friedman,
2018) in Appendix B.

Additional evaluation data To evaluate whether
some of our findings generalize to other Bavarian
datasets, we use test sets provided by Winkler et al.
(2024). They collected naturalistic data by ask-
ing Bavarian speakers to come up with queries for
a digital assistant that match xSID’s intents, and
translated a subset of MASSIVE (FitzGerald et al.,
2023) with the labels mapped to match xSID’s. The
translator for MASSIVE is the same as for xSID’s
de-ba set, and the contributors to the naturalistic
data also come from the same region.

4.2 Auxiliary Task Data Sets
We use three Bavarian datasets for auxiliary NLP
tasks. These tasks are similar to ones explored in
related work on MTL for SID (§2) and are addi-
tionally motivated by data availability.

Syntactic dependencies and POS tags (UD) As
token-level information and linguistic structure
might be useful for slot annotations, we include
two syntactic tasks: dependency parsing and part-
of-speech (POS) tagging. The Universal Dependen-
cies v2.14 (UD; de Marneffe et al., 2021) treebank
MaiBaam (Blaschke et al., 2024a; CC BY-SA 4.0)
provides such dependency annotations and POS
tags for Bavarian dialects from all three Bavarian

dialect groups, including varieties spoken in South
Tyrol, Upper Bavaria, and Munich. MaiBaam con-
tains some sentences from xSID, which we exclude
from our experiments, leaving 975 sentences that
we randomly divide into training and development
data using a 90:10 split.

Named entity recognition (NER) Similarly to
slot filling, NER concerns identifying and la-
belling spans of tokens as a sequence tagging task.
BarNER 1.0 (Peng et al., 2024) provides such an-
notations for named entities in Wikipedia articles
(CC BY-SA 4.0) and tweets. Based on the inspec-
tion of a small data sample, Peng et al. state that the
most represented Bavarian dialect group is Central
Bavarian (to which both de-ba and de-muc belong).
We use the predefined training and development
splits (9k and 918 sentences, respectively), and use
the fine-grained label set.

Masked language modelling (MLM) We also
include MLM, as it is a common pre-training objec-
tive.3 We use a subset of the Bavarian Wikipedia
(1.5k sentences, divided into 90% training and 10%
development data), as pre-processed by Artemova
and Plank (2023).

5 Methodology

We fine-tune pre-trained language models (PLMs)
on xSID’s English training data using MaChAmp
0.4.2 (commit 9f5a6ce; van der Goot et al., 2021b)
with the same hyperparameters as van der Goot
et al. (2021a) did for their SID experiments.

We evaluate slot predictions with strict slot F1,
intent predictions with accuracy, and also calculate
the proportion of sentences with fully correct pre-
dictions. We treat SID itself as a multi-task setup
as we jointly predict the slots and intent labels, and
treat slot detection as a basic sequence labelling
task with a final softmax layer. We use the fol-
lowing task types for MaChAmp (van der Goot
et al., 2021b): seq (slot filling, NER, POS tag-
ging), classification (intent classification), mlm
(MLM), and dependency (dependency parsing).
The loss for each task is weighted equally. We use
MaChAmp’s default loss functions (cross-entropy
loss for all tasks except dependency parsing, which
uses negative log likelihood). We provide mean
scores across three runs for each experiment.

3We note however that mDeBERTa v.3 is pre-trained on
replaced token detection rather than MLM (He et al., 2021a).
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We compare three types of experimental setups
(Figure 1):

Baseline We compare four commonly used
PLMs, which we finetune on SID data without
auxiliary tasks: the monolingual German GBERT
(Chan et al., 2020), and the multilingual mod-
els mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), and mDeBERTa v.3 (He et al.,
2021a,b).

Notably, mBERT’s pretraining data also includes
the Bavarian Wikipedia, which contains articles in
all three of our test dialects. XLM-R and mDe-
BERTa were pre-trained on the CC-100 dataset
(Conneau et al., 2020), which does not contain
Bavarian data. GBERT’s pretraining data is in Stan-
dard German. To limit computation costs, we use
the base-sized versions.4 In the remaining setups,
we only use mDeBERTa because of its strong per-
formance as a baseline PLM (§6.1).

Multi-Task Learning We train the model to
jointly predict labels for SID and at least one aux-
iliary task. We use × to denote these setups, e.g.,
NER×SID refers to training a model to simultane-
ously predict named entity labels, slots and intents.

Intermediate-Task Training We first train the
model to predict labels for an auxiliary task, re-
move the task-specific head, optionally repeat this
for a second auxiliary task, and then finally train
the model to predict SID labels. We use → to de-
note these setups, e.g. NER→SID refers to first
training a model on NER data, then on SID data.
As a special case, we train some models first jointly
on auxiliary tasks and then afterwards on SID (e.g.,
MLM×NER→SID).

We apply each auxiliary task dataset to both fine-
tuning setups. For the settings with multiple aux-
iliary tasks, we select combinations that appear
promising based on the results already obtained.
We were not able to examine all possible combina-
tions due to computational restraints.

6 Results and Analysis

We first present the results of the baseline mod-
els (§6.1), and then discuss the impact of fine-
tuning the model on auxiliary Bavarian NLP
tasks (§6.2). We next compare performances across

4We use deepset/gbert-base (license: MIT), google-bert/
bert-base-multilingual-cased (Apache 2.0), FacebookAI/xlm-
roberta-base (MIT), and microsoft/mdeberta-v3-base (MIT).
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Figure 3: Slot and intent detection results for the
different models, in %. The results are averaged over
the three Bavarian dialect test sets and three random
seeds (standard deviations shown as error bars). Mean
scores and standard deviations per individual dialect are
in Appendix D. The dashed lines denote the scores of
the baseline model (no auxiliary tasks). The setups with
auxiliary tasks also use mDeBERTa. The three pale
entries at the top are worse-performing baseline models
with alternative PLMs.
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Intents Slots

∆ to baseline ∆ to baseline
Avg

ITT MTL UD NER MLM
Avg

ITT MTL UD NER MLM
(→SID) (×SID) (→SID) (×SID)

SID (mDeBERTa) 73.5 45.3

UD→SID 73.8 +0.3 +0.3 49.3 +3.9 +3.9
UD×SID 48.9 –24.6 –24.6 42.1 –3.2 –3.2
NER→SID 76.5 +3.0 +3.0 53.1 +7.8 +7.8
NER×SID 76.2 +2.7 +2.7 53.8 +8.4 +8.4
MLM→SID 71.8 –1.8 –1.8 39.6 –5.8 –5.8
MLM×SID 71.9 –1.6 –1.6 44.6 –0.7 –0.7
UD→NER→SID 78.3 +4.8 +4.8 +4.8 54.3 +9.0 +9.0 +9.0
UD×NER→SID 78.4 +4.8 +4.8 +4.8 53.7 +8.4 +8.4 +8.4
UD×NER×SID 62.6 –10.9 –10.9 –10.9 44.7 –0.6 –0.6 –0.6
MLM×UD→SID 73.9 +0.4 +0.4 +0.4 49.2 +3.8 +3.8 +3.8
MLM→NER→SID 76.8 +3.3 +3.3 +3.3 51.5 +6.2 +6.2 +6.2
MLM×NER→SID 78.6 +5.1 +5.1 +5.1 53.7 +8.4 +8.4 +8.4
MLM×NER×SID 77.9 +4.3 +4.3 +4.3 54.8 +9.5 +9.5 +9.5
MLM×UD×NER×SID 58.0 –15.6 –15.6 –15.6 –15.6 48.7 +3.3 +3.3 +3.3 +3.3

Mean +2.5 –7.6 –5.8 +0.2 –0.8 +5.2 +2.8 +3.5 +6.7 +3.5
Std. deviation 2.6 11.4 11.4 7.7 7.1 4.9 5.2 4.4 3.3 5.3

Table 1: Differences to the baseline performance per set-up type (intermediate-task training (ITT) vs. MTL)
and auxiliary task (UD, NER, MLM), in percentage points (pp.). E.g., the results of the intermediate task-training
set-up with the UD tasks (UD→SID) beat the baseline by 0.3 pp. for intent detection and 3.9 pp. for slot-filling.
Scores are averaged across the Bavarian test sets and three random seeds.

the Bavarian dialects as well as an additional Up-
per German dialect (Bernese Swiss German) and
the standard languages German and English (§6.3).
We additionally discuss differences between the
Bavarian translations (§6.4), and lastly analyze the
results on other Bavarian SID datasets (§6.5).

6.1 Baselines: No Auxiliary Tasks

Our baseline experiments with mBERT and
XLM-R achieve similar scores to the results re-
ported by van der Goot et al. (2021a) for the overall
cross-lingual xSID test sets (Appendix C). How-
ever, these two models perform worse than GBERT
and mDeBERTa on the Bavarian test sets (see top
of Figure 3). GBERT provides the best slot filling
scores (F1: 47.2%) and a slightly higher propor-
tion of fully correctly annotated sentences (15.4%,
mDeBERTA: 15.1%), while mDeBERTa scores the
highest intent detection accuracy (73.5%).

For the remaining experiments, we use mDe-
BERTa as we expect the results of a multilingual
model to be more generalizable when applied to
other languages/dialects than the ones in our study.

6.2 Multi-Task Learning and
Intermediate-Task Training

Both the choice of joint or sequential setup and
the choice of auxiliary tasks influence the results
(Table 1). Generally, the auxiliary tasks are more
helpful for slot filling than for intent classification.
This might be due to them, like slot filling, be-
ing on a token level. We could not include any
sentence-level content classification tasks, for lack
of datasets (cf. Blaschke et al., 2023).

Except for the MTL model with all auxiliary
tasks, all settings that improve slot filling also help
with intent classification, and vice versa.

Joint multi-task vs. intermediate-task training
The intermediate-task setups (i.e., SID as a sep-
arate, last task) tend to beat the baseline in terms
of both intent detection and slot filling, with gains
of between 0.3 and 5.1 percentage points (pp.) for
intent detection and between 3.8 and 9.0 for slot
filling. The only exception is MLM→SID (–1.8 pp.
for intents, –5.8 pp. for slots).5 We assume that sep-

5In the set-ups where the model is first exclusively fine-
tuned on MLM, the perplexity on the MLM development
set is much higher than otherwise (Table 8 in Appendix §E),
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arately fine-tuning the model on SID works well as
the SID-related model weights cannot afterwards
be modified by other tasks.

The joint multi-task setups (where SID is
trained simultaneously with the other tasks), how-
ever, show less clear trends. Some task com-
binations have a large negative impact on in-
tent classification (e.g., –24.6 pp. for UD×SID;
–15.6 pp. when jointly fine-tuning on all tasks),
while others have positive effects (e.g., +4.3 pp.
for MLM×NER×SID). The effect on slot filling is
much more positive, with performance differences
ranging from –3.2 to +9.5 percentage points. Here,
performance appears to depend more on the choice
of auxiliary task:

Auxiliary task choice The UD tasks help when
they are included as intermediary tasks, but lower
the performance in nearly all joint MTL settings.
This is somewhat similar to the results by van der
Goot et al. (2021a), who found MTL with target-
language UD tasks to mostly lower the intent clas-
sification performance but to have a mixed impact
on slot filling.

Including NER as an auxiliary task is almost
always beneficial for slot filling (and otherwise only
has a small impact: –0.6 pp. for UD×NER×SID).
We hypothesize that this is due to the high similarity
between the two tasks (cf. Louvan and Magnini,
2020). It also has a positive effect on the intent
classification performance, except in joint setups
with UD and SID.

On its own, MLM has a negative effect on both
slot filling and intent classification, regardless of
whether it is included as a joint or intermediate-
task. When it is, however, used together with
other auxiliary tasks, it always improves the slot
filling performance and nearly always helps the
intent classification performance. These findings
are somewhat different from the ones by van der
Goot et al. (2021a), where joint MTL with target-
language MLM improves slot filling performance
and has mixed effects on intent classification. It is
possible that the MLM dataset in our study is too
small to meaningfully serve as data for continued
pre-training, and that including more data would
have made MLM a more beneficial task.

i.e., the auxiliary task was not learned properly. A possible
explanation is that the standard hyperparameters might not
have been optimal for MLM, and that the different model
parameter updates in a multi-task learning context mitigated
this somewhat.
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Figure 4: Intent (top) and slot (bottom) scores show
similar patterns across experimental set-ups for the
test varieties. The scores are averaged across three
random seeds (more details are in Appendix D). The
pale sections to the left show the scores of baseline
models with different PLMs. We use lines despite the
categorical nature of the x-axis to make the plots easier
to compare.

6.3 Performance Differences Across
Languages

While we previously focused on averages over the
three Bavarian dialect datasets, we now compare
the performance differences between them, and
also analyze the test scores on related languages
(Figure 4). The detailed prediction scores are in
Appendix D, and we summarize the trends below.

Bavarian dialects While the scores differ across
dialects, the trends across experimental setups are
the same: A setup that is beneficial or damaging for
the performance on one dialect has a similar effect
on the others. The performance gaps for the multi-
task and sequential settings are similar in scale to
the gaps of the corresponding baseline.

The predictions on the Munich Bavarian
(de-muc) test set tend be be worse than for the
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Upper Bavarian (de-ba) and South Tyrolean (de-st)
datasets. This is especially pronounced for the in-
tent classification results (Figure 4, top). There,
the results on de-ba and de-st are very similar, but
the scores on de-muc are between 1.2 and 17.0 pp.
lower than those on de-ba. The slot filling perfor-
mance is more consistent across dialects (Figure 4,
bottom), with score differences of 0.0–5.5 pp. be-
tween dialect pairs. Nevertheless, the results on
de-ba tend to be slightly better than for the other
dialects.

We discuss differences between the Bavarian test
sets in §6.4.

Swiss German We additionally consider the per-
formance on Bernese Swiss German, which, like
the Bavarian dialects, belongs to the Upper German
dialect group. Performance on Swiss German is
always worse than on the Bavarian dialects – also
for the baseline models that were not fine-tuned
on Bavarian auxiliary tasks. This is in line with
other SID systems evaluated on the gsw data (Aepli
et al., 2023) and might be due to the translation be-
ing more dissimilar to Standard German than the
Bavarian ones (Appendix A). However, the trends
for Swiss German are similar as for the Bavarian
dialects: Setups that improve or lower SID perfor-
mance for Bavarian also do so for Swiss German,
despite only involving Bavarian auxiliary data.

Standard German We analyze the performance
on Standard German, which is part of mDeBERTa’s
pretraining dataset. Performance on Standard Ger-
man is consistently better than on the Bavarian
dialects (intent detection accuracy remains at ≥
89.8%, slot filling F1 at ≥ 78.7%). Bavarian auxil-
iary tasks incur performance losses on the Standard
German test data across all settings, but the set-
tings that harm performance on Bavarian also have
the most deteriorating effect on the predictions for
German.

English Lastly, we turn to English – the fine-
tuning language. The scores are barely affected
by the auxiliary tasks: Intent detection accuracy
remains at ≥ 99.1% (the same as for the baseline)
and slot filling F1 scores at ≥ 94.4% (–0.7 pp.).

6.4 Differences Between Bavarian
Translations

The test sets reflect differences between Bavarian
dialects (§3) and translation choices. Table 2 shows
translations of the English test sentence “Delete

DE-MUC
streich olle wecka [intent]
remove.IMP all alarms

O B–ref. O alarm/cancel_alarm
B–entity
_name p

I–rem./
todo p

O ✓ AddToPlaylist p

DE-BA
Lösch olle Wegga [intent]
delete.IMP all alarms

O B–re. O alarm/cancel_alarm
O ✓ B–ref. ✓ O ✓ alarm/cancel_alarm ✓

DE-ST
tua olle Wecker weck [intent]
do.IMP all alarms away

O B–ref. O O alarm/cancel_alarm
O ✓ O p O ✓ O ✓ alarm/set_alarm p

Table 2: Translations of “Delete all alarms” into
Bavarian dialects with gold-standard and (cor-
rectly ✓ or incorrectly p) predicted annotations.
The predictions are by the overall best-performing
model, MLM×NER→SID, with the same random seed.
Abbreviated slots: ref. = reference, rem. = reminder.

all alarms”, which exhibit both spelling variation
(“alarms” rendered as wecka, Wegga, Wecker) and
different word choices (streich “remove”, lösch
“delete”, and tua ... weck “do ... away”).

Although there is very little morphosyntactic
variation between Bavarian dialects, some of the
translations exhibit different morphosyntactic struc-
tures that reflect different translation choices. Ta-
ble 10 in Appendix G provides an example.

Even small differences between translations can
affect the predictions of a SID model. In both ex-
amples, all three translations receive different slot
and intent labels by the best-performing model in
our experiments – even though the first two trans-
lations in Table 2 have an identical structure to the
English sentence, which is annotated correctly.

One possible reason for this is that the Munich
translation is mostly lower-cased, unlike the other
Bavarian translations. This likely further decreases
the subword token overlap with German cognates
that might be in the PLM’s pretraining data.

6.5 Additional Bavarian Test Sets

To investigate the robustness of our findings not
only across dialects, but also across different
datasets from the same area (Upper Bavaria; de-ba),
we use the additional datasets mentioned at the end
of §4. We evaluate the baseline model, the best-
performing model (MLM×NER→SID), and its
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MTL counterpart (MLM×NER×SID), which also
performs well on the xSID data (Figures 3 and 4).

All three models perform best on the xSID data
(intent accuracy: 77.7%, slot F1: 46.7%) and worst
on the MASSIVE translations (intents: 55.2%,
slots: 22.1%), with the naturalistic data in be-
tween (intents: 60.8%, slots: 31.7%). The de-
tailed scores are in Appendix F (Table 9). The
models that were also trained on auxiliary data
nearly always improve over the baseline. The over-
all best-performing model incurs improvements of
6.7–7.9 pp. for intent classification and 9.7–9.9 pp.
for slot filling on the additional test sets. Never-
theless, the magnitudes of the performance gains
for each model are slightly different compared to
the xSID data. Thus, while well-performing SID
systems are also useful for data from other distri-
butions, the performance patterns are not identical.

7 Conclusion

In all of our cross-lingual SID experiments, the per-
formance patterns are similar across dialects, but
the actual scores differ. To allow future research on
this kind of variation, we release a new evaluation
dataset (de-muc). In our experiments, intermediate-
task training tends to produce better results than
joint multi-task learning. Additionally, our Bavar-
ian auxiliary tasks (POS tagging and dependency
parsing, NER, MLM) were more beneficial for slot
filling than intent classification, with NER being
the overall most helpful auxiliary task.
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Limitations

Data The dialect tags should not be taken to re-
flect all dialect speakers from the respective regions,
nor necessarily the most traditional forms of these
dialects. That is, the new de-muc development/test
set only reflects the language of one young Munich
Bavarian speaker (see also §B.11).

Tasks Due to lack of data, we could not conduct
any experiments with sentence-level auxiliary tasks,
and we also could not compare our results to set-
tings with German or even Bavarian SID training
data.

We include MLM as one of our auxiliary tasks
since it is a common pre-training objective, albeit
not the one used for mDeBERTa v.3 (He et al.,
2021a), which instead uses replaced token detec-
tion (RTD; Clark et al., 2020). We use MLM as it
is supported by MaChAmp, and selecting a (sepa-
rate) MLM generator model for RTD would have
introduced additional task-specific parameters.

PLMs In the paper by van der Goot et al. (2021a),
the impact of the auxiliary tasks differs for two
PLMs. Due to computational constraints, we only
carried out the (non-baseline) experiments with a
single PLM and did not evaluate how robust the
results are across PLMs.

Implementation We decode the slot predictions
with a simple softmax layer. This might lead to
lower slot filling results than decoding the output
with conditional random fields to enforce consistent
BIO sequences (van der Goot et al., 2021a,b). We
do not assume that changing the output decoder
would lead to different trends regarding the effects
of MTL and intermediate-task training.

We use MaChAmp’s default settings, including
the maximum number of epochs (20) to keep feasi-
ble computation times. In many experiments, the
optimal number of epochs was 20 or close to 20.
It is possible that we could have reached better re-
sults with a larger number of epochs. Training the
model for longer might have been especially cru-
cial for MLM. We hypothesize that this might have
increased both the intermediate MLM and the final
SID performance of the MLM→SID model (§6.2).

We also use the default settings for all tasks,
including MLM. This leads to the MLM data being
split across epochs, leaving only a small portion
(70 sentences) being used per epoch. Disabling this
split might have lead to better or more consistent
MLM results.
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A Dataset Distances

We compare how similar the translations are to each
other. For each pair of sentence translations, we
calculate the word-level Levenshtein (1966) edit
distance. We also select all words tagged as the
same slot type (ignoring the B or I prefixes) and
join them with blank spaces. For corresponding
pair of slot values, we calculate the character-level
edit distance. We normalize each distance by di-
viding it by the length of the longer phrase, and we
convert it into a similarity score by subtracting it
from 1.

For both similarity levels (sentences and slots)
and regardless of whether we consider casing differ-
ences, the two Central Bavarian translations (de-ba,
de-muc) are more similar to each other than any of
the other pairs (Table 3). The Bavarian and Stan-
dard German translations are closer to each other
than the Swiss German translation.

B Data Statement

B.1 Header

• Dataset Title: xSID de-muc

• Dataset Curator(s): Xaver Maria Krückl, Ver-
ena Blaschke, Barbara Plank

Slot similarity (chars), case sensitive
de de-ba de-mucde-st gsw

en 0.51 0.51 0.55 0.48 0.42
de 0.69 0.66 0.73 0.58
de-ba 0.77 0.68 0.56
de-muc 0.67 0.51
de-st 0.55

Slot similarity (chars), case insensitive
de de-ba de-mucde-st gsw

en 0.53 0.53 0.55 0.51 0.45
de 0.70 0.70 0.74 0.59
de-ba 0.81 0.69 0.58
de-muc 0.70 0.54
de-st 0.55

Sent similarity (words), case sensitive
de de-ba de-mucde-st gsw

en 0.15 0.16 0.22 0.14 0.08
de 0.27 0.20 0.33 0.14
de-ba 0.45 0.29 0.13
de-muc 0.24 0.13
de-st 0.13

Sent similarity (words), case insensitive
de de-ba de-mucde-st gsw

en 0.17 0.19 0.22 0.16 0.10
de 0.28 0.24 0.33 0.14
de-ba 0.50 0.30 0.13
de-muc 0.27 0.14
de-st 0.13

Table 3: Mean similarities between slots or sentences
corresponding to each other. The similarities are cal-
culates as 1 minus the normalized Levenshtein distance.

• Dataset Version: 1.0 (expected to be part of
xSID 0.7)

• Dataset Citation: Please cite this paper when
using this dataset.

• Data Statement Authors: Xaver Maria Krückl,
Verena Blaschke, Barbara Plank

• Data Statement Version: 1.0

• Data Statement Citation and DOI: Please cite
this paper when referring to the data state-
ment.

• Links to versions of this data statement in
other languages: —
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B.2 Executive Summary

xSID de-muc is a manually annotated (translated)
extension of the English xSID development and
train set (van der Goot et al., 2021a) into the Bavar-
ian dialect spoken in Munich. The development
set contains 300 translated samples and the test set
500. The intents were taken over from the English
gold examples whereas the slots were annotated
by the translator. The translations were made over
several weeks.

B.3 Curation Rationale

The purpose of xSID de-muc is to provide further
dialectal development and test data in addition to
other Bavarian translations. We hope to extend our
research on dialectal SID through our data.

B.4 Documentation for Source Datasets

The xSID de-muc development and test set are
based on the respective English sets from xSID
(van der Goot et al., 2021a; CC BY-SA 4.0), which
in turn are derived in equal parts from two larger
datasets, the Snips (Coucke et al., 2018; CC0 1.0
Universal) and Facebook (Schuster et al., 2019a;
CC-BY-SA license) datasets.

B.5 Language Varieties

xSID de-muc contains data in Munich Bavarian (a
Central Bavarian dialect), as spoken by a young
speaker.

B.6 Language User Demographic

The original data were created by crowd workers
whose demographics are not known. For the trans-
lator, see Annotator Demographic.

B.7 Annotator Demographic

The translator and annotator is a native speaker of
German and Munich Bavarian in his mid-twenties.
He annotated the data while finishing his Master’s
degree in Computational Linguistics and is one of
the authors of this paper.

B.8 Linguistic Situation and Text
Characteristics

xSID consists of random samples from the English
Snips (Coucke et al., 2018) and Facebook (Schus-
ter et al., 2019a) datasets, which are compiled from
utterances to be used for training digital assistants.
Both datasets were mainly crowd-sourced; annota-
tions were validated.

B.9 Preprocessing and Data Formatting

We directly worked with xSID’s English sentences
and did not apply any further preprocessing steps.
Like the rest of xSID, the data set is in the CONLL
format.

B.10 Capture Quality

Some sentences contain grammatical errors or ty-
pos in the original datasets. Following xSID’s trans-
lation guidelines, we retained such errors in the
de-muc translations.

B.11 Limitations

The data set is a translation, which probably differs
from the way speakers express themselves when
not prompted to translate (Winkler et al., 2024) or
in fluent conversation.

It reflects the language use of a single speaker.
It does not represent the most traditional form of
Munich Bavarian. Additionally, other speakers
might prefer other spellings (since Bavaria has no
established orthography).

B.12 Metadata

• Annotation Guidelines: Appendices F and G
of van der Goot et al. (2021a)

• Annotation Process: — (see this paper)

• Dataset Quality Metrics: —

B.13 Disclosures and Ethical Review

There are no conflicts of interest. This research is
supported by European Research Council (ERC)
Consolidator Grant DIALECT 101043235.

B.14 Distribution

The de-muc split will be included in xSID under
the same license, accessible via https://github.
com/mainlp/xsid.

B.15 Maintenance

Errors can be reported via GitHub issues or email-
ing us. Updates to the dataset (and the release
history) will be available in the repository.

B.16 Other

—

B.17 Glossary

—
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About this document
A data statement is a characterization of a dataset
that provides context to allow developers and
users to better understand how experimental results
might generalize, how software might be appropri-
ately deployed, and what biases might be reflected
in systems built on the software.

This data statement was written based on
the template for the Data Statements Version 3
Schema. The template was prepared by An-
gelina McMillan-Major and Emily M. Bender and
can be found at http://techpolicylab.uw.edu/
data-statements.

C Baseline Systems

Table 4 shows the results of our baseline systems
(no auxiliary tasks) and the baseline systems by
van der Goot et al. (2021a) on all languages that
were in the original xSID release. Note that we
use XLM-R while van der Goot et al. (2021a) use
XLM-15.

D Detailed Results

We include tables with detailed results for the
Bavarian dialects, in addition to results for Swiss
German, German, and English. Table 5 shows the
intent classification scores, Table 6 the slot detec-
tion scores, and Table 7 for fully correct classifica-
tions (slots and intents).

E Auxiliary Task Scores

Table 8 shows the scores on the development sets
of the auxiliary tasks.

F Additional Bavarian Test Sets

Table 9 shows results on the de-ba dataset in addi-
tion to other data in the same dialect (or dialects
spoken in the same region).

G Additional Examples

Table 10 provides another example for translation
(and prediction) differences between the Bavarian
dialects.
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ar da de de-st en id it ja kk nl sr tr zh

Intents (accuracy, in %)
mBERT (vdG) 63.1 87.5 74.2 67.8 99.7 80.7 81.7 53.9 60.1 72.3 75.7 74.7 83.3
mBERT 67.9 84.8 74.8 65.8 99.0 76.0 76.3 55.5 56.9 69.9 75.7 71.3 84.8
XLM-15 (vdG) 65.5 56.3 78.5 61.3 99.7 36.4 48.0 39.1 29.9 45.4 41.4 67.3 78.8
XLM-R 78.1 95.3 88.9 70.9 99.0 95.3 80.5 54.5 75.8 84.3 82.7 94.1 96.0
GBERT 27.2 61.9 82.9 73.8 99.2 46.9 52.3 5.6 34.9 59.1 45.7 46.6 23.8
mDeBERTa 86.9 96.5 97.9 78.3 99.1 96.3 97.4 79.2 89.9 96.5 89.1 97.2 96.9

Slots (strict slot F1, in %)
mBERT (vdG) 45.8 73.9 33.0 48.5 97.6 71.1 75.0 59.9 48.5 80.4 67.4 55.7 72.9
mBERT 52.4 70.3 68.4 41.3 94.1 63.8 69.9 39.4 32.2 70.1 55.0 32.9 48.0
XLM-15 (vdG) 49.1 26.3 33.3 39.4 97.0 14.9 27.3 33.4 10.9 30.9 15.9 45.5 57.6
XLM-R 62.3 80.9 73.7 32.1 93.8 76.6 75.6 51.0 45.2 82.2 63.9 52.9 66.8
GBERT 19.7 37.3 78.8 46.5 93.7 17.2 28.0 0.7 5.4 44.4 18.5 8.3 14.5
mDeBERTa 71.1 79.7 83.1 46.0 95.1 78.3 83.1 49.8 52.4 86.6 72.1 58.3 74.7

Fully correct (in %)
mBERT 18.5 44.5 34.6 9.5 88.3 31.6 37.7 20.3 8.5 37.1 24.6 12.4 15.9
XLM-R 28.8 64.4 49.3 6.9 88.5 56.0 47.4 25.9 16.9 57.7 38.0 34.6 46.4
GBERT 4.9 12.4 53.7 14.7 87.5 1.9 4.5 0.9 1.9 12.8 3.9 2.3 3.3
mDeBERTa 44.1 61.7 66.1 15.9 90.0 58.8 63.1 40.4 24.6 72.7 46.3 35.6 57.7

Table 4: Scores of our baselines on xSID’s original test language selection. We also include scores by van der
Goot et al. (2021a) for comparison (= vdG). XLM-15 refers to xlm-mlm-tlm-xnli15-1024 (Conneau and Lample,
2019).

de-muc de-ba de-st gsw de en

SID (mBERT) 61.31.2 65.72.4 65.82.0 48.72.2 74.81.7 99.00.2
SID (XLM-R) 55.52.6 68.90.7 70.91.2 47.12.6 88.91.7 99.00.2
SID (GBERT) 67.92.7 69.10.5 73.81.0 63.91.5 82.91.3 99.20.0
SID (mDeBERTa) 64.63.1 77.70.7 78.30.8 57.52.7 97.90.4 99.10.1
UD→SID 64.44.0 79.42.3 77.72.4 59.14.6 96.41.0 99.30.2
UD×SID 38.93.2 54.12.8 53.82.5 28.81.4 92.51.7 99.20.2
NER→SID 67.70.5 82.83.5 79.11.3 66.23.2 94.20.7 99.20.2
NER×SID 66.31.6 82.81.8 79.61.0 65.11.1 94.91.2 99.10.1
MLM→SID 62.52.2 77.82.9 75.01.8 58.95.2 94.42.4 99.30.2
MLM×SID 61.52.1 76.92.1 77.30.5 56.83.4 95.31.3 99.20.2
UD→NER→SID 69.91.0 84.32.9 80.71.5 65.41.8 96.30.7 99.10.1
UD×NER→SID 70.51.8 83.11.7 81.51.2 64.53.6 95.12.7 99.30.2
UD×NER×SID 54.82.4 65.43.5 67.71.1 46.43.1 93.00.9 99.30.1
MLM×UD→SID 65.91.0 79.31.4 76.62.5 58.81.0 94.71.5 99.10.2
MLM→NER→SID 66.71.0 83.31.6 80.51.1 64.31.9 97.30.5 99.20.2
MLM×NER→SID 69.01.7 85.81.3 81.10.7 69.41.7 96.01.1 99.10.1
MLM×NER×SID 67.71.0 84.70.5 81.22.6 69.13.3 95.31.0 99.40.2
MLM×UD×NER×SID 49.15.8 62.14.6 62.73.6 42.08.3 89.80.9 99.10.2

Table 5: Intent classification results in the three Bavarian dialects, Swiss German, German, and English. We
show mean scores (accuracy, in %) over three random seeds, with standard deviations in subscripts.
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de-muc de-ba de-st gsw de en

SID (mBERT) 44.11.1 43.21.1 41.31.0 21.31.3 68.41.2 94.10.3
SID (XLM-R) 34.41.6 35.40.7 32.10.7 14.20.6 73.71.3 93.80.5
SID (GBERT) 47.11.3 48.20.7 46.52.6 30.00.9 78.80.8 93.70.4
SID (mDeBERTa) 43.30.9 46.72.0 46.01.0 20.72.5 83.10.7 95.10.2
UD→SID 48.42.5 50.90.2 48.52.2 22.60.3 80.91.5 95.10.1
UD×SID 38.62.9 43.64.2 44.14.0 22.83.4 79.81.2 95.10.2
NER→SID 53.90.5 55.32.3 50.21.4 30.11.4 82.70.6 95.40.3
NER×SID 52.51.8 55.91.1 52.90.9 33.30.1 82.21.1 95.00.2
MLM→SID 37.42.9 40.84.1 40.53.4 18.12.0 78.71.6 94.80.6
MLM×SID 42.01.4 45.52.0 46.31.6 21.21.8 82.20.7 96.10.2
UD→NER→SID 53.61.9 56.43.6 53.03.2 30.72.4 82.31.9 95.40.5
UD×NER→SID 53.21.6 55.61.7 52.30.5 29.30.4 81.41.3 94.80.7
UD×NER×SID 44.12.6 45.95.1 44.15.3 25.75.0 78.42.4 95.30.4
MLM×UD→SID 48.42.6 50.23.3 48.91.8 21.82.2 81.10.9 94.70.3
MLM→NER→SID 51.81.7 53.40.9 49.31.4 29.50.9 80.00.3 95.10.3
MLM×NER→SID 52.51.1 56.50.9 52.11.6 31.81.9 82.50.4 94.40.8
MLM×NER×SID 53.71.1 56.60.3 54.21.5 32.70.9 83.00.9 95.50.3
MLM×UD×NER×SID 46.31.2 50.42.3 49.31.1 28.70.8 81.00.7 95.60.4

Table 6: Slots classification results in the three Bavarian dialects, Swiss German, German, and English. We
show mean scores (strict slot F1, in %) over three random seeds, with standard deviations in subscripts.

de-muc de-ba de-st gsw de en

SID (mBERT) 11.00.2 13.40.3 9.50.2 3.00.3 34.61.6 88.30.2
SID (XLM-R) 6.31.1 11.31.2 6.90.8 1.60.4 49.32.9 88.50.7
SID (GBERT) 15.90.5 15.51.2 14.72.3 7.50.9 53.73.0 87.50.6
SID (mDeBERTa) 12.42.0 17.11.3 15.90.9 5.31.1 66.11.1 90.00.4
UD→SID 17.71.5 21.30.4 18.02.0 5.10.7 63.31.7 90.30.4
UD×SID 10.20.7 14.92.9 13.81.3 3.81.0 57.82.9 90.50.5
NER→SID 21.61.1 24.93.1 19.62.0 7.91.1 64.71.2 91.00.3
NER×SID 18.52.4 25.61.0 19.61.4 10.10.3 63.50.9 90.30.5
MLM→SID 9.02.3 14.92.4 12.32.6 3.90.9 58.33.1 90.10.9
MLM×SID 11.91.5 16.42.7 14.61.3 3.80.0 63.21.5 91.90.3
UD→NER→SID 21.50.2 24.93.7 21.53.2 7.40.6 65.13.5 90.71.0
UD×NER→SID 21.11.6 25.51.9 20.41.6 7.30.3 63.11.4 89.90.8
UD×NER×SID 14.01.2 16.72.6 14.72.3 5.92.3 57.43.2 90.70.5
MLM×UD→SID 18.21.7 21.21.3 18.51.8 5.30.1 61.72.0 89.51.0
MLM→NER→SID 19.11.1 23.51.1 20.70.6 7.01.3 63.40.7 90.30.5
MLM×NER→SID 20.50.2 25.72.4 22.61.6 9.20.5 65.50.7 89.51.1
MLM×NER×SID 20.10.6 25.62.0 21.31.2 10.31.4 64.91.6 91.20.7
MLM×UD×NER×SID 15.11.3 19.12.3 16.71.6 7.41.1 58.91.5 91.10.5

Table 7: Proportions of fully correctly classified sentences (slots and intents) in the three Bavarian dialects,
Swiss German, German, and English. We show mean scores (in %) over three random seeds, with standard
deviations in subscripts.
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Dev scores Test scores

LAS ↑ POS ↑ NER ↑ PPL ↓ Intents ↑ Slots ↑
SID (mDeBERTa) 73.5 6.6 45.3 2.0
UD→SID 74.5 0.6 84.8 0.3 73.8 7.3 49.3 2.2
UD×SID 58.8 9.8 84.3 0.7 48.9 7.6 42.1 4.5
NER→SID 73.5 1.3 76.6 6.8 53.1 2.7
NER×SID 65.0 1.0 76.2 7.3 53.8 2.0
MLM→SID 436.4 22.2 71.8 7.1 39.6 3.8
MLM×SID 5.8 0.3 71.9 7.6 44.6 2.5
UD→NER→SID 75.2 0.7 85.6 0.9 72.6 0.4 78.3 6.4 54.3 3.3
UD×NER→SID 77.4 9.1 90.0 0.1 71.4 1.0 78.4 5.8 53.7 1.9
UD×NER×SID 67.2 9.4 86.4 0.2 63.9 0.7 62.6 6.2 44.7 4.6
MLM×UD→SID 75.5 4.0 86.1 0.7 44.8 1.3 74.0 6.0 49.2 2.7
MLM→NER→SID 70.1 2.6 436.4 22.2 76.8 7.4 51.5 2.2
MLM×NER→SID 72.9 0.6 7.0 1.8 78.6 7.2 53.7 2.3
MLM×NER×SID 66.3 0.3 5.7 0.4 77.9 7.5 54.8 1.7
MLM×UD×NER×SID 72.8 1.8 86.6 0.7 64.0 0.6 5.5 0.2 58.0 7.9 48.7 2.4

Table 8: Development set scores for the auxiliary tasks (LAS = labelled attachment score; POS = POS tagging
accuracy; NER = NER span F1; PPL = masked token perplexity). For context, we also show the intent accuracy
and slot-filling span F1 score on the Bavarian test sets. All scores are averaged over three runs, the SID scores
are additionally averaged over the three Bavarian test sets. Subscript numbers are standard deviations. Darker
background colours indicate better results for the auxiliary task scores. For the SID results, green cell backgrounds
indicate better results than the baseline, and red worse results.

Intents (acc., in %) Slots (span F1, in %) Fully correct (in %)

de-ba nat. MAS. de-ba nat. MAS. de-ba nat. MAS.

SID (mDeBERTa) 77.70.7 60.81.4 55.23.5 46.72.0 31.72.3 22.11.4 17.11.3 12.91.6 6.71.0
MLM×NER×SID 84.70.5 61.03.9 53.82.5 56.60.3 42.32.1 30.30.9 25.62.0 20.31.3 10.60.8
MLM×NER→SID 85.81.3 67.51.3 60.11.2 56.50.9 41.42.5 32.01.4 25.72.4 20.21.0 12.40.4

Table 9: Performances on different data sets with dialects from Upper Bavaria: xSID (de-ba), naturalistic data
(nat.), and a translated subset of MASSIVE (MAS.). The scores are averaged across three random seeds, with
standard deviations in subscripts.
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DE-MUC (intent: reminder/set_reminder, predicted: weather/find p)
Erinnad mi dass i morgn papia tiacha im lodn hoi
Remind me that I tomorrow paper towels in.the store fetch.1SG

O O O O B–datet. B–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

O ✓ O ✓ O ✓ O ✓ B–datet. ✓ B–rem./
todo

✓ O p O p O p O p

DE-BA (intent: reminder/set_reminder, predicted: reminder/set_reminder ✓)
Erinner mi moang Papiertaschentücher im Ladn zum hoin
Remind me tomorrow paper towels in.the store PART+DET fetch.INF (nominalized)

O O B-datet. B–rem./todo I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./todo

O ✓ O ✓ O p B–rem./todo ✓ I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./todo ✓

DE-ST (intent: reminder/set_reminder, predicted: reminder/set_reminder ✓)
Erinner mi morgn in Gscheft a Küchnrolle zi kafn
Remind me tomorrow in(.the) store a kitchen roll to buy.INF

O O B-datet. B-rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./
todo

I–rem./todo

O ✓ O ✓ B-datet. ✓ O p I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./
todo ✓

I–rem./todo ✓

Table 10: Translations of “Remind me to get paper towels at the store tomorrow” into Bavarian dialects with
gold-standard and (correctly ✓ or incorrectly p) predicted annotations. Note the different syntactic structures
for expressing the infinitive or subordinated phrase, the different translations used for “store” and “paper towels”
(and the different order in which they are mentioned), and the spelling differences (e.g., for “tomorrow”). The
predictions are by the overall best-performing model, MLM×NER→SID, with the same random seed. Abbreviated
slots: datet. = datetime, rem. = reminder.
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Abstract

Prelateral merger of /e/ and /æ/ (where words
like celery and salary are both pronounced with
[æ] in the first syllable) is a salient acoustic fea-
ture of speech from Melbourne and the state of
Victoria in Australia, but little is known about
its presence in other parts of the country. In this
study, automated methods of data collection,
forced alignment, and formant extraction are
used to analyze the regional distribution of the
vowel merger within all of Australia, in 4.3 mil-
lion vowel tokens from naturalistic speech in
252 locations. The extent of the merger is quan-
tified using the difference in Bhattacharyya’s
distance scores based on phonetic context, and
the regional distribution is assessed using spa-
tial autocorrelation. The principal findings are
that the merger is most prominent in Victoria,
especially southern Victoria, and least promi-
nent in Sydney and New South Wales. We
also find preliminary indications that it may be
present in other parts of the country.

1 Introduction

The past 20 years have seen an increased inter-
est in the analysis of regional phonetic variation
in Australian English. Prelateral merger of /e/
and /æ/ (where words like celery and salary are
both pronounced with [æ] in the first syllable) is a
salient feature of the speech of southern Victoria
(VIC), particularly in the city of Melbourne, and
has been researched in a number of studies (see
e.g. Schmidt et al., 2021; Loakes et al., 2017), in-
cluding some more recent work on perception of
the merger (Diskin-Holdaway et al., 2024; Loakes
et al., 2024a,b). In locations where it does occur, it
is reported to be completely entrenched for some
speakers, but still in progress or almost absent for
others (Diskin et al., 2019a; Loakes et al., 2024b).
This vowel merger is important because (1) it is
one of the few documented features that appears
to distinguish the accent of (southern) Victorians

from the accent of speakers from other states; and
(2), due to its absence among certain speakers, in-
cluding in VIC, it is unclear whether this represents
a true sound change. Most empirical studies of the
phenomenon have utilized relatively small datasets
of word list recordings from few locations, and lit-
tle is known about the presence of the merger in
other parts of the country.

In recent years, the rise of automated meth-
ods of acoustic analysis and the availability of
vast amounts of naturalistic speech data have
opened up new opportunities for (socio-)phonetic
research. Automated formant analysis of natural-
istic speech (e.g., Brand et al., 2021; Coto-Solano
et al., 2021; Renwick and Stanley, 2020) has been
made possible by tools for vowel and formant ex-
traction (e.g., Reddy and Stanford, 2015; Rosen-
felder et al., 2015), which are increasingly incorpo-
rated into data extraction and processing pipelines
(e.g., Coats, 2023; Méli et al., 2023), allowing re-
searchers to work with large samples of real-world,
“ecologically valid” speech. Although word list
data offers a valuable point of comparison, formant
values derived from these contexts may not fully
align with those obtained from more natural speech,
which, although it exhibits variability due to phono-
logical, lexical, and syntactic influences, as well as
various situational and social factors, is generally
more representative of everyday communication
than is data collected in controlled settings (Liber-
man, 2019), in addition to providing results that
can be more statistically robust and generalizable.

This paper demonstrates the feasibility of work-
ing with a recent large naturalistic speech dataset
from Australia (Coats, 2024a,b) to investigate
prelateral merger of /e/ and /æ/. In addition, the
study provides an overview of the phenomenon as
it occurs across the whole country, providing fur-
ther evidence for regional phonetic variation for
Australian English, a variety that although long
considered regionally homogeneous, has “begun to
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exhibit more widespread social and regional varia-
tion than has previously been acknowledged” (Cox
and Fletcher, 2017, p. 20).

2 Previous Work

Realization of /el/ as [æl] in Melbourne/Victoria
was first observed at the end of the 1980s (see, e.g.,
Bradley, 2008), yet phonetic research was not car-
ried out until Cox and Palethorpe (2004) recorded
teenage girls in three towns in New South Wales
(NSW) and in Wangaratta, VIC. That study found
that /e/ before /l/ was lowered and retracted among
the VIC as compared to the NSW speakers, and
effectively realized as [æ]. However, no such phe-
nomenon was observed among either of the groups
when /e/ occurred before the consonant /d/: in those
cases, it was pronounced as /e/, suggesting that
the merger was exclusively in prelateral contexts.
Since then, studies into production and perception
have shown a high degree of variability in speaker-
listener behavior, with research showing a com-
plete merger of /el/-/æl/ for certain speakers in Mel-
bourne/VIC, while others exhibit a broader range
of phonetic behavior. For example, the merger
seems to be more common for middle-aged and
older speakers (Diskin et al., 2019b; Schmidt et al.,
2021), but this is also dependent on the community
(Loakes et al., 2024b). Additionally, older speak-
ers might “hypocorrect” and produce /æl/ as [el]
(Loakes et al., 2011; Schmidt et al., 2021).

In a previous study of variable merger behavior,
Diskin et al. (2019b) analyzed the speech of 12
Melbourne speakers in their thirties reading words
containing the short front vowels /I, e, æ/. Prelat-
eral merger behavior of /e/ and /æ/ was found for
9 speakers, but there were individual differences
in both their acoustics and their articulation, which
was also measured via ultrasound tongue imaging.
Diskin et al. (2019a) extended the dataset from
(Diskin et al., 2019b) to compare wordlist and nat-
uralistic speech, and again found individual vari-
ation, where some speakers had the merger only
in the wordlist, but not in their naturalistic speech,
whereas for other speakers, it was only in their nat-
uralistic speech and not in their wordlist. Schmidt
et al. (2021) examined 628 reading list tokens from
13 older speakers aged 51-80 from Ocean Grove,
VIC. They found no merger of /e/ and /æ/ before
the /d/ consonant, but significant merger in prelat-
eral pairs such as palate and pellet. In one of the
few studies outside of VIC, and the only known

study in Queensland (QLD), Gregory (2019) found
evidence for the merger for some speakers in a
study of word list recordings of 17 speakers from
Northern QLD.

Perception studies (investigating whether peo-
ple hear the /el/ and /æl/ as the same or different)
have shown further support for the merger in Mel-
bourne/Victoria, especially in the state’s southern-
most locations, and with lexical frequency playing
a small but crucial role in some of the differences
between older and younger listeners. For example,
younger listeners are biased toward hearing the first
name Mel when presented with a choice between
Mel and Mal because of an increase in popularity
(and thus frequency) of the name Mel over time
(Loakes et al., 2024a,b).

Based on the prior research, which has primarily
centered on VIC speakers and word list data, we
propose two research questions which guide our
paper:

1. Is the merger of /el/-/æl present across all
states of Australia, or only in VIC?

2. How does the merger pattern in a large-scale
corpus of naturalistic speech, compared to the small
samples of controlled word list data that has domi-
nated previous research?

3 Data and Methods

3.1 Vowel Extraction

The starting point for the project was data from
CoANZSE Audio comprising short excerpts of
transcripts and audio content from 38,786 videos
uploaded to YouTube channels of Australian coun-
cils (for details, see Coats 2024b). For each of
the 404 Australian CoANZSE locations, 20-word
audio segments were aligned with the correspond-
ing Automatic Speech Recognition (ASR) tex-
tual content, using the Montreal Forced Aligner
(McAuliffe et al. 2017) and its default English
acoustic model and dictionary (v3.0.0). This model
was trained using audio data from ten datasets, in-
cluding the Common Voice English v8.0 dataset,
which contains 50,285 sentences spoken by Aus-
tralian speakers (Ardila et al., 2020). Additionally,
the adapt functionality of the Montreal Forced
Aligner, which tunes the acoustic model based on
the Gaussian Mixture Model means of the data to
be aligned, was employed.

Formant values for /e/ and /æ/, based upon the
pronunciations of the Montreal Forced Aligner En-
glish Dictionary v.3.0.0, were then extracted at the
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midpoints of the targeted vowel segments using
Parselmouth-Praat (Jadoul et al., 2018), a Python
interface for Praat (Boersma and Weenink, 2024),
with an automatic time step based on the duration
of the sound file, five formants, and a maximum
formant frequency of 5,500 Hz. A window length
of 0.025 seconds and pre-emphasis above 50 Hz
were applied, and the F1 and F2 values, along with
their bandwidths, were retrieved.

Forced alignment and vowel extraction returned
9,264,705 vowel tokens (3,826,298 for /e/ and
5,438,407 for /æ/), which were then filtered and
labeled for context as prelateral or non-prelateral.
A process of filtering removed tokens in unstressed
syllables, as determined by the CMU pronuncia-
tion dictionary (Weide et al., 1998); common En-
glish stopwords were excluded using a list from
NLTK (Bird et al., 2009). Phonetic context was
determined by the phone labels from the CMU dic-
tionary. Locations with at least 20 tokens in each
context (/æl/, /æC/, /el/, and /eC/, where C rep-
resents any non-lateral consonant) were retained
for analysis. After filtering, 4,297,259 vowel to-
kens from 252 locations remained for the ensuing
analysis.

Table 1 shows the number of tokens for each
state/territory-level location and each context.

Loc. Context count Loc. Context count
ACT /æl/ 548 SA /æl/ 10,456

/æC/ 11,308 /æC/ 240,279
/el/ 1,232 /el/ 22,726
/eC/ 11,917 /eC/ 269,945

NSW /æl/ 20,105 TAS /æl/ 4,178
/æC/ 465,825 /æC/ 89,067
/el/ 46,508 /el/ 8,815
/eC/ 531,894 /eC/ 94,512

NT /æl/ 85 VIC /æl/ 29,097
/æC/ 1,346 /æC/ 625,318
/el/ 163 /el/ 69,308
/eC/ 1,590 /eC/ 683,640

QLD /æl/ 13,875 WA /æl/ 5,233
/æC/ 332,394 /æC/ 133,116
/el/ 28,041 /el/ 14,016
/eC/ 375,405 /eC/ 155,317

Table 1: Vowel and dataset counts across Aus-
tralian states and territories (ACT=Australian Capi-
tal Territory; NSW=New South Wales; NT=Northern
Territory; QLD=Queensland; SA=South Australia;
TAS=Tasmania; VIC=Victoria; WA=Western Australia).
/C/ stands for any consonant other than /l/.

For plotting formant values (Fig. 3), we used
a z-scaled version of Nearey’s transformation, a
speaker-extrinsic method, applied to each formant
and each vowel token. The Nearey transformation

for a formant F is given by:

Fnearey = log(F )− log(central frequency)

where central frequency is the geometric mean of
the formant values across all tokens.

central frequency = exp

(
1

N

N∑

i=1

log(F )

)

Fneary scores were then converted to a z-score.

3.2 Vowel Overlap Measure
The Bhattacharyya coefficient BC between two
probability distributions P and Q is defined as

BC =

(∫ √
P (x) ·Q(x) dx

)

To quantify the extent of vowel overlap, we used
Bhattacharyya distance, which is the negative
logarithm of the Bhattacharyya coefficient (Bhat-
tacharyya, 1943), a measure which has been pro-
posed as an alternative to Pillai’s trace metric (Pil-
lai, 1955), and has been employed in previous work
in phonetics (Warren, 2018). Like Pillai’s trace,
Bhattacharyya’s distance can be employed to char-
acterize the overlap of two distributions of F1 and
F2 values. However, while the MANOVA model
that generates Pillai’s trace assumes multivariate
normality (Johnson, 2015), Bhattacharyya distance
can be applied to non-normally distributed data and
is generally more robust to differences in sample
size (see Stanley and Sneller, 2023). This makes
Bhattacharyya distance a versatile choice for com-
paring vowel distributions under varying sample
conditions, especially when additional covariates
in a MANOVA analysis are not required, as is the
case in the present study.

Bhattacharyya’s distance was calculated for /æ/
and /e/, using all the tokens recorded in each lo-
cation, for both prelateral and for non-prelateral
contexts. Like Pillai’s trace, a value of zero in-
dicates complete overlap for two distributions (in
this study, complete merger of /æ/ and /e/), while
larger values indicate the underlying vowels are
more distinct in F1/F2 space.

After confirming that the Bhattacharyya distance
for prelateral and non-prelateral contexts was sig-
nificantly different (mean Bhattacharyya before /l/
= 0.173, mean Bhattacharyya in other contexts =
0.431, t = −31.037, p < 0.001), for each location
in the dataset, we subtracted the Bhattacharyya
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distance value for the prelateral context from the
value for the non-prelateral context. Lower Bhat-
tacharyya distances for the /el/-/æl/ context in-
dicates greater overlap or merger. Higher Bhat-
tacharyya distances for the /eC/-/æC/ context indi-
cate less overlap. This Bhattacharyya difference
measure thus characterizes the extent to which the
prelateral context results in different realizations
of these vowels, compared to non-prelateral con-
texts. Positive difference values indicate that the
vowels are more merged in prelateral context than
in non-prelateral context.

3.3 Spatial Analysis
Spatial autocorrelation, a method proven to be
effective for analyzing language data, including
vowel formants (Grieve et al., 2011, 2013), was
applied in this study. Two spatial autocorrelation
metrics were used: Moran’s I, which assesses
all locations in a dataset and provides a summary
measure of the overall spatial correlation (Moran,
1950), and the Getis-Ord local G∗

i statistic (Getis
and Ord, 1992; Ord and Getis, 1995; Getis, 2010),
which identifies spatial clusters by comparing the
values at each location to those of its neighboring
locations in the context of the entire dataset.

Both statistics rely on a spatial weights matrix
W , which quantifies the influence of nearby mea-
surements on a given location’s values. Neighbors
can be assigned binary weights based on a distance
threshold, or weights can be calculated as a func-
tion of distance or other criteria. In this study, an
inverse distance spatial weights matrix was used:
for locations within a specified minimum thresh-
old distance, the weight for location j relative to
location i was defined as wij =

1
dij

. The spatial au-
tocorrelation analysis was conducted using PySAL
(Rey and Anselin, 2010).

Moran’s I takes values between -1 and 1, where
positive values indicate clustering of similar val-
ues, negative values suggest even dispersion, and a
value of zero signifies a random distribution. The
G∗

i statistic is computed for each location in the
dataset and does not have a fixed range. A positive
G∗

i value means the sum of the values at a spe-
cific location and its neighbors is greater than what
would be expected based on the global distribution,
while a negative G∗

i suggests the sum is lower than
expected.

The significance of Moran’s I can be computed
using a normal approximation of the distribution of
the statistic under the null hypothesis of no spatial

autocorrelation, or, for values that are not normally
distributed, with randomized permutations. G∗

i sig-
nificance is mostly calculated using a z-score. For
detecting clusters of high values, z ≥ 1.645 is sig-
nificant at p = 0.05. To detect both high and low
clusters, a two-tailed test with |z| ≥ 1.96 is used
at p = 0.05. Essentially, G∗

i can be viewed as a
localized indicator of spatial clustering, aggregat-
ing local values and comparing them to a global
average.

4 Results

Overall, the Bhattacharyya difference at the 252 lo-
cations had a mean value of 0.258, with a standard
deviation of 0.132; the range of values was -0.469
to 0.529. The distribution of values is depicted in
Fig. 1.

Figure 1: Distribution of Bhattacharyya difference val-
ues for 252 locations

Difference is highest for VIC, followed by WA,
the ACT, QLD, TAS, SA, NSW, and the NT
(Fig. 2).

Figure 2: Bhattacharyya difference by state/territory
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Victorian speakers tend to have substantially low-
ered (more [æ]-like) vowels for /e/ in prelateral po-
sition. Fig. 3 shows a subset of the data: eight of the
most frequent words of 5 characters or fewer, with
the targeted prelateral and non-prelateral contexts,
in the NSW and VIC subcorpora. For each word,
the location corresponds to the Nearey-transformed
and z-scaled mean formant values for the targeted
phone, and the subscript indicates the number of
extracted tokens of that word. As can be seen,
for prelateral contexts (on the left-hand side), VIC
speakers have substantially lower /e/ values than
do NSW speakers in the words dealt, held, sell,
else, tell, help, and well. For value, on the other
hand, /æ/ is much lower for NSW-located tokens,
suggesting that it remains distinct from /e/ in prelat-
eral contexts for these speakers. For non-prelateral
contexts (on the right-hand side), mean Nearey-z
values for frequent words are quite close for VIC
and NSW tokens, and no clear regional tendency
prevails.

Figure 3: Mean locations of most frequent words,
prelateral context (left) and non-prelateral context(right),
Nearey-z-score-transformed F1/F2 values

To investigate the possibility that the merger is af-
fected by word frequency, we correlated frequency
with F1, with F2, and with the Euclidean F1/F2
distance. This was done for the 9,838 word types
in the dataset (4,297,259 word tokens) as well as
for all combinations of vowel and context. No cor-
relations resulted in an r ≥ |0.07| or a significant
p-value.

4.1 Regional Distribution

The largest Bhattcharyya difference values were
found for four councils in the Melbourne metropoli-
tan area: Maroondah City Council, City of Ston-
nington, City of Whittlesea, and Glen Eira City
Council, ranging from 0.506 to 0.529. The lowest
difference value, -0.469, was found for Narrabri
Shire in northern NSW. This value is an outlier, as

the locations with the lowest values otherwise had
difference scores in the range of 0 to -0.16.

Large difference values were also found for data
from councils in WA, including Armadale, Kala-
munda, Kwinana, and Joondalup, in the Perth
area, which registered difference values ranging
from 0.394 to 0.504. In QLD, the highest values
were found for Redland City, in the Brisbane area
(0.404), Balonne Shire (0.396), Cairns (0.385), and
Banana Shire (0.383). Values for SA were mixed,
with relatively high difference values found for a
few councils in the Adelaide area (0.379 for West
Torrens and 0.315 for Charles Sturt), but low values
for others (-0.109 for Yorke Peninsula Council and
0.055 for Mount Barker District Council). Tasma-
nian difference values were also mixed, ranging
from 0.047 for Circular Head to 0.371 for the city
of Launceston. In the ACT, the three sampled coun-
cils showed middling difference values from 0.249
to 0.325.

Figure 4: Bhattacharyya Difference values

Fig. 4 depicts the raw Bhattacharyya difference
values for the 252 sampled locations, with colors
indicating quantiles.1

Moran’s I , calculated on the basis of the Bhat-
tacharyya difference for all locations, was found to
have a value of 0.235 for this dataset. Due to the
non-normality of the data, a p-value was calculated
using 999 random permutations of the underlying
difference values, resulting in a p-value of 0.001.
Thus, the difference in Bhattacharyya distance val-
ues for non-prelateral and prelateral contexts for
the vowels /e/ and /æ/ in this dataset can be consid-
ered to be moderately clustered.

1The images in Fig. 4 and Fig. 5 are screenshots
of interactive maps that can be found at https://
stcoats.github.io/AU_Bhatt_map.html and https://
stcoats.github.io/AU_Bhatt_Gi_map_v2.html.
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Figure 5: G∗
i values for Bhattacharyya Difference

Fig. 5 shows G∗
i values, calculated on the basis

of the Bhattacharyya difference, at the 252 loca-
tions where the merger was analyzed. As can be
seen, the difference is largest in Melbourne and
neighboring VIC localities, and is smallest in NSW,
especially in Sydney and environs and the Central
Coast. Values are also high in WA in the Perth
metropolitan area and in adjacent councils.

5 Discussion

Spatial distribution of Bhattacharyya difference val-
ues provides preliminary confirmation that the /el/-
/æl/ merger is primarily a Victorian phenomenon,
and particularly in southern Victoria. The regional
pattern is evident in the mapped raw values (Fig. 4),
and becomes clearer when the difference value for
each location is converted to a G∗

i statistic (Fig. 5).
Raw difference values in the 252 sampled lo-

cations are heterogeneous: although the highest
values are found in Melbourne, and the merger is
evident to a lesser degree in other parts of VIC,
consistent with previous research (Loakes et al.,
2024a), some high values can also be found in, for
example, WA, QLD, and TAS. The lowest values
are found in NSW and SA, and locations with low
values can be found throughout Australia.

This heterogeneity likely reflects variability at
several levels: Firstly, in terms of the sample size
and demographic characteristics of the recorded to-
kens at each location, secondly, in terms of the au-
dio quality for the recordings, which vary between
channels and also among the different videos up-
loaded by a single channel, and finally, in terms of
the presence or absence of the merger for individual
speakers. This last point aligns with research find-
ings in fine-grained phonetic studies and perception
studies, as noted in the introduction.

Despite the inherent variability in the data, the
large sample size tends to reduce the impact of this

variability on the analysis. According to the Central
Limit Theorem, the sample mean approaches the
population mean as sample size increases, leading
to more reliable aggregate characteristics. As a
result, a geographical pattern emerges more clearly
in the difference value map in Fig. 4, and especially
in the spatial autocorrelation map in Fig. 5, even if
some of underlying data points contain errors (see
Section 5.1, below).

One unexpected finding is that the WA localities
sampled in the corpus exhibit relatively high Bhat-
tacharyya difference values (and thus also high G∗

i

values), in some cases almost as high as those in the
greater Melbourne area. Although it is possible that
the merger is present among some WA speakers, it
has not previously been noted in the literature (or
remarked upon as a salient feature of Perth speech),
as far as we know. Docherty et al. (2018, Fig. 4)
note that the distance between mean values for the
/e/ and /æ/ vowels in conversational speech from
Perth is smaller than when read aloud, which is typ-
ical for English varieties, but they do not mention
presence of /el/-[æl]. While our results for WA may
reflect the presence of Melburnians who have relo-
cated to Perth, given the large number of sampled
videos in 28 different WA locations, this possibility
seems unlikely for all individuals. Further inves-
tigation of these WA data are also warranted, and
will form the basis of a future study.

The prospect that the vowel merger may be medi-
ated by word frequency, an idea which has been pro-
posed in several studies of historical vowel shifts
(Bybee, 2002; Pierrehumbert, 2001; Hay et al.,
2015), is not corroborated in this data. While we
find no evidence for broad-based frequency effects,
a more fine-grained analysis of particular locations
or lexical items may reveal frequency associations.

5.1 Caveats
A number of important caveats must be taken into
account concerning the underlying data and the
measurement of formant values. First, CoANZSE
transcripts are generated by ASR, and contain er-
rors. The nature of the merger under consideration
is such that in some cases, phonological contrasts
are eliminated, making it difficult for an ASR al-
gorithm to determine the correct lexical item.2 In

2An example can be found in a transcript from the Horsham
Rural City Council, Victoria, entitled Dental Health Tips for
Families, in which a speaker is transcribed as having said ...
so even harder objects like your carrot sticks and salary....
This excerpt can be listened to on CoANZSE Audio at https:
//tinyurl.com/mtv2adp3.
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addition, ASR errors may result in false positives
(i.e., the targeted phonological context being incor-
rectly identified, for example if a speaker said until
but the ASR transcribed and tell) as well as false
negatives (i.e., the targeted phonological context be-
ing missed, e.g. bill instead of bell). Nevertheless,
the number of words for which /e/ can be substi-
tuted with /æ/ and result in a legitimate lexical item
is small, compared to the overall number of word
types containing these phones. Furthermore, the
word error rate of CoANZSE data has been calcu-
lated to be 0.14 (Coats, 2024c). Given that these
errors are distributed across multiple categories for
any phone (e.g. a word containing /e/ could be mis-
transcribed as containing /I/, but also with /i/, /eI/,
etc.), the “noisiness” of the data is unlikely to result
in vowel extraction errors that would systematically
shift the results, especially given the sheer size of
the sample, at almost 4.3 million tokens. For a few
word pairs, the merger may actually be underrep-
resented in this data due to ASR errors: searching
the CoANZSE Audio website reveals, in addition
to hits where the ASR has mistranscribed celery as
salary, several instances of watching tally.

Another caveat concerns formant values. Trans-
formation of formant values to ensure compara-
bility is a common procedure in phonetic analy-
sis (see, e.g., Adank et al., 2004, Fabricius et al.,
2009, Flynn, 2011, Kendall and Thomas, 2010),
but because transcript data from YouTube is not
diarized (i.e., there are no indications of changes
in speaker turn), normalization at speaker level to
account for sex-associated differences in vocal tract
length was not possible. Instead, we used a scaled
Nearey transformation. As Thomas and Kendall
note, Nearey’s method, a version of which was used
for vowel normalization for the data presented in
the Atlas of North American English (Labov et al.,
2005) is “best only when a study has an excep-
tionally high subject count” (Thomas and Kendall,
2007), a condition which is likely for this data,
although the exact number of speakers is unknown.

Despite this, corpus-phonetic analysis of large
datasets without speaker labels is relatively un-
charted territory, and the most suitable technique
for vowel formant normalization for such data re-
mains to be determined. One possibility for this
and similar data would be to automatically diarize
and induce speaker sex/gender labels, using pyan-
note for diarization (Bredin, 2023; Plaquet and
Bredin, 2023) and wav2vec2-large-xlsr-53-gender-
recognition-librispeech (Ferreira, 2024) for speaker

gender identification. Future work with this data
may undertake these steps.

A third caveat concerns the identities of the per-
sons speaking in the sampled videos: Although it
is reasonable to assume that most members of lo-
cal councils in Australia are resident in or near the
locations of those councils, this cannot be guaran-
teed. As for their residence histories, they are not
known. Mobility is a fact of Australian life, and
while disqualifying speakers on the basis of prior
residence history may be a valid methodological
step in studies concerned with the historical evolu-
tion and spread of a particular regional language
feature, in this study, we have not considered the
diachronic development of prelateral merger of /e/
and /æ/.

6 Summary and Future Outlook

This study has considered prelateral merger of /e/
and /æ/ in a large dataset of geolocated natural-
istic speech. We used Bhattacharrya diference, a
measure of overlap for multidimensional distribu-
tions, to characterize the F1 and F2 values for the
two vowels in prelateral and non-prelateral con-
texts. We find that the merger is most evident
in southern VIC and Melbourne, largely confirm-
ing previous findings based mostly on word- and
reading-list data, but it can also be identified in
other state/territory locations, including WA.

While this study demonstrates the feasibility of
using large, naturalistic speech datasets for pho-
netic analysis, the results are to be interpreted with
caution due to the inherent heterogeneity of the
underlying data. Several possibilities for further
investigation of the merger using this data present
themselves, including 1) Semi-automatic (or man-
ual) annotation of a curated subset of the data in
order to investigate the interaction of the merger
with demographic parameters; 2) A focus on par-
ticular phonological contexts and/or lexical items;
3) A focus on particular discourse content (for ex-
ample, is the merger more evident when topics
pertaining to Melbourne are under discussion in
the council meetings that comprise the majority of
the underlying data?); and 4) A focus on specific
locations or regions which exhibit variability in this
data but which have not previously been considered
as exhibiting the merger, most notably Perth, but
also TAS, as well as QLD, where the merger has
already been remarked upon in previous studies. In
addition, future work could also explore regional
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differentiation in other vowel contrasts. One exam-
ple is the prenasal raising of /æ/ (where words like
hand sound like [he:nd]), which is known to vary
along various sociophonetic dimensions such as
gender, level of linguistic diversity in the commu-
nity and age (Penney et al., 2023; Gregory, 2019),
but has not yet been investigated from the perspec-
tive of regional variation.

Finally, we propose that continued work with
this data may help to bridge the “sociophonetic gap”
by integrating small-scale analysis of carefully col-
lected word-list tokens with large-scale studies of
naturalistic speech. As pointed out by Docherty
et al. (2018, p. 786), “the deployment of socially
marked phonetic features in speech performance is
[...] considered to be fundamentally driven by an
individual’s construction and expression of iden-
tity”. Naturalistic speech datasets, such as the one
used in this study, could potentially contribute to
our understanding of how complex configurations
of situational contexts and sociostylistic factors
shape particular phonetic realizations – provided
they have been carefully filtered and annotated for
discourse contexts and personal identity parame-
ters. Future work along these lines, we hope, will
be able not only to shed light on the /el/-/æl/ merger
in Australia more generally, but also to explore
whether this merger may be moving from being be-
low the level of consciousness in Melbourne/VIC
(Loakes et al., 2017) to a potential indexical marker
of Melbourne/VIC identity.
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Abstract

We investigate learning surface forms from un-
derlying morphological forms for low-resource
language varieties. We concentrate on learning
explicit rules with the aid of learned syllable
structure constraints, which outperforms neu-
ral methods on this small data task and pro-
vides interpretable output. Evaluating across
one relatively high-resource and two related
low-resource Arabic dialects, we find that a
model trained only on the high-resource di-
alect achieves decent performance on the low-
resource dialects, useful when no low-resource
training data is available. The best results are
obtained when our system is trained only on
the low-resource dialect data without augmen-
tation from the related higher-resource dialect.
We discuss the impact of syllable structure con-
straints and the strengths and weaknesses of
data augmentation and transfer learning from a
related dialect.

1 Introduction

Many of the world’s under-resourced language va-
rieties are closely related to higher-resourced vari-
eties. This suggests two possibilities for progress
on the under-resourced varieties: the development
of systems that perform better with smaller training
data, and the development of systems that lever-
age information from the higher-resource variety
to augment learning for the lower-resource one. In
this paper, we combine these two approaches: we
employ a learning technique that works well with
small amounts of data (namely, rule learning) and
we evaluate the impact of providing the the model
training data combined from both a low-resourced
variety and a similar but higher-resourced variety.

Arabic is particularly well-suited for studying
such techniques because the Arabic dialects repre-
sent a continuum of related but distinct and thriving
spoken varieties, yet most have limited computa-
tional resources available for them. On the other

kitaab+hum kaatib+iin+ha

Egyptian kitabhum katbinha
Sudanese kitaabum kaatbinna
Jordanian kitaabhum kaatbiinha
Hijazi kitaabahum kaatbiinaha

their book they/we are writing it

ቘማׇॺ॒۾ ׇቘቇحཝ༺ၕဋ

Table 1: Realizations of two words across four dialects.
The dialects share the same underlying representations.
Changes in the realized forms are highlighted as follows:
shortened vowels are bolded, epenthetic phones are
underlined, deleted phones are not shown, and finally,
realizations faithful to the underlying representations
(i.e., no change) are italicized.

hand, the dialects maintain varying degrees of mu-
tual intelligibility. A system developed for one di-
alect will may not capture everything in another di-
alect, but they are generally close enough that some
transfer learning should be feasible. Furthermore,
Arabic is morphologically rich. Even affixation in
Arabic triggers a range of morphophonological pro-
cesses which may yield surface forms that are no-
ticeably different from their underlying morpholog-
ical analyses. Uncovering these processes is crucial
for understanding Arabic morphology. Moreover,
difference in these processes account for much of
the difference between the spoken forms across di-
alects. Underlyingly identical forms across dialects
may surface very differently, as examples show in
Table 1. As a consequence, a morphological ana-
lyzer or generator developed specifically for one
dialect will not work reliably on other dialects.

In this paper, we study how we can use resources
for this relatively resource-rich dialect and apply
them to resource-poor dialects. We take on the task
of matching annotated underlying forms to attested
surface forms (Khalifa et al., 2022, 2023). Khalifa
et al. (2023) study this task for Cairene Egyptian
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Arabic (EGY), which, while not high-resourced in
absolute terms, has quite a few scholarly and cor-
pus resources available, much more than other di-
alects. They show that when only small amounts of
data are available, rule-learning approaches outper-
form neural sequence-to-sequence models. They
also perform a somewhat perfunctory study on Su-
danese Arabic (SUD). We adopt their general prob-
lem formulation, but we specifically investigate
how we can apply EGY resources to other dialects,
choosing for our study SUD and Jordanian (JOR),
two low-resource dialects. We investigate a variety
of techniques on these two dialects which are rela-
tively close to Cairene, but differ in their details.

We investigate four training conditions, which
combine transcribed spoken Arabic dialect data in
different ways. In our experience, while not natu-
rally occurring, some transcribed speech is avail-
able for many Arabic dialects, and it is more easily
obtained than the underlying representations. The
conditions are a follows. For clarification, “full
data” refers to a corpus of pairs of underlying mor-
phological representations and surface forms, while
“surface forms” only refers to a corpus which con-
tains attested forms (transcribed spoken language),
but no linguistic analysis has been performed to
create the underlying representations:

1. Only EGY Full data, with target dialectal data
only used for testing. This is the only option
Khalifa et al. (2023) explore.

2. Only EGY Full data, and in addition we have
surface forms for the target dialects.

3. Full data for EGY and the target dialects.

4. Full data for the target dialects.

Our paper makes two primary contributions:

• We present a novel approach that uses syllable
structure constraints in words to derive sur-
face forms from underlying representations.
We compare two ways of deriving such con-
straints. We show that using such constraints
nearly always helps over not using them.

• We compare and contrast the above four ways
of using combinations of higher- and lower-
resource dialectal data. For SUD and JOR, just
training on even a very small amount of di-
alectal data only outperforms including EGY

data. When we only have surface forms for
the lower-resource dialects, then using sylla-
ble constraints in conjunction with EGY out-
performs using EGY alone.

The structure of this paper is as follows. We
discuss related work in Section 2. We present the
linguistic background in Section 3 and the data in
Section 4. We present our method with details on
all steps in Section 5, and report on experimental
results in Section 6. We conclude with an analysis
and a report on ongoing and future work.

2 Related Work

2.1 Arabic Cross-Dialectal Learning

Cross-dialectal learning is a popular area of study
in Arabic NLP due to the nature of the language as
a dialect continuum (Zalmout, 2020; Khalifa et al.,
2020; Inoue et al., 2022; Micallef et al., 2024).
However, most efforts explore the task of knowl-
edge transfer through different neural network ar-
chitectures. These approaches suffer from a lack
of linguistic interpretability, which often hampers
their applicability in a scientific setting. One excep-
tion is Salloum and Habash (2014), who presented
their morphological analyzer, ADAM, for multi-
ple dialects in Arabic. ADAM extends an existing
Modern Standard Arabic (MSA) morphological
analyzer to three dialects through the mapping of
MSA affixes and clitics while assuming similar
stems: Levantine, Egyptian, and Iraqi. These map-
pings were explicit and interpretable, however, they
relied on hand-crafted rules and only addressed
morphotactics (distributions of morphemes) and
orthotactics, not morphophonology.

2.2 Learning Morphophonological Mappings

We take an explicit rule-based approach to Ara-
bic dialectal morphophonology, the interaction be-
tween morphology and phonological processes.
Rule-based learning provides interpretable outputs,
unlike off-the-shelf neural approaches, and this fa-
cilitates comparison across dialects, is valuable for
text-to-speech tasks, and supports the linguistic
analysis of less-studied language varieties. Mor-
phophonological rule learning in particular has usu-
ally been studied within computational phonology
(Antworth, 1991; Albright and Hayes, 2002; Ellis
et al., 2022). However, there has been recent work
dedicated to morphophonology learning (Khalifa
et al., 2023; Wang, 2024). Both works study dif-
ferent morphophonological phenomena through
learning constraints in different representations. In
this work, we base our core learning algorithm on
Khalifa et al. (2023), which was primarily tested
on Arabic and focused on learning morphophono-
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logical mappings between underlying morpholog-
ical representations such as those generable by a
generic Arabic morphological analyzer (URs) and
surface forms which actually appear in dialect cor-
pora (SFs). We make novel contributions in in-
corporating models of syllable structure constraint
learning from the grammatical inference literature
as well as the evaluation of transfer learning strate-
gies between multiple dialects.

3 Linguistic Background

3.1 Morphophonology

Morphophonology is the interaction between
phonology and morphology, where certain phono-
logical processes are triggered when the word
structure is modified. Studying morphophonol-
ogy across different dialects of Arabic allows
understanding different phonological processes
through morphologically related words. Such mor-
phophonological processes are governed by phono-
logical constraints on syllable structure which inter-
act with the morphology, especially concatenative
morphology. These constraints can differ drasti-
cally between different dialects resulting in notice-
ably different surface form realizations for the same
underlying morphological representation as shown
in Table 1.

3.2 Syllable Structure

Most phonological processes in dialectal Arabic are
triggered by strict dialect-specific requirements on
how segments are organized into syllables. Affixa-
tion triggers resyllabification, which in turn forces
morphophonological repairs which maintain these
restrictions.

We lay out some examples of dialectal mor-
phophonological patterns here. One requirement
shared across Arabic is that each syllable must
begin with exactly one consonant. When an un-
derlying representation begins with a vowel, that
onset consonant is supplied by insertion of a glottal
stop (hamza) when the word is in isolation. Some
dialects, such as Jordanian JOR, additionally per-
mits word initial syllables starting with a complex
consonant cluster of two consonants. A second re-
quirement is that syllables may end in no more than
one consonant (one so-called coda consonant). The
dialects differ in the strictness of this constraint:
while SUD bans them across the board, EGY and
JOR only ban them word-internally. They permit
multiple coda consonants in word-final positions.

Furthermore, dialects repair clusters of coda con-
sonants differently. As such, when concatenation
of morphemes creates a sequence of three conso-
nants, such as in the underlying representation of
the word ‘you wrote us’ /katab-t-na/, the three
dialects yield different surface forms. EGY and
SUD both insert a vowel after the second conso-
nant (which happens to differ between them) yield-
ing [katabtina] and [katabtana] respectively,
while JOR inserts it after the first consonant as in
[katabitna].

The phonological form of the affix can trigger
different repairs as well. For example, if a suffix
starts with /h/, then SUD deletes the /h/ rather
than inserting a vowel to break up the sequence
of three consonants. EGY, unlike SUD or JOR,
only permits high and low vowels to be long and
only permits them in stressed syllables. Similarly,
long vowels are restricted to open syllables except
in word-final position. Thus, underlyingly long
vowels are shortened when unstressed or in word-
medial closed syllables, and they are raised if un-
derlyingly mid. There is a myriad number of liter-
ature discussing more requirements and in-depth
analysis cross-dialectally (Hamid, 1984; Broselow,
1976, 1992; Broselow et al., 1995, 1997; Broselow,
2017; Farwaneh, 1995).

4 Data

In order to learn morphophonology mappings, the
data is represented in pairs of underlying represen-
tations (UR) which is a sequence of morphs in a
hypothetical but consistent form that could be mo-
tivated theoretically or derived from the output of
a morphological analyzer, and a surface (spoken)
form (SF), which is phonically transcribed. The
LDC transcription scheme was used for both UR

and SF. A mapping between LDC, IPA, and Arabic
script can be found in Appendix Table 7.

We augmented the character set with a symbol
for word boundaries #, a symbol for prefix bound-
aries -, and a symbol for suffix boundaries =. We
opted for only open class words, i.e., nouns, adjec-
tives, and verbs, as other categories such as proper
nouns are more likely to manifest exceptional pro-
cesses which violate the otherwise norms in their
respective dialects. In addition, we restrict learning
to concatenative morphology. We leave templatic
morphology for future studies. The major con-
sequence of this design decision is that different
templatic realizations within a given morphological
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EGY JOR SUD
UR SF UR SF UR SF

ti-kallif tikallif ti-kallif 'itkallif ta-kallif takallif

#CV CVC CVC# #CVC CVC CVC# #CV CVC CVC#

bi-ti-kallif bitkallif bi-ti-kallif bitkallif bi-ta-kallif bitkallif

#CVC CVC CVC# #CVC CVC CVC# #CVC CVC CVC#

samaH=t samaHt samaH=t samaHit samaH=t samaHta

#CV CVCC# #CV CV CVC# #CV CVC CV#

$Af=U=kI $afUki $Af=U=kI $AfUki $Af=U=kI $AfOki

#CV CVV CV# #CVV CVV CV# #CVV CVV CV#

Table 2: Examples showcasing the pairs of UR-SF of the same words in the three different dialects along with the
syllabification of each SF. In some cases dialect share the same UR but have different realizations as can be seen in
the last two rows. In other cases they can shared the same SF but with different UR as seen in the second row. The
‘-’ represent prefixes boundary and ‘=’ represent suffixes boundary. Underlining across rows indicate identical URs
and SFs across the dialects. The words are 	Ê¾�K ‘it [f.sg] costs’, 	Ê¾�JK. ‘it [f.sg] is costing’, �IjÖÞ� ‘you [m.sg]

permitted’, ú
»ñ
	̄ A �� ‘they saw you [f.sg]’, respectively.

paradigm are treated as distinct unrelated stems.

4.1 EGY

We treat EGY as our high-resource dialect in our
cross-dialectal learning setup. Following (Khalifa
et al., 2023) for purposes of comparison, we use the
same dataset that was built on (ECAL; Kilany et al.,
2002), a pronouncing dictionary based on CALL-
HOME Egypt (Gadalla et al., 1997). This provided
surface forms (SF). To match these SFs with appro-
priate (UR)s, we used CALIMAEGY (Habash et al.,
2012), a morphological analyzer for Egyptian Ara-
bic, to generate (UR)s through the morphological
tokenization produced by CALIMAEGY . See (Khal-
ifa et al., 2024) for details about (UR) generation.
We use the same data splits as ECAL provides a
split into TRAIN (12,658 types), DEV (5,181 types),
and EVAL (6,976 types) sets, which we adopted.
However, since these splits were based on running
text, individual words overlap between the sets.
To account for this, we create two additional sets,
OOV-DEV (2,190 types), and OOV-EVAL, based
on DEV and OOV-EVAL (2,271 types) based on
EVAL, but without their intersections with TRAIN.

4.2 Annotation for SUD and JOR

We chose to study SUD and JOR due to their sta-
tus as under-resourced dialects compared to EGY.
EGY lies between the two both geographically
and in the dialect continuum and so shares some
properties with both. For both low-resource di-
alects, the datasets were created by picking the 700
most frequent open class words from the Multi-

Arabic Dialect Applications and Resources dataset
(MADAR; Bouamor et al., 2018), which is a 25-
way parallel corpus representing the dialects of 25
cities. SUD and JOR were taken from portions of
the Khartoum and Amman city dialects, respec-
tively. MADAR was created by translating sen-
tences from English and French from the Basic
Traveling Expression Corpus (BTEC; Takezawa
et al., 2007). The corpus is orthographic, so we cre-
ated both the underlying representation (UR) and
the dialect-specific surface forms (SF) during our
annotation.

Unlike EGY, there are no available morphologi-
cal analyzers that would have otherwise expedited
the annotation by generating potential URs. While
other phonemically transcribed corpora of Ara-
bic exist (Appen, 2006a,b, 2007; Maamouri et al.,
2007), we opted for MADAR because it is open
source and will allow us to publish the data pub-
licly. However, one caveat with using MADAR
is the potential limited diversity of the data due
to the specific domain of MADAR, which is the
travel domain. This is unlike EGY, since ECAL
was compiled from more diverse and naturalistic
spoken conversations.

For both dialects, native speakers with adequate
training in linguistics were asked to transcribe the
spoken form for each word to the best of their
ability. The speakers were then asked to provide
URs. When there were multiple plausible URs for
a given SF, we limited the analysis to one UR cho-
sen to be consistent with the rest of the annotation.
This is followed by a series of revisions and well-
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formedness checks to insure consistency between
the URs within each dialects as much as possible.

Each dialect was annotated by a single native
speaker due to logistical constraints that limited
access to additional annotators. Consequently, it
was not possible to measure inter-annotator agree-
ment. This effort resulted in a total of 710 and 771
pairs for SUD and JOR, respectively. We used 300
for TRAIN, 200 for DEV, and the rest for EVAL

for each dialect. Since these dataset were anno-
tated based on a frequency list, there are no overlap
between them.

We show examples of pairs of UR-SF of com-
mon shared words and contrast the difference be-
tween the three dialects in Table 2.

5 Methodology and Experimental Setup

Our approach extends the Pruned Abundance Rule
Learning Algorithm (PARLA; Khalifa et al., 2023)
as the primary rule learning technique; our contri-
butions lie mainly in exploring several aspects of
cross-dialectal learning. Our research focus is on
new data augmentation techniques for dialect trans-
fer, improved rule learning scope, and the inclusion
of syllables structure as a linguistically motivated
signal for rule learning.

System R R% TRAIN DEV OOV-DEV
Kh ’23 2,922 23.1 97.2 89.4 80.4
Ours 1,721 13.6 95.9 88.9 81.6

Table 3: A comparison between our implementation and
prior work (Kh’23 Khalifa et al., 2023) in terms of the
number of rules (R) and their ratio with respect to the
size of the TRAIN (R%), and accuracy on each split of
the data.

5.1 Rule Learning Algorithm

We reimplemented PARLA as a base and made sev-
eral additions. Our implementation outperforms
the system of Khalifa et al. (2023) on EGY, as
presented in Table 3.

First, we enhanced the rule extraction step by
enforcing morpheme boundaries on the SF before
rule extraction, this was inspired by a similar tech-
nique in (Antworth, 1991). This was implemented
through character alignment between the UR and
SF to approximate morpheme boundaries using
(Khalifa et al., 2021). It greatly reduced the num-
ber of rules by eliminating any superficial rules
that resulted from encoding morpheme deletion as
an actual change. We increased the left and right

context windows from PARLA’s 1 to 2 in order to
accommodate the extra boundary characters that
are retained in the SF at this step.

Second, we include syllable structure informa-
tion to assess the well-formedness of prediction
SFs when selecting rules at inference time. Dialect-
specific syllable structure constraints are learned
from the set of SFs in the training data. We eval-
uate two different approaches based on learning
positive or negative constraints as expounded in
Section 5.5.

5.2 Data Utilization

We explore three methods of training augmentation
with data from the (relatively) high-resource dialect
TRAINEGY using three methods.

High Resource + Surface-Only Low Resource
In this transfer learning setup, we simulate a sit-
uation where no training data exist for the target
dialect, but only surface form. Therefore, PARLA

is trained using only TRAINEGY , and the surface-
only low-resource is used for syllable structure con-
straint as we will explain shortly.

Low Resource Only Here, we assume we only
have a small training dataset for each of the tar-
get dialect, i.e., TRAINSUD and TRAINJOR. These
datasets will be used to train PARLA and to extract
syllable structure constraints.

High and Low Resource We look at two meth-
ods for combining training data from a high- and
low-resource dialects: a) naive concatenation of the
datasets, i.e., TRAINEGY+SUD and TRAINEGY+JOR,
b) concatenation of only the compatible entries of
TRAINEGY with respect to the target dialect. Com-
patibility is based on both UR and SF: Entries from
TRAINEGY are removed if they share a UR with an
entry in the target dialect training set or if their SF

has a syllable structure that is invalid in the target
dialect. We call these training sets TRAINEGY’+SUD

and TRAINEGY’+JOR.

5.3 Training Scope

The core mechanism of our rule-learning approach
is the rule evaluation step, where each extracted
rules is evaluated against the the entire training set.
However, it is not immediately obvious how this
should be performed when the training set mixes di-
alects, since evaluating a rule for one dialect against
data from another could mislead the system. We
consider three alternative approaches:
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Default Every extracted rule is evaluated against
the entire training set regardless of the source di-
alect of the data point corresponding to the rule.

Partitioned Each rule is evaluated only against
the portion of the training data that matches the
dialect of the data point that it was extracted from.
This is practically equivalent to training on each
dialect separately and combine the resulting rules.

Target Only Each rule is evaluated only against
the portion of the training set matching the target
dialect regardless of which dialect original data
point is from.

5.4 Rule selection
At inference time, the rules learned during training
are sorted by their specificity and are traversed se-
quentially until some rule’s left-hand side matches
the context of the input UR (Khalifa et al., 2023).
Given the mixed training, we experiment with the
additional sorting criterion in which rules that have
been extracted from the target dialect’s training
data are ranked ahead of those extracted from EGY.

5.5 Syllable Structure
Most phonological changes associated with mor-
phological processes in Arabic are in fact resyl-
labification as discussed in Section 5.5, therefore,
we posit that leveraging syllables structure should
boost performance. We use learned syllable struc-
ture constraints at inference time to probe the well-
formedness of generated SFs in or to filter out in-
valid predictions. When an invalid SF is produced,
the system moves onto the next applicable rule. If
all applicable rules yield ill-formed structures, then
it is assumed no change happens.

We evaluate two types of syllable structure con-
straints, positive constraints that license structures
that are attested among the surface forms of a di-
alect’s training data, and negative constraints which
ban structures absent in the training data. Low-
resource languages provide a particular challenge
here, since learned constraints are highly sensitive
to the size and syllabic diversity of the training data.
A small training set may result in an excessively
restrictive grammar due to accidental gaps. Never-
theless, we find syllable structure constraints to be
helpful in practice. For both approaches, we first
automatically syllabify a dialect’s surface forms
using (Kodner, 2016). Syllabification itself is fairly
trivial, especially for Arabic since syllables with-
out onsets are prohibited. Example 1 shows surface

forms along with their syllabification, and the ab-
stracted syllabic structure. Consonants and vowels
are abstracted to C and V, and a long vowel is repre-
sented with VV. Word boundaries are represented
with a ‘#’.

(1) kitaab ki.taab #CV CVVC#
qalam qa.lam #CV CVC#
kutub ku.tub #CV CVC#
kibiir ki.biir #CV CVVC#

Positive Syllable Grammar (G+) We extract
a positive grammar by syllabifying the SF from
the training data and then extracting all attested
syllable structures. For example, the surface forms
in Example 1 will generate the following grammar
of two permissible syllable sequences:

(2) {[#CV CVVC#],[#CV CVC#]}

The G+ in (2) is used as follows: if the syllable
structure of a predicted SF at inference time does
not match in any instance in the set, it is rejected
as invalid.

Negative Syllable Grammar (G−) We apply
the Bottom-Up Factor Inference Algorithm (BU-
FIA; Chandlee et al., 2019)1 to extract negative
constraints in the form of forbidden factors. We
present BUFIA with the same syllabified represen-
tation for SFs as above. Using the same example,
BUFIA generates the following negative grammar:

(3) {[CV CV], [CV #], [CVC CV],
[CVC CVC], [CVC CVVC],
[CVVC CV], [CVVC CVC],
[CVVC CVVC], [# CVC],
[# CVVC], [# #]}

The G− in (3) is used as follows: if the syllable
structure of the predicted SF includes any sequence
in the is rejected as invalid. Using very little data,
such as in the toy example above, we generate
extremely conservative grammars and are likely ac-
cept similar output. However, as the data increases,
we expect G− to be more general.

6 Evaluation

We organize the evaluation discussion according to
our data setups introduced in Section 5.

1https://github.com/heinz-jeffrey/bufia
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6.1 Baselines

We consider two baselines. These have different
goals and elucidate different aspects of the task.

DONOTHING: Not all underlying forms undergo
morphophonological alternations, since not all af-
fixation requires repair. This baseline is the pro-
portion of test SFs which undergo no change be-
yond removing morpheme boundaries from their
corresponding URs, or in other words, the per-
formance achieved when nothing is done. Thus,
DONOTHING establishes a hard lower bound on
performance. A model should not perform worse
than doing nothing.

NEURAL: The task of mapping URs to SFs is
conceptually similar to a grapheme-to-phoneme
task in how it maps one similar string to another.
We train and evaluate a state-of-the-art a neural
character-based transformer for this task (Wu et al.,
2021). Ideally, a rule based model should perform
competitively with the neural model, especially in
low-resource data settings.

6.2 High Resource + Surface-Only Low
Resource

The first set of experiments rely on TRAINEGY

alone for annotated data, while syllable structure
constraints are learned from unannotated dialect
SFs. The EGY columns in Table 4 showcases the re-
sults for this scenario. Using any syllable informa-
tion helps and improves upon base PARLA trained
only on EGY with no syllable structure informa-
tion. As expected, the improvements are greater
when the constraints are learned from the target
dialect’s SFs than from EGY. Both G+ and G−
yield improvements over basic PARLA, though G−
underperforms G+. The weak performance of G−
constraints for JOR is likely due to the sparsity in
the syllable structures in its training. While the
training data shows that SUD has 74 unique sylla-
ble structures and JOR has 61, JOR has 11 syllable
shapes while SUD has only 8. This affects the
restrictive behavior or G−, BUFIA extracted 80
negative factors for SUD and a 100 for JOR.

From this experiment, we can conclude that
transfer from the high-resource dialect to the low-
resource target dialect is effective. It sometimes
even surpasses the NEURAL baseline, even with
no additional information. Adding syllable struc-
ture information from even a small amount of data
in the target dialect further improves performance.

Such data is available for many Arabic dialects
(Appen, 2006a,b, 2007; Maamouri et al., 2007).

6.3 Low Resource Only
In this scenario, we train PARLA only on the lim-
ited annotated training data available for the target
dialect. The second column in Table 4 showcases
the results. Training on limited target data directly
greatly outperforms all settings including EGY as
well as the NEURAL and DONOTHING baselines.
Using G− yields a further small improvement for
both dialects, while G+ does not.

6.4 High and Low Resource
In this setup, we leverage all available training
data by concatenating TRAINEGY with each dialect
using two settings. The first, is naive concatena-
tion while the second is concatenating a filtered
TRAINEGY as described in Section 5.2. The last
column for each dialect in Table 4 showcases the
results for the the naive concatenation setup. The
general trend seems to be that concatenating the
data does not help when compared with training us-
ing the dialect alone. Results with syllable structure
information follow similar trends as the previous
experiment. We trained NEURAL on the naive con-
catenated set and it outperformed PARLA+G− for
both dialects in the same setup, however, it still
lags behind the best performing setup for both di-
alects which is inline with previous findings on
the value of rule learning approaches for extremely
low-resource setups. Additionally, the performance
of NEURAL appears correlated with that of PARLA

on a by-dialect basis.
Following the discussion in Section 5.3, we

perform additional training experiments using
TRAINEGY’+DIA for each dialect. Even though the
performance using the concatenation techniques
was similar, we opted for TRAINEGY’+DIA since it
learns fewer rules from a smaller set of data as we
will show in the discussion section. Table 5 shows
the results for all three setups in Section 5.3. In
all setups except for TRAINEGY’+DIA, we ordered
the rules at inference time as described in Sec-
tion 5.4. The effect of the sorting alone is indi-
cated in the difference in performance between the
first two columns of each dialect in Table 5. Par-
titioned training, as shown in columns ‘PART’ in
Table 5, boosts the performance for SUD but not
as high as training on TRAINSUD alone, unlike the
case with JOR where in fact it hurts the perfor-
mance quite noticeably. For both dialect, using
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SUDanese JORdanian
Sys/Train EGY SUD EGY+SUD EGY JOR EGY+JOR
PARLA 67.5 85.0 73.0 68.0 76.0 70.0
   +EGY_G+ 69.5 - - 69.5 - -
   +EGY_G- 68.5 - - 68.0 - -
   +DIA_G+ 71.5 79.0 69.5 70.0 75.5 71.0
   +DIA_G- 72.0 85.5 73.0 68.5 77.0 71.5

NEURAL 73.5 50.5 79.0 65.0 37.5 74.5
DoNoth 60.0 58.5

Table 4: Accuracy (%) results when training PARLA using different training sets in addition to using positive and
negative syllable structure grammars at inference time and testing on the DEV of the respective target dialects
SUD and JOR. +EGY indicates syllable structure constraints trained on Egyptian, +DIA indicates syllable structure
constraints trained on the target dialect. G+ indicates positive constrains and G− indicates negative constraints. Our
baselines are reported as DONOTHING and NEURAL. Note that DONOTHING is independent of any training data.

G− boosts the performance. In the last setup, rules
are extracted from both datasets but only evaluated
against the target dialect. In this setup, as shown
in last columns for each dialect, SUD reaches peak
performance with the boost from G−. The perfor-
mance of JOR while relatively high, it is still a tad
behind TRAINJOR+G− on its own.

7 Analysis and Discussion

7.1 Acquired Knowledge

In this section we take a closer look into the
system’s “knowledge” in terms of rules that are
learned and their relationship with the training data.
This is summarized in Table 6. For both TRAINSUD

and TRAINJOR the trend in the number of rules
is clearly related to data paucity. This also mani-
fests in the poor DONOTHING baselines and the
size of G− as discussed in Section 6.2. Addition-
ally, it seems that TRAINEGY’+SUD with the parti-
tion (+PART) configuration acquires the same set
of rule as TRAINSUD with evidence in the simi-
lar performance. However, TRAINEGY’+JOR with
the same configuration learns more rules and the
performance stays relatively the same.

Additionally, training using both TRAINEGY+SUD

and TRAINEGY+JOR yielded more rules than
TRAINEGY alone, suggesting that the system
learned rules from the target dialect as well as EGY.
While it improved the performance over TRAINEGY ,
it was still substantially lower than training on the
dialect alone. This could be due to the relative at-
testation of each dialect in the combined training

set. With EGY being much larger, its contribution
to the rule set “washed out” the contribution of the
target dialect.

7.2 Effect of Augmenting with EGY

Syllable structure proved beneficial for cross-
dialectal learning, on the other hand, data aug-
mentation did not meet our expectations. We an-
alyzed the errors that differentiated training on
TRAINDIA and TRAINEGY’+DIA for both dialects.
For JOR, most of the errors that were unique to
TRAINEGY’+JOR were on entries that should have
been copied from from UR (DONOTHING pre-
dicts the correct SF), because rules extracted from
EGY applied unnecessarily. Most of these rules
were long vowel shortening and high vowel dele-
tion rules which are prevalent in EGY phonology
but not JOR. On the other hand, TRAINEGY’+JOR

did pick up a few cases with the help of rules
from EGY that were not recovered on TRAINJOR.
While these rules covers similar linguistic phenom-
ena, the JOR rules had more specific context com-
pared to those from EGY, which could lead to over-
application. The difference between TRAINSUD

and TRAINEGY’+SUD is more substantial. In addi-
tion to types of errors similar to those found in
JOR, rules enforcing resyllabification of final com-
plex codas were not extracted because the evidence
from the SUD component of the combined training
set was insufficient in the face of counterexamples
in the EGY component.
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SUDanese JORdanian
Sys/Train EGY'+SUD DEF PART SUD-only EGY'+JOR DEF PART JOR-only
PARLA 73.0 76.0 80.0 85.0 69.5 69.5 67.0 75.0
   +DIA_G+ 69.0 70.0 75.5 79.0 70.5 71.0 71.0 75.5
   +DIA_G- 73.0 76.0 81.5 85.5 71.0 72.5 71.5 76.5

DoNoth 60.0 58.5

Table 5: Accuracy (%) results when training PARLA using TRAINEGY’+DIA with different training methodologies.
Evaluation is on the DEV of the target dialects SUD and JOR. We also report accuracies when using both positive
and negative grammars for each setup. We also report DONOTHING which is independent of any training data.

Train ACC@ R R%
TRAINEGY 40% 1,721 13.6
TRAINSUD 60% 49 16.7
TRAINEGY+SUD 60% 1,759 13.6
TRAINEGY’+SUD 60% 1,639 13.5

+DEF 60% 1,640 13.5
+PART 60% 49 0.4

TRAINJOR 40% 80 26.7
TRAINEGY+JOR 40% 1,772 13.7
TRAINEGY’+JOR 40% 1,337 12.9

+DEF 40% 1,351 13.0
+PART 40% 95 0.9

Table 6: The number of Rules (R) for each training
setup using PARLA in addition to their ratio, (R%),
with respect to the training size.

8 Conclusion and Future Work

In this work we investigated cross-dialectal learn-
ing of morphophonology of three Arabic dialects –
Egyptian, Sudanese, and Jordanian – through rule
learning, where we generate a spoken form from an
underlying morphological representation. We ex-
plored different scenarios of data availability where
Egyptian is taken to be the rich-resource dialect
while Sudanese and Jordanian are under-resourced.
We found that training on the under-resourced di-
alect alone outperformed transfer from the higher-
resourced dialect, alone or in combination with
the under-resourced dialect. Furthermore, we in-
troduced learned syllable structure properties as
an additional linguistic well-formedness measure,
which nearly always boosted performance, partic-
ularly when used in the absence of training data
from the under-resource dialect.

Some of the analyses suggest that cross-dialectal
learning using high resource data that is potentially
contradictory with the target dialect is needed. Po-

tential techniques we plan to explore involve rein-
forcement learning and active learning. We addi-
tionally plan on carrying more careful analysis of
the rules and how they compare across the dialects.
We will also explore incorporating more linguistic
signals such as stress assignment since it is closely
tied with some phonological processes. Addition-
ally, we are working on investigating more dialects
across the continuum as more data become avail-
able. Finally, we plan to investigate ways to unify
underlying representations in reasonable ways to al-
low a clearer classification of the rule types across
dialects.

Acknowledgments

We thank Robert Hoberman and Ellen Brosellow
for their helpful discussion and efforts. Khalifa,
Qaddoumi, and Rambow gratefully acknowledges
support from the Institute for Advanced Computa-
tional Science at Stony Brook University.

References
Adam Albright and Bruce Hayes. 2002. Modeling En-

glish past tense intuitions with minimal generaliza-
tion. In Proceedings of the ACL-02 workshop on
Morphological and phonological learning, pages 58–
69.

Evan L Antworth. 1991. Introduction to two-level
phonology. Notes on Linguistics, 53:4–18.

Pty Ltd, Sydney, and Australia Appen. 2006a. Gulf
Arabic conversational telephone speech, transcripts
LDC2006T15. Web Download. Philadelphia: Lin-
guistic Data Consortium.

Pty Ltd, Sydney, and Australia Appen. 2006b. Iraqi
Arabic conversational telephone speech, transcripts
LDC2006T16. Web Download. Philadelphia: Lin-
guistic Data Consortium.

Pty Ltd, Sydney, and Australia Appen. 2007. Levantine
Arabic conversational telephone speech, transcripts
LDC2007T0. Web Download. Philadelphia: Linguis-
tic Data Consortium.

165



Houda Bouamor, Nizar Habash, Mohammad Salameh,
Wajdi Zaghouani, Owen Rambow, Dana Abdulrahim,
Ossama Obeid, Salam Khalifa, Fadhl Eryani, Alexan-
der Erdmann, et al. 2018. The madar arabic dialect
corpus and lexicon. In Proceedings of the eleventh
international conference on language resources and
evaluation (LREC 2018).

Ellen Broselow. 1976. The Phonology of Egyptian
Arabic. Ph.D. thesis, University of Massachusetts
Amherst.

Ellen Broselow. 1992. Parametric variation in arabic
dialect phonology. Perspectives on Arabic linguistics
IV, pages 7–45.

Ellen Broselow. 2017. Syllable Structure in the Dialects
of Arabic. The Routledge handbook of Arabic lin-
guistics, pages 32–47.

Ellen Broselow, Su-I Chen, and Marie Huffman. 1997.
Syllable weight: convergence of phonology and pho-
netics. Phonology, 14(1):47–82.

Ellen Broselow, Marie Huffman, Sui-I Chen, and
Ruohmei Hsieh. 1995. The timing structure of cvvc
syllables. Amsterdam Studies in the Theory and His-
tory of Linguistic Science Series 4, pages 119–119.

Jane Chandlee, Remi Eyraud, Jeffrey Heinz, Adam Jar-
dine, and Jonathan Rawski. 2019. Learning with par-
tially ordered representations. In Proceedings of the
16th Meeting on the Mathematics of Language, pages
91–101, Toronto, Canada. Association for Computa-
tional Linguistics.

Kevin Ellis, Adam Albright, Armando Solar-Lezama,
Joshua B Tenenbaum, and Timothy J O’Donnell.
2022. Synthesizing theories of human language with
bayesian program induction. Nature communica-
tions, 13(1):1–13.

Samira Farwaneh. 1995. Directionality effects in Arabic
dialect syllable structure. Ph.D. thesis, The Univer-
sity of Utah.

Hassan Gadalla, Hanaa Kilany, Howaida Arram, Ashraf
Yacoub, Alaa El-Habashi, Amr Shalaby, Krisjanis
Karins, Everett Rowson, Robert MacIntyre, Paul
Kingsbury, David Graff, and Cynthia McLemore.
1997. CALLHOME Egyptian Arabic transcripts
LDC97T19. Web Download. Philadelphia: Linguis-
tic Data Consortium.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012. A Morphological Analyzer for Egyptian Ara-
bic. In Proceedings of the Workshop of the Special
Interest Group on Computational Morphology and
Phonology (SIGMORPHON), pages 1–9, Montréal,
Canada.

Abdel Halim Hamid. 1984. A Descriptive Analysis of
Sudanese Colloquial Arabic Phonology. Ph.D. thesis,
University of Illinois at Urbana-Champaign.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022.
Morphosyntactic Tagging with Pre-trained Language
Models for Arabic and its Dialects. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1708–1719, Dublin, Ireland. Association
for Computational Linguistics.

Salam Khalifa, Jordan Kodner, and Owen Rambow.
2022. Towards learning Arabic morphophonology.
In Proceedings of the The Seventh Arabic Natu-
ral Language Processing Workshop (WANLP), Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Salam Khalifa, Ossama Obeid, and Nizar Habash. 2021.
Character Edit Distance Based Word Alignment.

Salam Khalifa, Sarah Payne, Jordan Kodner, Ellen
Broselow, and Owen Rambow. 2023. A cautious gen-
eralization goes a long way: Learning morphophono-
logical rules. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1793–1805, Toronto,
Canada. Association for Computational Linguistics.

Salam Khalifa, Abdelrahim Qaddoumi, Ellen Broselow,
and Owen Rambow. 2024. Picking up where the
linguist left off: Mapping morphology to phonol-
ogy through learning the residuals. In Proceedings
of The Second Arabic Natural Language Process-
ing Conference, pages 258–264, Bangkok, Thailand.
Association for Computational Linguistics.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2020. Morphological Analysis and Disambiguation
for Gulf Arabic: The Interplay between Resources
and Methods. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3895–
3904, Marseille, France. European Language Re-
sources Association.

Hanaa Kilany, Hassan Gadalla, Howaida Arram, Ashraf
Yacoub, Alaa El-Habashi, and Cynthia McLemore.
2002. Egyptian Colloquial Arabic Lexicon. LDC
catalog number LDC99L22.

Jordan Kodner. 2016. Simple Syllabify.
Mohamed Maamouri, Tim Buckwalter, David Graff,

and Hubert Jin. 2007. Fisher levantine arabic con-
versational telephone speech, transcripts ldc2007t04.
Web Download. Philadelphia: Linguistic Data Con-
sortium.

Kurt Micallef, Nizar Habash, Claudia Borg, Fadhl
Eryani, and Houda Bouamor. 2024. Cross-lingual
transfer from related languages: Treating low-
resource Maltese as multilingual code-switching. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1014–1025,
St. Julian’s, Malta. Association for Computational
Linguistics.

Wael Salloum and Nizar Habash. 2014. ADAM: Ana-
lyzer for Dialectal Arabic Morphology. Journal of
King Saud University - Computer and Information
Sciences, 26(4):372–378.

Toshiyuki Takezawa, Genichiro Kikui, Masahide
Mizushima, and Eiichiro Sumita. 2007. Multilingual
Spoken Language Corpus Development for Commu-
nication Research. Computational Linguistics and
Chinese Language Processing, 12(3):303–324.

Yang Wang. 2024. Studies in Morphophonological
Copying: Analysis, Experimentation and Modeling.
Ph.D. thesis, University of California, Los Angeles.

166



Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Ap-
plying the transformer to character-level transduction.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1901–1907, Online.
Association for Computational Linguistics.

Nasser Zalmout. 2020. Morphological Tagging and Dis-
ambiguation in Dialectal Arabic Using Deep Learn-
ing Architectures. Ph.D. thesis, New York University.

A Appendix

Arabic IPA LDC
Z ø ð


@ @ /Pa/ ’

H. /b/ b

ø
 /j/ j

X /d/ d

è /h/ h

ð /w/ w
	P /z/ z

h /è/ H

  /tQ/ T

ø
 /y/ y

¼ /k/ k

È /l/ l

Ð /m/ m
	à /n/ n

� /s/ s

¨ /Q/ c
	¬ /f/ f

� /sQ/ S
�� /q/ q

P /r/ r
�� /S/ $
�H /t/ t
�è /-a(t)/ a,at
�H /T/ v

p /x/ x
	X /D/ ∗
	� /dQ/ D
	̈

/G/ g
	  /DQ/ Z
�* /a/ a
�* /u/ u

*� /i/ i

ø @ /a:/ A

ð /u:/ U

ø
 /i:/ I

Table 7: Transcription Map
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Abstract

Variations in languages across geographic re-
gions or cultures are crucial to address to avoid
biases in NLP systems designed for culturally
sensitive tasks, such as hate speech detection
or dialog with conversational agents. In lan-
guages such as Spanish, where varieties can
significantly overlap, many examples can be
valid across them, which we refer to as com-
mon examples. Ignoring these examples may
cause misclassifications, reducing model accu-
racy and fairness. Therefore, accounting for
these common examples is essential to improve
the robustness and representativeness of NLP
systems trained on such data. In this work, we
address this problem in the context of Spanish
varieties. We use training dynamics to auto-
matically detect common examples or errors
in existing Spanish datasets. We demonstrate
the efficacy of using predicted label confidence
for our Datamaps (Swayamdipta et al., 2020)
implementation for the identification of hard-
to-classify examples, especially common exam-
ples, enhancing model performance in variety
identification tasks. Additionally, we introduce
a Cuban Spanish Variety Identification dataset
with common examples annotations developed
to facilitate more accurate detection of Cuban
and Caribbean Spanish varieties. To our knowl-
edge, this is the first dataset focused on identify-
ing the Cuban, or any other Caribbean, Spanish
variety.

1 Introduction

Language reflects culture and identity, while also
capturing subtle variations that shape communica-
tion. In Natural Language Processing (NLP), it is
crucial to account for these nuances, especially in
language variety identification, where small shifts
in meaning, often tied to cultural interpretations,
can impact sensitive tasks like hate speech detec-
tion. Expressions that may be benign in one dialect

*These authors contributed equally.

can be offensive in another, making accurate variety
identification essential to prevent misclassifications
and ensure culturally appropriate responses (Nozza,
2021; Hershcovich et al., 2022). In such tasks,

“El auto está en el garaje” (The car is in the garage)

variety 1: Argentinian variety 2: Cuban

Common Example

Annotator 1:
“Auto” (Automobile) is commonly used
in Argentina instead of “coche” (car).

Annotator 2:
“Garaje” (Garage) is used in
Cuba, while “cochera” (carport)
might be used elsewhere.

Figure 1: Common Example Identification in Language
Variety Classification

cross-lingual models often struggle with these sub-
tle cultural and linguistic distinctions, as the same
formulation may carry vastly different meanings
across varieties. Language-specific models tend to
perform better in such cases, as they are more sen-
sitive to regional variations (Nozza, 2021; Vaidya
et al., 2024; Arango et al., 2021; Montariol et al.,
2022; Castillo-lópez et al., 2023). However, dis-
tinguishing between closely related languages, di-
alects, and regional varieties of the same language
is a key and difficult task in language identification
(Tiedemann and Ljubešić, 2012; Lui and Cook,
2013; Zampieri and Nakov, 2021; España-Bonet
and Barrón-Cedeño, 2024). Adding to this com-
plexity is the issue of common examples —valid
phrases across multiple dialects or varieties. Over-
looking these examples can result in biased clas-
sifications, especially in languages like Spanish,
where variety overlap is frequent. 1 Despite this,
many current datasets treat the identification of
the language variety as a single label classification

1Following Hudson (1996), we use the terms varieties of
Spanish: “a variety is a set of linguistic items with similar
social (including geographical and cultural) distribution.”
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task, which overlooks this crucial aspect (Zampieri
et al., 2024). Current datasets for language variety
identification often rely on manual annotations or
automated methods such as geographic informa-
tion (Zampieri et al., 2019; Abdul-Mageed et al.,
2020, 2022; Aepli et al., 2022) or keyword-based
classification (Althobaiti, 2022). However, both ap-
proaches have limitations, and manually checking
large datasets for common examples is challeng-
ing and costly (Keleg and Magdy, 2023; Bernier-
colborne et al., 2023). Datamaps based on train-
ing dynamics (Swayamdipta et al., 2020; Weber-
Genzel et al., 2024), which track how the confi-
dence of the model changes over epochs, have been
used successfully to detect annotation errors and
human label variation. These methods highlight
which examples are consistently easy or difficult
for the model, with hard examples often pointing
to ambiguity or errors. We propose using training
dynamics to detect common examples in language
variety identification tasks. In 1 we show an exam-
ple of these common examples. These are expected
to be among the hard examples the model struggles
with during training. By tracking the model’s confi-
dence in its predicted labels over multiple training
epochs, rather than using gold labels, we aim to
detect ambiguous instances that are hard for the
model to classify consistently. Our research ad-
dresses the following questions:

• RQ1: Can training dynamics help detect com-
mon examples that are hard for the model to
classify during the training?

• RQ2: Can we use the model’s confidence over
predicted labels to detect common examples?

• RQ3: Can this approach work effectively
across different domains, such as news articles
and user-generated content?

To investigate these questions, we use two
datasets: the Spanish subset of DSL-TL dataset
(Zampieri et al., 2024), which contains texts ex-
tracted from news articles, and a new dataset of
Cuban Spanish varieties we collected from Twit-
ter. We adapt the Datamaps technique by changing
the way confidence and variability are calculated,
allowing us to identify common examples. Our
results demonstrate the efficiency of this approach
in detecting common examples in both datasets.

Our main contributions are as follows:

1. We propose a modified Datamaps model that
calculates confidence and variability based
on the predicted label’s probability, provid-
ing a more accurate reflection of model un-
certainty. Our model can help accelerate the
re-annotation of existing datasets.

2. Using both frequency-based methods and
SHAP analysis (Lundberg and Lee, 2017), we
provide a thorough error analysis that demon-
strates the usefulness of our approach to cap-
ture annotation errors and shows how the
model predictions are topic-dependent.

3. We present and publicly share a novel Cuban
Spanish variety identification dataset, consist-
ing of 1,762 manually annotated tweets by
three native speakers, with labels assigned
based on agreement and covering Cuban, non-
Cuban varieties, and common examples.

2 Related Work

Common Examples. The challenge of handling
common examples that can be valid across mul-
tiple language varieties has been a recurring is-
sue in language variety identification. Traditional
single-label classification often struggles to as-
sign unique labels to common examples(Althobaiti,
2020; Bernier-colborne et al., 2023). Addressing
this challenge, Zampieri et al. (2024) introduced
a third class specifically for common instances in
their DSL-TL dataset for language variety identi-
fication. This dataset allowed the exploration of the
impact of these ambiguous cases on model perfor-
mance. The authors found that the models had diffi-
culty distinguishing between common and dialect-
specific examples. Then, their results served as a
baseline for the DSL-TL shared task at VarDial
2023 (Aepli et al., 2023). In the scope of this
shared task, Vaidya and Kane (2023) introduced
a two-stage multilingual dialect detection system.
Their approach first identifies the macro-language,
followed by applying dialect-specific models to
refine the classification. Although this system per-
formed well overall, it struggled with the common
examples class, where it frequently misclassified
examples due to the lack of clear dialect-specific
markers. The Spanish language, with its rich ar-
ray of varieties, provides a particularly challenging
landscape for variety identification due to the high
similarity between varieties. Zampieri et al. (2024)
noted that the prevalence of common examples in
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Spanish is especially high. Given the significant
lexical and syntactical overlap among Spanish vari-
eties, sentences that can belong to more than one
variety are frequent, making traditional classifica-
tion approaches less reliable. The misclassification
of these common instances not only introduces
noise into the datasets but also impacts the overall
performance of the models, as evidenced by the
poor handling of Argentine examples in Vaidya
and Kane (2023).

Multi-class Approaches for Variety Identifica-
tion. In light of these challenges that affect many
different languages, several works have proposed
moving away from single-label classification to-
wards multi-class or multi-label approaches for va-
riety identification. For example, Keleg and Magdy
(2023) demonstrated that many sentences could
validly belong to multiple Arabic dialects, arguing
for including multiple labels per instance. They in-
troduced the Expected Maximal Accuracy (EMA)
metric to measure the upper-bound accuracy in sce-
narios where common instances occur frequently.
Their results indicated that the majority of false
positives in traditional single-label classifiers were,
in fact, not errors, but cases where multiple dialects
could be correct. Bernier-colborne et al. (2023)
took this further by employing similarity metrics
to identify duplicate or nearly duplicate examples
and assigning multiple labels to ambiguous sen-
tences. Their work, focusing on French varieties,
showed that this multi-class approach significantly
improved F1-macro scores for ambiguous exam-
ples. They argued that applying a multi-class frame-
work can improve the accuracy of variety identi-
fication and better handle the inherent ambiguity
found in multilingual datasets.

3 Task Definition: Automatic Common
Examples Detection

Our main task is to identify common examples
across similar language varieties. Our proposed
pipeline can be separated into two main stages:

• Fine-tune a Transformer-based model on the
Variety Identification datasets for single-label
classification of varieties (binary).

• Assign a score to each example using a scorer
model, expecting higher values for common
examples, and rank them with the highest
scores at the top.

3.1 Scorer Models
Datamaps Swayamdipta et al. (2020) proposed
Datamaps (DM) using Training Dynamics, which
is the behavior of a model as training progresses,
for detecting annotation errors in datasets. Their
approach focused on tracking the confidence and
variability on the gold label during training. Specif-
ically, examples consistently showing low confi-
dence for this label across epochs were flagged
as potential annotation errors or ambiguous cases.
This technique has also been adapted to identify
the variation of human labels, where examples
can legitimately belong to more than one category
(Weber-Genzel et al., 2024). We use this technique
to identify common examples for the Variety Iden-
tification task.

Datamaps using predicted label probability
We adapt the Datamaps metrics to our use case.
Unlike Swayamdipta et al. (2020), who focus on
the gold labels, and Weber-Genzel et al. (2024),
who prioritize re-annotating erroneous labels, our
goal is to detect instances that the model struggles
to classify consistently. Therefore, we calculate
confidence and variability differently: rather than
focusing on the correctness of assigned labels or
identifying annotation errors, we calculate these
metrics based on the maximum predicted probabil-
ity for each instance at each epoch, aiming to de-
tect instances that exhibit inconsistent predictions
or low confidence and, therefore, could belong to
both classes or an unobserved third class. For com-
mon examples, which can be associated with more
than one label, it would be more natural to describe
the uncertainty in terms of the model’s confidence
in its predictions. The confidence is defined as:

DMmean−pred = − 1

E

E∑

e=1

max
j

(pi,j,e) (1)

where pi,j,e is the probability assigned to the i’th
instance for the label j in epoch e. Then, the lowest
confidences correspond to a higher score because
of the negative sign. The idea is that examples with
small probabilities associated with the predicted
label across the epochs are likely challenging ex-
amples.

The variability is defined as:

DMstd−pred =
√√√√ 1

E

(
E∑

e=1

max
j

(pi,j,e) + DMmean−pred

)2 (2)
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The high variability indicates that the model’s
confidence changes significantly across epochs,
suggesting the model is uncertain about the in-
stance. This can point to an instance that is hard to
classify or potentially common.

Random baseline We use a random model as
a scorer, which assigns uniformly random scores
between 0 and 1 to each example as a baseline.

Language Model For the Variety Identification
module we use the model BETO, a monolin-
gual Spanish BERT model version (Canete et al.,
2020) for our experiments; it has proven effec-
tive in several downstream tasks for this language.
This model was trained on all Wikipedia and all
Spanish data from the OPUS project (Tiedemann,
2012). In the case of Spanish Wikipedia, by 2017,
around 39.2% of edits came from Spain (Spanish
Wikipedia, 2021), which can negatively impact the
model performance in varieties not from Spain.

Evaluation The first metric considered for eval-
uation is the Average Precision Score in the Com-
mon Examples Identification Task. In addition, we
evaluate precision and recall by considering the top
N instances, ranked by their score values, with N
ranging from 10 to the size of each dataset.

4 Datasets

In this section, we describe the datasets used for
our analysis. We use an existing dataset DSL-TL
and propose a new dataset CUBANSPVARIETY

focused on the Cuban Spanish variety.

4.1 DSL-TL

The Discriminating Similar Language - True La-
bels ( DSL-TL) dataset (Zampieri et al., 2024)
was employed in a shared task at the VarDial 2023
workshop2. This dataset contains examples from
Portuguese, Spanish, and English varieties, but our
focus is solely on the Spanish subset. The Span-
ish subset is derived from the DSLCC dataset (Tan
et al., 2014) and includes sentences extracted from
various Argentinian and Spanish newspapers, with
each example annotated based on the country asso-
ciated with the news source. However, annotating
the examples with a single label proved difficult,
even for human annotators (Goutte et al., 2016).
Specifically, Spanish annotators achieved an aver-
age accuracy of only 54.90%. To address these

2VarDial 2023 website.

challenges, Zampieri et al. (2024) randomly sam-
pled the Spanish, Portuguese, and English subsets
and conducted a new round of human annotations.
In addition to the original binary labels, a third
label—both or neither—was introduced. This ad-
ditional label was assigned when annotators were
unable to identify the characteristics of the different
varieties. For our experiments with the DSL-TL
dataset, we use the newly introduced labels from
the DSL-TL dataset and the original labels from
the DSL-2014 corpus. It allowed us to simulate a
scenario where new annotations would be unavail-
able. We only use the training set to analyze the
training dynamics.

ES-ES 50.6%
(1752)

ES-AR49.4%
(1710)

ES-ES
37.8%
(1309)

ES

38.0%
(1317)

ES-AR24.2%
(837)

(a) DSL-TL dataset distribution.

ES-CU
38.8%
(676)

not-ES-CU

61.2%
(1066)

ES-CU
17.2%
(299)

ES

46.7%
(812)

not-ES-CU36.2%
(629)

(b) CUBANSPVARIETY dataset distribution.

Figure 2: Datasets distributions.

4.2 CUBANSPVARIETY

To our knowledge, the dataset is the first dataset
for Cuban or any Caribbean Spanish variety identi-
fication. The dataset contains manually annotated
tweets with variety information. We collected the
data from the publicly available archive The Twit-
ter Stream Grab in the website archive.org. We
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worked particularly with data from July 2021. 3

Data Annotation. We randomly sampled 10000
tweets from July 11th and July 12th. Among those,
we finally annotated 1762 examples. We consid-
ered this time frame because of the high Twitter
activity in Cuba after July 11th protest in 2021
with trending hashtags such as #SOSCuba or #SOS-
Matanzas. 4 Each tweet was annotated across
five columns: cuban_variety, not_cuban_variety,
specific_variety, not_able_to_identify, and irrel-
evant. Annotators marked cuban_variety if the
tweet belonged to the Cuban Spanish variety and
not_cuban_variety if it did not (cf. Section B). In
case of identifying a different Spanish variety (e.g.,
from Spain or Chile), they were asked to annotate
it in the specific_variety column for future work.
When uncertain about the variety, they marked
not_able_to_identify. Tweets deemed noisy or non-
Spanish were marked as irrelevant.

We focused on three labels for analysis: ES-
CU (Cuban variety), not-ES-CU (non-Cuban),
and ES (common examples). Tweets with
cuban_variety marked True were labeled ES-CU,
those with not_cuban_variety marked True were
labeled not-ES-CU, and tweets marked only as
not_able_to_identify were labeled ES, aligning
with the DSL-TL dataset. Three volunteers, native
Cuban Spanish speakers with a Master’s degree in
Cuba, performed the annotations. Their familiarity
with other Spanish varieties helped them recognize
common examples. Labels were assigned when at
least two annotators agreed and tweets marked as
irrelevant by any annotator were discarded. Full
agreement was reached for 984 examples (55.8%),
partial agreement for 776 (43.5%), with disagree-
ment in just 12 cases (0.7%). We use the full dataset
for training dynamics analysis. In this case, we
only have the annotations with the common exam-
ples information (i.e. not single label approach).
Then, to simulate a real-world scenario with single
labels, we randomly assigned each common exam-
ple a label of either ES-CU or not-ES-CU. Figure
2b shows the final dataset distribution. The inter-
nal circle represents the original distribution (cf.
Table 2 for an overview of lexical properties).

Figure 3: F1-score during training for common and non-
common examples on both datasets.

5 Results

5.1 Variety Identification
We investigate the learning behavior of BETO-
based Variety Identification model by analyzing the
F1 scores across both datasets. Figure 3 presents
the F1-score evaluation for Language Variety Clas-
sification over 10 training epochs, with separate
curves for common examples and the rest of the
data in both datasets. As shown in the figure,
the performance gap between common and non-
common examples is substantial during the early
stages of training. Furthermore, the error bars indi-
cate greater variability in the F1-scores for common
examples than the rest. This gap is particularly pro-
nounced in the CUBANSPVARIETY dataset, which
exhibits lower F1 scores, likely due to the addi-
tional challenges of social media content, unlike
DSL-TL, which contains sentences from newspa-
per articles. These observations suggest that the
model finds it more challenging to learn common
examples, supporting the idea that their character-
istics can be identified through training dynamics.

5.2 Common Examples Identification
We present in Table 1 the results for both the DSL-
TL and CUBANSPVARIETY datasets, comparing
DMmean-pred, DMstd-pred and the random baseline.
Across both datasets, the two Datamaps models
significantly outperform the baseline, indicating
that both capture relevant information about com-
mon examples. In addition, DMmean-pred, which
leverages the confidence in predicted labels, con-
sistently outperforms DMstd-pred. This suggests

3Link to available data for July 2021.
4New York Times (July 11th, 2O21).
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Model APS Prec-500 Recall-500 Prec-1000 Recall-1000

DSL-TL
Random 39.45 ± 2.54 38.71 ± 1.49 14.98 ± 0.57 37.80 ± 1.16 28.99 ± 0.89

DMmean−pred 54.75 ± 1.8 62.78 ± 2.47 24.31 ± 0.95 57.76 ± 1.58 44.29 ± 1.21
DMstd−pred 52.88± 3.00 58.70 ± 3.05 22.73 ± 1.18 56.03 ± 2.59 42.97 ± 1.98

CUBANSPVARIETY
Random 46.42 ± 1.20 46.39 ± 2.32 29.10 ± 1.46 46.83 ± 0.52 58.17 ± 0.65

DMmean−pred 63.51 ± 2.56 66.19 ± 3.43 41.52 ± 2.15 59.16 ± 1.25 73.50 ± 1.55
DMstd−pred 61.97 ± 2.60 64.86 ± 3.59 40.68 ± 2.25 58.15 ± 1.07 72.25 ± 1.33

Table 1: Evaluation metrics for Automatic Common Examples on DSL-TL and CUBANSPVARIETY datasets. We
present the Average Precision Score, equivalent to the area under the precision-recall curve, and the precision and
recall for Top-500 and Top-1000 instances. All the metrics are expressed in percentages.
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Figure 4: Precision versus recall curve

that the model’s average confidence offers a more
reliable signal for identifying common examples,
while the variability-based approach (DMstd-pred)
tracks changes that do not always correspond with
common examples. We observe that the difference
in performance between the two datasets follows a
similar pattern across all models, including the ran-
dom baselines. This is likely due to the proportion
of common examples in each dataset. In DSL-
TL, where 38% of the examples are common, the
random baseline precision is close to 38%. Simi-
larly, in CUBANSPVARIETY, with 46% common
examples, the baseline precision is near 46%. This
suggests that the metrics’ ranges are closely tied to
each dataset’s distribution of common examples.

Figure 4 shows both datasets’ precision versus
recall curves. In both cases, precision remains rel-
atively stable in the early ranking stages and be-
gins to converge toward the common examples’
proportion as recall increases. The performance
difference between DMmean-pred and DMstd-pred is
more pronounced for smaller values of N, particu-
larly in precision. However, the recall curves show
a steeper slope at earlier ranking stages, which

gradually decreases as N increases, consistent with
expected behavior.

Figure 5: Precision and Recall versus Top-N instances
DSL-TL dataset

Figure 5 highlights that in the DSL-TL dataset,
which contains clean, edited content unlike our
Twitter-based Cuban dataset, DMmean-pred identi-
fies common examples early in the ranking. This
is likely because we had access to the original la-
bels for common examples in this dataset, reduc-
ing noise. Furthermore, the clear class boundaries
distinguishing Spanish varieties from Spain and
Argentina likely contributed to the model’s more
stable performance, while DMstd-pred is less effec-
tive in this context. In Figure 6, we observe that for
the CUBANSPVARIETY dataset, which contains
more dynamic and informal language from user-
generated content, the performance gap between
DMmean-pred and DMstd-pred becomes smaller. This
indicates that variability has a more significant
impact on identifying common examples in user-
generated content. In this dataset, common ex-
amples were identified in the first round and ran-
domly assigned to Cuban or non-Cuban classes,
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Figure 6: Precision and Recall versus Top-N instances
CUBANSPVARIETY dataset

increasing ambiguity. It is worth noting that, be-
yond the differences in the nature of the dataset
(newswire text vs. Twitter user-generated content),
the collection period dates vary over six years be-
tween both datasets, likely affecting model perfor-
mance since languages evolve and are shaped by
social dynamics. Furthermore, the Cuban dataset
includes tweets from July 11th and 12th, during
large protests in Cuba that were trending among
Spanish-speaking countries. This may introduce
biases into the dataset and influence the variety
identification.

6 Error Analysis

To better understand our models’ performance, we
analyzed the errors for each dataset by counting the
most frequent words in the Top-500 non-common
instances predicted by the DMmean−pred model
(prediction errors). After removing stopwords and
special tokens, we found that in the CUBANSP-
VARIETY dataset, the most frequent words were
Cuba and SOSCuba, directly tied to the Cuban va-
riety in this context. In contrast, the DSL-TL
dataset showed common words like ha, pero, fue,
and también, which do not indicate a specific va-
riety. The topic bias in the Cuban dataset can in-
fluence the model predictions, mainly when the
examples contain keywords specific to the variety.
This also explains why DMstd−pred performs bet-
ter for CUBANSPVARIETY, as these keywords in
both classes make variability more significant than
in DSL-TL.

In the CUBANSPVARIETY dataset, Figure 7
shows that about 67% of the Top-500 non-common
examples and 54% of the Top-1000 non-common

examples contained the word Cuba, suggesting a
strong influence on model behavior, given that only
33% of the total examples contain this word. Ad-
ditionally, we found that 63.31% of the Top-500
errors in CUBANSPVARIETY were cases where
only two annotators agreed on the label, and for
the Top-1000, this number was 57%. Across all
non-common instances, full agreement (three anno-
tators) occurred in 57% of cases, indicating a clear
link between annotation difficulty and model errors
as shown in Figure 8.
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Figure 7: Fraction of error instances containing the word
Cuba in Top-N instances using DMmean score metric.
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Figure 8: Agreement index for error instances in Top-N
using DMmean score metric.

Another key point is understanding why the
model fails to retrieve certain common examples.
We focus on the last two common examples in the
ranking for each dataset, using SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017)
to analyze the model’s behavior. SHAP is based
on Game Theory and assigns importance scores
to features, showing how much each feature influ-
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(a) DSL-TL dataset examples.

(b) CUBANSPVARIETY dataset examples.

Figure 9: For each dataset, we analyze the last two common examples in the ranking obtained using DMmean−pred.
The model is trained on binary classification for variety detection. The final output of the models for the predicted
variety/class is highlighted. Red-colored terms influence the final decision towards ES-ES or ES-CU depending on
the dataset, while blue-colored terms influence the model classification towards ES-AR or not-ES-CU classes.

ences the model’s prediction. Figure 9a presents
the SHAP scores for the last two common examples
in the DSL-TL dataset ranking. For the first ex-
ample, the words Argentina, Rosario, and Marcelo
are the most influential for predicting the ES-AR
label. The first two refer to the country and one
of its major cities, while Marcelo is a common
name in Argentina. For the second example, auto
(commonly used in Argentina to mean "car," as
opposed to coche in Spain) is the most significant
feature, followed by Puerto and Madero, a well-
known place in Argentina. While named entities
influence the first example, the second example,
with the word auto, suggests a potential annotation
error, as it points to the Argentinian variety.

In Figure 9b, we provide the corresponding anal-
ysis for the CUBANSPVARIETY dataset. For the
first example, the word buen (from the phrase buen
día, which is used in Spanish varieties other than

the Cuban one) is the most significant, along with
Argenzuela (a blend of Argentina and Venezuela),
garchan, and tenés, which are characteristic of the
Argentinian variety. This example likely represents
an annotation mistake. For the second example,
the most influential words are profesional, partido,
fidelidad, and obediencia, none of which are strong
indicators of a specific variety. This suggests that
common topics in Cuban tweets may affect the
model’s prediction, potentially introducing biases
into the classification process.

Regarding the named entities, we followed the
precedent set by previous works in variety Identifi-
cation, such as the study introducing the DSL-TL
dataset (Zampieri et al., 2024), retained named enti-
ties. Consequently, we included them in our initial
approach while emphasizing the importance of
analyzing their influence. We agree that a set
of experiments where we could switch the named
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entities with neutral entities (or even adversarial en-
tities (eg switch SosCuba with SosMexico) would
be interesting. In our case, while evidence suggests
that named entities contribute to model errors, our
preliminary analysis demonstrates the model’s
robustness to their presence. For example, the
sentence “Mi mensaje para el pueblo de cuba emoji
bandera cuba emoji :. ¡No están solos!. Cuenten
con nosotros para seguir apoyando su lucha por la
libertad y la democracia. soscuba url” was ranked
second using the Datamaps mean approach. Al-
though it contained clear markers such as “Cuba”
and “soscuba,” the model correctly identified it.
This is not an isolated case, and further analysis
of correctly classified examples can provide addi-
tional evidence of the system’s robustness.

7 Conclusion

In this work, we examine the effectiveness of
Datamaps methods in identifying common exam-
ples across closely related language varieties. Our
results demonstrate the value of training dynamics
in detecting difficult examples early in the model’s
learning process, as reflected by the effectiveness of
DMmean-pred across both datasets. This confidence-
based approach consistently outperformed the
variability-based method, suggesting that tracking
model confidence over predicted labels offers a
reliable way to identify common examples auto-
matically across different domains. Although the
performance difference between variability-based
and confidence-based approaches is less significant
for theinformal dataset, the overall results indicate
that confidence-based Datamaps can be a powerful
tool for improving data quality in different con-
texts.

Although these methods may not fully solve the
challenges of variety and dialect annotation, they
offer a promising step forward, particularly when
combined with automatic techniques and targeted
human annotation.

We hope that this initial dataset, freely accessible
under a CC-BY-SA license upon publication, the
first centered on Cuban, a Caribbean variety of
Spanish, will prove a valuable resource for future
research on this topic.

8 Limitations

One limitation of our work is that the analysis
focuses on binary classification scenarios, explic-
itly distinguishing between two main classes in

each dataset without incorporating multi-class ap-
proaches or more complex variety distinctions.
While this setup allows us to study common exam-
ples effectively, expanding the approach to multi-
variety settings could provide a more comprehen-
sive understanding of the challenges posed by lan-
guage variety identification.

Another limitation is inherent in the way the an-
notations in the CUBANSPVARIETY dataset were
built. Since all annotators were Cuban native speak-
ers, the dataset focuses on Cuban versus non-Cuban
distinctions. Incorporating annotators from other
Spanish-speaking regions would allow for broader
variety distinctions and more nuanced annotations,
which could reduce potential biases introduced by
a single-region perspective. However, the frame-
work for annotations was designed with enough
flexibility to make it extensible for further an-
notations in variants different from Cuban with
the final aim of creating a dataset which cover most
of the Spanish varieties. In this scenario, common
examples between specific varieties will be deter-
mined by overlapping between annotation made by
native speakers from each variant.

Finally, as discussed in Section 6, named enti-
ties, including hashtags, play a significant role in
model behavior. Managing these entities, such as
replacing them with special tokens, could be an
effective way to reduce bias and improve general-
ization. This is especially important in tasks like
language variety classification, where named enti-
ties might disproportionately influence predictions.

9 Ethical Considerations

This work involves using social media data, partic-
ularly from Twitter, which may contain sensitive
or controversial content. Although we anonymize
the data by replacing user mentions and URLs, the
content could still involve personal opinions, po-
litical statements, or even hate speech, especially
in datasets like the CUBANSPVARIETY dataset,
which includes tweets related to politically sensi-
tive events such as the July 11th protests in Cuba.
Given the nature of the protests, some tweets may
contain offensive content. We are aware of the
potential privacy implications when working with
such data, and we have adhered to Twitter’s data
usage policy to ensure compliance with ethical stan-
dards. Researchers accessing this dataset should
consider the ethical implications when using politi-
cally charged content or messages that might harm
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individuals or communities.
Furthermore, identifying language varieties, es-

pecially in socially and politically sensitive con-
texts, risks reinforcing stereotypes or biases associ-
ated with particular regions. In this work, we frame
our approach as a technical solution for linguistic
diversity and not as a tool for making any sociopo-
litical or cultural assumptions about the speakers
of these varieties. However, we acknowledge that
any automated system trained on real-world data
is susceptible to unintended biases arising from
imbalanced datasets or biased annotations. The
annotations in the CUBANSPVARIETY dataset are
from native Cuban speakers, and while this helps
in identifying Cuban Spanish, it may introduce a
regional bias.
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A Data Preprocessing:

Following previous works (Pérez et al., 2022;
Castillo-lópez et al., 2023), we pre-processed the
data by replacing user mentions with the token
@usuario (or @user in English), allowing up to two
consecutive mentions. URLs were substituted with
the token url, and hashtags were segmented into
words assuming Camel Case typing (e.g., #CubaIs-
laBella becomes Cuba isla bella). Emojis were
replaced with their corresponding descriptions us-
ing the emoji python library 5, and any repeated
emojis were removed. Laughs were normalized
to jaja, following the standard in Spanish, and for
letter repetitions, we kept up to two. We also re-
moved repeated spaces and replaced line breaks
with periods.

#sentences 1762
#tokens 41374
Avg length 23.48
Length variation (std) 13.49
Vocab size (unique words) 13336

Table 2: DSL-TL Overview.

B Annotation Guidelines for
CubanSpVariety

The following guidelines were provided to the an-
notators to ensure consistent labeling of the dataset:

• cuban_variety: A boolean value indicating
whether the tweet belongs to the target Span-
ish variety (Cuban). This value should be
set to true only if the annotator can clearly
identify evidence that the tweet belongs to the
Cuban variety.

• not_cuban_variety: A boolean value indicat-
ing that the tweet does not belong to the target
Cuban variety. This value should be set to true
only if it is clear that the tweet does not be-
long to the Cuban variety, even if the specific
variety cannot be identified.

• specific_variety: A string indicating the spe-
cific variety if the annotator can easily identify
it. The value should remain empty if the spe-
cific variety cannot be identified. The possible
varieties are based on the Spanish varieties
map presented in the appendix of Analyzing
Zero-Shot Transfer Scenarios Across Spanish

5Emoji python library website.

Variants for Hate Speech Detection. These
are:

– Other Caribbean variety
– Central American varieties (Costa Rica,

El Salvador, Panamá)
– Mexican
– Spain
– Rioplatense (Argentina, Uruguay)
– Chilean
– Habla de las tierras altas (Perú,

Venezuela, Colombia, Bolivia, Ecuador)

• unable_to_identify_variety: A boolean
value set to true if the annotator cannot iden-
tify any specific variety for the tweet.

• irrelevant: A boolean value set to true if the
tweet’s content is considered irrelevant. This
can be due to the tweet’s size or other char-
acteristics that lead to a lack of meaningful
content.

Annotator Age Gender
Annotator 1 26 Male
Annotator 2 26 Female
Annotator 3 23 Female

Table 3: Socio-demographic attributes of the annotators

These annotations guidelines are extensible for
speakers form varieties different from Cuba by
changing the variety target. It makes it possible
to extend the varieties covered in the dataset in a
direct way.

C Hyper-parameters

The model will be released under the Creative Com-
mons CC-BY-SA license, allowing for open access
and use with appropriate attribution.

All experiments were conducted using a single
NVIDIA RTX 8000 GPU, with each experiment
taking less than two hours to complete. We used
the AutoModelForSequenceClassification
from Hugging Face’s Transformers library (Wolf
et al., 2020) for sequence classification tasks.

D Variety Identification Results

D.1 Variety Identification Benchmarks on
CubanSpVariety dataset

In this section, we present the benchmark results for
the CUBANSPVARIETY dataset. We use the same
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Hyper-parameter Value

Max sequence length 512
Batch size 32
FP16 Enabled
Learning rate 1e-5
Epochs 10
Scheduler linear
Warmup ratio 0.1
Weight decay 0.01
Save strategy Epoch
Logging steps 10
Seed {42,151,2021,15,98}

Table 4: Hyper-parameters used for the fine-tuning.

experimental setting for this task, as explained be-
fore. We present the dataset’s benchmark for both
approaches, single and multi-class. For the multi-
class approach, we follow the procedure suggested
by Keleg and Magdy (2023); Bernier-colborne et al.
(2023) of using one binary classifier per label. For
the metrics, we used the macro average across all
possible varieties.

Table 5 shows the final results. We can notice
a significant improvement in the model’s perfor-
mance in the multi-class scenario. This strengthens
the point about single-class approach limitations
for variety identification.

D.2 Variety Identification Benchmarks on
DSL-TL dataset

In this section, we present the benchmark results
for the DSL-TL dataset. Table 6 shows the final
results. As for the CUBANSPVARIETY dataset,
there is a significant improvement in the model’s
performance in the multi-class scenario.
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Approach Acc Precision Recall f1-score
single-class 67.54 ± 1.42 65.86 ± 1.69 64.45 ± 1.01 64.62 ± 1.05
multi-class 78.69 ± 0.86 82.64 ± 0.91 87.80 ± 1.28 85.06 ± 0.61

Table 5: Benchmarks for Variety Identification task on CUBANSPVARIETY dataset. We present the results for both
the single-class and the multi-class approaches.

Approach Acc Precision Recall f1-score
single-class 76.76 ± 0.74 76.18 ± 0.80 75.78 ± 0.75 76.76 ± 0.74
multi-class 77.65 ± 0.27 82.00 ± 0.29 83.99 ± 0.30 82.97 ± 0.25

Table 6: Benchmarks for Variety Identification task on DSL-TL dataset. We present the results for both the
single-class and the multi-class approaches.
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Abstract

Slot and intent detection (SID) is a classic nat-
ural language understanding task. Despite this,
research has only more recently begun focus-
ing on SID for dialectal and colloquial varieties.
Many approaches for low-resource scenarios
have not yet been applied to dialectal SID data,
or compared to each other on the same datasets.
We participate in the VarDial 2025 shared task
on slot and intent detection in Norwegian va-
rieties, and compare multiple set-ups: varying
the training data (English, Norwegian, or di-
alectal Norwegian), injecting character-level
noise, training on auxiliary tasks, and applying
Layer Swapping, a technique in which layers of
models fine-tuned on different datasets are as-
sembled into a model. We find noise injection
to be beneficial while the effects of auxiliary
tasks are mixed. Though some experimenta-
tion was required to successfully assemble a
model from layers, it worked surprisingly well;
a combination of models trained on English and
small amounts of dialectal data produced the
most robust slot predictions. Our best models
achieve 97.6% intent accuracy and 85.6% slot
F1 in the shared task.

1 Introduction

Slot and intent detection (SID) is a classic natural
language understanding (NLU) task. Research to-
day has mainly focused on standard languages with
many speakers (e.g., Schuster et al., 2019; Xu et al.,
2020; Li et al., 2021; FitzGerald et al., 2023). How-
ever, even when performance on a related standard
language is high, SID for non-standard varieties
can be challenging. This can be due to spelling
variation (Srivastava and Chiang, 2023b) and syn-
tactic differences that complicate cross-lingual slot
filling (Artemova et al., 2024). Furthermore, the
lack of task data in the relevant language varieties

*Equal contribution.
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Figure 1: Overview of our approaches: pre-trained lan-
guage models (PLMs) fine-tuned on English, machine-
translated Norwegian data or the dialectal development
set; noise injection into the Norwegian data; training
on auxiliary tasks in addition to SID data (sequentially
or jointly); assembling layers of models fine-tuned on
different datasets.

complicates the adaptation of SID models to under-
resourced varieties.

In this paper, we report on the results of our
participation in the VarDial 2025 shared task on
slot and intent detection in Norwegian standard and
dialect varieties (NorSID; Scherrer et al., 2025).
We compare multiple strategies for improving the
performance of SID systems (Figure 1):

1. Fine-tuning models on large amounts of gold-
standard English or silver-standard Norwe-
gian data, or smaller amounts of gold-standard
Norwegian dialect data (§4.1);
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2. Adding noise to the Norwegian training data
to make models more robust to spelling varia-
tion (§4.2);

3. Additionally training on auxiliary NLP tasks
in Norwegian (§4.3);

4. Assembling layers of models fine-tuned on
different tasks or languages into a new model
to combine their capabilities (§4.4).

We share our code at https://github.com/
mainlp/NorSID.

2 Related Work

In the past few years, research on SID for dialects
and non-standard languages has gained popularity.
The multilingual SID dataset xSID (van der Goot
et al., 2021a; Aepli et al., 2023; Winkler et al.,
2024) contains evaluation data in over a dozen
languages, including non-standard varieties like
Neapolitan, and German dialects spoken in Switzer-
land, South Tyrol, and Bavaria. It has recently been
extended with translations into Norwegian dialects
(Mæhlum and Scherrer, 2024), which are the focus
of this shared task. We provide more details in §3.

Using xSID, van der Goot et al. (2021a) investi-
gate multi-task learning with auxiliary tasks in the
target language (or a closely related standard lan-
guage). Similarly, Krückl et al. (2025) include aux-
iliary tasks in multi-task learning and intermediate-
task training set-ups for dialectal SID. Both studies
find that the effects depend on both the auxiliary
task(s) and the target task. We include auxiliary
tasks in one of our experiments (§4.3).

Two previous shared tasks have focused on di-
alectal SID (Aepli et al., 2023; Malaysha et al.,
2024). Useful approaches by the participants were
to train on SID data in multiple languages (Kwon
et al., 2023), injecting character-level noise into
the training data (Srivastava and Chiang, 2023b;
we use a similar method in §4.2), and ensembling
models trained on dialectal translations of the train-
ing set (Ramadan et al., 2024; Elkordi et al., 2024;
Fares and Touileb, 2024).

Outside the context of a shared task, Abboud
and Oz (2024) also focus on generating synthetic
dialectal training data. Lastly, Muñoz-Ortiz et al.
(2025) find that visual input representations are
more robust than subword token embeddings when
transferring German intent classification models to
related dialects.

Label type / data subset Train Dev Test

Intents 18 15 15
Slot types 40 33 34

English 43k (not used)
Bokmål (MT) 43k 1×300 1×500
North Norwegian — 2×300 2×500
Trønder Norwegian — 3×300 3×500
West Norwegian — 5×300 5×500

Total (evaluation) — 3 300 5 500
Training on dev 2 970 330 5 500

Table 1: Distribution of labels and languages/dialects
in the data. While 15 intent types occur in both the
development and test splits, only 14 of them overlap.

Numerous other methods for improving NLP
performance in low-resource settings exist (Hed-
derich et al., 2021), many of which have not yet
been applied to dialectal or cross-lingual SID. One
recently proposed approach is assembling layers of
models trained on different tasks or languages into
a new model (Bandarkar et al., 2024), which we
explore in §4.4.

3 Data

We use the xSID 0.6 dataset (van der Goot et al.,
2021a) and its Norwegian extension NoMusic
(Mæhlum and Scherrer, 2024). xSID combines
re-annotated versions of two SID datasets (Coucke
et al., 2018; Schuster et al., 2019). It includes
43k English training sentences, as well as smaller
development and test datasets that have been trans-
lated into other languages. The shared task also
includes an automatic translation of the training
set into Bokmål (Scherrer et al., 2025). For these
sentence-level translations, the intent labels re-
mained unchanged, while the slot annotations were
automatically projected during the translation.

NoMusic provides translations of xSID’s devel-
opment and test utterances into the Norwegian Bok-
mål orthography and Norwegian dialects from three
of the four major dialect groups (Table 1). The di-
alect groups have two to five different translations
each. In some of our experiments, we train on the
development set, which we split into a training and
new development set according to a 90:10 ratio.

Slots are annotated in the BIO scheme. Intent
classification is measured with accuracy, and slot
filling with strict span F1.

One of our approaches uses datasets for auxiliary
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tasks; these are described in §4.3. We also use ad-
ditional datasets for Layer Swapping experiments,
described in §4.4.

4 Methodology

We construct several baselines that differ in their
training data and pretrained language model (PLM)
choices (§4.1). We subsequently build on (some of)
these baselines to examine the effects of different
recent approaches to improving performance on
low-resource language data. We submitted three
systems each for intent classification and for slot
filling; here we also discuss models we tested but
did not submit to the shared task. When selecting
systems for submission, we considered their perfor-
mance on the development set while also aiming
for a diverse set of systems.

We use MaChAmp (van der Goot et al., 2021b;
v.0.4.2, commit 052044a) with default hyperpa-
rameters to fine-tune the PLMs to simultaneously
predict slot and intent labels. The slot predictions
are decoded via a conditional random field (CRF;
Lafferty et al., 2001). Each model is fine-tuned for
20 epochs, and the best epoch is chosen based on
performance on the development set. For Layer
Swapping, we build on an implementation of Joint-
BERT (§4.4).

4.1 Baselines

We fine-tune three PLMs as baselines: 1) the mono-
lingual Norwegian NorBERT v3 (Samuel et al.,
2023);1 2) ScandiBERT (Snæbjarnarson et al.,
2023),2 which was pretrained on data in Norwe-
gian, Danish, Swedish, Icelandic, and Faroese; and
3) mDeBERTa v3 (He et al., 2021, 2023),3 which
was pretrained on 100 languages, including Nor-
wegian (Conneau et al., 2020), and has performed
well on dialectal SID data (Artemova et al., 2024;
Krückl et al., 2025).

We fine-tune each PLM three times: once on
xSID’s English training data, once on the machine-
translated Norwegian version, and once on NoMu-
sic’s development data.

Shared task submission We include the
mDeBERTa model trained on the development
data in our submissions (slots and intents).4

1ltg/norbert3-base (Apache 2.0)
2vesteinn/ScandiBERT (AGPL 3.0)
3microsoft/mdeberta-v3-base (MIT)
4mainlp_{slots,intents}1_mdeberta_siddial_8446

4.2 Character-Level Noise

Aepli and Sennrich (2022) introduced a simple
method for improving transfer from a language to a
closely related variety by inserting character-level
noise into the training data. Training on the noised
data can make a model more robust to spelling
variation that results in subword tokenization dif-
ferences. This method has shown to be beneficial
in several studies of transfer to closely related lan-
guages and dialects (Aepli and Sennrich, 2022; Sri-
vastava and Chiang, 2023a,b; Brahma et al., 2023;
Blaschke et al., 2023, 2024).

We use the machine-translated Norwegian data
and randomly select a given percentage of the al-
phabetic5 words in a sentence. For each of the
selected words, we pick a random position within
that word, and delete a character and/or insert one
of the alphabetic characters that appear in the Nor-
wegian development set. We implement this once
for each of the three PLMs, and compare selecting
10, 20, and 30% of the words.

Shared task submission We submit the
mDeBERTa model trained on data with 20%
noised words as an intent classification model.6

4.3 Auxiliary Tasks

In another set of experiments, we include auxiliary
tasks to potentially teach the model tasks related to
slot filling and/or relevant information about Nor-
wegian (or Norwegian dialects). Previous studies
on training SID models on auxiliary tasks have
found that these tasks have different effects on in-
tent detection and slot filling (van der Goot et al.,
2021a; Krückl et al., 2025).

Since we are especially interested in whether
training on Norwegian auxiliary data can add use-
ful language information to the cross-lingually eval-
uated English SID model, we use ScandiBERT due
to its strong baseline performance when trained
on the English SID data. For comparison, we re-
peat the experiments with the machine-translated
Norwegian SID data.

In each of our auxiliary task experiments, we add
one additional task to SID. The model parameters
are shared across tasks, except for the task-specific
decoders. We compare two set-ups: joint multi-
task learning (where the model is simultaneously
learning SID and the other task, cf. Ruder, 2017),

5We ignore punctuation and other symbols as well as num-
bers written as digits.

6mainlp_intents3_mdeberta_sidnor20_5678
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and intermediate-task training (where the model
is first trained on the auxiliary task, and afterwards
on the SID data, cf. Pruksachatkun et al., 2020).

Prior work suggests that choosing auxiliary tasks
that are similar to the target task is beneficial for
both multi-task learning (Schröder and Biemann,
2020) and intermediate-task training (Poth et al.,
2021; Padmakumar et al., 2022). Training on target-
language tasks in cross-lingual set-ups has yielded
mixed results (van der Goot et al., 2021a; Montariol
et al., 2022; Krückl et al., 2025). We include the
following auxiliary tasks, which are either in the
target dialects or similar to slot filling:

Dialect identification We use NoMusic’s devel-
opment data for dialect classification (with the
same 90:10 split as in §4.1) and classify instances
on the dialect group level (North Norwegian, Trøn-
der, West Norwegian, or Bokmål).

Part-of-speech tagging and dependency parsing
To potentially teach the models about Norwegian
sentence structure, we use the part-of-speech (POS)
and syntactic dependency annotations of the UD
Nynorsk LIA (Øvrelid et al., 2018) treebank. The
dataset contains transcriptions of dialectological
interviews.7 We use LIA’s phonetic transcriptions
and adjust the spelling to be somewhat more natural
(Appendix §A). We only include transcribed dialec-
tal material (i.e., exclude utterances by interview-
ers), leaving 2.3k training and 622 development
sentences. We treat POS tagging and dependency
parsing as two separate auxiliary tasks.

We note that some of the treebank’s dependency
annotations violate the Universal Dependencies
(de Marneffe et al., 2021) standards and the tree-
bank has been retired from official releases. Never-
theless, we believe that it contains valuable infor-
mation about Norwegian sentence structure.

Named entity recognition (NER) NER has been
useful in other multi-task SID work (Krückl et al.,
2025), and gold-standard named entity information
has been found to boost slot-filling performance
(Yao et al., 2013). As no dialectal NER datasets
are available, we use the NorNE dataset (Jørgensen
et al., 2020) with a reduced label set (person, orga-

7The dialect distribution of this treebank is different than
that of NoMusic, with around 30% each of East, North, and
West Norwegian sentences, and 7% Trønder. We use the script
by Blaschke et al. (2023) to merge the phonetic transcriptions
with the treebank.

nization, location, product, event, derived words).8

The dataset contains 29.9k training and 4.3k devel-
opment set sentences (slightly more than half are in
Bokmål, and the rest in the other written standard,
Nynorsk).

Shared task submission We submit the model
first trained on the dependency data and subse-
quently on xSID’s English data for slot filling.9

4.4 Layer Swapping

Layer Swapping was recently proposed as a method
for cross-lingual transfer (Bandarkar et al., 2024).
The authors fine-tune a task expert on English in-
struction data, and a language expert on general-
purpose data in the target language. They replace
the top and bottom layers of the task expert with
the corresponding layers of the language expert,
producing a model capable of performing the task
in the target language. We adapt this method – orig-
inally applied to LLAMA 3.1 8B (Grattafiori et al.,
2024), a 32-layer decoder model – to a 12-layer
encoder model.

Experts We use mDeBERTa (He et al., 2023),
as it is the strongest baseline when fine-tuned on
the NoMusic training data. We replace layers of
an EnSID expert with layers from a Norwegian
expert, and consider different options for the latter.

To produce the EnSID expert, we jointly fine-
tune on the English xSID training data for both
slot filling and intent classification. We build on
a JointBERT implementation (closely following
Chen et al., 2019),10 using default hyperparame-
ters, which do not include a CRF and specify 10
epochs. The best checkpoint is chosen based on
performance on the NoMusic development set.

We consider four options for the Norwegian
expert: the NoMusic dialect baseline described
in §4.1 (here referred to as the NorSID expert), as
well as three Norwegian language experts.

To produce the language experts, we fine-tune11

with the masked language modeling (MLM) objec-
tive using an example from Sentence Transformers

8We merge the two geo-political entity types GPE_LOC and
GPE_ORG into location and organization, respectively, and en-
tirely remove the category of miscellaneous entities, since it
occurs very rarely in the dataset.

9mainlp_slots3_scandibert_deprel_sid_8446
10https://github.com/monologg/JointBERT

(Apache 2.0; commit 00324f6)
11mDeBERTa is trained using replaced token detection

(RTD; He et al., 2023) rather than MLM, hence we do not
consider MLM fine-tuning a continuation of training.
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(Reimers and Gurevych, 2019).12 We train for 20
epochs and select the best checkpoint based on
perplexity on the development set of NoMusic.

We use three different datasets for the language
experts to examine whether the text style/genre
and language variety makes a difference: the Bok-
mål transcriptions of interviews in the Nordic Di-
alect Corpus (NDC; Johannessen et al., 2009),13 the
Bokmål part of the Norwegian Dependency Tree-
bank (NDT; Solberg et al., 2014) which contains
news articles, blog posts, and government reports/
transcripts,14 and the NoMusic training set.

Identifying layers to replace As an ablation ex-
periment to identify layers of the EnSID expert that
might be replaceable, we revert its layers back to
their state in the pretrained model and observe the
performance of the resulting model on the NoMu-
sic development set. For each of the mDeBERTa
models fine-tuned on the English xSID data with
three different seeds, we revert pairs of sequential
layers (i.e., 0,1, then 1,2, and so on).

Unlike Bandarkar et al. (2024), we are unable to
use the mean absolute value (MAV) of the differ-
ence in parameters through fine-tuning to identify
less salient layers. The variance in change of the
parameters of the EnSID expert is very small at
1.5×10−7, such that no layers exhibit significantly
higher MAVs than others. This may be due to
any number of differences of our setup, such as
model architecture, layer depth, fine-tuning objec-
tive, amount of fine-tuning data, or simply duration
of fine-tuning; further analysis of layer-wise train-
ing dynamics is left to future work.

Model assembly The layer-reverting experi-
ments identify the first two layers of the EnSID
expert as suited for replacement. We replace the to-
ken embeddings and the first two encoder layers of
the EnSID expert with the corresponding layers of
the Norwegian expert, resulting in four assembled
models, one for each Norwegian expert. We do not
merge any parameters.

Shared task submission We submit the model
produced by assembling layers of the NorSID ex-
pert and the EnSID expert.15

12https://github.com/UKPLab/sentence-
transformers (Apache 2.0; commit 1cb196a)

13We use a random 80:10:10 split of half of the corpus.
14This treebank is the basis of the NorNE dataset (§4.3).
15mainlp_{slots,intents}2_mdeberta_topline_

swapped

Training data Model Intents Slots

English NorBERT 95.1 0.2 79.7 0.4
(train) ScandiBERT 94.8 0.8 80.7 0.7

mDeBERTa 92.4 1.8 76.5 1.2

Norwegian NorBERT 96.2 0.5 53.9 0.3
(train, MT) ScandiBERT 96.3 0.1 54.6 0.4

mDeBERTa 96.7 0.3 55.2 1.1

Nor. dialect NorBERT 94.2 0.6 76.8 1.1
(dev, 90%) ScandiBERT 92.8 0.6 81.2 0.6

mDeBERTa 93.4 0.7 83.2 1.0 *

Table 2: Test scores of baseline models (intent accu-
racy in %, slot span F1 in %) trained on English data,
machine-translated Norwegian data, or 90% of the di-
alectal Norwegian development set. The results are
averaged over three runs, with standard deviations as
subscripts. * Model submitted to the shared task (slots
and intents).

5 Results and Analysis

In this section, we mainly focus on the test scores.
For the shared task, we submitted models consid-
ering their development set performance. These
are denoted by asterisks in the results tables, and
further discussed in §5.5. All models were trained
(and evaluated on the development set) before the
test set was released.

Table 8 in Appendix B shows the development
and test scores for all systems.

5.1 Baselines

The training data choice had a greater effect on the
SID quality than the PLM choice (Table 2).

Training data Despite the language difference,
the models trained on the English training data
provide strong baselines – especially for the Nor-
wegian and Scandinavian PLMs, which achieve
intent prediction accuracies of 94.8–95.1% and slot-
filling F1 scores of 79.7–80.7%.

The models trained on the machine-translated
Norwegian training set produce better intent la-
bels (with accuracies between 96.2 and 94.8%), but
are poor slot fillers (53.9–55.2% F1).16 We sus-
pect this is due to quality issues with the slot label

16This is similar to the results by (van der Goot et al., 2021a),
who find training on translated data to be beneficial for intent
classification. In their experiments, translated data improves
slot filling for a PLM with poor baseline scores for cross-
lingual slot filling, but lowers the performance of another
model whose cross-lingual slot-filling scores were already
quite high when trained on English data.
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projections. To substantiate this, we compare the
strict span F1 scores with their loose counterpart,
which allows spans that only partially overlap. Al-
though the models trained on machine-translated
Norwegian achieve much lower strict F1 scores,
the loose F1 scores are similar to those of the other
baselines (Table 9, Appendix B). This suggests
that the slot annotations of the machine-translated
Norwegian baselines mainly suffer from incorrect
spans, as would be expected from poor projections,
which affect the span, but not the label.

Training the models on the largely dialectal de-
velopment set led to overfitting – these models
show the greatest drop between development and
test set performance (Table 8 in Appendix B). This
may have been exacerbated by how we stratified
the data, as we did not ensure that all translations
of the same sentence were assigned to the same
split. Furthermore, the development set is signifi-
cantly smaller than the training set (2.9k vs. 43.6k
samples). Finally, one intent and one slot type were
present in the test but not in the development set, as
well as seven I labels (though the corresponding B
was seen, more on this under Limitations). Despite
all of this, the models fine-tuned on this dataset
produce some of the best slot annotations (with F1
scores between 76.8 and 83.2%).

PLM No PLM is consistently the best or worst
model. For the models trained on the English or
machine-translated Norwegian data, performance
on slot filling appears to be correlated with per-
formance on intent classification, and vice versa.
However, there seems to be no relation between
the two for the models trained on the dialectal data
where, e.g., NorBERT produces the best intent la-
bels but the worst slot annotations.

5.2 Character-Level Noise

Fine-tuning on noised data generally improves the
models’ performance (Table 3) – by up to 1.2 per-
centage points (pp.) for intent classification and up
to 1.3 pp. for slot filling. Which noise level helps
most depends on the PLM choice; this is similar
to previous findings on using noised data for POS
tagging in Norwegian dialects and other language
varieties (Blaschke et al., 2023). However, the ef-
fect of noise also depends on the task – the trends
are different for intent classification and slot filling.

Prior work has found the ratios of words that
were split into multiple subword tokens to be
a strong predictor for transfer success between

PLM Noise (%) Intents ∆ Slots ∆

NorBERT 0 96.2 0.5 53.9 0.3
10 96.4 0.3 +0.2 55.1 0.8 +1.2
20 97.2 0.2 +1.0 55.0 0.3 +1.1
30 97.4 0.5 +1.2 54.1 1.1 +0.1

ScandiBERT 0 96.3 0.1 54.6 0.4
10 96.5 0.4 +0.2 55.9 0.7 +1.3
20 97.5 0.2 +1.2 54.6 0.5 –0.0
30 97.1 0.5 +0.8 54.8 0.5 +0.2

mDeBERTa 0 96.7 0.3 55.2 1.1
10 96.5 0.9 –0.2 55.6 1.0 +0.4
20 97.5 0.2 +0.8 55.5 0.5 +0.2 *
30 97.0 0.5 +0.3 56.2 0.5 +1.0

Table 3: Test scores of models trained on noised data
(intent accuracy in %, slot span F1 in %). The results
are averaged over three runs, with standard deviations
as subscripts. The ∆ columns show the differences to
the respective baseline (0 % noise). * Model submitted
to the shared task (intents).

closely related varieties: the more similar the split
word ratios are in the training and evaluation data,
the more successful transfer tends to be (Blaschke
et al., 2023). In our study, only the intent classifi-
cation results correlate with this difference in split
word ratio (Table 10 in Appendix B). We hypothe-
size that the weak correlations with the slot-filling
results might be due to the mixed quality of the
silver-standard slot annotations in the training data.

5.3 Auxiliary Tasks
The effect of the auxiliary tasks depends on the
tasks themselves, the language of the SID data, and
whether they are trained before or simultaneously
with the target SID task. Table 4 shows the re-
sults on the SID test data; Table 11 in Appendix B
also shows the development scores on the SID and
auxiliary task data.

Intermediate-task training vs. multi-task learn-
ing For slot filling, intermediate-task training
(training first on the auxiliary task and afterwards
on the SID data) generally achieves better results
than simultaneous multi-task learning. For intent
classification, there is no clear trend.

We additionally examine whether the effects of
multi-task learning are similar across tasks by in-
specting the models’ performances on the devel-
opment sets of the auxiliary tasks (Table 11 in
Appendix B). For the auxiliary tasks, multi-task
learning nearly always yields worse results than
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Task Intents ∆ Slots ∆

English training data
Baseline 94.8 0.8 80.7 0.7

Dial × 83.8 3.2 –11.0 75.8 1.2 –4.9
→ 94.0 1.7 –0.8 79.2 0.9 –1.5

POS × 94.9 0.3 +0.0 81.1 0.3 +0.4
→ 94.7 0.2 –0.2 82.2 1.1 +1.5

Dep × 93.5 0.6 –1.3 81.5 0.2 +0.8
→ 94.9 1.2 +0.1 81.8 0.7 +1.1 *

NER × 95.3 1.0 +0.5 80.6 1.0 –0.1
→ 95.0 0.4 +0.1 81.1 0.9 +0.4

Machine-translated Norwegian training data
Baseline 96.3 0.1 54.6 0.4

Dial × 89.2 1.4 –7.1 51.7 0.1 –2.9
→ 95.2 1.0 –1.1 53.7 0.5 –0.9

POS × 96.8 0.4 +0.4 53.7 0.6 –0.9
→ 96.7 0.4 +0.3 54.4 0.8 –0.2

Dep × 96.9 0.3 +0.5 53.7 0.2 –0.9
→ 96.4 0.3 +0.1 54.8 0.6 +0.2

NER × 96.9 0.1 +0.6 53.8 0.3 –0.8
→ 96.4 0.5 +0.1 53.5 1.0 –1.1

Table 4: Test scores of models trained on auxiliary
tasks (intent accuracy in %, slot span F1 in %). The
results are averaged over three runs, with standard devia-
tions as subscripts. The ∆ columns show the differences
to the respective baseline. Key: Dial = dialect identifica-
tion, dep = dependency parsing, ×= multitask learning,
→= intermediate-task training. * Model submitted to
the shared task (slots).

exclusively training on the auxiliary tasks (as the
first step in intermediary-task training). Although
the performance gap between the two settings is
especially large for the two syntactic tasks (with
multi-task learning achieving scores that are 11.8–
26.7 pp. lower), the impact on the corresponding
SID performance is less clear-cut (with multi-task
learning leading by up to 0.5 pp. in some constella-
tions and falling behind by 2.1 pp. in others).

Auxiliary task choice and SID training language
Dialect identification diminishes both the intent
classification and slot-filling performance in all of
our set-ups (most drastically in the multi-task set-
up with the English SID data, with drops of 11.0 pp.
for intent classification and 4.9 pp. for slot filling).

The effects of the other tasks depend on the SID

training language. For the models fine-tuned on
Norwegian data, the other tasks slightly improve
intent classification performance (with gains of up
to 0.6 pp.) but typically negatively impact slot fill-
ing (with changes between +0.2 and –0.9 pp.) – the
grammatical tasks do not mitigate the effect of poor
slot annotations in the machine-translated data.

For the English SID training data, the syntax-
related tasks (POS tagging and dependency pars-
ing) improve slot filling by between 0.4 and 1.5 pp.,
but have no or a negative effect on the intent classi-
fication performance (changes to the baseline be-
tween +0.1 and –1.3 pp.). Despite positive prior
findings (Krückl et al., 2025), NER has no or only
slightly positive effects on either SID task.

Dialects There is no apparent connection be-
tween the dialect distributions in the auxiliary task
training data and the SID performance on the differ-
ent dialect groups (Table 12 in Appendix B). This
applies both to the models trained on English SID
data and on the Norwegian translations, although
the gains per dialect group differ between them.

For the syntactic tasks, one possible explanation
is that the dialect transcriptions do not sufficiently
align with the ad-hoc dialect spellings used in No-
Music to show strong effects based on the repre-
sented dialect groups.

5.4 Layer Swapping

Identifying layers to replace Results of revert-
ing pairs of layers of the EnSID expert are shown
in Table 5. We found that in general, performance
decreased as later layers were reverted. This aligns
with our intuition that the later layers, being closer
to the classification heads, are particularly impor-
tant for performance.

Notably, we found that reverting layers 0 and 1
slightly increased performance on both slot filling
and intent classification (across three runs we ob-
served an average improvement of slot F1 of 3.0 pp.
and intent accuracy of 0.9 pp.). This improvement
through reverting is somewhat surprising, and sug-
gests that something about the fine-tuning process
on the English data is counterproductive to the ro-
bustness of the model to out-of-language data, at
least where the first two layers are concerned.

We also observed a large variance in the effect of
reverting the last two layers on intent classification,
this is due to the first seed seeing quite a large drop
(to 55.7%, the average accuracy of the other two
seeds was 86.1%).
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Layers Intents ∆ Slots ∆

none 95.1 0.6 77.1 1.4
0,1 96.1 0.4 +0.9 80.1 0.6 +3.0
1,2 96.0 0.2 +0.9 77.8 1.0 +0.6
2,3 95.1 0.8 0.0 69.9 0.5 –7.2
3,4 93.9 0.6 –1.2 65.8 0.2 –11.3
4,5 93.8 0.7 –1.4 68.0 1.6 –9.1
5,6 93.6 1.1 –1.5 69.3 2.0 –7.8
6,7 90.7 0.9 –4.5 63.1 5.8 –14.0
7,8 87.0 1.2 –8.1 59.7 3.8 –17.4
8,9 84.3 2.7 –10.8 58.0 2.5 –19.1
9,10 72.6 9.4 –22.6 54.1 5.5 –23.0
10,11 76.0 17.9 –19.2 59.4 0.6 –17.7

Table 5: Development scores of the EnSID expert
with reverted layers (intent accuracy in %, slot span
F1 in %). The results are averaged over three runs with
standard deviations as subscripts.

Norwegian Expert Intents ∆ Slots ∆

N/A – EnSID unchanged 95.1 0.6 77.1 1.4
N/A – EnSID reverted (0,1) 96.1 0.4 +0.9 80.1 0.6 +3.0
NorSID expert 98.3 0.4 +2.2 86.5 0.6 +9.6
NoMusic MLM 96.9 +0.8 78.8 +1.7
NDT MLM 97.4 +1.3 78.6 +1.5
NDC MLM 96.3 +0.2 77.9 +0.8

Table 6: Development scores of assembled models us-
ing different Norwegian experts (intent accuracy in %,
slot span F1 in %). Each Norwegian expert is assembled
with the EnSID expert. Results for the unchanged En-
SID expert and the best reverted model, layers 0,1, are
shown for comparison, each averaged over three runs.
The assembled model with the NorSID expert is aver-
aged over nine runs (for each combination of NorSID
and EnSID expert). We don’t repeat runs for unpromis-
ing language experts. The standard deviation, where
applicable, is denoted by subscripts.

Choosing a complementary expert Table 6
shows the results of replacing the first two lay-
ers of the EnSID expert with the corresponding
layers of each of our Norwegian experts. These
combinations performed roughly on par with or
slightly better than the reverted model, except for
the model containing the layers from the NorSID
expert, which performed better, particularly for slot
filling. Further analysis is needed to better under-
stand what makes layers useful for assembling into
a model, this is left for future work.

As these were exploratory preliminary experi-
ments, we do not repeat runs for unpromising lan-
guage experts.

Intents Slots

dev (no) test (no) dev (no) test (no)

EnSID expert 95.1 0.6 92.0 0.8 78.6 1.1 77.2 1.6
NorSID expert 99.4 0.0 93.4 0.7 96.4 0.4 83.2 1.0
Assembled* 98.3 0.4 96.4 0.2 86.5 0.6 84.9 0.5

dev (en) test (en) dev (en) test (en)

EnSID expert 100.0 0.0 99.2 0.0 97.1 0.3 96.0 0.3
NorSID expert 100.0 0.0 100.0 0.0 90.1 1.0 80.9 1.4
Assembled* 100.0 0.0 99.3 0.2 97.5 0.3 96.0 0.3

Table 7: Development and test scores of the origi-
nal experts and assembled model on NoMusic (no)
and xSID 0.6 English (en) (intent accuracy and slot F1
in %, best results bolded). The results are averaged over
three runs for the experts, and over nine runs for the as-
sembled model, with standard deviations as subscripts.
* Model submitted to the shared task (slots and intents).

Final submission Results for the submitted as-
sembled model (layers from the EnSID and Nor-
SID expert), and the individual experts on both
NoMusic and the xSID 0.6 English set are shown
in Table 7. Overall, the assembled model is more
robust to out-of-language data than the respective
experts, outperforming the EnSID expert on the
Norwegian development and test sets, and mostly
outperforming the Norwegian expert on the English
sets, except for intent classification on the test set.
We hypothesize that this exception may be due to
the EnSID expert overfitting the intent classifica-
tion task, which was not mitigated by using the first
two layers of the Norwegian SID expert.

Using only two layers of the Norwegian SID ex-
pert, which suffered from overfitting (§5.1), seems
to have a regularizing effect, as the assembled
model outperforms the Norwegian SID expert in
both tasks on the Norwegian test set.

5.5 Results of Shared Task Submissions
We submitted three systems per task (slot and intent
detection) and did not participate in dialect clas-
sification. The official results are provided in the
shared task overview paper (Scherrer et al., 2025)
and the accompanying website,17 and we include
them in Table 8 (Appendix B). Unlike the previous
sections, they only represent a single random seed.
Of our intent classification systems, noise injection
worked best (ranked 5th of all submissions; 97.64%
accuracy), narrowly followed by Layer Swapping

17https://github.com/ltgoslo/NoMusic/blob/main/
NorSID/results.md
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(6th rank; 97.16%). Both beat the baseline trained
only on the dialectal development set (10th rank;
93.47%).

For slot detection, Layer Swapping instead was
our best method, ranking third in the competition
(85.57% F1). Compared to our other two sub-
missions – the baseline trained on the develop-
ment set (5th rank; 83.68%) and the model with
intermediate-task training on dependency parsing
(6th rank; 82.57%) – it performed best on three out
of the four Norwegian varieties.

6 Discussion and Conclusion

The strength of our baselines suggest that the Nor-
SID task is, relatively speaking, less challenging
than other dialectical variants of xSID (cf. van der
Goot et al., 2021a; Aepli et al., 2023; Srivastava
and Chiang, 2023b; Kwon et al., 2023; Winkler
et al., 2024; Muñoz-Ortiz et al., 2025; Krückl et al.,
2025). We suspect that there is less deviation from
standard Norwegian, and less variation between the
dialects. This limits the gains we could expect from
additional methods, particularly on the intent clas-
sification task, where the accuracy of our baselines
ranges from 92.4% to 96.7% on the test set.

We observe somewhat of a trade-off between
performance on intent classification (strongest for
models trained on Norwegian data) and slot filling
(strongest for models trained on the gold-standard
English training or Norwegian development data;
§5.1). We hypothesize that the latter is due to
the poor quality of the slot labels in the machine-
translated Norwegian training data.

We see noise injection as a simple way to im-
prove transfer between a standard language and
related varieties (§5.2), although it requires access
to appropriate training data. Where a language has
enough resources for additional annotated datasets,
we see mixed effects from the inclusion of auxil-
iary NLP tasks (§5.3). Which auxiliary tasks help
SID performance depends on the target-task train-
ing data and SID subtask (intent classification vs.
slot filling) and remains hard to predict, requiring
further research.

Improving performance on the slot-filling task
proved to be quite difficult; our most successful
method by a small margin is the assembled model
made up of layers from a model trained on the
NoMusic development set (NorSID expert), and
another on the English xSID data (§5.4). Using
layers from both of these models seems to have

a regularizing effect and produces a model that is
able to perform well on both languages and suffers
less from overfitting than the NorSID expert.

We successfully adapted Layer Swapping – orig-
inally applied to a 32-layer decoder – to a 12-layer
encoder, demonstrating its potential for resource-
efficient cross-lingual transfer. Layer Swapping
could prove useful for modular solutions, as layers
for different languages could dynamically replace
those of a “base” SID expert to adapt the model.
We again note that the subset of the development
set of NoMusic we used, at 2.9k examples, is much
smaller than the set used to train our EnSID expert,
at 43.6k examples; this modular approach would
allow adaptation to different languages in a fairly
lightweight manner post-hoc.

We encourage further research comparing (and
combining) different methods for low-resource
NLP with the same training and/or evaluation data.

Limitations

Both MaChAmp and the JointBERT implemen-
tation only consider the exact labels seen during
training; consequently our SID models will not pre-
dict unseen I tags, even if the corresponding B tag
is known. In particular, the English xSID sets have
fewer I tags, i.e., corresponding slots are some-
times spread over more words in NoMusic. We
also find that the NoMusic test set has more I tags
than the development set.

While we compare several different approaches
for improving SID on this task, we find the condi-
tions of their success are difficult to generalize. For
example, no auxiliary task has prevailed. For Layer
Swapping, it is not clear what makes layers of par-
ticular expert suitable for assembly, and whether
our findings generalize to other models, languages,
or tasks. Further work is needed to understand
which method will work best for what conditions,
and how best to apply each method.

Because of time constraints, we were not able to
further investigate the effect of including auxiliary
datasets in standard vs. dialectal varieties. In partic-
ular, it would be interesting to include POS tagging
and dependency parsing on Bokmål or Nynorsk
data (e.g., the NDT and LIA treebanks we used in
other ways in this paper).

Similarly, we did not try MLM fine-tuning using
the dialect version of NDC to produce an expert
for Layer Swapping; on inspection of the corpus,
the Bokmål version seemed closer to the target
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language, and given the unpromising results using
the other MLM experts we did not explore this
further.
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A Spelling Changes to the Dialectological
Transcriptions

We make slight changes to the dialectological tran-
scriptions used in LIA based on LIA’s transcription
guidelines (Hagen et al., 2018). The idea is to
turn the transcriptions into slightly more plausible
spellings, but we want to stress that these rules are
simplistic and not meant to produce text that fully
emulates naturalistic dialect spellings.

• We replace ⟨L⟩ (/ó/, tjukk l ‘thick l’) with ⟨l⟩.
While it can also correspond to ⟨rd⟩, we found
that it much more often corresponds to ⟨l⟩ in
the data.

• We remove apostrophes (originally used to
mark syllabic consonants).

• The dialectological transcriptions use double
consonants to mark short vowels, which can
lead to consonant clusters that are unlikely to
occur in written Norwegian. In words where
a double consonant is followed by at least
one more consonant, we remove one of the
doubled consonants (C1C1C2→C1C2). If the
sequence is ⟨ssjt⟩ or ⟨ssjk⟩, we instead re-
place it with ⟨rst⟩ or ⟨rsk⟩, respectively. If
it otherwise starts with ⟨ssj⟩ or ⟨kkj⟩, we do
not remove the first ⟨s⟩ or ⟨k⟩.

B Detailed Results

All Table 8 shows the development and test
scores of all models (described throughout §5).

Baselines Table 9 provides the results of addi-
tional slot-filling metrics for the baselines (§5.1).

Noise Table 10 shows the correlations between
the split word ratio difference of the noised training
sets and the dialectal evaluation sets (cf. §5.2).

Auxiliary tasks The remaining tables provide
additional details for §5.3. Table 11 focuses on the
set-ups with auxiliary tasks and shows the scores on
these tasks in addition to the SID scores. Table 12
focuses on the models trained on auxiliary tasks
and shows the dialect distributions in the auxiliary
task training data as well as the dialect-wise SID
results.
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Intents (acc., %) Slots (span F1, %)

Training data PLM Details Dev Test Subm. Dev Test Subm.

English (train) NorBERT baseline 96.9 0.4 95.1 0.2 79.9 0.1 79.7 0.4

ScandiBERT baseline 96.4 0.5 94.8 0.8 81.3 0.3 80.7 0.7
dial× 84.3 2.7 83.8 3.2 75.8 1.8 75.8 1.2
dial → 95.8 0.7 94.0 1.7 79.7 1.3 79.2 0.9
POS× 96.0 0.5 94.9 0.3 81.6 0.2 81.1 0.3
POS → 96.3 0.2 94.7 0.2 82.3 0.8 82.2 1.1
dep× 94.7 1.2 93.5 0.6 82.0 0.4 81.5 0.2
dep → 96.7 1.0 94.9 1.2 82.5 0.9 81.8 0.7 82.6
NER× 97.2 0.9 95.3 1.0 80.9 0.9 80.6 1.0
NER → 96.8 0.4 95.0 0.4 81.3 1.1 81.1 0.9

mDeBERTa baseline 95.3 1.1 92.4 1.8 77.3 1.2 76.5 1.2

Norwegian (MT) NorBERT baseline 98.3 0.4 96.2 0.5 55.7 0.5 53.9 0.3
(train) noise (10%) 98.5 0.4 96.4 0.3 57.3 0.2 55.1 0.8

noise (20%) 98.6 0.2 97.2 0.2 56.4 0.4 55.0 0.3
noise (30%) 99.0 0.1 97.4 0.5 56.4 1.3 54.1 1.1

ScandiBERT baseline 97.6 0.0 96.3 0.1 55.5 0.4 54.6 0.4
noise (10%) 97.8 0.1 96.5 0.4 56.9 0.9 55.9 0.7
noise (20%) 98.4 0.3 97.5 0.2 55.6 0.8 54.6 0.5
noise (30%) 98.0 0.4 97.1 0.5 56.5 0.6 54.8 0.5
dial× 89.8 1.4 89.2 1.4 53.0 0.1 51.7 0.1
dial → 96.1 1.0 95.2 1.0 54.4 0.4 53.7 0.5
POS× 97.9 0.3 96.8 0.4 54.0 0.5 53.7 0.6
POS → 97.8 0.5 96.7 0.4 55.5 0.4 54.4 0.8
dep× 98.0 0.4 96.9 0.3 54.5 0.2 53.7 0.2
dep → 97.5 0.7 96.4 0.3 55.7 0.5 54.8 0.6
NER× 97.9 0.6 96.9 0.1 54.6 0.5 53.8 0.3
NER → 97.6 0.2 96.4 0.5 54.1 0.6 53.5 1.0

mDeBERTa baseline 98.4 0.4 96.7 0.3 56.5 0.2 55.2 1.1
noise (10%) 98.5 0.6 96.5 0.9 56.7 0.7 55.6 1.0
noise (20%) 99.2 0.1 97.5 0.2 97.6 56.4 0.2 55.5 0.5
noise (30%) 98.9 0.5 97.0 0.5 57.6 0.3 56.2 0.5

Nor. dialect NorBERT baseline1 99.4 0.0 94.2 0.6 94.5 0.6 76.8 1.1
(dev 90%) ScandiBERT baseline1 99.6 0.2 92.8 0.6 96.0 0.6 81.2 0.6

mDeBERTa baseline1 99.4 0.0 93.4 0.7 93.5 96.4 0.4 83.2 1.0 83.7

Nor. dialect mDeBERTa EnSID expert 95.1 0.6 92.0 0.8 78.6 1.1 77.2 1.6
(dev 90%) / NorSID expert1,2 99.4 0.0 93.4 0.7 96.4 0.4 83.2 1.0
English assembled 98.3 0.4 96.4 0.2 97.2 86.5 0.6 84.9 0.5 85.6

Table 8: Intent classification and slot-filling scores for all systems on the development and test data, and for the
runs we submitted to the shared task. Results are averaged across three runs, with the exception of the assembled
system, which is averaged across nine total combinations of three runs each of both experts. Standard deviations
are denoted by subscripts. Key: Dial = dialect identification, dep = dependency parsing, ×= multitask learning,
→= intermediate-task training. 1For the models trained on 90% of the development data, the dev scores are
measured on the remaining 10%. 2The results for this model are already listed in the Norwegian dialect section
(mDeBERTa), but repeated here for easier comparison.
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Training data Model Loose Unlabelled Strict

English NorBERT 84.4 1.0 84.4 1.3 76.5 1.2
(train) ScandiBERT 88.0 0.3 88.2 0.2 80.7 0.7

mDeBERTa 86.8 0.2 87.0 0.7 79.7 0.4

Norwegian (MT) NorBERT 84.4 0.5 63.4 0.7 53.9 0.3
(train) ScandiBERT 86.0 0.6 62.9 0.4 54.6 0.4

mDeBERTa 85.7 0.4 63.3 1.1 55.2 1.1

Nor. dialect NorBERT 84.9 1.0 90.5 0.2 76.8 1.1
(dev 90%) ScandiBERT 87.9 0.4 93.1 0.3 83.2 1.0

mDeBERTa 86.6 0.5 92.6 0.2 81.2 0.6

Table 9: Test scores of baseline models on slot filling for F1 variants: loose, unlabelled, and strict span (all F1
scores in %). Strict span is the F1 score we use throughout, where both the span and label must be fully correct,
loose F1 allows for partial matches of the span (if the label is correct), and unlabelled ignores the label (considering
only the span overlaps). The results are averaged over three runs, with standard deviations as subscripts.

Intents Slots

PLM Split r pr ρ pρ r pr ρ pρ

mDeBERTa dev –0.51 0.09 –0.60 0.04 –0.56 0.06 –0.45 0.14
test –0.38 0.22 –0.44 0.15 –0.42 0.17 –0.35 0.27
dev+test –0.36 0.08 –0.44 0.03 –0.47 0.02 –0.39 0.06

ScandiBERT dev –0.57 0.06 –0.56 0.06 –0.24 0.44 –0.34 0.28
test –0.66 0.02 –0.68 0.02 0.14 0.66 0.07 0.83
dev+test –0.53 0.01 –0.50 0.01 –0.16 0.45 –0.19 0.36

NorBERT dev –0.70 0.01 –0.63 0.03 –0.16 0.63 –0.30 0.34
test –0.82 0.00 –0.81 0.00 –0.03 0.93 –0.09 0.79
dev+test –0.49 0.01 –0.56 0.00 –0.18 0.40 –0.27 0.20

Table 10: Correlations between the split word ratio difference and SID performance for the noising experi-
ments: Pearson’s r and Spearman’s ρ with corresponding p-values (p-values ≥0.05 have a grey background). Each
dev or test row is based on twelve observations (four noise levels à three initializations).
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Intents Slots Aux. task performance (dev)

Task Dev ∆dev Test ∆test Dev ∆dev Test ∆test Dial POS Dep NER

English SID training data
Baseline 96.4 0.5 94.8 0.8 81.3 0.3 80.7 0.7

Dial × 84.3 2.7 –12.1 83.8 3.2 –11.0 75.8 1.8 –5.5 75.8 1.2 –4.9 75.9 3.5
→ 95.8 0.7 –0.6 94.0 1.7 –0.8 79.7 1.3 –1.6 79.2 0.9 –1.5 80.0 0.3

POS × 96.0 0.5 –0.4 94.9 0.3 +0.0 81.6 0.2 +0.3 81.1 0.3 +0.4 79.5 0.6
→ 96.3 0.2 –0.1 94.7 0.2 –0.2 82.3 0.8 +1.0 82.2 1.1 +1.5 92.1 0.0

Dep × 94.7 1.2 –1.8 93.5 0.6 –1.3 82.0 0.4 +0.7 81.5 0.2 +0.8 46.6 0.8
→ 96.7 1.0 +0.3 94.9 1.2 +0.1 82.5 0.9 +1.2 81.8 0.7 +1.1 67.8 0.6

NER× 97.2 0.9 +0.8 95.3 1.0 +0.5 80.9 0.9 –0.4 80.6 1.0 –0.1 93.2 0.2
→ 96.8 0.4 +0.4 95.0 0.4 +0.1 81.3 1.1 +0.0 81.1 0.9 +0.4 93.0 0.1

Machine-translated Norwegian SID training data
Baseline 97.6 0.0 96.3 0.1 55.5 0.4 54.6 0.4

Dial × 89.8 1.4 –7.8 89.2 1.4 –7.1 53.0 0.1 –2.6 51.7 0.1 –2.9 77.1 1.2
→ 96.1 1.0 –1.5 95.2 1.0 –1.1 54.4 0.4 –1.2 53.7 0.5 –0.9 79.7 0.3

POS × 97.9 0.3 +0.3 96.8 0.4 +0.4 54.0 0.5 –1.5 53.7 0.6 –0.9 70.3 1.4
→ 97.8 0.5 +0.2 96.7 0.4 +0.3 55.5 0.4 +0.0 54.4 0.8 –0.2 92.1 0.1

Dep × 98.0 0.4 +0.4 96.9 0.3 +0.5 54.5 0.2 –1.0 53.7 0.2 –0.9 41.1 0.9
→ 97.5 0.7 –0.1 96.4 0.3 +0.1 55.7 0.5 +0.2 54.8 0.6 +0.2 67.8 0.6

NER× 97.9 0.6 +0.3 96.9 0.1 +0.6 54.6 0.5 –0.9 53.8 0.3 –0.8 92.3 0.3
→ 97.6 0.2 –0.0 96.4 0.5 +0.1 54.1 0.6 –1.4 53.5 1.0 –1.1 93.0 0.1

Table 11: Performance of the models trained on auxiliary task data on the SID data (development and test)
and the auxiliary tasks (development sets). Scores are averaged over three runs (standard deviations in subscript
numbers) and in % – intent classification: accuracy, slot filling: span F1, dialect classification (“dial”): accuracy,
POS tagging: accuracy, dependency parsing (“dep”): labelled attachment score, NER: span F1. The ∆ columns
show the differences to the respective baseline. Joint multi-task learning is denoted by a ×, and intermediate-task
training by a →.
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Trained on auxiliary tasks and English SID data

Intents (acc., %) Slots (span F1, %)

Aux B ∆B N ∆N T ∆T W ∆W all ∆all B ∆B N ∆N T ∆T W ∆W all ∆all

none 96.30.7 93.31.5 94.00.9 95.60.5 94.80.8 83.71.0 75.70.8 79.30.7 82.80.8 80.70.7

9.2% 18.5% 26.9% 45.4% 9.2% 18.5% 26.9% 45.4%

Dial × 87.30.6 –9.1 72.86.1 –20.4 81.05.0 –13.0 89.21.7 –6.5 83.83.2 –11.0 82.70.9 –1.0 70.02.2 –5.7 70.11.8 –9.3 79.90.8 –2.9 75.81.2 –4.9
Dial → 96.50.9 +0.1 92.03.5 –1.3 92.01.6 –2.0 95.51.3 –0.2 94.01.7 –0.8 81.90.8 –1.9 75.41.8 –0.4 76.21.5 –3.2 82.00.2 –0.9 79.20.9 –1.5

0.0% 28.1% 7.6% 33.7% 0.0% 28.1% 7.6% 33.7%

POS × 95.90.9 –0.5 93.10.6 –0.2 94.00.9 +0.0 95.90.4 +0.2 94.90.3 +0.0 83.70.5 –0.1 77.00.2 +1.3 80.50.8 +1.2 82.60.3 –0.2 81.10.3 +0.4
POS → 96.20.4 –0.1 92.80.6 –0.5 93.70.2 –0.4 95.70.5 +0.1 94.70.2 –0.2 85.10.7 +1.3 77.31.7 +1.6 81.51.2 +2.2 83.80.9 +1.0 82.21.1 +1.5
Dep × 95.00.7 –1.3 91.60.8 –1.6 91.21.7 –2.8 95.40.1 –0.3 93.50.6 –1.3 83.80.6 +0.0 77.70.8 +2.0 80.40.3 +1.1 83.10.2 +0.3 81.50.2 +0.8
Dep → 95.91.2 –0.5 93.01.3 –0.2 94.31.9 +0.3 95.80.8 +0.1 94.91.2 +0.1 84.00.8 +0.3 77.51.9 +1.8 80.31.2 +0.9 83.90.4 +1.0 81.80.7 +1.1

100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

NER × 96.40.7 +0.1 94.11.4 +0.8 95.01.5 +0.9 95.80.6 +0.2 95.31.0 +0.5 83.92.2 +0.2 76.21.0 +0.5 79.11.0 –0.2 82.50.7 –0.4 80.61.0 –0.1
NER → 96.30.2 –0.1 93.60.9 +0.4 94.50.7 +0.5 95.50.2 –0.2 95.00.4 +0.1 84.52.0 +0.7 75.90.4 +0.2 79.31.6 +0.0 83.50.4 +0.7 81.10.9 +0.4

Trained on auxiliary tasks and machine-translated Norwegian SID data

Intents (acc., %) Slots (span F1, %)

Aux B ∆B N ∆N T ∆T W ∆W all ∆all B ∆B N ∆N T ∆T W ∆W all ∆all

none 97.40.0 94.90.1 96.90.5 96.30.2 96.30.1 58.70.3 50.91.1 54.60.9 55.20.4 54.60.4

9.2% 18.5% 26.9% 45.4% 9.2% 18.5% 26.9% 45.4%

Dial × 95.90.8 –1.5 80.14.1 –14.8 86.42.6 –10.5 93.30.6 –3.0 89.21.4 –7.1 57.30.8 –1.4 46.90.7 –4.1 50.30.5 –4.4 53.30.2 –1.9 51.70.1 –2.9
Dial → 97.60.0 +0.2 92.70.9 –2.3 95.50.9 –1.4 95.71.4 –0.6 95.21.0 –1.1 58.80.9 +0.1 51.00.2 +0.0 52.60.8 –2.0 54.40.7 –0.8 53.70.5 –0.9

0.0% 28.1% 7.6% 33.7% 0.0% 28.1% 7.6% 33.7%

POS × 97.60.4 +0.2 95.60.6 +0.6 97.20.2 +0.3 96.80.5 +0.5 96.80.4 +0.4 57.70.7 –1.0 50.60.2 –0.4 53.91.3 –0.8 54.00.5 –1.2 53.70.6 –0.9
POS → 97.50.4 +0.1 95.20.7 +0.3 97.30.3 +0.4 96.70.4 +0.4 96.70.4 +0.3 58.20.8 –0.4 51.30.6 +0.4 54.20.6 –0.4 54.91.1 –0.3 54.40.8 –0.2
Dep × 97.10.1 –0.3 95.80.6 +0.8 97.20.4 +0.4 97.00.1 +0.7 96.90.3 +0.5 57.90.6 –0.8 50.80.1 –0.2 53.90.1 –0.7 53.90.3 –1.3 53.70.2 –0.9
Dep → 97.50.3 +0.1 95.00.5 +0.1 97.10.2 +0.2 96.40.5 +0.1 96.40.3 +0.1 59.00.8 +0.3 52.00.4 +1.0 54.90.8 +0.3 55.00.7 –0.2 54.80.6 +0.2

100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

NER × 97.80.0 +0.4 95.40.4 +0.5 97.30.1 +0.4 97.00.0 +0.7 96.90.1 +0.6 58.50.2 –0.1 50.50.7 –0.5 54.00.6 –0.7 54.10.3 –1.1 53.80.3 –0.8
NER → 97.30.6 –0.1 95.10.6 +0.2 96.60.5 –0.3 96.60.5 +0.3 96.40.5 +0.1 57.71.2 –0.9 50.52.0 –0.5 52.61.1 –2.0 54.40.9 –0.8 53.51.0 –1.1

Table 12: Dialect-wise test results of the models trained on auxiliary tasks. The numbers in italics with blue
backgrounds describe the dialect distributions in the data used to train the respective auxiliary tasks (e.g., 28.1% of
the training data for the syntactic tasks is in North Norwegian). Key: B = Bokmål, N = North N., T = Trønder N.,
W = West Norwegian, ∆= difference to the baseline model (in pp.), ×= multi-task learning, →= intermediate-task
training.
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Abstract

This paper describes the LTG submission to
the VarDial 2025 shared task, where we partici-
pate in the Norwegian slot and intent detection
subtasks. The shared task focuses on Norwe-
gian dialects, which present challenges due to
their low-resource nature and variation. We
test a variety of neural models and training data
configurations, with the focus on improving
and extending the available Norwegian training
data. This includes automatically re-aligning
slot spans in Norwegian Bokmål, as well as
re-translating the original English training data
into both Bokmål and Nynorsk. We also re-
annotate an external Norwegian dataset to aug-
ment the training data. Our best models achieve
first place in both subtasks, achieving an span
F1 score of 0.893 for slot filling and an accu-
racy of 0.980 for intent detection. Our results
indicate that while translation quality is less
critical, improving the slot labels has a notable
impact on slot performance. Moreover, adding
more standard Norwegian data improves perfor-
mance, but incorporating even small amounts
of dialectal data leads to greater gains.

1 Introduction

The task of spoken language understanding (SLU)
is an essential part of task-oriented dialogue sys-
tems and voice assistants like Siri and Alexa. SLU
consists in annotating and identifying the mean-
ing of spoken prompts, and typically comprise an
Automatic Speech Recognition (ASR) component
for converting audio to text, alongside a Natural
Language Understanding (NLU) component for
extracting the semantic meaning of the utterance
(Faruqui and Hakkani-Tür, 2022).

Slot and intent detection (SID), also known as
slot filling and intent classification, is a key task
in NLU. Intent classification categorizes an entire
user utterance into a predefined intent class, de-
termining the purpose or goal behind the user’s
utterance. On the other hand, slot filling is a span

Intent Utterance

PlayMusic play with or without you by U2

Figure 1: Example utterance annotated with slots and
intent. Pink: track, green: artist.

labeling task that assigns each token in an utterance
a label, capturing the essential information required
to fulfill each intent, such as dates, locations and
names. An example is shown in Figure 1.

While significant progress has been made in the
field of NLU, the continued development of SID
models relies on the availability of datasets anno-
tated with slots and intents. In low-resource scenar-
ios, where little to no labeled data is available, chal-
lenges emerge in developing accurate SID models.
Over the years, there has been a notable increase
in research on various low-resource scenarios, and
VarDial has provided an important venue for discus-
sion and research in handling linguistic diversity
and low-resource scenarios (Aepli et al., 2023).

The 2025 iteration of the VarDial Shared Task
(Scherrer et al., 2025) introduces the novel NorSID
dataset to tackle the low-resource nature of Nor-
wegian dialects. This dataset includes prompts
intended for digital assistants across ten Norwe-
gian dialects as well as Norwegian Bokmål. Each
prompt is annotated with a dialect label, an intent
label, and slot spans following the BIO scheme.
NorSID therefore forms the foundation of this
Shared Task, which includes three subtasks: di-
alect identification, intent detection, and slot filling.
Our team participated in the latter two.

We make the following main contributions:

1. We compare various pre-trained models – both
multilingual and Norwegian-specific ones –
and fine-tune them on the xSID0.6 (van der
Goot et al., 2021a; Aepli et al., 2023; Win-
kler et al., 2024) data in English, Danish and
Norwegian.
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2. To enhance the quality of the Norwegian train-
ing data, we create a re-aligned version as
well as re-translations from English into both
Bokmål and Nynorsk.

3. We use the existing Norwegian split of the
MASSIVE dataset (FitzGerald et al., 2023) and
convert its annotations to the xSID0.6 annota-
tion scheme.1

2 Data and Evaluation

For developing our Norwegian SID models, the
xSID0.6 and NorSID datasets serve as our founda-
tional resources. To address the challenge of lim-
ited annotated Norwegian data, we experiment with
utilizing parts of the Norwegian split of MASSIVE
to augment the training data.

xSID0.6 is a recent NLU dataset, serving as a
benchmark for cross-lingual transfer with data in
17 languages, including 5 low-resource languages
and dialects. Although Norwegian is not part of
xSID0.6, a projected training set was created specifi-
cally for this Shared Task by translating the English
training data into Norwegian and aligning the slots
in the same way as for the non-English xSID0.6
training data.
xSID0.6 is derived from the English NLU

datasets Facebook (Schuster et al., 2019) and
Snips (Coucke et al., 2018), where the original
English development and test data were manually
translated and re-annotated into the other languages.
For high-resource languages, the training data was
machine-translated and slots were aligned using
attention (van der Goot et al., 2021a). The final
xSID0.6 dataset is annotated with 18 intents and 41
slots. It includes 43.6k training utterances for high-
resource languages, along with 300 development
and 500 test utterances for all languages.

NorSID is based on the NoMusic corpus (Mæh-
lum and Scherrer, 2024), and is a Norwegian exten-
sion of xSID0.6, with parallel data for 10 Norwe-
gian dialects along with Bokmål (B). The dialects
are grouped into 3 dialect areas, West Norwegian
(V), North Norwegian (N) and Trøndersk (T). The
dataset consists of translations of the validation and
test splits from xSID0.6, annotated with the same
slots and intents. Each utterance is translated into
all dialects by native speakers who use dialectal
writing on a regular basis, and slots are manually

1Our contributions are available at: https://github.
com/marthemidtgaard/SID-for-Norwegian-dialects

annotated by native NLP professionals. By includ-
ing several renditions of semantically identical ut-
terances, dialectal diversity is showcased, e.g., as
indicated by lexical and syntactic differences, and
this diversity introduces novel opportunities to en-
hance the robustness of both training and evaluation
of Norwegian SLU systems.

MASSIVE stands as the largest multilingual
SLU dataset to date, with “1M realistic, human-
created, labeled virtual assistant utterances”
(FitzGerald et al., 2023). The dataset comprises
51 languages, with 19.5k utterances per language
over 18 domains, 60 intents and 55 slots. MASSIVE
is thus more comprehensive than xSID0.6 and, with
some overlapping slots and intents, serves as a suit-
able resource for augmenting xSID0.6.
MASSIVE is, to our knowledge, the only other

SID annotated dataset that includes Norwegian, but
it only contains utterances in Norwegian Bokmål,
which limits its ability to capture the diverse nature
of the Norwegian language. With two official writ-
ten standards, Bokmål and Nynorsk, as well as nu-
merous dialectal variations, the effect of MASSIVE
might be limiting on the dialects.

Although limited to Bokmål, MASSIVE still offers
a valuable resource worth exploring. The process
of aligning Norwegian MASSIVE utterances to the
xSID0.6 scheme is described in section 4.3. How-
ever, since other SID annotated datasets are not
allowed in the Shared Task, we provide the models
based on MASSIVE outside of the competition.

Evaluation The evaluation of the slot and intent
subtasks is based on two primary metrics: span F1
score for slot filling and accuracy for intent detec-
tion. For span F1, both the span and slot label must
match the gold standard for the prediction to be
counted as correct. Intent accuracy measures the
proportion of correct intent predictions out of the
total number of utterances. Additionally, the mod-
els will be evaluated using dialect-specific slot and
intent scores to assess robustness to dialectal varia-
tion. We use the official evaluation script provided
by the organizers.

3 Existing Data and Pre-Trained Models

In recent years, jointly addressing the tasks of
slot and intent detection has been recognized as
an effective strategy (Weld et al., 2022). In this
work, we adopt this joint approach by utilizing the
MaChAmp0.4.2 toolkit (van der Goot et al., 2021b)
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with default hyperparameters for all experiments.
We evaluate the models on the NorSID develop-
ment set, and compare results to the results of
mBERT (Devlin et al., 2019), following the setup
in van der Goot et al. (2021a).

3.1 Pre-Trained Models

As a first experiment, we investigate which pre-
trained base models are the most suitable for
the task. We use several multilingual models
– XLM-R-large (Conneau et al., 2020), RemBERT
(Chung et al., 2020), mT0-base (Muennighoff
et al., 2023), mDeBERTaV3-base (He et al., 2022)
– all of which include Norwegian Bokmål in their
training data and have demonstrated state-of-the-
art performance on zero-shot cross-lingual tasks.
These models are therefore expected to exhibit
enhanced robustness in the low-resource scenario
of Norwegian (Artemova et al., 2024). Addition-
ally, we explore two Norwegian-specific models
– NB-BERT-base2 and NorBERT-base-3 (Samuel
et al., 2023) – which are trained on both Bokmål
and Nynorsk. These models may therefore offer
improved performance when applied to the SID
task for Norwegian dialects.

3.2 Fine-Tuning Languages

The xSID0.6 training data is available in various
languages, but all except the English data was
machine-translated, with potentially poor transla-
tion quality. We identify three languages for our
next experiments: English, Danish and Norwegian.
We consider these languages to be the most effec-
tive, as they exhibit the closest linguistic proxim-
ity to Norwegian dialects among the languages in
xSID0.6. We fine-tune three separate models for
each pre-trained model to understand how anno-
tation quality and linguistic proximity affect the
prediction performance.

3.3 Results

The results of these experiments on the develop-
ment set are presented in Table 1. They reveal no-
table trends in performance across different models.
For intent classification, fine-tuning on Norwegian
data yields the best accuracy for almost all models.
For slot filling, the opposite trend is observed: per-
formance drops considerably when models are fine-
tuned on Norwegian or Danish data. In this case,
fine-tuning on English achieves much better results,

2https://github.com/NbAiLab/notram

Model Slots Intents

en da nb en da nb

mBERT .659 .525 .569 .898 .907 .907
XLM-R .800 .566 .561 .985 .984 .979
RemBERT .734 .558 .549 .944 .962 .974
mT0 .737 .531 .529 .889 .922 .921
mDeBERTa .787 .579 .564 .965 .934 .982
NB-BERT .812 .590 .572 .988 .969 .989
NorBERT .797 .568 .558 .964 .964 .990

Table 1: Results on slot filling (F1) and intent detection
(accuracy) on the dev set. Bold: Top intent accuracy
and span F1 score.

which can be attributed to the fact that the original
training data is in English. Norwegian and Danish
training data, derived through machine translation
and slot alignment via attention mechanisms, likely
suffer from noise and alignment inconsistencies,
which impacts the performance.

In terms of base models, NB-BERT delivers the
overall best results across subtasks and languages,
followed by XLM-R and NorBERT. All three mod-
els outperform the baseline mBERT. NorBERT fine-
tuned on Norwegian has the highest intent accu-
racy, but NB-BERT achieves the highest increase in
intent accuracy compared to the baseline mBERT,
with a +0.90 improvement when fine-tuned on En-
glish. For slot filling, NB-BERT sees smaller gains
compared to the mBERT baseline: +0.153 when fine-
tuned on English and only +0.003 when fine-tuned
on Norwegian. These results highlight the difficulty
of slot filling and the need for further refinement to
improve performance.

Based on these findings, our continued ex-
periments focus on the top-performing models
NB-BERT, XLM-R and NorBERT. Fine-tuning on En-
glish emerges as the best approach for slot filling,
while fine-tuning on Norwegian is most effective
for intent classification. We also conduct additional
experiments combining English and Norwegian
training data, aiming to benefit from their comple-
mentary strengths.

4 Improving and Extending the Training
Data

To address the lower span F1 scores observed when
fine-tuning on Norwegian data, we further explore
ways to improving the quality of the training data.
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Dataset B-tags I-tags Sum

en 82,408 61,036 143,444
nb 82,644 91,556 174,200
nb_ra 87,411 45,340 132,760
nb_rt 83,165 47,143 130,308
nn_rt 84,644 45,563 130,207

Table 2: Distributions of B- and I-tags. The number of
B-tags corresponds to the number of slot spans.

4.1 Slot Re-Alignment

A comparison of slot counts shows that 143,444
English tokens are annotated with a slot, compared
to 174,200 in Norwegian (nb), despite Norwegian
having slightly fewer tokens (336,387 vs 341,094).
This suggests an overuse of slots in Norwegian,
driven by Norwegian having around 30k more I-
tags. The distribution of B- and I-tags is shown in
Table 2. For example, I-datetime is used 14,153
more times in Norwegian. This indicates poor slot
projection quality and highlights the need for re-
alignment to improve training effectiveness.

To project labels from English to Norwegian, we
use simAlign (Jalili Sabet et al., 2020), a word
alignment tool that leverages both static and con-
textualized embeddings to map English tokens to
their Norwegian counterparts. Challenges arise
when multiple English tokens align with a single
Norwegian token, as each Norwegian token can
hold only one slot. If all aligned English tokens
share the same slot, it is transferred directly. This is
typically the case for compound words, which are
split across multiple tokens in English but generally
appear as a single token in Norwegian. For exam-
ple for rain forecast, the slot weather/attribute
is easily transferred to the Norwegian regnvarsel.
For conflicting slots, we calculate cosine similarity
between the contextualized embeddings of each En-
glish token and the Norwegian token using XLM-R,
considering a context window of two tokens before
and after each token. The English token with the
highest similarity score is selected, and its slot is
transferred to the Norwegian token. After align-
ment, we reapply the BIO tagging format and ad-
just slot spans based on the xSID0.6 annotation
guidelines (van der Goot et al., 2021a), excluding
prepositions like på, for, and til, and the infinitive
marker å from the edges of slot spans.

This results is a new Norwegian training set
(nb_ra), where ra stands for re-alignment. The

en will it rain today ?

nb Kommer det til å regne i dag ?

nb_ra Kommer det til å regne i dag ?

Figure 2: Examples of slots. Green: weather/attribute,
pink: datetime.

updated set contains 132,760 slots – 41,440 fewer
than the original nb version – bringing it closer to
the total number of slots in the English dataset (see
Table 2). The slot spans in nb_ra are generally
shorter, with about 50% fewer I-tags compared to
nb. This reduction arises primarily because fewer
surrounding tokens are included in slot spans. The
example in Figure 2 illustrates this difference.

4.2 Re-Translation

Manual inspection of the original Norwegian trans-
lations reveals significant translation issues. For
example, the original translation model may mis-
translate questions into declaratives or with atyp-
ical word order (see example 1 in Figure 3). The
original translation also suffers from unknown to-
kens, such as february being translated as <unk>
ary. In addition, the translation model often splits
expression into multiple tokens due to punctua-
tions, leading to misaligned tokens and incorrect
slot transfers in nb and nb_ra. This is for example
frequent in time expressions as in example 2 of
Figure 3. Improving the quality of the translations
therefore seems essential to enhance slot alignment
and further increase span F1 scores.

We re-translated the English xSID0.6 train-
ing data into Bokmål and Nynorsk by using
NorMistral-7b-warm,3 which is an LLM
initialized from Mistral-7B-v0.14, and con-
tinuously pre-trained on Norwegian data.
NorMistral-7b-warm was chosen for its favorable
performance in prior zero-shot English-to-Bokmål
and English-to-Nynorsk translation evaluations.3

The original data contains inconsistent use of
proper capitalization and punctuation. The first
part is problematic since the dataset contains nu-
merous proper names that should not be translated
into Norwegian, and to improve the quality of the
translations, we apply truecasing to each sentence

3https://huggingface.co/norallm/
normistral-7b-warm

4https://huggingface.co/mistralai/
Mistral-7B-v0.1
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en is Tuesday to be rainy

nb_ra Det regner på torsdager

(It rains on Thursdays )

nb_rt Skal det bli regn på tirsdag ?

(Will it be rain on Tuesday ?)

nn_rt Kjem det til å bli regn på tysdag

(Will it come to be rain on Tuesday ?)

en Set alarm for 5:30 am tomorrow

nb_ra Alarm kl . 17 . 30 i morgen .

(Alarm at 17 : 30 in the morning )

nb_rt Sett alarm til kl. 05.30 i morgen

(Set alarm to 5:30 am tomorrow )

nn_rt Set alarm for 5.30 i morgon

(Set alarm for 5:30 am tomorrow )

Figure 3: Examples of slots. Green: weather/attribute,
pink: datetime.

using the Python truecase5 library. This results
in two new Norwegian datasets, nb_rt (Bokmål
re-translated) and nn_rt (Nynorsk re-translated),
which both undergo the same slot alignment as
nb_ra. Our decision to include Nynorsk is mo-
tivated by the fact that it more closely resem-
bles many Norwegian dialects than Bokmål. This
makes Nynorsk potentially more valuable for cap-
turing linguistic features representative of dialectal
variation.

Manual inspection of the new translations re-
veals significant improvement over nb, both in the
choice of words and sentence structure. The new
model produces structurally accurate sentences bet-
ter reflecting the English source (see example 1 in
Figure 3). The issue of unknown tokens is also
entirely resolved in the new dataset.

Since the Norwegian re-translations follow the
same alignment process as nb_ra, some of the
same alignment issues remain. For example, syn-
tactic differences between English and Norwegian
can challenge the alignment and map tokens based
on their position in the sentence (see example 1
in Figure 3). However, the improved translations
reduce unnecessary token splitting, particularly for
time expressions, resulting in better slot labeling.

5https://github.com/daltonfury42/truecase

4.3 Adapting the Norwegian MASSIVE
Dataset

As another means to improve span F1 scores, we
follow the approach of Winkler et al. (2024), who
propose to extract utterances from the MASSIVE
dataset that align with intents in xSID0.6 and to
re-annotating them following the xSID0.6 annota-
tion guidelines. While MASSIVE contains a broader
range of intents, Winkler et al. (2024) successfully
identified 2021 utterances matching the xSID0.6
intents. The mapping and re-annotation process is
documented in Appendix B of their work (Winkler
et al., 2024).

Building on their efforts, we use their mapped
Bavarian utterances to identify the corresponding
Norwegian utterances in MASSIVE. Intents were di-
rectly transferred from the Bavarian dataset, while
slots had to be manually annotated.

Although we aimed to follow the slots of Win-
kler et al. (2024), we found deviations from the
slot-intent combinations in xSID0.6. For exam-
ple, they apply the object_select slot to several
tokens, whereas xSID0.6 restricts this slot to the
RateBook intent, leaving similar tokens in other in-
tents unannotated. In such cases, we diverged from
the choices of Winkler et al. (2024) and adhered
strictly to the slot–intent combinations in xSID0.6,
ensuring that the model learns patterns consistent
with those in xSID0.6. This results in a new Nor-
wegian Bokmål training dataset named nb_mas.6

4.4 Results
Re-alignment The fine-tuning results on the
NorSID development set using our best-performing
models on nb_ra are presented in Table 3. For
slot filling, the nb_ra dataset shows substantial
improvements over nb across all models. For ex-
ample, the F1 score for NB-BERT increases from
0.575 (nb) to 0.762 (nb_ra), a gain of nearly 33%.
Similar improvements are observed for XLM-R and
NorBERT, and these enhancements indicate that
the re-alignment process helps improve slot an-
notations. In addition, adding English data to
nb_ra (en+nb_ra) further boosts performance for
NB-BERT and NorBERT, as it allows the models to
leverage the higher-quality English slot annotations.
The linguistic similarities between English and Nor-
wegian slots, such as named entities, enable the
models to learn transferable cross-lingual patterns,

6The re-annotated and re-translated data, as well as the Nor-
wegian MASSIVE data, are available at: https://github.
com/marthemidtgaard/SID-for-Norwegian-dialects.
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Slots Intents

NB-B. XLM-R NorB. NB-B. XLM-R NorB.

en .812 .800 .797 .988 .985 .964
nb .572 .561 .558 .989 .979 .990

nb_ra .762 .764 .741 .987 .988 .986
en+nb_ra .789 .761 .770 .994 .986 .993

nb_rt .758 .751 .716 .987 .985 .984
en+nb_rt .770 .761 .762 .991 .986 .995

nn_rt .753 .753 .752 .981 .980 .986
en+nn_rt .772 .783 .776 .992 .992 .982

Table 3: Results on slot filling (F1) and intent detection
(accuracy) on the dev set. Bold: Top intent accuracy
and span F1 score. nb_ra: re-aligned nb. nb_rt and
nn_rt: machine translated and re-aligned nb/nn.

and the improved F1 score reflects the benefit of
learning from the more accurate English data. How-
ever, the best performing new system, NB-BERT
fine-tuned on en+nb_ra, still does not outperform
fine-tuning solely on English. This suggests that
the Norwegian data cannot match the quality of
the English slot annotations, and that the inclusion
of English only partially helps stabilize the noisier
Norwegian annotations.
NB-BERT fine-tuned on en+nb_ra also achieves

the highest intent accuracy (0.994), though the im-
provements from nb_ra are slightly smaller for
intent detection compared to slot filling. This indi-
cates that the inclusion of English data enhances
performance without compromising the model’s
ability to understand Norwegian intents.

Re-translation Results from fine-tuning on the
higher-quality translations, nb_rt and nn_rt, can
be found in the bottom rows of Table 3. The
en+nn_rt dataset achieves the highest F1 score
(0.783 with XLM-R), with both XLM-R and NorBERT
outperforming their en+nb_ra counterparts, and all
three models surpassing their en+nb_rt counter-
parts. This likely reflects a closer resemblance be-
tween Nynorsk and Norwegian dialects compared
to Bokmål, allowing the model to generalize bet-
ter across dialectal variations. However, models
trained exclusively on either nb_rt or nn_rt still
fall significantly behind those trained on English as
well, emphasizing the continued impact of higher-
quality annotations in English.

Furthermore, the improved Bokmål translations
in nb_rt show no notable impact on span F1 scores.
Since the main changes from nb_ra are structural,
slot alignments do not differ too much, resulting
in comparable performance. Intent accuracy also

Slots Intents

NB-B. XLM-R NorB. NB-B. XLM-R NorB.

en .812 .800 .797 .988 .985 .964
+nb_mas .859 .858 .832 .990 .985 .982

en+nb_ra .789 .761 .770 .994 .986 .993
+nb_mas .793 .799 .788 .994 .988 .992

Table 4: Impact of including the Norwegian MASSIVE
(+nb_mas on slot filling (F1) and intent detection (ac-
curacy), measured on the dev set. Bold: Top intent
accuracy and span F1 score. nb_ra: re-aligned nb.

remains stable across the new models, as our data
augmentation efforts primarily target slot quality.

Overall, the findings underscore the need for
further refinement in addressing slot alignment is-
sues in order to bridge the performance gap be-
tween Norwegian and English. This is evident from
the superior span F1 scores achieved by NB-BERT
trained solely on English, which remains the best-
performing model for slot labeling.

MASSIVE Fine-tuning results on the Norwegian
MASSIVE data are shown in Table 4. Including
nb_mas results in noticeable improvements in span
F1 scores, with NB-BERT fine-tuned on en+nb_mas
achieving the highest F1 score of 0.859, outper-
forming all other setups. This highlights the signif-
icant impact of MASSIVE data on slot performance
when combined with high-quality English anno-
tations. The other models also show notable im-
provements compared to their counterparts without
MASSIVE.

Intent accuracy remains unaffected, suggesting
that intent detection does not benefit from addi-
tional data. This is likely because the new utter-
ances closely resemble those already present in
xSID0.6, indicating that they do not introduce novel
patterns for the model to learn. This just shows that
the intent mapping efforts by Winkler et al. (2024)
were robust and effective.

Overall, these findings highlight the potential
of including MASSIVE utterances to enhance slot
filling. However, these models fall outside the per-
mitted training data rules of the Shared Task and
were submitted outside of the competition. Despite
this, the promising results justify their inclusion in
this paper to underscore the approach’s potential.

5 Our Shared Task Submission

For our submission, we selected the best-
performing model and training data combination
per subtask. For slot filling, our best-performing
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model is NB-BERT fine-tuned on English, while
for intent detection, it is NorBERT fine-tuned on
en+nb_rt. However, due to technical difficulties
in test set prediction with NorBERT, we submitted
our second-best intent detection model, namely
NB-BERT fine-tuned on en+nb_ra, whose perfor-
mance is nearly identical.

The Shared Task guidelines allowed the partici-
pants to use the development set for training. In or-
der to further enhance the models mentioned above,
we fine-tune them with the inclusion of the NorSID
dev set. Since this prevents us from using a valida-
tion set, we submitted models after 20 epochs and
after the best epoch. This resulted in three systems
per subtask.

5.1 Results
Table 5 presents the official slot filling results,
while Table 6 shows intent detection accuracy. Our
models strongly outperform the mBERT baseline
across both tasks, achieving a 38.6% improvement
in slot filling with the top performing model fine-
tuned on en+norsid. This model also outperforms
the one fine-tuned on English, and the improved
performance likely results from the close align-
ment between the dev and test sets, both translated
by the same native speakers and annotated by the
same team. By including the dev set in fine-tuning,
utterances with the same style, word choices and
slot spans are seen during training, facilitating im-
proved performance on the test set, which closely
resembles the training data.

Furthermore, Bokmål (B) consistently achieves
the highest F1 scores, while North Norwegian (N)
poses the greatest challenge, likely due to a greater
linguistic divergence from the Bokmål and Nynorsk
patterns learned during pre-training. This might
also explain why North Norwegian, along with
Trøndersk (T), sees the largest F1 improvements
with the inclusion of the NorSID dev set, highlight-
ing the importance of dialect-specific data in adapt-
ing the model to dialectal variations.

For intent detection, accuracy remains consistent
across datasets and dialects, with North Norwe-
gian performing only slightly lower than the others.
This consistency suggests that intent detection ef-
fectively generalizes well across dialects and does
not benefit from the inclusion of dialect utterances.

Interestingly, the number of training epochs has
no impact on performance, suggesting rapid con-
vergence due to the high quality data. Despite its
small size, the NorSID development set provides

ID System B N T V Overall

Baseline mBERT .715 .607 .632 .651 .644

LTG 1 en .847 .801 .810 .833 .822
LTG 3 en+norsid (11) .909 .872 .897 .895 .893
LTG 2 en+norsid (20) .899 .879 .893 .896 .893

LTG 4 en+nb_mas+norsid .918 .876 .890 .898 .894

Table 5: Dialect-specific and overall span F1 scores
on the test set using NB-BERT. B=Bokmål, N=North
Norwegian, T=Trøndersk, V=West Norwegian. Number
of fine-tuning epochs in parentheses.

ID System B N T V Overall

Baseline mBERT .864 .826 .833 .848 .842

LTG 3 en+nb_ra+norsid (5) .980 .972 .983 .982 .980
LTG 1 en+nb_ra .982 .972 .983 .978 .979
LTG 2 en+nb_ra+norsid (20) .982 .973 .981 .978 .979

LTG 4 en+nb_mas+norsid .978 .967 .977 .972 .973

Table 6: Dialect-specific and overall intent accuracies
on the test set using NB-BERT. Number of fine-tuning
epochs in parentheses.

sufficient task-specific information for effective op-
timization, with additional epochs offering no fur-
ther gains or risk of overfitting.

Finally, we also evaluate our best model includ-
ing MASSIVE (en+nb_mas) on the test set and get
a slot filling F1 score of 0.858. Dialect F1 scores,
except for Bokmål, decrease significantly com-
pared to en+norsid, indicating that new and un-
seen Bokmål utterances from MASSIVE contributes
less than dialect utterances. This is also highlighted
by the fact that dialect F1 scores are the same for
en+norsid and en+nb_mas+norsid. However, in-
terestingly, F1 score for Bokmål reaches a high
with 0.918 for en+nb_mas+norsid. To further im-
prove slot filling, a promising approach could be
to add raw dialect data to fine-tuning, allowing the
model to better handle nuanced dialect features.

6 Conclusion

In this paper, we presented our contribution to the
two subtasks of the VarDial 2025 Shared Task: in-
tent detection and slot filling. We evaluated differ-
ent pre-trained models, including NB-BERT, XLM-R,
and NorBERT, and identified NB-BERT as the best
overall model, likely due to its superior ability to
handle the linguistic complexities of Norwegian
language varieties.

Slot filling emerged as a more challenging task
than intent detection, with the latter showing consis-
tent accuracy across experiments. This consistency
can be attributed to the ease of transferring intents
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from the original English xSID0.6 to our different
Norwegian versions, unlike slots, which rely on an
automatic alignment process prone to errors. Our
efforts to enhance slot annotations did not achieve
the same level of performance as fine-tuning exclu-
sively on English data, highlighting the critical role
of high-quality slot annotations and the necessity
for further refinement.

In addition, intent detection operates at the sen-
tence level, relying on broader semantic features
rather than the token-level distinctions critical for
slot filling. As a result, it is less sensitive to di-
alectal variation and does not require extensive
dialect-specific data. Models fine-tuned solely on
Bokmål performed comparably to those incorporat-
ing dialectal data for intent detection. In contrast,
slot filling is highly dependent on dialect-specific
data due to token-level linguistic intricacies. For
dialects, adding dialect-specific data proved more
impactful than merely increasing the amount of
Bokmål data.

Looking ahead, we aim to experiment with the
inclusion of raw dialect data to better capture lin-
guistic variation at the token level. Additionally,
we intend to explore alternative methods for align-
ing slots between English and Norwegian to further
enhance the quality of slot annotations.

Limitations

All of our models are trained once with a fixed
random seed. This makes it hard to judge how
stable the observed result patterns are. In particular
for the intent detection task, many score differences
are so small that they are likely due to random
variation rather than to different training setups.
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Siti Oryza Khairunnisa, Mamoru Komachi, and Bar-
bara Plank. 2021a. From Masked Language Mod-
eling to Translation: Non-English Auxiliary Tasks
Improve Zero-shot Spoken Language Understanding.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2479–2497, Online. Association for Computa-
tional Linguistics.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021b. Mas-
sive Choice, Ample Tasks (MaChAmp): A Toolkit
for Multi-task Learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System

Demonstrations, pages 176–197, Online. Association
for Computational Linguistics.

Henry Weld, Xiaoqi Huang, Siqu Long, Josiah Poon,
and Soyeon Caren Han. 2022. A Survey of Joint
Intent Detection and Slot Filling Models in Natu-
ral Language Understanding. ACM Comput. Surv.,
55(8):156:1–156:38.

Miriam Winkler, Virginija Juozapaityte, Rob van der
Goot, and Barbara Plank. 2024. Slot and Intent
Detection Resources for Bavarian and Lithuanian:
Assessing Translations vs Natural Queries to Dig-
ital Assistants. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 14898–14915, Torino, Italia.
ELRA and ICCL.

208



Proceedings of the Twelfth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 209–219
January 19, 2025. ©2025 Association for Computational Linguistics

HiTZ at VarDial 2025 NorSID: Overcoming Data Scarcity with Language
Transfer and Automatic Data Annotation

Jaione Bengoetxea Mikel Zubillaga Ekhi Azurmendi
Maite Heredia Julen Etxaniz Markel Ferro Jeremy Barnes

HiTZ Center – Ixa, University of the Basque Country (UPV/EHU)
name.surname@ehu.eus

Abstract

In this paper we present our submission for the
NorSID Shared Task as part of the 2025 Var-
Dial Workshop (Scherrer et al., 2025), consist-
ing of three tasks: Intent Detection, Slot Filling
and Dialect Identification, evaluated using data
in different dialects of the Norwegian language.
For Intent Detection and Slot Filling, we have
fine-tuned a multitask model in a cross-lingual
setting, to leverage the xSID dataset available
in 17 languages. In the case of Dialect Identifi-
cation, our final submission consists of a model
fine-tuned on the provided development set,
which has obtained the highest scores within
our experiments. Our final results on the test
set show that our models do not drop in perfor-
mance compared to the development set, likely
due to the domain-specificity of the dataset and
the similar distribution of both subsets. Finally,
we also report an in-depth analysis of the pro-
vided datasets and their artifacts, as well as
other sets of experiments that have been carried
out but did not yield the best results. Addi-
tionally, we present an analysis on the reasons
why some methods have been more successful
than others; mainly the impact of the combina-
tion of languages and domain-specificity of the
training data on the results.

1 Introduction

Dialectal variation is ubiquitous in human language
and should be taken into account when perform-
ing Natural Language Processing (NLP) tasks, as
NLP systems unable to deal with dialectal data can
cause users to feel frustrated and lead to unintended
biases (Harwell, 2018).

This is especially relevant for Spoken Language
Understanding (SLU), a field of Speech Process-
ing and Natural Language Understanding aimed
at ensuring the semantic comprehension of human
utterances by virtual assistants. To make systems
that rely on SLU more robust and able to handle
real use-cases, it is necessary to develop resources

for these tasks not only for different languages, but
for different language varieties, so that the benefits
of these models can reach a wider variety of speech
communities.

With this motivation, the NorSID Shared Task
consists of three subtasks (intent detection, slot fill-
ing and dialect identification) in four Norwegian
variants: Bokmål (B), Western (V), Trøndersk (T)
and North Norwegian (N). The tasks are centered
around common virtual assistant tasks, such as set-
ting alarms or questions about the weather.

Our team participated in all three subtasks, for
a total of 6 runs: 3 for the SID (Slot and Intent
Detection) tasks and 3 for Dialect Identification.
As a team, we placed first in Dialect Identification,
second in Intent Detection, and third in Slot Filling.
Our code is publicly available on GitHub.1

2 Task Descriptions

As mentioned, this shared task consists of the fol-
lowing three subtasks:

Intent Detection. It is a text classification task
that assigns intent labels to the utterances of the
users, to guide the chatbot’s answer, depending on
its domain and purpose.

Slot Filling. It requires classifying token spans
that contain relevant information for a virtual assis-
tant to fulfill certain tasks, e.g., to set an alarm, the
assistant needs to know the time to set it to.

Dialect Identification. The aim of this classifica-
tion task is to identify the dialect of the utterance.

2.1 Initial Data: NoMusic Dataset
The shared task uses the NoMusic dataset (Mæh-
lum and Scherrer, 2024), a “multi-parallel resource
for written Norwegian dialects, and the first evalua-
tion dataset for slot and intent detection focusing
on non-standard Norwegian varieties.”

1https://github.com/hitz-zentroa/vardial-2025
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id text intent dialect slots

90/9 Sett alarm for kl. 6 alarm/set_alarm V datetime

45/2 Skal d bli sol i dag? weather/find N weather/attribute
datetime

183/2
Æ vil gje boka 3
stjenre .

RateBook N

object_type

rating_value

rating_unit

Table 1: Random examples from the NoMusic develop-
ment set.

To construct the development and test set
(3300/5500 instances each), 11 Norwegian trans-
lators manually translated phrases from the corre-
sponding English xSID sets (van der Goot et al.,
2021) into four different Norwegian dialects (North
Norwegian, Trøndersk, West Norwegian and Bok-
mål). Shared task participants only had access to
the dev set during the competition. See Table 1
for examples from the dev set and Table 2 for the
distribution of labels.

For training data, a machine-translated version
of the English xSID train set (43,605 instances)
was provided.2 The instances have been translated
into Bokmål and are annotated for both the intent
detection and slot filling tasks. It preserves the
original intent labels and the slots have been pro-
jected from one language to the other, although
the shared task organizers report that the quality of
both the translation and the annotation projection
is relatively poor.

Dialect Dev Test Dist

West Norwegian (V) 1,500 2,500 45.45%
Trøndersk (T) 900 1,500 27.27%
North Norwegian (N) 600 1,000 18.18%
Bokmål (B) 300 500 9.09%

Total 3300 5500 100%

Table 2: Distribution of dialect tags in the NorSID de-
velopment and test sets. Notice that the data distribution
is highly skewed towards West Norwegian.

3 Intent Detection & Slot Filling

In this section, we will detail our participation in
the intent and slot filling subtasks. We first ex-
plain the data (Section 3.1) and the experimental
design (Section 3.2), and finally a description and
an analysis of our results (Section 3.3).

2More details of xSID are presented in Section 3.1.

3.1 Data

xSID (van der Goot et al., 2021; Aepli et al., 2023;
Winkler et al., 2024) is a cross-lingual corpus for
SLU.3 The original English data was sampled by
selecting random instances from the Snips (Coucke
et al., 2018) and Facebook (Schuster et al., 2019)
datasets. It features annotations for both intent
detection, with one intent per instance; and slot
filling, using the BIO format to tag each token. For
the validation and test sets, the data was manu-
ally translated by native speakers of each language,
maintaining the original intents, while the slots
were manually re-annotated. The training data is
available for most of the xSID languages through
machine translation and projection of the slots.

For the Intent Detection task, there are a total of
18 intents. As per the slot filling task, there are 33
possible slots that can appear as the beginning (B)
or inside (I) of a span and an O tag for the absence
of entity. This results in a total of 67 possible tags.

Although the original paper leaves duplicated
sentences to model the natural distribution found
in the data, we deduplicate to avoid our models
overfitting on the training data. We only carry out
shallow deduplication, removing instances that con-
tain the same text.

3.2 Experiments

Intent detection and slot filling are two highly re-
lated tasks. In fact, there are some slots that will
only appear in sentences tagged with a certain in-
tent and vice-versa. In this respect, a model could
make use of the annotations of both tasks at the
same time to obtain better predictions. Our exper-
iments for the SID tasks build on that idea, using
a multilingual multitask model jointly trained for
intent detection and slot filling. As shown in Figure
1, our multitask models learn to classify the intents
on top of the [CLS] token and the probabilities for
each token on top of them.

Since intent detection and slot filling are clas-
sification tasks, we fine-tune the multilingual en-
coder model XLM-RoBERTa large (Conneau et al.,
2019). This allows us to take advantage of cross-
lingual transfer by training on different combina-
tions of languages from xSID.

The multitask loss is calculated as the weighted
sum of the loss for intent and slot detection

3As of version 0.6, the latest version to date, it is available
in 17 languages.
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FINE-TUNED MODEL

[CLS] is there sun

TOKENIZED
INPUT is there sun today

Weather/find OO B-weather/
attribute

today

B-datetime

INTENT

[CLS]

is there sun today

TOKENIZER

RAW
INPUT

SLOTS

Figure 1: The idea behind the multitask model fine-
tuned for both intent detection and slot filling tasks at
the same time.

Ltotal = Lslot ∗ λ+ Lintent ∗ (1− λ) (1)

where Lslot is the cross-entropy loss function
used in the slot-filling and Lintent is the cross-
entropy loss function used in intent-detection. We
set λ to 0.7 based on the intuition that slot filling is
more difficult. The rest of the fine-tuning hyperpa-
rameters can be found in Appendix A. During our
experiments, all models have been evaluated using
the Norwegian development set, which has been
used to select the best combinations of languages
and number of epochs.

3.3 Results
We have performed preliminary experiments on
the development dataset to select the best combi-
nation of languages using three different random
seeds. The results of these experiments can be seen
in Table 3, where we report the F1 and accuracy
metrics for the slots and intents respectively 4. We
also calculate the Lambda average metric, that is a
weighted average, where we use the same λ value
as in the multitask loss function.

The results show that training only on the En-
glish training data produces the best results, with
a Lambda average of 84.96%, probably because
machine-translated data can introduce noise to the
model.

4During the preliminary experiments on the development
split, we have used a different scorer than the one provided by
the Shared Task. Our scorer uses the output data of the model
without post-processing, that allows us to calculate the scores
while training.

Language F1 Slot Accuracy Intent Lambda

EN 79.09 ±0.77 98.64 ±0.23 84.96 ±0.48
DA 53.75 ±0.35 98.82 ±0.56 67.04 ±0.05
NB 53.49 ±1.70 98.87 ±0.39 67.10 ±1.16
EN+DA 57.03 ±0.48 98.60 ±0.14 69.50 ±0.30
EN+NB 55.43 ±0.24 99.17 ±0.13 68.55 ±0.20
DA+NB 54.58 ±0.32 98.94 ±0.21 67.89 ±0.18
EN+DA+NB 58.33 ±1.85 98.73 ±0.25 70.45 ±1.35
ALL 59.83 ±1.88 98.67 ±0.39 71.48 ±1.22
ALL-NB 59.08 ±0.83 98.55 ±0.41 70.92 ±0.66
GER 58.01 ±0.72 98.80 ±0.13 70.25 ±0.47
GER-NB 61.96 ±1.25 98.25 ±0.36 72.85 ±0.98
LAT 58.51 ±0.45 98.80 ±0.37 70.60 ±0.21
LAT-NB 59.62 ±1.34 98.56 ±0.42 71.30 ±1.04

Table 3: F1 score in the development set for each train-
ing language combination, labeling the tokenized sen-
tences. ISO 639-1 Language Codes are used for indi-
vidual languages, while ALL means the combination
of all available training languages, GER means Ger-
manic languages, and LAT means languages written in
Latin script. We also sometimes remove Norwegian,
e.g., GER-NB would be all Germanic languages except
Norwegian Bokmål (full explanation in Appendix B).

Single-task Multitask

Slot F1 78.98 ±0.28 79.09±0.77
Intent Accuracy 98.42±0.31 98.64±0.23

Table 4: Comparison between the single-task models
and the multitask one.

Table 4 compares the multitask and single-task
slot-filling and intent classification models, trained
in English with the same hyperparameters. We see
that not only is multitask training more efficient
than single-task training, but it is also able to main-
tain a similar or slightly better performance (0.11%
and 0.22% higher Slot F1 and Intent accuracy re-
spectively).

For the participation in the shared task, we sub-
mit three models: a) the model fine-tuned only on
English data b) the model fine-tuned with a combi-
nation of English and Norwegian, which obtained
the best accuracy for the intent task (99.17%), and
c) the model fine-tuned with the combination of all
Germanic languages (that have an available training
set) minus Norwegian, which obtained the second
best results overall (72.85% Lambda average).

The test results are shown in Table 5. Consistent
with the evaluation of our models with the devel-
opment set, the best resulting model is the one
trained only using English, with a Lambda average
of 88.65%.
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Model Slot F1 Accuracy Intent Lambda

EN 85.37 96.29 88.65
GER-NB 66.64 97.11 75.78
EN+NB 55.66 97.69 68.27

Table 5: Results (slot F1, accuracy intent, and lambda
average) of the three submitted runs evaluated on the
test set. Best results in bold.

3.3.1 Analysis of the Intent Detection Results

Without any hyperparameter tuning, most models
obtain near 100% accuracy in the intent detection
task. This is likely because the data is from a re-
duced domain, where instances contain clear word-
level features that let the model infer the label.

To test this idea, we fine-tuned and compared
the results of English only models, [BERT5 (Devlin
et al., 2019; Turc et al., 2019) and RoBERTa (Liu
et al., 2019)], against multilingual and Norwegian
models, [XLM-RoBERTa (Conneau et al., 2019)
and NorBERT3 (Samuel et al., 2023)]. Figure 2
shows that no prior knowledge of Norwegian is
required to obtain an accuracy of up to 96%, which
is aligned with our initial presumption that mod-
els are learning to classify the instances relying on
specific word patterns rather than semantic under-
standing. However, prior knowledge of Norwegian
greatly reduces the number of parameters required
to obtain top performance and allows the model to
surpass the performance of English only models.

107 108

number of parameters

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

BERT
XLM-RoBERTa
NorBERT3
RoBERTa

Figure 2: Accuracy of pretrained English mod-
els (BERT, RoBERTa), multilingual models (XLM-
RoBERTa) and a Norwegian pretrained models (Nor-
BERT3) trained for Intent Detection on the Norwegian
train set and evaluated the development set.

5Google’s 2020 BERT models were fine-tuned.

4 Dialect Identification

In this section, we will present the dialect iden-
tification task, starting with the data used in our
experiments (Section 4.1), followed by the experi-
mental setting training only on the development set
from the shared task (Section 4.2), as well as the
experimental settings when training on alternative
sources of data (Section 4.3). Finally, we describe
the results of using different data and settings (Sec-
tion 4.4).

4.1 Data

The following section presents all the datasets we
have used in our experiments, which consist of the
NoMusic data (Table 2) , as well as some further
dialectal data. This data comes from two main
sources: (i) tweets, which we collected from Nor-
Dial and the Nordic Tweet Stream (NTS); and (ii)
transcriptions, which come from NB Samtale and
the Nordic Dialect Corpus (NDC).

4.1.1 NoMusic
As introduced in Section 2.1, NoMusic is the devel-
opment data provided by the shared task. However,
there is no additional training data that has been
labeled for the dialect identification task in the SID
tasks.

Consequently, we split the development set into
train, development and test sets (from now on, dev-
train, dev-dev and dev-test). Each sentence in this
dataset is paraphrased 11 times, once for each di-
alect annotator. Thus, in order to avoid data contam-
ination, we split by the original ID of each instance,
as many translated instances are similar or identi-
cal (Table 6). The results presented in Section 4.2
correspond to the dev-test results.

Dialect Dev-Train Dev-Dev Dev-Test

West Norwegian (V) 962 220 225
Trøndersk (T) 580 132 135
North Norwegian (N) 386 89 89
Bokmål (B) 188 43 45

Total 2116 484 494

Table 6: Distribution of splits in the development set.

4.1.2 NorDial
NorDial (Barnes et al., 2021) is a corpus of 1,073
Norwegian tweets annotated for four dialects: Bok-
mål, Nynorsk, Dialect, or Mixed. We merge this
data together with the additional annotated data
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available in the Nordial GitHub,6 for a total of
6,670 tweets. Table 7 shows the statistics for the
merged data.

Split Train Dev Test Total

Bokmål 2798 115 98 3011
Nynorsk 964 38 43 1045
Dialect 2007 61 70 2138
Mixed 445 12 19 476

Total 6214 226 230 6670

Table 7: Distribution of Norwegian language variants
across NorDial splits.

4.1.3 Nordic Tweet Stream (NTS)
NTS7 (Laitinen et al., 2018) is a corpus of geolo-
cated tweets and their associated metadata from
the Nordic region between the years of 2013-2023.
We downloaded 4.054.223 Norwegian tweets ge-
olocated in a total of 426 Norwegian cities.

4.1.4 NB Samtale
NB Samtale8 is a speech corpus collected by the
Language Bank at the National Library of Norway.
It contains orthographic and verbatim transcrip-
tions from podcasts and recordings of live events
at the National Library, a total of 24 hours of tran-
scribed speech from 69 speakers, divided into train,
development and test splits. Table 8 shows the
distribution of dialects in the data.

Dialect area Train Dev Test Total

Eastern (E) 4454 557 557 5568
Northern (N) 2072 258 261 2591
Southwest (SW) 1304 164 163 1631
Western (W) 1094 137 136 1367
Central (T) 624 78 78 780

Total 9548 1194 1195 11937

Table 8: Distribution of Norwegian language variants in
NB Samtale.

4.1.5 Nordic Dialect Corpus (NDC)
NDC9 (Johannessen et al., 2009, 2012) includes
orthographic and phonetic transcriptions of Nordic
speaker recordings, with almost two million words
from Norwegian dialects. It contains recordings

6https://github.com/jerbarnes/nordial
7https://nordictweetstream.fi/
8https://huggingface.co/datasets/Sprakbanken/

nb_samtale
9https://tekstlab.uio.no/scandiasyn/download.

html

from 111 different locations in Norway, collected
between 2006-2010.

4.2 Experiments With Development Data

In this section, we describe baselines using only
the dialectal data in the development set, using the
splits described in Section 4.1.1 (Table 6). We ex-
plore lexical mapping SVM, fine-tuning encoders
and decoders, as well as using few-shot decoders.

4.2.1 Lexical Mapping SVM
We first create a simple baseline by mapping com-
mon lexical items in Bokmål to their respective di-
alectal counterparts. The items we map are mainly
pronouns and interrogatives, as well as a few com-
mon prepositions, verbal forms, and time expres-
sions. For each dialect, there is often a one-to-many
mapping from Bokmål, as can be seen in Table 9.

B V T N EN

jeg eg, ej æ, e æ, å ‘I’
hva ka ka ka ‘what’

Table 9: Example of lexical mappings for B, V, T, N.
The English translation is added in the final column.

After compiling the lexical mappings, we create
a silver dataset (Lexmap) starting from the Bokmål
train data provided. Specifically, we create a new
instance each for V, T, and N by mapping any lexi-
cal item in our mapping dictionary to its dialectal
variant, leading to a training dataset four times the
size of the original.

We train a linear support-vector machine on un-
igram features using the silver train set (Lexmap
SVM). We also train the same model on the silver
train plus the dev-train data (Lexmap + dev-train
SVM).

4.2.2 Encoder Fine-tuning
We fine-tune encoders on the dev-train set, as well
as on the combination of dev-train with the lex-
ical mapping silver (Lexmap + dev-train). We
choose the best encoder model specifically trained
for Norwegian, NorBERT3-L (Samuel et al., 2023),
as well as the multilingual encoder model XLM-
Roberta-large (Conneau et al., 2019).10 As pre-
liminary experiments showed training on the full
development set with NorBERT3-L leads to the
best performance, we also train the following vari-
ants: (i) training on the combined dev-train and

10Hyperparameters used are listed in Appendix A.
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NDC-20 (ortho) NDC-20 (phonetic) NDC-40 (ortho) NDC-40 (phonetic)

Dialect # % # % # % # %

West (V) 31017 30.34 35636 30.84 21413 30.74 25803 31.28
North (N) 31387 30.70 34437 29.80 21487 30.85 24459 29.65
Trøndersk (T) 12076 11.81 13502 11.68 7989 11.47 9373 11.36
Bokmål (B) 27763 27.15 31990 27.68 18751 26.93 22868 27.72

Total 102243 100 115565 100 69640 100 82503 100

Table 10: Distribution of dialects in NDC, using a manual geolocation-based mapping of dialect labels, with a
minimum token length of 20 and 40 per sentences

NDC-20 (ortho) NDC-20 (phonetic) NDC-40 (ortho) NDC-40 (phonetic) NTS

Dialect # % # % # % # % # %

West (V) 6891 61.83 36418 37.24 5048 69.62 27845 38.72 49801 46.96
North (N) 52 0.47 218 0.22 33 0.46 45 0.06 16632 15.68
Trøndersk (T) 3877 34.79 60995 62.37 1976 27.25 43909 61.06 30007 28.30
Bokmål (B) 325 2.92 163 0.17 194 2.68 115 0.16 9609 9.06

Total 11145 100 97794 100 7251 100 71914 100 106049 100

Table 11: Distribution of dialects in NDC transcription and NTS tweet datasets, using automatic annotation of
dialect labels and dropping instances to match the development distribution.

dev-dev splits (Dev-train-dev); and (ii) training on
the whole development set (Dev-train-dev-test).

4.2.3 Decoder Few-shot
We perform few-shot prompting experiments, pro-
viding the model 4 example instances, one for each
dialect label. The few-shot examples are sampled
from the dev-dev split and we evaluate on the dev-
test set. We experiment with a decoder model
specifically trained for Norwegian, NorMistral-7b-
warm,11 and a multilingual decoder model, Llama
3.1-8B (Dubey et al., 2024), and use both base
and instruct models, evaluating with LM evalua-
tion Harness (Gao et al., 2023). The prompt used
in these experiments is shown below:
In which dialect is this text

written? Choose between North Norwegian,
Trøndersk, West Norwegian or Bokmål.
Text: {text} Dialect:

4.2.4 Decoder Fine-tuning
Next, we fine-tune several decoders on the develop-
ment set, similar to the experiments with decoders.
We only experiment with NorMistral models, as
they achieve higher results in few-shot evaluation.
We perform finetuning in two ways: by adding a
sequence classification (SC) head and training the
models applying supervised fine-tuning (SFT) us-
ing the same English prompt as in the few-shot

11https://huggingface.co/norallm/
normistral-7b-warm

evaluation (dev-train SFT).

4.3 Experiments With Other Data Sources

As no labeled training dataset is available for di-
alect classification, we also explore whether it is
possible to use other sources of data to learn to
classify Norwegian dialects.

First, we apply the semi-automatic and auto-
matic annotation methods (see subsections 4.3.1
& 4.3.2), and get statistics about the resulting di-
alectal distribution of tweets and transcriptions.

Next, we fine-tune NorBERT3-L on the semi-
automatically and automatically labelled transcrip-
tions and tweets to measure the impact of using
automatically labeled data sources. During train-
ing, we use the dev-dev split as validation to avoid
overfitting on these datasets and use the same hy-
perparameters (see Appendix A).

4.3.1 Semi-automatic Annotation
We perform a semi-automatic dialect label annota-
tion on the NDC dataset, by first eliminating special
transcription characters, e.g., pause markers (#) or
(mm), as well as short sentences, which we assume
have fewer dialectal traits.12

Finally, we semi-automatically map cities in
NDC to their corresponding dialect label, accord-
ing to their geographical location.13 Table 10 re-

12We experiment with two different minimum sentence
lengths: 20 and 40 tokens.

13Eastern cities are mapped to Bokmål.
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ports the number of instances and the dialect label
distribution.

4.3.2 Automatic Annotation
We automatically annotate silver training data using
two classifiers: the best model trained on develop-
ment data (see Section 4.4.1) and a model trained
on NorDial data. Experiments on NorDial suggest
NB-BERT-base is the strongest classifier, achiev-
ing 90% weighted F1 score, thus being chosen as
our NorDial classifier. The objective of using two
classifiers is to minimize model bias.

Therefore, having the results of our two classi-
fiers, we discard examples classified as Nynorsk
and Mixed by the NorDial classifier. For Bokmål,
we select examples where the two classifiers match.
For the dialectal tweets, we assign the class of the
NorBERT3-L classifier if it is one of N, V or T.

NB Samtale We train a classifier on NB Samtale
data with the available splits to measure to what ex-
tent there are dialectal features in the orthographic
and verbatim transcriptions. We get a weighted
F1 of 76.76% with the verbatim transcriptions, so
we can conclude that the models are able to learn
the different features of the dataset. However, as
training on this data leads to poor results on the dev
set, we decide to explore other annotation methods.
The poor results suggest that the dialectal features
present in both datasets are different. Additionally,
we trained a model using both NB Samtale train set
and dev-train, but the results obtained (F1 81.59%)
are few points worse than the model trained only
in dev-train (F1 82.44%).

NTS The predicted distribution of dialects in
NTS tweets does not match with the Norsid clas-
sifier distribution. Nordial classifier classifies
96.70% of instances as Bokmål and Norsid clas-
sifier 66.93% as V. This makes sense because
the distributions of their training data are differ-
ent. After performing the automatic labeling, in
order to obtain a distribution similar to the one
we have in development, we have downsampled
the automatically-labelled NTS instances until the
distribution matches that of development (see Ta-
ble 11).

NDC We have additionally automatically anno-
tated the NDC instances (see Table 11). In most
cases, there is a large difference between semi-
automatic and automatic labeling. This could be
due to the training data for our classifier differing

from the instances in the NDC dataset, but we de-
cided to follow the same annotation approach in
order for the results to be comparable. Moreover,
it is important to note that the automatic labeling
distribution does not match the development set
distribution; thus, our procedure has a bias toward
annotating instances as V or T. The dialect identifi-
cation results when using data annotated with this
approach obtains better results than semi-automatic
annotation and NB Samtale (see Table 12), so we
apply this classification method to the following
dataset annotations.

Dataset Model Dev F1 Test F1

- Majority 28.10 27.67
Random 30.38 32.40

Lexmap SVM 53.91 56.11
Lexmap + dev-train 66.98 70.02

Dev-train XLM-R-L 61.85 63.76
NorBERT3-L 82.44 82.71

Lexmap + dev-train NorBERT3-L 75.85 75.32

Dev-train-dev NorBERT3-L - 84.17
Dev-train-dev-test - 83.34

Dev few-shot

NorMistral-7b 29.69 29.55
NorMistral-7b-it 38.24 30.83
Llama3.1-8B 28.65 30.12
Llama3.1-8B-it 28.64 28.88

Dev-train
NorMistral-7b (SC) 78.69 74.91
NorMistral-7b (SFT) 76.79 76.88
NorMistral-7b-it (SFT) 76.43 74.16

NTS* NorBERT3-L 64.60 64.22

NDC-20-orth*

NorBERT3-L

33.65 34.10
NDC-40-orth* 34.31 33.82
NDC-20-phon* 51.23 52.09
NDC-40-phon* 48.26 48.50

NDC-20-orth†
NorBERT3-L

36.02 36.05
NDC-40-orth† 32.08 35.39
NDC-20-phon† 44.40 44.15
NDC-40-phon† 44.97 43.78

NB Samt NorBERT3-L 32.45 30.48
NB Samt + Dev-train 81.59 81.76

Table 12: Weighted F1 results of Dialect Identification
subtask. * refers to the dataset annotated automatically
and † to semi-automatically. it refers to the instruct
version of the models and L the large version of the
models.

4.4 Results

The results were calculated using the official evalu-
ation script of the shared task and the official metric,
Weighted F1 Score. All dev results in this section
correspond to dev-test.

4.4.1 Training Only on Development Data

The lexical mapping baseline performs better than
majority or random, achieving 53.91 and 56.11
weighted F1 on the dev-test and test sets, respec-

215



tively. Further training on the dev-train set im-
proves this to 66.98 and 70.02.

There is a large difference between the two
encoder models (see Table 12). Whereas XLM-
Roberta does not reach the best lexical mapping
baseline, NorBERT3-L surpasses the Lexmap +
dev-train baseline by 15.46 points on the develop-
ment set. Additionally training with the Lexmap
data, however, harms performance by 7 points.
NorBERT3-L models trained in Dev-train-dev and
Dev-train-dev-test obtain the highest results the test
set.

In the few-shot scenario, the four models barely
beat the majority class baseline (27.67) and per-
form worse than a random classifier (32.82).
NorMistral Instruct (30.83) is slightly better than its
base counterpart (29.55), but they are still far from
the lexical mapping baseline, which obtains around
30 points more. Regarding Llama3.1 base and in-
struct models, their performance is almost identical
to NorMistral models, but none of them surpass the
performance of NorMistral Instruct in this few-shot
evaluation. Fine-tuning NorMistral gives better re-
sults than the few-shot approach (76.88).

4.4.2 Training on Other Sources of Data
The results in Table 12 suggest that using
tweets is better than transcriptions, in both semi-
automatically and automatically labeled experi-
ments: we obtain a weighted F1 of 64.22 in our
tweets model, while the transcription models per-
form between 30-52 points. However, the perfor-
mance of the tweets model is still far from models
trained on the development set (84.17).

When using transcriptions, the phonetic ones are
preferable to orthographic ones, as more dialectal
features are retained. Using longer sentences (>40
tokens) generally has little impact on performance,
except for automatically labeled phonetic transcrip-
tions.

The model trained on NB Samtale dataset
achieves lower scores than models trained on NDC
and NTS. This seems to be due to a low overlap in
dialectal features between the NB Samtale and the
shared task data.

4.4.3 Dialect Analysis
We have selected the best performing models from
each strategy to analyze the performance in each
dialect. The models we have chosen are, Dev-train-
dev NorBERT3-L, Few-shot NorMistral-7b-warm-
it, NTS NorBERT3-L, Semi-automatic labeled

NDC-20-phon NorBERT3-L and Automatic la-
beled NDC-20-phon NorBERT3-L (see Table 13).

For the best models trained on dev (NorBERT3-
L and NorMistral-7b-warm (SFT)) the label imbal-
ance affects performance, with models performing
better on labels with more examples. We see this
same pattern in the tweets dataset, as the dialect la-
bel distribution in the NTS dataset is similar to the
one in the development set. For semi-automatic
transcriptions, a higher performance is also ob-
served on the majority classes, with the exception
of Bokmål, probably due to annotation errors. In
the automatic transcription datasets, the class im-
balance is even larger, and this is reflected in even
worse results for the minority classes. Finally, we
see that the few-shot decoder model has a bias for
T, as it assigns the other labels less often.

Dataset Model B N T V

Dev-train-dev NorBERT3-L 74.10 75.72 83.97 86.61
Few-shot NorMistral-7b-it 06.56 00.88 42.12 12.87
Dev-train NorMistral-7b (SFT) 71.48 71.65 83.07 76.13

NTS NorBERT3-L 55.83 50.29 60.17 71.39
NDC-20-phon† NorBERT3-L 14.17 39.73 19.95 58.75
NDC-20-phon* NorBERT3-L 31.09 06.62 52.91 69.24

Table 13: Test F1 per dialect with the best performing
models in each category. it refers to the instruct version
of the models and L the large version of the models.

5 Conclusion and Future Work

We have presented our submission for the NorSID
Shared Task in the 2025 VarDial Workshop (Scher-
rer et al., 2025). We have participated in the three
proposed tasks – Intent Detection, Slot Filling and
Dialect Identification – with 3 submissions for each
of them.

For the Intent Detection & Slot Filling tasks we
designed a multitask model, improving efficiency
with respect to having a model for each task. Addi-
tionally, as both tasks are highly related, this com-
bination improves the performance of the model
in both tasks to 97.69% accuracy and 85.37% F1,
respectively, in the test set.

In Dialect Identification, we tested many differ-
ent approaches by using the development data as
training, as well as additional data from tweets
and transcriptions. However, none of the settings
we tried were able to surpass the performance of
NorBERT3-L fine-tuned only on the development
set, which achieved 84.17 F1 on the test set.

The research presented in this paper has opened
the way to many questions that need further in-
vestigation. We believe that the results could be
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improved using better encoder, e.g., DeBERTa (He
et al., 2021), and decoder, e.g., Llama 3.1 70B)
models. The additional data we collected for di-
alect identification has not been successful due to
the narrow domain of the tasks, but it is likely that
for other tasks with a stronger domain shift this
data could provide for more robust training.
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A Hyperparameters

A.1 Slot-intent Multitask Model
The hyperparameters used in the slot-intent multi-
task model are the following:

• Learning rate: 2e−5

• Batch size: 64

• Number of epochs: 10

• Weight decay: 0.01

A.2 Dialect Detection Model
The hyperparameters used in dialect classification
task are the following:

NorBERT3-L:

• Learning rate: 5e−5

• Batch size: 16

• Number of epochs: 15

• Weight decay: 1e−4

XLM-RoBERTa-L:

• Learning rate: 1e−5

• Batch size: 16

• Number of epochs: 15

• Weight decay: 1e−4

NorMistral:

• Learning rate: 5e−5

• Batch size: 16

• Number of epochs: 5

• Weight decay: 1e−4

B Languages Combination

The language combinations used in the slot-intent
multitask model are the next ones:

• English (EN): Only the English language.
This language is the only one that is not
machine-translated in the xSID dataset

• Danish (DA): Only the Danish language. This
language is the closest language to Norwegian
in the xSID dataset.

• Norwegian (NB): Only the Norwegian train-
ing data provided. This data is poorly
machine-translated, because of this, it was ex-
cluded from some combination of languages.

• English and Danish (EN+DA): The combina-
tion of English and Danish languages.

• English and Norwegian (EN+NB): The com-
bination of English and Norwegian languages.

• Danish and Norwegian (DA+NB): The com-
bination of Danish and Norwegian languages.

• English, Danish, and Norwegian
(EN+DA+NB): The combination of En-
glish, Danish, and Norwegian.

• All languages (ALL): All languages on the
xSID dataset (Arabic Danish German English
Indonesian Italian Japanese Kazakh Dutch
Serbian Turkish Chinese) and the Norwegian
data provided.

• All languages without Norwegian (ALL-NB):
All languages on the xSID dataset (Arabic
Danish German English Indonesian Italian
Japanese Kazakh Dutch Serbian Turkish Chi-
nese).

• Germanic languages (GER): Germanic lan-
guages on the xSID dataset (Danish German
English Dutch) and the Norwegian data pro-
vided.

• Germanic languages without Norwegian
(GER-NB): Germanic languages on the xSID
dataset (Danish German English Dutch)

• Latin script languages (LAT): Languages that
have latin script in the xSID dataset (Danish
German English Indonesian Italian Dutch Ser-
bian Turkish) and Norwegian.

• Latin script languages without Norwegian
(LAT-NB): Languages that have latin script
in the xSID dataset (Danish German English
Indonesian Italian Dutch Serbian Turkish).
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Abstract

Dialect identification is crucial in enhancing
various tasks, including sentiment analysis, as a
speaker’s geographical origin can significantly
affect their perspective on a topic, also, in-
tent detection has gained significant traction
in natural language processing due to its appli-
cations in various domains, including virtual
assistants, customer service automation, and
information retrieval systems. This work de-
scribes a system developed for VarDial 2025:
Norwegian slot and intent detection and di-
alect identification shared task (Scherrer et al.,
2025), a challenge designed to address the di-
alect recognition and intent detection problems
for a low-resource language like Norwegian.
More specifically, this work investigates the
performance of different BERT models in solv-
ing this problem. Finally, the output of the
multilingual version of the BERT model was
submitted to this shared task, the developed sys-
tem achieved a weighted-F1 score of 79.64 for
dialect identification and an accuracy of 94.38
for intent detection.

1 Introduction

Norwegian dialects represent a rich tapestry of
linguistic diversity that reflects the historical, ge-
ographical, and social nuances of Norway. The
country is home to a multitude of dialects, often
categorized into four primary groups: Northern
Norwegian (nordnorsk), Central Norwegian (trøn-
dersk), Western Norwegian (vestlandsk), and East-
ern Norwegian (østnorsk). These dialects are not
merely regional variations; they embody unique
grammatical structures, vocabulary choices, and
phonetic characteristics that can vary significantly
even within short distances. For instance, a speaker
from Bergen may find it challenging to understand
someone from Oslo due to the distinct phonetic
and syntactic features of their respective dialects.
This variation poses considerable challenges for lin-

guistic studies and applications in natural language
processing (NLP).

The ability to identify and differentiate between
these dialects is crucial for various applications,
including speech recognition systems, language
learning tools, and sociolinguistic research. A
study found that Norwegians are generally less
adept at identifying their own dialects compared
to speakers of other languages, such as Dutch
(Gooskens, 2005). This suggests that while Norwe-
gians are exposed to multiple dialects throughout
their lives, the cognitive mechanisms underlying
dialect identification may not be as finely tuned
as previously thought. Furthermore, the role of
intonation in identifying these dialects has been
highlighted as particularly significant.

In recent years, advancements in machine learn-
ing and NLP have opened new avenues for ad-
dressing these challenges. Among these advance-
ments, BERT (Bidirectional Encoder Representa-
tions from Transformers) has emerged as a power-
ful tool for various language understanding tasks.
BERT utilizes a transformer architecture that al-
lows it to capture contextual relationships between
words in a sentence effectively (Devlin, 2018). This
capability is particularly valuable for dialect identi-
fication, where subtle differences in word usage or
syntax can indicate distinct regional affiliations.

In this paper, the fine-tuning of multiple BERT-
based models for identifying Norwegian dialects
and detecting the intent of Norwegain text was ex-
plored. Different pre-trained models, including
a Norwegian-specific BERT variant and multilin-
gual BERT models were investigated to measure
their efficacy in dialect identification and intent de-
tection tasks. By leveraging transfer learning and
fine-tuning strategies, the model’s understanding of
Norwegian dialects and text intent was improved,
even in the context of a relatively under-resourced
language, like Norwegian.

The rest of the paper is organized as follows:
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Section 2 provides an overview of related research.
Section 3 describes the dataset used for training
and validation. Section 4 outlines the system, and
Section 5 concludes the paper.

2 Related Work

BERT: Bidirectional Encoder Representations
from Transformers (Devlin, 2018) has revolution-
ized the field of natural language processing by
providing a pre-trained model that effectively cap-
tures bidirectional context in text. Unlike earlier
models like word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014) which generate
static word embeddings, BERT uses a deep bidirec-
tional transformer architecture (Vaswani, 2017) to
produce dynamic representations of words based
on their context. This pre-training, performed on
large corpora like the English Wikipedia, allows
BERT to excel across a wide range of downstream
tasks through fine-tuning, including question an-
swering, named entity recognition, and text classi-
fication.

Norwegian BERT: With the growing interest in
NLP applications for low-resource languages, the
development of Norwegian-specific transformer
models has been pivotal. The NoTraM project
has created a Norwegian transformer model that
outperforms multilingual BERT (mBERT) on vari-
ous classification tasks, including intent detection
(Kummervold et al., 2021). This model demon-
strates that fine-tuning language models specifi-
cally on Norwegian text can yield significant im-
provements in performance compared to generic
models.

Norwegian BERT Application: BERT has rev-
olutionized NLP by enabling models to understand
context in a bidirectional manner, making it particu-
larly effective for tasks involving nuanced language
understanding. (Mæhlum et al., 2022) demon-
strated the potential of a Norwegian BERT model
for morphosyntactic analysis, highlighting its ca-
pacity to handle the complexities of dialectal varia-
tions. The model’s architecture allows it to capture
contextual relationships between words, which can
be used for distinguishing between different di-
alects that may share similar vocabulary but differ
significantly in usage.

The NoMusic Corpus: The introduction of the
NoMusic corpus (Mæhlum and Scherrer, 2024)
represents a significant advancement in resources
available for Norwegian dialect identification and

intent detection. This corpus consists of transla-
tions from the xSID dataset (van der Goot et al.,
2021) into standard Norwegian Bokmål and eight
dialects from three major Norwegian dialect areas.
This corpus represents the first evaluation dataset
focusing on non-standard Norwegian varieties, al-
lowing researchers to analyze linguistic variations
across different dialects systematically.

BERT for Dialect Identification: Mawdoo3
AI has developed a Multi-Dialect Arabic BERT
model specifically for country-level dialect iden-
tification. This model was trained on a dataset
comprising 21,000 labeled tweets from all 21 Arab
countries and achieved a micro-averaged F1-score
of 26.78% in the NADI shared task (Talafha et al.,
2020). The success of this model highlights the effi-
cacy of fine-tuning pre-trained transformer models
for specific dialectal tasks.

BERT for Intent Detection: BERT has been
effectively utilized for citation intent classification
within academic texts. A study analyzed various
BERT models fine-tuned on labeled datasets to
classify citation intents and sentiments, revealing
that BERT’s contextual capabilities enhance its per-
formance in understanding nuanced academic lan-
guage (Visser and Dunaiski, 2022). While this ap-
plication is not directly focused on conversational
intent detection, it underscores BERT’s versatility
across different domains and its potential for en-
hancing understanding in specialized contexts like
academic discourse.

3 Dataset

A subset of the Norwegian Multi-Dialectal Slot and
Intent Detection Corpus (NoMusic) (Mæhlum and
Scherrer, 2024) was used for training and testing
this system. The NoMusic corpus was created by
translating the xSID dataset, an evaluation dataset
for spoken language understanding (slot and in-
tent detection) (van der Goot et al., 2021) to eight
Norwegian dialects and Norwegian Bokmål. For
dialect identification, the development dataset con-
sists of 3300 sentences, and the testing dataset con-
sists of 5500 sentences, representing the four main
dialects in Norway: North Norwegian, Trøndersk,
West Norwegian and Bokmål. The data distribution
among the four dialects is summarized in table 1

For intent detection, the development dataset
consists of 3300 sentences and the testing dataset
consists of 5500 sentences, representing 16 intents.
The data distribution among the sixteen intents is
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Language Development Testing
North Norwegian 600 1000
Trøndersk 900 1500
West Norwegian 1500 2500
Bokmål 300 500

Table 1: VarDial 2025 Norwegian slot and intent detec-
tion and dialect identification task - dialect identification
data split statistics.

Language Dev. Testing
Add To Playlist 209 374
Book Restaurant 286 473
Play Music 264 429
Rate Book 165 352
Search Creative Work 209 363
Search Screening Event 253 407
alarm/cancel alarm 242 341
alarm/modify alarm 11 0
alarm/set alarm 264 319
alarm/show alarms 110 209
alarm/snooze alarm 22 33
alarm/time left on alarm 0 44
reminder/cancel reminder 110 198
reminder/set reminder 143 407
reminder/show reminders 132 209
weather/find 880 1342

Table 2: VarDial 2025 Norwegian slot and intent de-
tection and dialect identification task - intent detection
data split statistics.

summarized in table 2. Even though that all the in-
tents in table 2 are available in the English, and the
Norwegian-translated train dataset, you can notice
that some intents are present in the development
and missing from the testing set like “alarm/modify
alarm”, and some intents are available in the test-
ing set and missing from the development set like
“alarm/time left on alarm” which makes it impossi-
ble for transformer-based models like BERT to de-
tect a class like “alarm/modify alarm” when trained
on the development dataset only.

4 Methodology

For the dialect identification, three versions of
BERT were considered: “NbAiLab/nb-bert-base”
(Kummervold et al., 2021), “ltgoslo/norbert” (Ku-
tuzov et al., 2021), and “bert-base-multilingual-
cased” (Devlin et al., 2018). Each BERT classifier
was fine-tuned on 80% of the development data
for 10 epochs with a learning rate of 2e− 5 and a

Model Accuracy
NbAiLab/nb-bert-base 74.61
ltgoslo/norbert 73.33
bert-base-multilingual-cased 79.91

Table 3: Performance of the fine-tuned BERT models
for dialect identification on the development set.

batch size of 32, then the accuracy of each of those
models was calculated based on the remaining 20%
of the development set, the performance of those
models is summarized in table 3.

Due to the difference in the performance be-
tween the “bert-base-multilingual-cased” model
and the remaining BERT models, the multilingual
BERT model used for final submission.

For the dialect identification task, the shared task
organizers provided the baseline model from the
ITDI shared task (Aepli et al., 2023), which em-
ploys a Support Vector Machine (SVM) classifier
with TF-IDF-weighted features of character 1-to-
4-grams. The baseline achieved a weighted F1-
score of 77.42, whereas the developed multilingual
BERT model surpassed it with a weighted F1-score
of 79.64.

Similarly, for the intent dectection, three ver-
sions of BERT were considered: “NbAiLab/nb-
bert-base” (Kummervold et al., 2021), “lt-
goslo/norbert” (Kutuzov et al., 2021), and “bert-
base-multilingual-cased” (Devlin et al., 2018).
Each BERT classifier was fine-tuned on 80% of
the development data for 10 epochs with a learning
rate of 2e − 5 and a batch size of 32, then, the
accuracy of each of those models was calculated
based on the remaining 20% of the development set,
the performance of those models is summarized in
table 4.

Due to the difference in the performance be-
tween the “bert-base-multilingual-cased” model
and the remaining BERT models, the multilingual
BERT model was used for the final submission.

The developed BERT model significantly out-
performs the baseline BERT model provided by
the shared task organizers. The baseline utilizes an
mBERT encoder with two separate decoder heads:
one for slot detection and another for intent classifi-
cation. While the baseline achieved an accuracy of
84.15% on the intent detection task, the developed
multilingual BERT model achieved an accuracy of
94.38%.
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Model Accuracy
NbAiLab/nb-bert-base 92.30
ltgoslo/norbert 91.03
bert-base-multilingual-cased 95.88

Table 4: Performance of the fine-tuned BERT models
for intent detection on the development set.

5 Conclusion and Future Work

In this paper, we have explored the efficacy of mul-
tiple BERT models in the tasks of Norwegian di-
alect identification and intent detection. The multi-
lingual version of BERT produced the best results
on the development data. Finally, the output of
the multilingual version of the BERT model was
submitted to this shared task, and it achieved a
weighted-F1 score of 79.64 for dialect identifica-
tion and an accuracy of 94.38 for intent detection
on the test datasets.

Future work will focus on improving the BERT
model by leveraging Norwegian-translated dataset
to address the challenges posed by missing intents
in the development dataset. Missing intents can
impede the model’s ability to learn comprehensive
patterns for intent recognition, leading to subopti-
mal performance. By augmenting the development
dataset with the Norwegian-translated dataset, we
can introduce linguistic diversity and contextual
richness, compensating for the gaps in the develop-
ment dataset.
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