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Abstract

To evaluate the scientific influence of observa-
tional facilities, astronomers examine the body
of publications that have utilized data from
those facilities. This depends on curated bibli-
ographies that annotate and connect data prod-
ucts to the corresponding literature, enabling
bibliometric analyses to quantify data impact.
Compiling such bibliographies is a demanding
process that requires expert curators to scan the
literature for relevant names, acronyms, and
identifiers, and then to determine whether and
how specific observations contributed to each
publication. These bibliographies have value
beyond impact assessment: for research sci-
entists, explicit links between data and litera-
ture form an essential pathway for discovering
and accessing data. Accordingly, by building
on the work of librarians and archivists, tele-
scope bibliographies can be repurposed to di-
rectly support scientific inquiry. In this context,
we present the Telescope Reference and As-
tronomy Categorization Shared task (TRACS)
and its accompanying dataset, which comprises
more than 89,000 publicly available English-
language texts drawn from space telescope bib-
liographies. These texts are labeled according
to a new, compact taxonomy developed in con-
sultation with experienced bibliographers.

1 Introduction

Astronomical instruments generate a wealth of data,
not just directly with measurements, but indirectly
as well, in the form publications that make use of
these measurements or describe software created to
handle them. To properly credit the teams behind
the telescopes, bibliographies linking the software
and research back to the telescope are needed.

Since its launch as the NASA Astrophysics Data
System (Good, 1992; Kurtz et al., 2000), the Sci-
ence eXplorer1 (SciX) (Bartlett et al., 2025) has
aimed to help astronomers with bibliographic tools

1scixplorer.org

for both discovery and impact measurement. For
example, users are not only able to filter by papers
in the Hubble Space Telescope (HST) bibliogra-
phy, a list of papers manually curated by the Space
Telescope Science Institute (2025), but also able to
see cited/citing paper for the bibliography, which
authors or institutions contribute the most, activity
over time, and many more advanced second-order
operators (Henneken and Kurtz, 2019). While
SciX already offers best practices for building and
maintaining bibliographies (Observatory Bibliog-
raphers Collaboration et al., 2024), and some have
automated part of of the process (Grothkopf and
Treumann, 2003), it typically remains labor inten-
sive.

Typical Curation Process While different
groups use different approaches and criteria to the
problem of bibliography creation and maintenance,
the steps involved typically consist of the follow-
ing:

1. Use a set of full-text queries to the ADS bibli-
ographic database in order to find all possible
relevant papers. This first step aims to iden-
tify articles that contain mention of the tele-
scope/instrument of interest so that they can
be further analyzed. For instance, the set of
query terms used to find papers related to the
Chandra X-Ray telescope may be “Chandra,”
“CXC,” “CXO,” “AXAF,” etc.

2. Analyze the text containing mentions of the
telescope/instrument and its variations in or-
der to disambiguate the use of the terms of
interest. For the Chandra example, this in-
cludes teasing apart the different entities asso-
ciated with “Chandra,” which may correspond
to a person, a ground-based telescope, or a
space-based telescope.

3. Identify whether the paper in question shows
evidence of the use of datasets generated by
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the telescope or hosted by the archive of inter-
est. The mention of data use may be explicit
(e.g. the listing of dataset identifiers), or im-
plied in the text (e.g. mention of analysis
and results without identification of the actual
dataset). Whenever dataset ids are used, they
should be extracted and identified.

4. In some cases, additional classification of the
dataset may be collected, such as the instru-
ment used in the observations. This informa-
tion is also correlated with the kind of data that
was used (e.g. image vs. spectra vs. catalog)
and its characteristics. In the case of Chan-
dra, there are 7 different instruments that can
be used for the data collection (ACIS, HRC,
HETG, LETG, HRMA, PCAD, EPHIN), and
their use, if explicitly mentioned in the paper,
should be reported.

5. For some bibliographies, additional informa-
tion is collected, such as the relevance of the
paper to the scientific use of the data archive.
For example, for the Chandra bibliography,
the following categories are defined:

(a) Direct use of Chandra data
(b) Refers to published results
(c) Predicts Chandra results
(d) Paper on Chandra software, operations,

and/or instrumentation
(e) General reference to Chandra

Goals With modern Large Language Models
(LLM) capable of ingesting ever larger quantities
of text, for ever more sophisticated tasks (Minaee
et al., 2024), we at SciX decided to create a dataset
to help the community build tools to facilitate
the creation and curation of bibliographies. This
dataset is the Telescope Reference and Astronomy
Categorization Dataset & Shared Task, a collection
of texts from open access astronomy papers, cate-
gorized into three space telescope bibliographies
(Chandra X-ray Observatory, Hubble Space Tele-
scope, James Webb Space Telescope), as well as
how the papers use the data from the telescope.

Contributions

• a bibliographic taxonomy based on discussion
with established bibliographers

• an open dataset of space telescope bibliogra-
phies, adapted to our taxonomy from human-
curated bibliographies

• a baseline analysis, evaluating off-the-shelf
LLMs on the task of automating bibliographic
curation

TRACS is available publicly on HuggingFace 2

and was used for the shared task challenge at the
3rd WASP @ IJCNLP-AACL 20253. The scoring
evaluation was run on the Kaggle platform4.

2 Dataset Description

2.1 Data Collection and Creation
The TRACS dataset consists of papers associated
with a telescope and four categories likely to be
of interest to bibliographers. We have drawn the
categories from a simplification of those discussed
by the Observatory Bibliographers Collaboration
(2024). These are science, instrumentation,
mention, not_telescope. Broadly, science
papers use data from the designated telescope
to obtain new results; instrumentation papers
describe the technical aspects of the telescope;
mention papers do reference the designated tele-
scope but do not produce new scientific results; and
not_telescope are papers that include a reference
that might otherwise be confused with the desig-
nated telescope, i.e. false positives. Full details are
available in 2.2 below.

Bibliographic data for the Chandra X-ray Ob-
servatory (CHANDRA) was provided by Erin Scott
of the Chandra X-ray Center (Chandra X-ray Cen-
ter, 2025), while data for the Hubble and James
Webb Space Telescopes (HST, JWST) was provided
by Jenny Novacescu of the Space Telescope Sci-
ence Institute (Space Telescope Science Institute,
2025). These curated, human-verified bibliogra-
phies include more information than the scope of
this dataset (ex: sub-instrument data use, links to
grants) and had to be pre-processed into the cate-
gories of interest. Furthermore, the papers in this
data set do not represent the full corpus of any of
these human-curated bibliographies and are not an
adequate substitute for them for scientific or ad-
ministrative purposes. In addition, a small set of
papers unrelated to any of these three nor any other
space telescope was provided, labeled as None tele-
scope in the dataset. This set allows users of the
TRACS dataset to easily verify that their models
correctly predict that a paper does not relate to a
space telescope.

2huggingface.co/datasets/adsabs/TRACS
3ui.adsabs.harvard.edu/WIESP/2025
4kaggle.com/competitions/tracs-wasp-2025
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telescope title/author/year Sc/In/Me/NT Labels abstract / body (truncated)

CHANDRA Chandra X-Ray Observatory Observa-
tion of the High-Redshift Cluster MS
1054-0321, (Jeltema et al., 2001), 2014

true, false, false, false Using Chandra, we make a more ac-
curate temperature determination; we
examine substructure in the X-ray dis-
tribution, and estimate mass/velocity
dispersion of MS 1054 to assess cosmo-
logical constraints. . .

HST Supernova 1996cr: SN 1987A’s Wild
Cousin?, (Bauer et al., 2008), 2008

true, false, false, false Note that increasing the aperture radius
in the HST F656N band to 1.2 yields a
magnitude of 17.5 (i.e., an increase of
25% over the pointlike magnitude from
SN 1996cr alone), which we attribute to
the flux of the underlying H ii region...

JWST Warm Jupiters in TESS Full-frame
Images: A Catalog and Observed Ec-
centricity Distribution for Year 1, (Dong
et al., 2021), 2021

false, false, true, false The confirmation of these targets will
help to select ideal candidates for Warm
Jupiter atmospheric characterization for
future missions (e.g., JWST). Follow-up
observations on candidates with missing
information listed in Table 5 are also
important....

NONE Tidal adaptive softening and artificial
fragmentation in cosmological simu-
lations, (Mostoghiu Paun et al., 2025),
2025

false, false, false, false Traditional N-body methods introdu
see it., ce localized perturbations in
the gravitational forces governing their
evolution. These perturbations lead to an
artificial fragmentation in the filamentary
network of the large-scale structure...

Table 1: Core fields view of sample records. The full dataset contains additional fields (see §2.2); here we show
the core subset: telescope, author/title/year, a short excerpt, and annotation flags. Labels are booleans in the order
Science, Instrument, Mention of telescope, and Not-Telescope. Each excerpt is chosen to illustrate how a telescope
is referenced in context and is lightly normalized and truncated for fit.

2.2 Technical Details

TRACS entries are astronomy papers with the fol-
lowing features:

• bibcode: unique string that identifies the en-
try in the SciX database

• telescope: the telescope referenced

• science, instrumentation, mention,
not_telescope: boolean labels

• author, year: metadata for the entry

• title, abstract, body, acknowledgments,
grants: the relevant textual information for
the entry.

On Kaggle, an additional Id column is present for
automatic scoring purposes.

science New science papers use data from the
designated telescope to obtain new results. The
authors may be using new observations, using
archival observations, or reanalyzing previous re-
sults. However, papers that merely refer to previ-
ous results for comparison or suggest what might
be possible with future observations are Mentions,
rather than Science papers. Science papers may use

observations directly or indirectly, such as through
a published source catalog. Indirect use must be
substantive. Papers that overlay new data over im-
ages from the designated telescope without dis-
cussing the underlying image are Mentions, rather
than Science papers. Papers that use catalog data,
such as positions or measurements, without further
discussion are Mentions, rather than Science pa-
pers. Papers that reference a grant associated with
the designated telescope but provide no evidence of
using data from it are Not Telescope papers, rather
than Science papers or Mentions.

instrumentation Instrumentation papers de-
scribe the technical aspects of the telescope, its
calibration activities, its data processing pipeline,
or its archival procedures. These papers can dis-
cuss hardware, software, or methodologies. A pa-
per that includes new science facilitated by use of
the hardware, software, or methodology described
in the paper may be both a Science and an Instru-
mentation paper. A paper that describes a novel
technique or software to achieve its scientific con-
clusions may be a Science and an Instrumentation
paper. A paper that uses calibration, alignment, or
engineering data to produce new results may be a
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Science and an Instrumentation paper.

mention Mentions are papers that do reference
the designated telescope but do not produce new
scientific results (Science) or contribute to under-
standing it (Instrumentation). If a paper meets the
criteria for a Science paper or an Instrumentation
paper anywhere, then the paper is a Science pa-
per, even if it also contains statements that would
otherwise be considered a Mention. Papers that
discuss the designated telescope as part of their
introductory overview of the issue, of the history
of a problem, or their survey of current relevant
research are Mentions. Papers that discuss the des-
ignated telescope and its scientific contributions as
part of an in-depth review of a research topic are
Mentions. Papers that merely refer to previous re-
sults for comparison or suggest what might be pos-
sible with future observations are Mentions, rather
than Science papers. Papers that overlay new data
over images from the designated telescope with-
out discussing the underlying image are Mentions,
rather than Science papers. Papers that use catalog
data, such as positions or measurements without
further discussion are Mentions, rather than Sci-
ence papers. Papers that use a secondary catalog
that incorporates data from a catalog produced di-
rectly by the designated telescope are Mentions,
even if that paper acknowledges the telescope. Pa-
pers that reference a grant associated with the des-
ignated telescope but provide no evidence of using
data from it are Not Telescope papers, rather than
Science papers or Mentions.

not_telescope Not Telescope papers are papers
that include a reference that might otherwise be
confused with one or more designations used for
the telescope of interest. An telescope may share
part of their name with a historical figure for which
several things are named. An telescope may share
an acronym with an unrelated program. Papers
that reference a grant associated with the desig-
nated telescope but provide no evidence of using
data from it are Not Telescope papers, rather than
Science papers or Mentions. If a paper meets the
criteria for a Science paper, an Instrumentation pa-
per, or Mention anywhere, then the paper belongs
to that category, even if it also contains references
to other items that share names in common with
the designated telescope or instrument.

CHANDRA HST JWST None
train 31275 37118 11698 294
test 3475 4125 1300 294

Table 2: Distribution of dataset entries.

2.3 Data Segmentation for Baseline Task
The TRACS dataset comprises of 89579 entries
in total. Table 2 gives the distribution of entries
across the three space telescopes and the training
and testing dataset splits, as well as across papers
that do not feature any space telescopes.

3 Baseline Evaluation Task

An automated assistant able to emulate the super-
vised curation activities listed in the 5 above would
provide a valuable contribution to the human ef-
fort involved. LLMs have shown flexibility in in-
terpreting and classifying scientific articles which
are the basis for this curation activity. They have
also been successfully used for information extrac-
tion tasks, which would help identify the specific
datasets mentioned in the papers. This baseline task
aims at improving the state of the art technologies
to support these curation efforts.

3.1 Definition
The TRACS baseline task is composed of two sub-
tasks: Telescope Classification and Usage Classi-
fication, each evaluating a distinct dimension of
model understanding over scientific publications.

3.1.1 Telescope Classification
Given the textual fields title, abstract, body,
acknowledgments, and grants, participants were
required to predict which telescope was referenced
or used in each paper. Valid predictions are lim-
ited to CHANDRA, HST, JWST, or None. This sub-
task focuses on assessing the model’s ability to
correctly identify telescope mentions and usage
contexts within natural language.

3.1.2 Usage Classification
The second subtask evaluates how each paper
utilizes telescope data. As defined in Sec-
tion 2.2, each entry includes four boolean la-
bels: science, instrumentation, mention, and
not_telescope. Each system must output a struc-
tured CSV prediction containing one telescope la-
bel and four usage flags for every paper.
In the official Kaggle competition, participants
submitted predictions as a single CSV file named
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sample_submission.csv with the following col-
umn headers:

Id,telescope,science, instrumentation,
mention, not_telescope

The Id uniquely identifies each paper and is used
to align predictions with gold labels during scoring.

3.2 Evaluation Metrics

Each submission is automatically evaluated by
matching predictions to reference labels via the Id
field. Participants are ranked by macro-averaged
F1-scores across both subtasks, adapting code from
the standard Scikit Learn library (2011).

3.2.1 Telescope Classification
Performance on this subtask is measured using
the macro-F1 score across the four telescope cate-
gories (CHANDRA, HST, JWST, None), ensuring equal
weighting for rare and frequent classes alike.

3.2.2 Usage Classification
For the second subtask, performance is ranked by
the macro-F1 averaged across the four usage cat-
egories, rewarding balanced sensitivity across the
different forms of telescope data use.
A valid example submission is shown below. The
first block corresponds to the Telescope Classifi-
cation task, and the second block lists the binary
labels for the Usage Classification task:

Id,telescope
2012A&A...537A..18M,CHANDRA

sci,inst,men,not_tel
True,False,False,False

3.3 Baseline Experiments

To establish initial performance benchmarks for
the TRACS baseline task, we evaluated five state-
of-the-art open large language models (LLMs):
GPT-OSS-20B (OpenAI et al., 2025), Mistral-
7B-Instruct (Jiang et al., 2023), LLaMA-3.1-8B-
Instruct (Weerawardhena et al., 2025), Zephyr-7B-
Beta (Tunstall et al., 2023), and Solar-Pro-Preview
(Kim et al., 2023). Each model was run out of the
box, that is, without any task-specific fine-tuning,
using the same instruction set, prompt template,
and token limit across all test splits to ensure com-
parability.

Table 3 summarizes the key architectural charac-
teristics and motivations for each baseline model.

3.3.1 Telescope Classification
For the telescope prediction task, each baseline
model was prompted with the relevant textual fields
and asked to output one of the four valid labels
(CHANDRA, HST, JWST, or None). Predictions were
evaluated against the gold labels using macro-F1
to ensure balanced treatment of all telescope cate-
gories, along with overall accuracy for reference.

As shown in Table 4, GPT-OSS-20B and
LLaMA-3.1-8B achieved the strongest overall
performance, demonstrating that general-purpose
open LLMs can capture some telescope-specific
cues without additional training. Meanwhile,
smaller instruction-tuned models such as Mistral-
7B and Zephyr-7B exhibited lower recall across
minority classes, suggesting limited domain gener-
alization in zero-shot settings.

3.3.2 Usage Classification
For the usage classification task, models were eval-
uated on their ability to assign one of four binary
labels (science, instrumentation, mention,
not_telescope) to each paper, indicating the role
of telescope data. Each model was prompted with
the same input fields and evaluated using macro-F1
per usage category within each telescope split.

Table 5 reports the per-class F1-scores across
telescope subsets. Performance varied widely
across usage types, with higher recall ob-
served for science and mention labels, while
instrumentation and not_telescope were
more challenging. These results highlight the dif-
ficulty of capturing fine-grained scientific intent
from text without explicit domain supervision.

3.4 Analysis of Benchmarks

3.4.1 Qualitative Analysis
The results reveal several key patterns in how base-
line models approach telescope and usage classifi-
cation tasks.

Telescope Classification Challenges The mod-
est macro-F1 scores (ranging from 7.00% to
11.50%) across all models indicate that distinguish-
ing between telescope types from textual descrip-
tions alone remains a substantial challenge in zero-
shot settings. Notably, LLaMA-3.1-8B achieved
the highest telescope accuracy (38.40%) but a lower
macro-F1 (11.12%), suggesting a bias toward pre-
dicting the dominant NONE class. This pattern is
consistent across models: the NONE F1 scores (rang-
ing from 23.88% to 25.00%) substantially out-
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Model Architecture Summary Motivation Params

GPT-OSS-20B Decoder-only transformer trained on di-
verse web and technical text, representing a
general-purpose open-source GPT design.

Serves as the closest open analog to propri-
etary GPT-series models, providing a strong
general baseline.

20B

Mistral-7B-Instruct Decoder-only dense transformer using
grouped-query attention (GQA) and sliding-
window context mechanisms.

Known for efficient context handling and
strong instruction tuning despite small pa-
rameter size.

7B

LLaMA-3.1-8B-Instruct Transformer decoder with rotary embed-
dings and optimized tokenization.

Balances compactness with state-of-the-art
reasoning and factuality for 8B-scale mod-
els.

8B

Zephyr-7B-Beta Transformer decoder fine-tuned via rein-
forcement learning from human feedback
(RLHF).

Represents the Hugging Face community’s
open instruction-tuned family emphasizing
dialogue coherence.

7B

Solar-Pro-Preview Hybrid attention decoder combining dense
and mixture-of-experts routing layers.

Tests whether hybridized attention mecha-
nisms improve performance on specialized
scientific reasoning tasks.

22B

Table 3: Baseline models evaluated on the TRACS dataset. Each model was run “out-of-the-box” with identical
prompts and token limits. The architecture and motivation columns highlight differences in model design and
intended use.

Model CHANDRA F1 HST F1 JWST F1 NONE F1 Macro F1 Tel. Accuracy

LLaMA-3.1-8B 17.14 14.05 9.41 23.88 11.12 38.40
Zephyr-7B-Beta 6.79 1.79 2.20 25.00 7.00 31.00
Solar-Pro-Preview 5.35 1.05 0.37 24.45 7.80 27.60
GPT-OSS-20B 16.73 14.76 8.84 24.91 11.50 19.80
Mistral-7B 9.11 6.06 6.08 24.91 8.20 19.80

Table 4: Telescope classification performance across four telescope categories. Reported are per-class macro
F1-scores, overall macro F1, and overall accuracy (all in %). Models are ordered by descending telescope accuracy.

Model Science F1 (%) Instr. F1 (%) Mention F1 (%) Not-Tel. F1 (%)

CH. HST JW. CH. HST JW. CH. HST JW. CH. HST JW.

LLaMA-3.1-8B 73.41 72.80 34.60 4.19 0.00 10.26 36.53 24.71 40.42 19.32 11.50 12.42
Zephyr-7B-Beta 54.12 48.66 16.06 22.75 17.65 4.44 9.88 3.33 7.03 28.69 10.74 6.97
Solar-Pro-Preview 28.66 7.52 2.80 40.58 38.10 10.00 3.35 0.40 0.27 0.00 0.61 0.00
GPT-OSS-20B 72.01 75.34 27.03 44.34 17.89 20.00 20.12 17.34 45.36 0.00 0.00 0.00
Mistral-7B 65.91 66.16 27.44 19.35 10.26 18.18 13.49 19.11 15.61 26.22 26.93 23.34

Table 5: Per-split usage classification F1-scores across telescope subsets (CH = CHANDRA, HST = Hubble Space
Telescope, JW = JWST). Values are per usage class and split, averaged over all test papers in each subset. Models
are ordered by descending telescope accuracy.

perform telescope-specific classes, with CHAN-
DRA F1 scores reaching only 6.79–17.14%, HST
scores of 1.05–14.76%, and JWST scores of 0.37–
9.41%. The poor performance on minority tele-
scope classes suggests that subtle linguistic mark-
ers distinguishing telescope types are not readily
captured by general-purpose language models with-
out domain-specific fine-tuning or few-shot exam-
ples.

Usage Classification Patterns Usage classifi-
cation performance exhibits significant variance
across both models and telescope types. The
science category consistently achieves the high-
est F1 scores, with models reaching 28.66–73.41%
for CHANDRA, 7.52–75.34% for HST, and 2.80–

34.60% for JWST papers. This suggests that sci-
entific usage contains more explicit textual indi-
cators that align with pre-training distributions.
In contrast, instrumentation detection proves
highly inconsistent, with most models struggling
(0.00–22.75% for CHANDRA) except for special-
ized cases where Solar-Pro-Preview and GPT-OSS-
20B achieve 40.58% and 44.34% respectively on
CHANDRA papers. The mention category shows
moderate but unstable performance (0.27–45.36%),
while not_telescope classification remains par-
ticularly challenging, with several models achiev-
ing 0.00% F1 and the best results reaching only
26.22–28.69%.
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Model-Specific Behaviors GPT-OSS-20B
demonstrates the most balanced performance
profile, excelling at instrumentation detection
(44.34% for CHANDRA) and achieving competi-
tive scores on science classification, though it
completely fails to identify not_telescope cases.
LLaMA-3.1-8B shows strong performance on
science classification and maintains reasonable
scores across mention categories, but struggles
with instrumentation (particularly 0.00% for
HST). Smaller models like Zephyr-7B-Beta and
Mistral-7B exhibit more conservative prediction
patterns, achieving modest but non-zero scores
across categories, suggesting less confident
predictions that may result in better calibration
for certain classes. Solar-Pro-Preview displays an
unusual specialization pattern, performing well on
instrumentation but nearly failing on mention
and not_telescope categories.

These qualitative patterns underscore the need
for domain-specific training data and suggest that
telescope and usage classification require under-
standing of specialized astronomical terminology
and research methodology that is not adequately
represented in general pre-training corpora.

3.4.2 Error Analysis

Figure 1: Confusion matrix across all models: tele-
scope accuracy.

To better understand model failure modes, we
conducted an error analysis using the pooled confu-
sion matrix across all baseline models (Figure 1).

Systematic Over-Prediction of NONE The confu-
sion matrix reveals a strong bias toward predicting

the NONE class across all models. Of the 18,260
true CHANDRA papers, 7,075 (38.7%) were in-
correctly classified as NONE, representing the single
largest error category. Similarly, 3,670 JWST pa-
pers (56.1% of true JWST instances) and 10,180
HST papers (50.8%) were misclassified as NONE.
This systematic over-prediction reflects the class
imbalance in the dataset and suggests that mod-
els default to the majority class when telescope-
specific textual cues are absent or ambiguous. The
severe impact on minority classes (particularly
JWST, with only 1,490 correct predictions out of
6,430 instances) indicates that zero-shot models
struggle to identify distinctive markers for less-
represented telescopes.

Cross-Telescope Confusion Patterns Beyond
the NONE bias, substantial confusion exists between
telescope classes themselves. CHANDRA papers
show moderate confusion with HST (1,105 er-
rors, 6.0% of true CHANDRA), while HST papers
exhibit bidirectional confusion with CHANDRA
(1,500 errors, 7.5%) and JWST (610 errors, 3.0%).
Notably, the confusion matrix is asymmetric: while
HST is frequently mispredicted as CHANDRA
(1,500 instances), the reverse error occurs less fre-
quently (1,105 instances). This asymmetry likely
reflects differences in corpus frequency during pre-
training, with CHANDRA-related terminology po-
tentially more prominent in general astronomical
corpora due to its longer operational history. The
relatively low inter-telescope confusion for JWST
(295 JWST papers predicted as CHANDRA, 975
as HST) suggests that when JWST is not classified
as NONE, its textual markers are somewhat distinc-
tive—though the high NONE misclassification rate
remains the dominant error mode.

Usage Classification Challenges Analysis of
per-class F1 scores across usage types reveals
stark performance disparities. The science cat-
egory achieves the highest scores across all mod-
els and telescopes (ranging from 63.1% to 77.9%
support across splits), indicating that research pa-
pers describing scientific findings contain rela-
tively explicit linguistic indicators. In contrast,
instrumentation classification proves highly in-
consistent, with precision, recall, and F1 varying
dramatically by model—support is only 2.5% of
papers, yet several models achieve 0.00 F1 while
others reach above 40% on specific splits. This
suggests that instrumental development papers em-
ploy technical jargon that some model architectures
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capture while others miss entirely.

The mention category (35.7% support) shows
moderate performance, likely because papers
merely citing telescope data use formulaic
language patterns (e.g., "archival observations
from..."). However, the not_telescope class re-
mains challenging despite representing 18.6% of
papers, with most models achieving near-zero F1
scores. Manual inspection of errors in this cat-
egory revealed that papers discussing related in-
struments (e.g., ground-based telescopes, space
missions without the target telescopes) use similar
astronomical terminology, making discrimination
difficult without explicit negative evidence.

Model-Specific Error Patterns Examining per-
model usage classification reveals distinct behav-
ioral profiles. Models achieving higher macro-
F1 on telescope classification (GPT-OSS-20B and
LLaMA-3.1-8B) do not consistently outperform
on usage classification, suggesting these are par-
tially independent capabilities. GPT-OSS-20B
demonstrates strong instrumentation detection
(44.3% F1 on CHANDRA) but completely fails
on not_telescope (0.00% across all splits), in-
dicating overly aggressive telescope assignment.
Conversely, Mistral-7B shows more conservative
predictions with non-zero performance across all
categories, though at lower overall accuracy. This
trade-off between precision and recall across usage
categories highlights the difficulty of calibrating
decision boundaries in zero-shot settings without
task-specific examples.

Implications for Future Work These error pat-
terns motivate several directions for improvement.
The severe class imbalance necessitates sampling
strategies or loss functions that explicitly counter-
act majority-class bias. The high rate of cross-
telescope confusion suggests that models would
benefit from few-shot examples highlighting dis-
tinctive features of each telescope’s observational
methodology. Finally, the near-complete failure on
not_telescope classification indicates that nega-
tive training examples—papers that superficially
resemble telescope studies but do not use the target
instruments—are essential for learning proper de-
cision boundaries. Future dataset iterations should
include balanced sampling and explicit annotation
of telescope mention spans to support more fine-
grained extractive approaches.

4 Participant Systems

The TRACS shared task attracted 9 participating
teams on Kaggle, of which 6 submitted system
papers to WASP 2025.

• Varshney et al. (2025) propose a multi-model
ensemble architecture integrating transformer
models DeBERTa, RoBERTa, and TF-IDF lo-
gistic regression. They demonstrate the effec-
tiveness of combining transformer-based con-
textual embeddings with traditional TF-IDF
lexical features in a multi-label classification
framework or telescope-paper linkage. The
ensemble approach significantly improves per-
formance, especially on challenging and im-
balanced label categories such as instrumenta-
tion.

• Khatib et al. (2025) combined symbolic and
neural approaches, utilizing a tuned Random
Forest classifier stacked with domain-adapted
semantic modeling (astroBERT) and four in-
dependent boosting meta-learners.

• Rawat et al. (2025) leveraged the domain-
adapted SciBERT, stochastically sampled seg-
ments from the training data and used majority
voting over the test segments at inference time.
significantly outperforming the open-weight
GPT baseline.

• Wu et al. (2025) built amc on top of existing
LLMs, combining keywords, re-ranking, and
reasoning to achieve the 3rd highest score on
the leaderboard. They also explore how to
interrogate historical datasets and surface po-
tential label errors.

• Nguyen et al. (2025) compare traditional ma-
chine learning methods such as multinomial
Naive Bayes with TF–IDF and CountVec-
torizer representations, to various modern
transformer BERT-based models. Their ex-
periments demonstrate that domain-adapted
BERT variants significantly outperform tradi-
tional statistical machine learning methods.

• Naidu (2025) show that SciBERT, despite
its context-length constraints, can be effi-
ciently finetuned to TRACS. They achieve
the highest score on the leaderboard, while
discussing the effect of truncation and argu-
ing that a lightweight model can outperform
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larger LLMs, achieving the top leaderboard
score.

5 Results, Analysis, and Findings of
TRACS

We report the results of the participating teams in
table 6. Overall, SciBERT(Beltagy et al., 2019),
astroBERT(Grezes et al., 2021), and other BERT
based systems performed well, highlighting the
utility of smaller open-source networks when fine-
tuned networks when compared to closed, large
general purpose LLMs. The top performer further
described how these smaller models are also more
efficient, with high-potential for real world applica-
tions.

Team Test F1
Naidu (2025) 0.89
Nguyen et al. (2025) 0.85
Wu et al. (2025) 0.84
Khatib et al. (2025) 0.82
Varshney et al. (2025) 0.73
Rawat et al. (2025) 0.73
Random Baseline 0.24
GPT-OSS-20B 0.12

Table 6: Main TRACS@WASP 2025 shared task results.
All scores computed using micro-averaging.

6 Conclusion and Future Directions

In this paper, we present TRACS, a novel dataset
and associated shared for task automated biblio-
graphic curation for astronomy, and briefly describe
the 6 system papers submitted to TRACS@WASP
2025. For the dataset introduce a bibliographic tax-
onomy developed in collaboration with established
bibliographers, grounded in real-world curatorial
practices, and we conduct a thorough baseline anal-
ysis evaluating the performance of off-the-shelf
large language models on a bibliographic cura-
tion task. The baseline experiments on TRACS,
with the best off-the-shelf LLMs achieving 38%
accuracy and 11.5% F1-score on the bibliographic
classification task, show that creating bibliogra-
phies for space telescopes is not a trivial task to
solve, and requires dedicated tools. By releasing
the TRACS dataset and taxonomy, we aim to en-
able further research in this specialized but criti-
cal area of scholarly infrastructure. As astronomy
archives continue to grow, tools that augment cu-
rator expertise will become increasingly essential

for maintaining comprehensive and accurate bibli-
ographic records. From the participating systems,
we find that finetuned BERT-based models have
both the best performance and efficiency. The best
model obtains 89% F1-score.

In the future, we plan to keep expanding TRACS
with as many human-curated bibliographies as pos-
sible, including ground telescopes. We have al-
ready starting coordinating with curators at the Eu-
ropean Southern Observatory to add the Very Large
Telescope to the dataset. In addition to more data,
we would also like to refine the evaluation tools.
In particular, we would like to use unsupervised
evaluation metrics to measure how good models
are at recognizing telescope bibliographies from
unseen telescopes, evaluating models on:

• Can models generalize and be used to cre-
ate bibliographies from a new telescope given
just a list of names and synonyms for that
telescope?

• Can models cluster and detect telescopes in
unlabeled astronomy data?

• Can these models be deployed and used by
current curators alongside, or replacing exist-
ing tools?

7 Ethics Statement

The authors of this paper follow principles of trans-
parency and reproducibility. The dataset and code
described are publicly available and open source,
ensuring accessibility for verification and future
research. Large language models were employed
solely as baseline comparisons in our experiments,
in a non-generative mode only, as classifiers. We
acknowledge that LLMs may carry inherent biases
present in their training data, and we have taken
care to document these limitations in our analysis.
The use of LLMs as baselines does not constitute
endorsement of their outputs, but rather provides
a standardized benchmark for evaluating our pro-
posed methods. We are committed to responsible
research practices and have considered the poten-
tial societal impacts of this work throughout the
research process.
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