@inproceedings{chen-etal-2025-exploring-health,
title = "Exploring Health Misinformation Detection with Multi-Agent Debate",
author = "Chen, Chih-Han and
Tsai, Chen-Han and
Peng, Yu-Shao",
editor = "Accomazzi, Alberto and
Ghosal, Tirthankar and
Grezes, Felix and
Lockhart, Kelly",
booktitle = "Proceedings of the Third Workshop for Artificial Intelligence for Scientific Publications",
month = dec,
year = "2025",
address = "Mumbai, India and virtual",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wasp-main.3/",
pages = "16--21",
ISBN = "979-8-89176-310-4",
abstract = "Fact-checking health-related claims has become increasingly critical as misinformation proliferates online. Effective verification requires both the retrieval of high-quality evidence and rigorous reasoning processes. In this paper, we propose a two-stage framework for health misinformation detection: Agreement Score Prediction followed by Multi-Agent Debate. In the first stage, we employ large language models (LLMs) to independently evaluate retrieved articles and compute an aggregated agreement score that reflects the overall evidence stance. When this score indicates insufficient consensus{---}falling below a predefined threshold{---}the system proceeds to a second stage. Multiple agents engage in structured debate to synthesize conflicting evidence and generate well-reasoned verdicts with explicit justifications. Experimental results demonstrate that our two-stage approach achieves superior performance compared to baseline methods, highlighting the value of combining automated scoring with collaborative reasoning for complex verification tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-exploring-health">
<titleInfo>
<title>Exploring Health Misinformation Detection with Multi-Agent Debate</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chih-Han</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen-Han</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu-Shao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop for Artificial Intelligence for Scientific Publications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Accomazzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Ghosal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">Grezes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kelly</namePart>
<namePart type="family">Lockhart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India and virtual</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-310-4</identifier>
</relatedItem>
<abstract>Fact-checking health-related claims has become increasingly critical as misinformation proliferates online. Effective verification requires both the retrieval of high-quality evidence and rigorous reasoning processes. In this paper, we propose a two-stage framework for health misinformation detection: Agreement Score Prediction followed by Multi-Agent Debate. In the first stage, we employ large language models (LLMs) to independently evaluate retrieved articles and compute an aggregated agreement score that reflects the overall evidence stance. When this score indicates insufficient consensus—falling below a predefined threshold—the system proceeds to a second stage. Multiple agents engage in structured debate to synthesize conflicting evidence and generate well-reasoned verdicts with explicit justifications. Experimental results demonstrate that our two-stage approach achieves superior performance compared to baseline methods, highlighting the value of combining automated scoring with collaborative reasoning for complex verification tasks.</abstract>
<identifier type="citekey">chen-etal-2025-exploring-health</identifier>
<location>
<url>https://aclanthology.org/2025.wasp-main.3/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>16</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Health Misinformation Detection with Multi-Agent Debate
%A Chen, Chih-Han
%A Tsai, Chen-Han
%A Peng, Yu-Shao
%Y Accomazzi, Alberto
%Y Ghosal, Tirthankar
%Y Grezes, Felix
%Y Lockhart, Kelly
%S Proceedings of the Third Workshop for Artificial Intelligence for Scientific Publications
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India and virtual
%@ 979-8-89176-310-4
%F chen-etal-2025-exploring-health
%X Fact-checking health-related claims has become increasingly critical as misinformation proliferates online. Effective verification requires both the retrieval of high-quality evidence and rigorous reasoning processes. In this paper, we propose a two-stage framework for health misinformation detection: Agreement Score Prediction followed by Multi-Agent Debate. In the first stage, we employ large language models (LLMs) to independently evaluate retrieved articles and compute an aggregated agreement score that reflects the overall evidence stance. When this score indicates insufficient consensus—falling below a predefined threshold—the system proceeds to a second stage. Multiple agents engage in structured debate to synthesize conflicting evidence and generate well-reasoned verdicts with explicit justifications. Experimental results demonstrate that our two-stage approach achieves superior performance compared to baseline methods, highlighting the value of combining automated scoring with collaborative reasoning for complex verification tasks.
%U https://aclanthology.org/2025.wasp-main.3/
%P 16-21
Markdown (Informal)
[Exploring Health Misinformation Detection with Multi-Agent Debate](https://aclanthology.org/2025.wasp-main.3/) (Chen et al., WASP 2025)
ACL