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Introduction

We are excited to welcome you to WASP at IJCNLP-AACL 2025, the Third Workshop for Artificial in-
telligence for Scientific Publications. This year the conference is being held both online and in Mumbai,
India on December 23, 2025.

Building on the success of the First Workshop on Information Extraction from Scientific Publications
(WIESP) at AACL-IJCNLP 2022 and the Second WIESP at IJCNLP-AACL 2023, the Third Workshop
on Artificial intelligence for Scientific Publications (WASP) at IJCNLP-AACL 2025 aims to establi-
sh itself as a pivotal platform for promoting discussions and research in the field of Natural Language
Processing (NLP) and Artificial Intelligence (AI). This gathering brings together esteemed experts and
renowned organizations with students and early-career researchers who are interested and invested in
efforts to extract and mine the world’s scientific knowledge from research papers. Their collaboration
focuses on developing advanced algorithms, models, and tools that lay the foundation for future machine
comprehension of scientific literature. The third iteration of WASP specifically concentrates on various
topics related to Artificial Intelligence research for/with scientific publications.

We especially welcome participation from academic and research institutions, government and industry
labs, publishers, and information service providers. Projects and organizations using NLP/ML techni-
ques in their text mining and enrichment efforts are also welcome to participate. We strongly encourage
the participation of students, researchers, and science practitioners from diverse backgrounds.

WASP 2025 includes one shared task where we invite teams (individuals and groups) to come up with a
system to tackle bibliographic creation for space telescopes for TRACS: the dataset of Telescope Refe-
rence and Astronomy Categorization Shared task.

WASP 2025 received 31 submissions of which 21 were accepted (15 papers and 6 shared task system
papers).

We are thankful to our program committee members for helping us curate a strong WASP 2025 program.

On behalf of the program co-chairs:
Tirthankar Ghosal, Alberto Accomazzi, Kelly Lockhart, and Felix Grezes.
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Keynote Talk
Invited 1
Kartheik Iyer

Columbia University
2025-12-23 08:15:00 –

Abstract: Wandering through the Cosmic Library: Harnessing the embedding spaces of large language
models for astronomical research and discovery"
Astronomical literature is expanding at an unprecedented rate, with thousands of papers added every
month to preprint servers like arXiv.org and indexed by the NASA Astrophysics Data System (ADS). For
academics and students, staying current with relevant work while keeping track of shifting trends therefo-
re represents a critical challenge. This talk presents lessons learned from working with the UniverseTBD
collaboration to develop Pathfinder, a complement to systems like ADS that uses large language models
combined with retrieval-augmented generation (RAG) to enable semantic search and question-answering
across the astronomy literature. I will discuss some of the unique challenges of applying NLP and LLMs
to scientific publications in astronomy, including: (1) handling domain-specific terminology and ma-
thematical notation, (2) grounding LLM responses in archival data to minimize hallucinations, and (3)
leveraging embeddings to create interpretable semantic spaces for literature exploration. Drawing from
Pathfinder’s deployment (pfdr.app) and user feedback from the astronomy community, I will highlight
how interpretable intermediate representations such as semantic embeddings and citation graphs can lend
interpretability and rigor to otherwise black-box models, and help their adoption in research pipelines.
Beyond astronomy, the development of these methods have broader implications for AI-assisted scienti-
fic discovery across disciplines. I will conclude by discussing open challenges in adapting large models
in scientific contexts, the importance of retrieval mechanisms that preserve provenance, and the potential
for LLM-powered tools to not just assist with literature review, but to help generate testable hypotheses
and identify research gaps. As scientific publishing continues to accelerate across all fields, developing
trustworthy and grounded systems for navigating the literature becomes increasingly essential.

Keynote Talk
Invited 2

Karin Verspoor
Royal Melbourne Institute of Technology

2025-12-23 12:00:00 –

Abstract: Impacts of AI on the Scientific Ecosystem"
Artificial Intelligence, in both predictive and generative forms, is increasingly being adopted to support
— and in some cases, entirely perform — scientific research. In this talk, I will discuss both the signifi-
cant opportunities that AI brings to science and the questions that AI raises for science. The talk will be
grounded in some of my own work in use cases including bio-curation and literature-based discovery, as
well as ongoing work exploring the limitations of LLMs, that may have particular impacts in the scienti-
fic arena.
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Overview of the Third Workshop for Artificial Intelligence for Scientific
Publications

Kelly Lockhart‡, Alberto Accomazzi‡, Felix Grezes‡, Tirthankar Ghosal§
‡ Astrophysics Data System, Harvard-Smithsonian Center for Astrophysics, US

§Oak Ridge National Laboratory, US
kelly.lockhart@cfa.harvard.edu, accomazzi@cfa.harvard.edu

felix.grezes@cfa.harvard.edu, ghosalt@ornl.gov

Abstract

The Workshop for Artificial Intelligence
for Scientific Publications (WASP), formerly
Workshop on Information Extraction from Sci-
entific Publications (WIESP), started in 2022
to provide a platform for researchers to dis-
cuss research on information extraction, min-
ing, generation, and knowledge discovery from
scientific publications using Natural Language
Processing and Machine Learning techniques.
The third WASP workshop was held at the 14th
International Joint Conference on Natural Lan-
guage Processing & 4th Asia-Pacific Chapter of
the Association for Computational Linguistics
in Mumbai, India on December 23rd, 2025, as
a hybrid event. The WASP workshop saw great
interest, with 29 submissions, of which 16 were
accepted. The program consisted of the con-
tributed research talks, 2 keynote talks, a panel
discussion, and one shared task, Telescope Ref-
erence and Astronomy Categorization Shared
task (TRACS).

1 Workshop description

The rise in scientific paper publications has greatly
contributed to scientific advancement but has also
complicated the ability of researchers to stay up-to-
date in their fields. To navigate this vast amount
of data and facilitate discovery, incorporating the
metadata, full text, and citations into search engines
is crucial. A popular and open example is the As-
trophysics Data System (ADS; Kurtz et al., 2000),
which offers many ways to discover research arti-
cles of interest within a curated collection of over
26 million records. However, navigating through
this vast amount of data presents considerable chal-
lenges. To overcome them, extracting structured
and semantically meaningful information from sci-
entific publications becomes imperative.

The Workshop for Artificial Intelligence for Sci-
entific Publications (WASP) was started to provide
a platform for researchers to discuss research on

information extraction, mining, generation, and
knowledge discovery from scientific publications
using Natural Language Processing and Machine
Learning techniques.

The first WASP workshop was held under the
name Workshop on Information Extraction from
Scientific Publications (WIESP; Ghosal et al.,
2022) in conjunction AACL-IJCNLP 2022. The
second edition of WIESP was held along with
IJCNLP-AACL 2023 (Ghosal et al., 2023). Much
technological change has occurred since the first
Workshop, especially around Generative Artificial
Intelligence research. The Workshop’s scope has
expanded, along with the technology, and this year
the inclusion of AI was cemented along with the
new workshop name.

2 Program

The WASP 2025 workshop consisted of two
keynote talks, contributed talks, a shared task, and
a panel discussion. The main workshop received 29
submissions for contributed talks, of which 16 were
accepted (55% acceptance rate). Since the work-
shop will be hybrid, there will be both in-person
and virtual presentations at the conference venue
and online. The papers accepted to the workshop
cover a diverse array of research topics primar-
ily centered on automating scholarly workflows,
enhancing information extraction from scientific
literature, ensuring the reliability of large language
models (LLMs) in research, and advancing data
management for open science initiatives.

Compared to the previous workshops in this se-
ries, the collection of research activities described
in these works demonstrates a movement toward
AI-assisted critical curation, where LLMs are em-
ployed not just to process and generate information,
but are architecturally constrained and verified us-
ing external knowledge and validation signals de-
rived from the scholarly ecosystem itself. Figure
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Figure 1: A representation of the scientific topics (blue) and methodologies (red) in the WASP papers.

1 provides a graphical representation of key topics
and methodologies.

WASP 2025 also includes a panel discussion,
LLMs for “Trustworthy and Grounded” Scientific
Discovery. The panelists include our two keynote
speakers, Karin Verspoor and Kartheik Iyer, along
with Prasanna Balaprakash (Director of AI Pro-
grams, ORNL), and ChatGPT.

The full program, with links to papers, is
available at https://ui.adsabs.harvard.edu/
WIESP/2025/schedule.

3 Keynotes

This year we had two keynote lectures from re-
searchers working in AI for scientific publications:

• Karin Verspoor, Dean, School of Computing
Technologies, Royal Melbourne Institute of
Technology, Australia

• Kartheik Iyer, NASA Hubble Fellow,
Columbia University, USA

Speaker Karin Verspoor
Title "Impacts of AI on the Scientific Ecosys-

tem"
Abstract Artificial Intelligence, in both predic-

tive and generative forms, is increasingly being
adopted to support — and in some cases, entirely
perform — scientific research. In this talk, I will
discuss both the significant opportunities that AI

brings to science and the questions that AI raises
for science. The talk will be grounded in some of
my own work in use cases including bio-curation
and literature-based discovery, as well as ongoing
work exploring the limitations of LLMs, that may
have particular impacts in the scientific arena.

Speaker Kartheik Iyer
Title "Wandering through the Cosmic Library:

Harnessing the embedding spaces of large language
models for astronomical research and discovery"

Abstract Astronomical literature is expanding
at an unprecedented rate, with thousands of pa-
pers added every month to preprint servers like
arXiv.org and indexed by the NASA Astrophysics
Data System (ADS). For academics and students,
staying current with relevant work while keeping
track of shifting trends therefore represents a crit-
ical challenge. This talk presents lessons learned
from working with the UniverseTBD collaboration
to develop Pathfinder, a complement to systems
like ADS that uses large language models com-
bined with retrieval-augmented generation (RAG)
to enable semantic search and question-answering
across the astronomy literature. I will discuss some
of the unique challenges of applying NLP and
LLMs to scientific publications in astronomy, in-
cluding: (1) handling domain-specific terminology
and mathematical notation, (2) grounding LLM
responses in archival data to minimize hallucina-
tions, and (3) leveraging embeddings to create inter-
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pretable semantic spaces for literature exploration.
Drawing from Pathfinder’s deployment (pfdr.app)
and user feedback from the astronomy commu-
nity, I will highlight how interpretable intermedi-
ate representations such as semantic embeddings
and citation graphs can lend interpretability and
rigor to otherwise black-box models, and help their
adoption in research pipelines. Beyond astronomy,
the development of these methods have broader
implications for AI-assisted scientific discovery
across disciplines. I will conclude by discussing
open challenges in adapting large models in sci-
entific contexts, the importance of retrieval mech-
anisms that preserve provenance, and the poten-
tial for LLM-powered tools to not just assist with
literature review, but to help generate testable hy-
potheses and identify research gaps. As scientific
publishing continues to accelerate across all fields,
developing trustworthy and grounded systems for
navigating the literature becomes increasingly es-
sential.

4 Telescope Reference and Astronomy
Categorization Shared task (TRACS)

WASP 2025 hosted a shared task, Telescope Refer-
ence and Astronomy Categorization Shared task
(TRACS; Grezes et al., 2025). The organizing
committee was: Alberto Accomazzi, Tirthankar
Ghosal, Kelly Lockhart, and Felix Grezes. The
detailed overview paper is referred to and included
in the proceedings. TRACS is available publicly
on HuggingFace 1. The scoring evaluation was run
on the Kaggle platform2.

TRACS Description: Astronomers typically
gauge the scientific influence of observational fa-
cilities by examining publications that use the fa-
cilities’ data. This depends on bibliographies that
explicitly annotate and link data products to the
relevant literature, enabling bibliometric analysis
of data impact. Compiling such bibliographies
is time-intensive and requires experts to comb
the literature for names, acronyms, and identi-
fiers, and then assess whether and how observa-
tions were used. Beyond impact assessment, these
data-literature links are vital for researchers, as
they form an important route to discovering and
accessing data. By capitalizing on the expertise
of librarians and archivists, telescope bibliogra-
phies can therefore directly support the scientific

1huggingface.co/datasets/adsabs/TRACS
2kaggle.com/competitions/tracs-wasp-2025

research workflow. In this context, we present the
Telescope Reference and Astronomy Categoriza-
tion Shared task (TRACS) and dataset, comprising
more than 89,000 publicly available English texts
drawn from space telescope bibliographies. These
texts are labeled with a new, streamlined taxonomy
developed in collaboration with experienced bibli-
ographers. TRACS is intended as training material
for contemporary Machine Learning and Artificial
Intelligence methods that can assist data curators in
building bibliographies. As an initial benchmark,
we assess how existing Large Language Models
perform on automatic bibliography curation. Both
baseline and participant results underscore the dif-
ficulty of the problem and highlight the need for
specialized tools. The TRACS shared task attracted
9 participating teams on Kaggle, of which 6 sub-
mitted system papers to WASP 2025.

5 Conclusion

The rapid growth of scientific publishing presents
both opportunity and difficulty for researchers who
rely on accurate, interpretable, and well-structured
access to scholarly literature. While significant
progress has been made in information extraction,
document understanding, and the responsible use
of artificial intelligence, many challenges remain,
particularly in reliably grounding automated sys-
tems in the scholarly ecosystem and in ensuring
that AI-generated outputs can be trusted in research
contexts. The contributions of WASP 2025 illus-
trate both the promise of current approaches and the
continued need for rigorously validated, domain-
aware methods.

By assembling researchers from NLP, informa-
tion retrieval, and neighboring disciplines, WASP
aims to advance these efforts and highlight emerg-
ing directions for AI-assisted scholarship. We hope
that this workshop and its shared task will spur new
collaborations, sharpen our understanding of open
problems, and inspire the creation of robust tools
that meaningfully support scientific discovery and
the broader research community.
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Abstract

To evaluate the scientific influence of observa-
tional facilities, astronomers examine the body
of publications that have utilized data from
those facilities. This depends on curated bibli-
ographies that annotate and connect data prod-
ucts to the corresponding literature, enabling
bibliometric analyses to quantify data impact.
Compiling such bibliographies is a demanding
process that requires expert curators to scan the
literature for relevant names, acronyms, and
identifiers, and then to determine whether and
how specific observations contributed to each
publication. These bibliographies have value
beyond impact assessment: for research sci-
entists, explicit links between data and litera-
ture form an essential pathway for discovering
and accessing data. Accordingly, by building
on the work of librarians and archivists, tele-
scope bibliographies can be repurposed to di-
rectly support scientific inquiry. In this context,
we present the Telescope Reference and As-
tronomy Categorization Shared task (TRACS)
and its accompanying dataset, which comprises
more than 89,000 publicly available English-
language texts drawn from space telescope bib-
liographies. These texts are labeled according
to a new, compact taxonomy developed in con-
sultation with experienced bibliographers.

1 Introduction

Astronomical instruments generate a wealth of data,
not just directly with measurements, but indirectly
as well, in the form publications that make use of
these measurements or describe software created to
handle them. To properly credit the teams behind
the telescopes, bibliographies linking the software
and research back to the telescope are needed.

Since its launch as the NASA Astrophysics Data
System (Good, 1992; Kurtz et al., 2000), the Sci-
ence eXplorer1 (SciX) (Bartlett et al., 2025) has
aimed to help astronomers with bibliographic tools

1scixplorer.org

for both discovery and impact measurement. For
example, users are not only able to filter by papers
in the Hubble Space Telescope (HST) bibliogra-
phy, a list of papers manually curated by the Space
Telescope Science Institute (2025), but also able to
see cited/citing paper for the bibliography, which
authors or institutions contribute the most, activity
over time, and many more advanced second-order
operators (Henneken and Kurtz, 2019). While
SciX already offers best practices for building and
maintaining bibliographies (Observatory Bibliog-
raphers Collaboration et al., 2024), and some have
automated part of of the process (Grothkopf and
Treumann, 2003), it typically remains labor inten-
sive.

Typical Curation Process While different
groups use different approaches and criteria to the
problem of bibliography creation and maintenance,
the steps involved typically consist of the follow-
ing:

1. Use a set of full-text queries to the ADS bibli-
ographic database in order to find all possible
relevant papers. This first step aims to iden-
tify articles that contain mention of the tele-
scope/instrument of interest so that they can
be further analyzed. For instance, the set of
query terms used to find papers related to the
Chandra X-Ray telescope may be “Chandra,”
“CXC,” “CXO,” “AXAF,” etc.

2. Analyze the text containing mentions of the
telescope/instrument and its variations in or-
der to disambiguate the use of the terms of
interest. For the Chandra example, this in-
cludes teasing apart the different entities asso-
ciated with “Chandra,” which may correspond
to a person, a ground-based telescope, or a
space-based telescope.

3. Identify whether the paper in question shows
evidence of the use of datasets generated by

5

https://scixplorer.org


the telescope or hosted by the archive of inter-
est. The mention of data use may be explicit
(e.g. the listing of dataset identifiers), or im-
plied in the text (e.g. mention of analysis
and results without identification of the actual
dataset). Whenever dataset ids are used, they
should be extracted and identified.

4. In some cases, additional classification of the
dataset may be collected, such as the instru-
ment used in the observations. This informa-
tion is also correlated with the kind of data that
was used (e.g. image vs. spectra vs. catalog)
and its characteristics. In the case of Chan-
dra, there are 7 different instruments that can
be used for the data collection (ACIS, HRC,
HETG, LETG, HRMA, PCAD, EPHIN), and
their use, if explicitly mentioned in the paper,
should be reported.

5. For some bibliographies, additional informa-
tion is collected, such as the relevance of the
paper to the scientific use of the data archive.
For example, for the Chandra bibliography,
the following categories are defined:

(a) Direct use of Chandra data
(b) Refers to published results
(c) Predicts Chandra results
(d) Paper on Chandra software, operations,

and/or instrumentation
(e) General reference to Chandra

Goals With modern Large Language Models
(LLM) capable of ingesting ever larger quantities
of text, for ever more sophisticated tasks (Minaee
et al., 2024), we at SciX decided to create a dataset
to help the community build tools to facilitate
the creation and curation of bibliographies. This
dataset is the Telescope Reference and Astronomy
Categorization Dataset & Shared Task, a collection
of texts from open access astronomy papers, cate-
gorized into three space telescope bibliographies
(Chandra X-ray Observatory, Hubble Space Tele-
scope, James Webb Space Telescope), as well as
how the papers use the data from the telescope.

Contributions

• a bibliographic taxonomy based on discussion
with established bibliographers

• an open dataset of space telescope bibliogra-
phies, adapted to our taxonomy from human-
curated bibliographies

• a baseline analysis, evaluating off-the-shelf
LLMs on the task of automating bibliographic
curation

TRACS is available publicly on HuggingFace 2

and was used for the shared task challenge at the
3rd WASP @ IJCNLP-AACL 20253. The scoring
evaluation was run on the Kaggle platform4.

2 Dataset Description

2.1 Data Collection and Creation
The TRACS dataset consists of papers associated
with a telescope and four categories likely to be
of interest to bibliographers. We have drawn the
categories from a simplification of those discussed
by the Observatory Bibliographers Collaboration
(2024). These are science, instrumentation,
mention, not_telescope. Broadly, science
papers use data from the designated telescope
to obtain new results; instrumentation papers
describe the technical aspects of the telescope;
mention papers do reference the designated tele-
scope but do not produce new scientific results; and
not_telescope are papers that include a reference
that might otherwise be confused with the desig-
nated telescope, i.e. false positives. Full details are
available in 2.2 below.

Bibliographic data for the Chandra X-ray Ob-
servatory (CHANDRA) was provided by Erin Scott
of the Chandra X-ray Center (Chandra X-ray Cen-
ter, 2025), while data for the Hubble and James
Webb Space Telescopes (HST, JWST) was provided
by Jenny Novacescu of the Space Telescope Sci-
ence Institute (Space Telescope Science Institute,
2025). These curated, human-verified bibliogra-
phies include more information than the scope of
this dataset (ex: sub-instrument data use, links to
grants) and had to be pre-processed into the cate-
gories of interest. Furthermore, the papers in this
data set do not represent the full corpus of any of
these human-curated bibliographies and are not an
adequate substitute for them for scientific or ad-
ministrative purposes. In addition, a small set of
papers unrelated to any of these three nor any other
space telescope was provided, labeled as None tele-
scope in the dataset. This set allows users of the
TRACS dataset to easily verify that their models
correctly predict that a paper does not relate to a
space telescope.

2huggingface.co/datasets/adsabs/TRACS
3ui.adsabs.harvard.edu/WIESP/2025
4kaggle.com/competitions/tracs-wasp-2025
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telescope title/author/year Sc/In/Me/NT Labels abstract / body (truncated)

CHANDRA Chandra X-Ray Observatory Observa-
tion of the High-Redshift Cluster MS
1054-0321, (Jeltema et al., 2001), 2014

true, false, false, false Using Chandra, we make a more ac-
curate temperature determination; we
examine substructure in the X-ray dis-
tribution, and estimate mass/velocity
dispersion of MS 1054 to assess cosmo-
logical constraints. . .

HST Supernova 1996cr: SN 1987A’s Wild
Cousin?, (Bauer et al., 2008), 2008

true, false, false, false Note that increasing the aperture radius
in the HST F656N band to 1.2 yields a
magnitude of 17.5 (i.e., an increase of
25% over the pointlike magnitude from
SN 1996cr alone), which we attribute to
the flux of the underlying H ii region...

JWST Warm Jupiters in TESS Full-frame
Images: A Catalog and Observed Ec-
centricity Distribution for Year 1, (Dong
et al., 2021), 2021

false, false, true, false The confirmation of these targets will
help to select ideal candidates for Warm
Jupiter atmospheric characterization for
future missions (e.g., JWST). Follow-up
observations on candidates with missing
information listed in Table 5 are also
important....

NONE Tidal adaptive softening and artificial
fragmentation in cosmological simu-
lations, (Mostoghiu Paun et al., 2025),
2025

false, false, false, false Traditional N-body methods introdu
see it., ce localized perturbations in
the gravitational forces governing their
evolution. These perturbations lead to an
artificial fragmentation in the filamentary
network of the large-scale structure...

Table 1: Core fields view of sample records. The full dataset contains additional fields (see §2.2); here we show
the core subset: telescope, author/title/year, a short excerpt, and annotation flags. Labels are booleans in the order
Science, Instrument, Mention of telescope, and Not-Telescope. Each excerpt is chosen to illustrate how a telescope
is referenced in context and is lightly normalized and truncated for fit.

2.2 Technical Details

TRACS entries are astronomy papers with the fol-
lowing features:

• bibcode: unique string that identifies the en-
try in the SciX database

• telescope: the telescope referenced

• science, instrumentation, mention,
not_telescope: boolean labels

• author, year: metadata for the entry

• title, abstract, body, acknowledgments,
grants: the relevant textual information for
the entry.

On Kaggle, an additional Id column is present for
automatic scoring purposes.

science New science papers use data from the
designated telescope to obtain new results. The
authors may be using new observations, using
archival observations, or reanalyzing previous re-
sults. However, papers that merely refer to previ-
ous results for comparison or suggest what might
be possible with future observations are Mentions,
rather than Science papers. Science papers may use

observations directly or indirectly, such as through
a published source catalog. Indirect use must be
substantive. Papers that overlay new data over im-
ages from the designated telescope without dis-
cussing the underlying image are Mentions, rather
than Science papers. Papers that use catalog data,
such as positions or measurements, without further
discussion are Mentions, rather than Science pa-
pers. Papers that reference a grant associated with
the designated telescope but provide no evidence of
using data from it are Not Telescope papers, rather
than Science papers or Mentions.

instrumentation Instrumentation papers de-
scribe the technical aspects of the telescope, its
calibration activities, its data processing pipeline,
or its archival procedures. These papers can dis-
cuss hardware, software, or methodologies. A pa-
per that includes new science facilitated by use of
the hardware, software, or methodology described
in the paper may be both a Science and an Instru-
mentation paper. A paper that describes a novel
technique or software to achieve its scientific con-
clusions may be a Science and an Instrumentation
paper. A paper that uses calibration, alignment, or
engineering data to produce new results may be a
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Science and an Instrumentation paper.

mention Mentions are papers that do reference
the designated telescope but do not produce new
scientific results (Science) or contribute to under-
standing it (Instrumentation). If a paper meets the
criteria for a Science paper or an Instrumentation
paper anywhere, then the paper is a Science pa-
per, even if it also contains statements that would
otherwise be considered a Mention. Papers that
discuss the designated telescope as part of their
introductory overview of the issue, of the history
of a problem, or their survey of current relevant
research are Mentions. Papers that discuss the des-
ignated telescope and its scientific contributions as
part of an in-depth review of a research topic are
Mentions. Papers that merely refer to previous re-
sults for comparison or suggest what might be pos-
sible with future observations are Mentions, rather
than Science papers. Papers that overlay new data
over images from the designated telescope with-
out discussing the underlying image are Mentions,
rather than Science papers. Papers that use catalog
data, such as positions or measurements without
further discussion are Mentions, rather than Sci-
ence papers. Papers that use a secondary catalog
that incorporates data from a catalog produced di-
rectly by the designated telescope are Mentions,
even if that paper acknowledges the telescope. Pa-
pers that reference a grant associated with the des-
ignated telescope but provide no evidence of using
data from it are Not Telescope papers, rather than
Science papers or Mentions.

not_telescope Not Telescope papers are papers
that include a reference that might otherwise be
confused with one or more designations used for
the telescope of interest. An telescope may share
part of their name with a historical figure for which
several things are named. An telescope may share
an acronym with an unrelated program. Papers
that reference a grant associated with the desig-
nated telescope but provide no evidence of using
data from it are Not Telescope papers, rather than
Science papers or Mentions. If a paper meets the
criteria for a Science paper, an Instrumentation pa-
per, or Mention anywhere, then the paper belongs
to that category, even if it also contains references
to other items that share names in common with
the designated telescope or instrument.

CHANDRA HST JWST None
train 31275 37118 11698 294
test 3475 4125 1300 294

Table 2: Distribution of dataset entries.

2.3 Data Segmentation for Baseline Task
The TRACS dataset comprises of 89579 entries
in total. Table 2 gives the distribution of entries
across the three space telescopes and the training
and testing dataset splits, as well as across papers
that do not feature any space telescopes.

3 Baseline Evaluation Task

An automated assistant able to emulate the super-
vised curation activities listed in the 5 above would
provide a valuable contribution to the human ef-
fort involved. LLMs have shown flexibility in in-
terpreting and classifying scientific articles which
are the basis for this curation activity. They have
also been successfully used for information extrac-
tion tasks, which would help identify the specific
datasets mentioned in the papers. This baseline task
aims at improving the state of the art technologies
to support these curation efforts.

3.1 Definition
The TRACS baseline task is composed of two sub-
tasks: Telescope Classification and Usage Classi-
fication, each evaluating a distinct dimension of
model understanding over scientific publications.

3.1.1 Telescope Classification
Given the textual fields title, abstract, body,
acknowledgments, and grants, participants were
required to predict which telescope was referenced
or used in each paper. Valid predictions are lim-
ited to CHANDRA, HST, JWST, or None. This sub-
task focuses on assessing the model’s ability to
correctly identify telescope mentions and usage
contexts within natural language.

3.1.2 Usage Classification
The second subtask evaluates how each paper
utilizes telescope data. As defined in Sec-
tion 2.2, each entry includes four boolean la-
bels: science, instrumentation, mention, and
not_telescope. Each system must output a struc-
tured CSV prediction containing one telescope la-
bel and four usage flags for every paper.
In the official Kaggle competition, participants
submitted predictions as a single CSV file named
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sample_submission.csv with the following col-
umn headers:

Id,telescope,science, instrumentation,
mention, not_telescope

The Id uniquely identifies each paper and is used
to align predictions with gold labels during scoring.

3.2 Evaluation Metrics

Each submission is automatically evaluated by
matching predictions to reference labels via the Id
field. Participants are ranked by macro-averaged
F1-scores across both subtasks, adapting code from
the standard Scikit Learn library (2011).

3.2.1 Telescope Classification
Performance on this subtask is measured using
the macro-F1 score across the four telescope cate-
gories (CHANDRA, HST, JWST, None), ensuring equal
weighting for rare and frequent classes alike.

3.2.2 Usage Classification
For the second subtask, performance is ranked by
the macro-F1 averaged across the four usage cat-
egories, rewarding balanced sensitivity across the
different forms of telescope data use.
A valid example submission is shown below. The
first block corresponds to the Telescope Classifi-
cation task, and the second block lists the binary
labels for the Usage Classification task:

Id,telescope
2012A&A...537A..18M,CHANDRA

sci,inst,men,not_tel
True,False,False,False

3.3 Baseline Experiments

To establish initial performance benchmarks for
the TRACS baseline task, we evaluated five state-
of-the-art open large language models (LLMs):
GPT-OSS-20B (OpenAI et al., 2025), Mistral-
7B-Instruct (Jiang et al., 2023), LLaMA-3.1-8B-
Instruct (Weerawardhena et al., 2025), Zephyr-7B-
Beta (Tunstall et al., 2023), and Solar-Pro-Preview
(Kim et al., 2023). Each model was run out of the
box, that is, without any task-specific fine-tuning,
using the same instruction set, prompt template,
and token limit across all test splits to ensure com-
parability.

Table 3 summarizes the key architectural charac-
teristics and motivations for each baseline model.

3.3.1 Telescope Classification
For the telescope prediction task, each baseline
model was prompted with the relevant textual fields
and asked to output one of the four valid labels
(CHANDRA, HST, JWST, or None). Predictions were
evaluated against the gold labels using macro-F1
to ensure balanced treatment of all telescope cate-
gories, along with overall accuracy for reference.

As shown in Table 4, GPT-OSS-20B and
LLaMA-3.1-8B achieved the strongest overall
performance, demonstrating that general-purpose
open LLMs can capture some telescope-specific
cues without additional training. Meanwhile,
smaller instruction-tuned models such as Mistral-
7B and Zephyr-7B exhibited lower recall across
minority classes, suggesting limited domain gener-
alization in zero-shot settings.

3.3.2 Usage Classification
For the usage classification task, models were eval-
uated on their ability to assign one of four binary
labels (science, instrumentation, mention,
not_telescope) to each paper, indicating the role
of telescope data. Each model was prompted with
the same input fields and evaluated using macro-F1
per usage category within each telescope split.

Table 5 reports the per-class F1-scores across
telescope subsets. Performance varied widely
across usage types, with higher recall ob-
served for science and mention labels, while
instrumentation and not_telescope were
more challenging. These results highlight the dif-
ficulty of capturing fine-grained scientific intent
from text without explicit domain supervision.

3.4 Analysis of Benchmarks

3.4.1 Qualitative Analysis
The results reveal several key patterns in how base-
line models approach telescope and usage classifi-
cation tasks.

Telescope Classification Challenges The mod-
est macro-F1 scores (ranging from 7.00% to
11.50%) across all models indicate that distinguish-
ing between telescope types from textual descrip-
tions alone remains a substantial challenge in zero-
shot settings. Notably, LLaMA-3.1-8B achieved
the highest telescope accuracy (38.40%) but a lower
macro-F1 (11.12%), suggesting a bias toward pre-
dicting the dominant NONE class. This pattern is
consistent across models: the NONE F1 scores (rang-
ing from 23.88% to 25.00%) substantially out-
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Model Architecture Summary Motivation Params

GPT-OSS-20B Decoder-only transformer trained on di-
verse web and technical text, representing a
general-purpose open-source GPT design.

Serves as the closest open analog to propri-
etary GPT-series models, providing a strong
general baseline.

20B

Mistral-7B-Instruct Decoder-only dense transformer using
grouped-query attention (GQA) and sliding-
window context mechanisms.

Known for efficient context handling and
strong instruction tuning despite small pa-
rameter size.

7B

LLaMA-3.1-8B-Instruct Transformer decoder with rotary embed-
dings and optimized tokenization.

Balances compactness with state-of-the-art
reasoning and factuality for 8B-scale mod-
els.

8B

Zephyr-7B-Beta Transformer decoder fine-tuned via rein-
forcement learning from human feedback
(RLHF).

Represents the Hugging Face community’s
open instruction-tuned family emphasizing
dialogue coherence.

7B

Solar-Pro-Preview Hybrid attention decoder combining dense
and mixture-of-experts routing layers.

Tests whether hybridized attention mecha-
nisms improve performance on specialized
scientific reasoning tasks.

22B

Table 3: Baseline models evaluated on the TRACS dataset. Each model was run “out-of-the-box” with identical
prompts and token limits. The architecture and motivation columns highlight differences in model design and
intended use.

Model CHANDRA F1 HST F1 JWST F1 NONE F1 Macro F1 Tel. Accuracy

LLaMA-3.1-8B 17.14 14.05 9.41 23.88 11.12 38.40
Zephyr-7B-Beta 6.79 1.79 2.20 25.00 7.00 31.00
Solar-Pro-Preview 5.35 1.05 0.37 24.45 7.80 27.60
GPT-OSS-20B 16.73 14.76 8.84 24.91 11.50 19.80
Mistral-7B 9.11 6.06 6.08 24.91 8.20 19.80

Table 4: Telescope classification performance across four telescope categories. Reported are per-class macro
F1-scores, overall macro F1, and overall accuracy (all in %). Models are ordered by descending telescope accuracy.

Model Science F1 (%) Instr. F1 (%) Mention F1 (%) Not-Tel. F1 (%)

CH. HST JW. CH. HST JW. CH. HST JW. CH. HST JW.

LLaMA-3.1-8B 73.41 72.80 34.60 4.19 0.00 10.26 36.53 24.71 40.42 19.32 11.50 12.42
Zephyr-7B-Beta 54.12 48.66 16.06 22.75 17.65 4.44 9.88 3.33 7.03 28.69 10.74 6.97
Solar-Pro-Preview 28.66 7.52 2.80 40.58 38.10 10.00 3.35 0.40 0.27 0.00 0.61 0.00
GPT-OSS-20B 72.01 75.34 27.03 44.34 17.89 20.00 20.12 17.34 45.36 0.00 0.00 0.00
Mistral-7B 65.91 66.16 27.44 19.35 10.26 18.18 13.49 19.11 15.61 26.22 26.93 23.34

Table 5: Per-split usage classification F1-scores across telescope subsets (CH = CHANDRA, HST = Hubble Space
Telescope, JW = JWST). Values are per usage class and split, averaged over all test papers in each subset. Models
are ordered by descending telescope accuracy.

perform telescope-specific classes, with CHAN-
DRA F1 scores reaching only 6.79–17.14%, HST
scores of 1.05–14.76%, and JWST scores of 0.37–
9.41%. The poor performance on minority tele-
scope classes suggests that subtle linguistic mark-
ers distinguishing telescope types are not readily
captured by general-purpose language models with-
out domain-specific fine-tuning or few-shot exam-
ples.

Usage Classification Patterns Usage classifi-
cation performance exhibits significant variance
across both models and telescope types. The
science category consistently achieves the high-
est F1 scores, with models reaching 28.66–73.41%
for CHANDRA, 7.52–75.34% for HST, and 2.80–

34.60% for JWST papers. This suggests that sci-
entific usage contains more explicit textual indi-
cators that align with pre-training distributions.
In contrast, instrumentation detection proves
highly inconsistent, with most models struggling
(0.00–22.75% for CHANDRA) except for special-
ized cases where Solar-Pro-Preview and GPT-OSS-
20B achieve 40.58% and 44.34% respectively on
CHANDRA papers. The mention category shows
moderate but unstable performance (0.27–45.36%),
while not_telescope classification remains par-
ticularly challenging, with several models achiev-
ing 0.00% F1 and the best results reaching only
26.22–28.69%.
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Model-Specific Behaviors GPT-OSS-20B
demonstrates the most balanced performance
profile, excelling at instrumentation detection
(44.34% for CHANDRA) and achieving competi-
tive scores on science classification, though it
completely fails to identify not_telescope cases.
LLaMA-3.1-8B shows strong performance on
science classification and maintains reasonable
scores across mention categories, but struggles
with instrumentation (particularly 0.00% for
HST). Smaller models like Zephyr-7B-Beta and
Mistral-7B exhibit more conservative prediction
patterns, achieving modest but non-zero scores
across categories, suggesting less confident
predictions that may result in better calibration
for certain classes. Solar-Pro-Preview displays an
unusual specialization pattern, performing well on
instrumentation but nearly failing on mention
and not_telescope categories.

These qualitative patterns underscore the need
for domain-specific training data and suggest that
telescope and usage classification require under-
standing of specialized astronomical terminology
and research methodology that is not adequately
represented in general pre-training corpora.

3.4.2 Error Analysis

Figure 1: Confusion matrix across all models: tele-
scope accuracy.

To better understand model failure modes, we
conducted an error analysis using the pooled confu-
sion matrix across all baseline models (Figure 1).

Systematic Over-Prediction of NONE The confu-
sion matrix reveals a strong bias toward predicting

the NONE class across all models. Of the 18,260
true CHANDRA papers, 7,075 (38.7%) were in-
correctly classified as NONE, representing the single
largest error category. Similarly, 3,670 JWST pa-
pers (56.1% of true JWST instances) and 10,180
HST papers (50.8%) were misclassified as NONE.
This systematic over-prediction reflects the class
imbalance in the dataset and suggests that mod-
els default to the majority class when telescope-
specific textual cues are absent or ambiguous. The
severe impact on minority classes (particularly
JWST, with only 1,490 correct predictions out of
6,430 instances) indicates that zero-shot models
struggle to identify distinctive markers for less-
represented telescopes.

Cross-Telescope Confusion Patterns Beyond
the NONE bias, substantial confusion exists between
telescope classes themselves. CHANDRA papers
show moderate confusion with HST (1,105 er-
rors, 6.0% of true CHANDRA), while HST papers
exhibit bidirectional confusion with CHANDRA
(1,500 errors, 7.5%) and JWST (610 errors, 3.0%).
Notably, the confusion matrix is asymmetric: while
HST is frequently mispredicted as CHANDRA
(1,500 instances), the reverse error occurs less fre-
quently (1,105 instances). This asymmetry likely
reflects differences in corpus frequency during pre-
training, with CHANDRA-related terminology po-
tentially more prominent in general astronomical
corpora due to its longer operational history. The
relatively low inter-telescope confusion for JWST
(295 JWST papers predicted as CHANDRA, 975
as HST) suggests that when JWST is not classified
as NONE, its textual markers are somewhat distinc-
tive—though the high NONE misclassification rate
remains the dominant error mode.

Usage Classification Challenges Analysis of
per-class F1 scores across usage types reveals
stark performance disparities. The science cat-
egory achieves the highest scores across all mod-
els and telescopes (ranging from 63.1% to 77.9%
support across splits), indicating that research pa-
pers describing scientific findings contain rela-
tively explicit linguistic indicators. In contrast,
instrumentation classification proves highly in-
consistent, with precision, recall, and F1 varying
dramatically by model—support is only 2.5% of
papers, yet several models achieve 0.00 F1 while
others reach above 40% on specific splits. This
suggests that instrumental development papers em-
ploy technical jargon that some model architectures
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capture while others miss entirely.

The mention category (35.7% support) shows
moderate performance, likely because papers
merely citing telescope data use formulaic
language patterns (e.g., "archival observations
from..."). However, the not_telescope class re-
mains challenging despite representing 18.6% of
papers, with most models achieving near-zero F1
scores. Manual inspection of errors in this cat-
egory revealed that papers discussing related in-
struments (e.g., ground-based telescopes, space
missions without the target telescopes) use similar
astronomical terminology, making discrimination
difficult without explicit negative evidence.

Model-Specific Error Patterns Examining per-
model usage classification reveals distinct behav-
ioral profiles. Models achieving higher macro-
F1 on telescope classification (GPT-OSS-20B and
LLaMA-3.1-8B) do not consistently outperform
on usage classification, suggesting these are par-
tially independent capabilities. GPT-OSS-20B
demonstrates strong instrumentation detection
(44.3% F1 on CHANDRA) but completely fails
on not_telescope (0.00% across all splits), in-
dicating overly aggressive telescope assignment.
Conversely, Mistral-7B shows more conservative
predictions with non-zero performance across all
categories, though at lower overall accuracy. This
trade-off between precision and recall across usage
categories highlights the difficulty of calibrating
decision boundaries in zero-shot settings without
task-specific examples.

Implications for Future Work These error pat-
terns motivate several directions for improvement.
The severe class imbalance necessitates sampling
strategies or loss functions that explicitly counter-
act majority-class bias. The high rate of cross-
telescope confusion suggests that models would
benefit from few-shot examples highlighting dis-
tinctive features of each telescope’s observational
methodology. Finally, the near-complete failure on
not_telescope classification indicates that nega-
tive training examples—papers that superficially
resemble telescope studies but do not use the target
instruments—are essential for learning proper de-
cision boundaries. Future dataset iterations should
include balanced sampling and explicit annotation
of telescope mention spans to support more fine-
grained extractive approaches.

4 Participant Systems

The TRACS shared task attracted 9 participating
teams on Kaggle, of which 6 submitted system
papers to WASP 2025.

• Varshney et al. (2025) propose a multi-model
ensemble architecture integrating transformer
models DeBERTa, RoBERTa, and TF-IDF lo-
gistic regression. They demonstrate the effec-
tiveness of combining transformer-based con-
textual embeddings with traditional TF-IDF
lexical features in a multi-label classification
framework or telescope-paper linkage. The
ensemble approach significantly improves per-
formance, especially on challenging and im-
balanced label categories such as instrumenta-
tion.

• Khatib et al. (2025) combined symbolic and
neural approaches, utilizing a tuned Random
Forest classifier stacked with domain-adapted
semantic modeling (astroBERT) and four in-
dependent boosting meta-learners.

• Rawat et al. (2025) leveraged the domain-
adapted SciBERT, stochastically sampled seg-
ments from the training data and used majority
voting over the test segments at inference time.
significantly outperforming the open-weight
GPT baseline.

• Wu et al. (2025) built amc on top of existing
LLMs, combining keywords, re-ranking, and
reasoning to achieve the 3rd highest score on
the leaderboard. They also explore how to
interrogate historical datasets and surface po-
tential label errors.

• Nguyen et al. (2025) compare traditional ma-
chine learning methods such as multinomial
Naive Bayes with TF–IDF and CountVec-
torizer representations, to various modern
transformer BERT-based models. Their ex-
periments demonstrate that domain-adapted
BERT variants significantly outperform tradi-
tional statistical machine learning methods.

• Naidu (2025) show that SciBERT, despite
its context-length constraints, can be effi-
ciently finetuned to TRACS. They achieve
the highest score on the leaderboard, while
discussing the effect of truncation and argu-
ing that a lightweight model can outperform
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larger LLMs, achieving the top leaderboard
score.

5 Results, Analysis, and Findings of
TRACS

We report the results of the participating teams in
table 6. Overall, SciBERT(Beltagy et al., 2019),
astroBERT(Grezes et al., 2021), and other BERT
based systems performed well, highlighting the
utility of smaller open-source networks when fine-
tuned networks when compared to closed, large
general purpose LLMs. The top performer further
described how these smaller models are also more
efficient, with high-potential for real world applica-
tions.

Team Test F1
Naidu (2025) 0.89
Nguyen et al. (2025) 0.85
Wu et al. (2025) 0.84
Khatib et al. (2025) 0.82
Varshney et al. (2025) 0.73
Rawat et al. (2025) 0.73
Random Baseline 0.24
GPT-OSS-20B 0.12

Table 6: Main TRACS@WASP 2025 shared task results.
All scores computed using micro-averaging.

6 Conclusion and Future Directions

In this paper, we present TRACS, a novel dataset
and associated shared for task automated biblio-
graphic curation for astronomy, and briefly describe
the 6 system papers submitted to TRACS@WASP
2025. For the dataset introduce a bibliographic tax-
onomy developed in collaboration with established
bibliographers, grounded in real-world curatorial
practices, and we conduct a thorough baseline anal-
ysis evaluating the performance of off-the-shelf
large language models on a bibliographic cura-
tion task. The baseline experiments on TRACS,
with the best off-the-shelf LLMs achieving 38%
accuracy and 11.5% F1-score on the bibliographic
classification task, show that creating bibliogra-
phies for space telescopes is not a trivial task to
solve, and requires dedicated tools. By releasing
the TRACS dataset and taxonomy, we aim to en-
able further research in this specialized but criti-
cal area of scholarly infrastructure. As astronomy
archives continue to grow, tools that augment cu-
rator expertise will become increasingly essential

for maintaining comprehensive and accurate bibli-
ographic records. From the participating systems,
we find that finetuned BERT-based models have
both the best performance and efficiency. The best
model obtains 89% F1-score.

In the future, we plan to keep expanding TRACS
with as many human-curated bibliographies as pos-
sible, including ground telescopes. We have al-
ready starting coordinating with curators at the Eu-
ropean Southern Observatory to add the Very Large
Telescope to the dataset. In addition to more data,
we would also like to refine the evaluation tools.
In particular, we would like to use unsupervised
evaluation metrics to measure how good models
are at recognizing telescope bibliographies from
unseen telescopes, evaluating models on:

• Can models generalize and be used to cre-
ate bibliographies from a new telescope given
just a list of names and synonyms for that
telescope?

• Can models cluster and detect telescopes in
unlabeled astronomy data?

• Can these models be deployed and used by
current curators alongside, or replacing exist-
ing tools?

7 Ethics Statement

The authors of this paper follow principles of trans-
parency and reproducibility. The dataset and code
described are publicly available and open source,
ensuring accessibility for verification and future
research. Large language models were employed
solely as baseline comparisons in our experiments,
in a non-generative mode only, as classifiers. We
acknowledge that LLMs may carry inherent biases
present in their training data, and we have taken
care to document these limitations in our analysis.
The use of LLMs as baselines does not constitute
endorsement of their outputs, but rather provides
a standardized benchmark for evaluating our pro-
posed methods. We are committed to responsible
research practices and have considered the poten-
tial societal impacts of this work throughout the
research process.
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Abstract

Fact-checking health-related claims has be-
come increasingly critical as misinformation
proliferates online. Effective verification re-
quires both the retrieval of high-quality evi-
dence and rigorous reasoning processes. In this
paper, we propose a two-stage framework for
health misinformation detection: Agreement
Score Prediction followed by Multi-Agent De-
bate. In the first stage, we employ large lan-
guage models (LLMs) to independently eval-
uate retrieved articles and compute an aggre-
gated agreement score that reflects the over-
all evidence stance. When this score indicates
insufficient consensus—falling below a prede-
fined threshold—the system proceeds to a sec-
ond stage. Multiple agents engage in structured
debate to synthesize conflicting evidence and
generate well-reasoned verdicts with explicit
justifications. Experimental results demon-
strate that our two-stage approach achieves su-
perior performance compared to baseline meth-
ods, highlighting the value of combining auto-
mated scoring with collaborative reasoning for
complex verification tasks.

1 Introduction & Related Work

The proliferation of health-related content on dig-
ital platforms poses significant challenges to en-
suring accurate medical information reaches the
public. Verifying health claims is critical for safe-
guarding public well-being, as false or misleading
information can cause substantial harm to individ-
ual and population health. Despite the vast volume
of health content available online, only a small
fraction is supported by robust scientific evidence,
underscoring the urgent need for automated verifi-
cation systems.

In open-domain fact-checking, traditional meth-
ods predominantly rely on BERT-based architec-
tures (Devlin et al., 2019). Pipeline-based systems

*Work done while interning at HTC DeepQ.

employ BERT models to retrieve relevant evidence
sentences, followed by a classification module to
predict claim veracity. Joint systems perform evi-
dence retrieval and veracity prediction simultane-
ously within a unified model. While conceptually
straightforward, these approaches require prede-
fined knowledge databases and necessitate training
encoder-based models from scratch (Vladika et al.,
2024), limiting their flexibility and scalability.

The emergence of large language models
(LLMs) has introduced new paradigms. Tian et al.
(2024) deploy web retrieval agents to gather evi-
dence dynamically, enabling LLMs to assess suffi-
ciency and render verdicts. Singal et al. (2024) in-
tegrate retrieval-augmented generation (RAG) with
in-context learning (ICL) for veracity prediction.
Vladika et al. (2025) propose multi-turn LLM inter-
actions that iteratively generate questions, retrieve
evidence, and reason about claim validity. How-
ever, these approaches typically lack explicit ev-
idence filtering mechanisms, relying directly on
outputs from web search tools or dense retrieval
models.

Recent work has explored multi-agent frame-
works for fact-checking. Hong et al. (2025) lever-
age multiple agents to evaluate evidence quality
and determine veracity, with provisions for re-
gathering evidence when necessary. Hu et al.
(2025), Liang et al. (2024), and (Liu et al., 2025)
adopt Multi-Agent Debate (MAD) frameworks to
enhance reasoning robustness and mitigate degen-
erate reasoning patterns.

Building upon these advances, we propose
a two-stage multi-agent debate framework for
health misinformation detection. Our approach
first employs LLMs to retrieve and evaluate high-
quality articles, computing an aggregated agree-
ment score. When evidence exhibits significant
disagreement—indicated by a score below a prede-
fined threshold—the system initiates a structured
multi-agent debate. Through iterative argumenta-
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Figure 1: Agreement Score Prediction (Stage 1). For a given claim c, entities E(c) are extracted and passed
alongside c to a query generator to generate search queries Q. Articles relating to Q are collected into an article
set A. We extract topic relevance r, article weights w, and article verdict v for each article a ∈ A. The results are
aggregated, resulting in the final agreement score σ.

tion, agents collaboratively analyze conflicting evi-
dence to produce well-justified verdicts grounded
in explicit reasoning.

2 Methodology

In this section, we detail the implementation of
our proposed two-stage health misinformation de-
tection algorithm. The first stage takes a claim
as input and retrieves a set of articles relating to
the claim. Each article is classified as to whether
it Supports or Refutes the claim, and the predic-
tions are aggregated. When the agreement among
predictions is high, the veracity of the claim is
determined by majority vote. In the case of low
agreement, we initiate the second stage multi-turn
debate. Two opposing agents are provided with
supporting evidence collected during the first stage,
and a judge agent supervises the debate process
until the claim’s veracity can be determined. The
details of each stage are presented in the following.

2.1 Agreement Score Prediction
Figure 1 illustrates the first stage framework of our
approach. For a given claim c, we first extract a set
of entities E(c) from c using an LLM. The entities
are keywords or phrases from c that the claim is
focused on. The claim c and entities E(c) are then
provided to an LLM to generate a set of queries
Q. Each query q ∈ Q is sent to a search engine
for article retrieval. The article sets retrieved from
each query are de-duplicated and merged to form
the article set A.

Given the obtained queries Q, entities E(c), and
article set A, we prompt an LLM to extract the
following information from each article a ∈ A.
Specifically, we look for:

1. Topic Relevance: Check whether the arti-

cle a contains content relevant for all enti-
ties in E(c). We define this relevance as
r(a,E(c)) ∈ {0, 1}, where r(a,E(c)) = 1
if the article contains content relevant for all
entities in E(c) and r(a,E(c)) = 0 other-
wise.

2. Attribute Assessment: Evaluate whether ar-
ticle a contains the following attributes: Prob-
lem Statement, Experimental Setup, Findings,
Statistical Significance, Limitations, and Re-
sults. These 6 attributes reflect the structure of
modern scientific publications. Specifically,
an article that coverts the 6 attributes are often
more thorough in its claims. We define the
article weight as:

w(a) =
∑

α∈Attributes

1[α ∈ a] ∈ {0, 1, . . . , 6}

where 1[·] is the indicator function for whether
attribute α is in article a.

3. Article Verdict: Determine whether the con-
tents of the article a support or refute the
claim c. We denote v(a, c) ∈ {−1, 1} where
v(a, c) = 1 indicates support and v(a, c) =
−1 indicates refute.

We then compute the agreement score σ(c, A) ∈
[−1, 1] for claim c and article set A as:

σ(c, A) =
1

Z

∑

a∈A
r(a,E(c)) · w(a) · v(a, c),

where
Z =

∑

a∈A
r(a,E(c)) · w(a)

is the normalizing constant. We consider the
case where Z ̸= 0 by assuming quality relevant
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Figure 2: Multi-Agent Debate (Stage 2). Articles from the first Agreement Score Prediction stage are organized
into supporting and refuting evidence sets AS

+ and AS
−, which are provided to agents D+ and D−, respectively.

Each agent begins with an opening statement based on their evidence set, after which the judge initiates the debate.
In each round, agents review their opponent’s argument before providing a counterargument. After each round, the
judge determines whether sufficient information exists to reach a verdict. If not, the debate continues for another
round. The process concludes when the judge reaches a final verdict.

articles to be available within the search engine
results.

We introduce a threshold τ > 0 to quantify the
level of agreement among the retrieved articles. If
|σ| ≥ τ , this indicates that most articles consis-
tently support or refute the claim. When such high
level of agreement exists, the first stage directly
outputs support for σ ≥ τ and refute for σ ≤ −τ .

Conversely, an agreement score |σ| < τ indi-
cates a significant level of disagreement among the
articles. In this case, we pass the results to the
second stage for debate.

2.2 Multi-Agent Debate
Figure 2 illustrates the second stage framework
of our approach. We employ a multi-agent debate
framework based on the work by Liang et al. (2024).
The debate framework involves three agents: the
Support Agent D+, Refute Agent D−, and Judge
Agent J . Evidence is first prepared using the re-
sults from the first stage before initiating the debate.

Evidence Preparation: Given the article set A,
we select two disjoint subsets A+ and A− from A
such that:

A+ = {a ∈ A | v(a, c) = +1, r(a,E(c)) = 1},
A− = {a ∈ A | v(a, c) = −1, r(a,E(c)) = 1}.

Articles in A+ and A− are ranked in descending
order using w(a), and we limit each set to contain
an equal number of articles. For each article in the
remaining sets, we prompt an LLM using the claim
c to extract passages from the original text that
supports or refutes claim c along with its reason.
We concatenate the LLM responses from all articles
in sets A+ and A− into As

+ and As
- . We denote As

+

and As
- as the supporting and refuting evidence

throughout the debate process.

Opening Statement: The support agent D+ and
refute agent D- begins with an opening statement
by presenting the evidence in AS

+ and AS
−. We

denote the outputs of the support and refute agents
as

S
(0)
+ = D+(A

s
+), S(0)

- = D-(A
s
- ).

Each agent also maintains a conversation history
H . Following the opening statement, we initialize
each agent’s history as

H
(0)
+ = {S(0)

+ }, H
(0)
− = {S(0)

- }.

The judge agent’s history is initialized using the
opening statements given by the two debate agents

H
(0)
J = {S(0)

+ , S(0)
- }.

Next, the judge initiates the debate process, and we
proceed to the first round of debate.

Debate Process: In every debate round, each
agent responds to the opposing agent’s statement
S(i−1) using its past conversation history H(i−1).
The outputs of the support and refute agent from
the i-th round are given as

S
(i)
+ = D+

(
S(i−1)

- , H
(i−1)
+

)
,

S(i)
- = D-

(
S
(i−1)
+ , H(i−1)

-
)
.

The debate agent’s histories are updated by con-
catenating the opposing agent’s response along
with the current response

H
(i)
+ = H

(i−1)
+ ⊕ S

(i−1)
− ⊕ S

(i)
+ ,

H(i)
- = H

(i−1)
− ⊕ S

(i−1)
+ ⊕ S

(i)
− .
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The judge agent J takes the response from both
agents along with its own history H

(i−1)
J , and de-

cides whether sufficient information exists to reach
a verdict. Specifically,

θ(i) = J
(
S
(i)
+ , S(i)

- , H
(i−1)
J

)

where θ(i) ∈ {support, refute, continue}. If
the judge agent believes an argument is compelling
enough, the verdict θ(i) ∈ {support, refute} is
returned. If neither argument is sufficiently con-
vincing, the judge agent outputs θ(i) = continue,
and the debate continues for another round.

The judge’s history is also updated by appending
the debate agent responses

H
(i)
J = H

(i−1)
J ⊕ S

(i)
+ ⊕ S

(i)
− .

To prevent indefinitely long debates, we limit
the process to a maximum of M rounds, after
which the judge must reach a verdict θ(M) ∈
{support, refute} based on the debate history.

3 Experiments and Setup

3.1 Datasets
We consider the following health-related datasets
for our experiments.

SciFact (Wadden et al., 2020) contains expert-
written biomedical claims derived from medical
paper abstracts. We use the development subset,
consisting of 188 claims: 124 supported and 64
refuted.

TREC-Health (Pugachev et al., 2023) is con-
structed from the TREC 2019 Decision Track
(Abualsaud et al., 2020) and the TREC 2021 Health
Misinformation Track (Clarke et al., 2021), both
of which target challenges in search engine results
related to health misinformation. The dataset in-
cludes 113 consumer health questions, of which 61
are supported and 52 are refuted.

HealthFC (Vladika et al., 2024) consists of ev-
eryday health-related claims spanning diverse top-
ics. We use a subset of 327 claims: 202 supported
and 125 refuted.

3.2 Metrics
We report macro-precision, macro-recall, and
macro-F1 as evaluation metrics. These are standard
in fact-checking tasks, as they provide a balanced
analysis of prediction performance across labels.

3.3 Baseline Algorithms

We consider WEBAGENT (Tian et al., 2024) and
STEPBYSTEP (Vladika et al., 2025) as benchmark
algorithms. Among them, STEPBYSTEP repre-
sents the current state-of-the-art in health-related
fact-checking. For fairness, all methods, including
ours, use the Brave search engine (Brave Software,
Inc.) and GPT-4o (OpenAI, 2024) as the underly-
ing LLM. Each algorithm is executed three times,
and we report the best performance.

For our framework, we set the parameters as
follows: entity set size |E(c)| = 2, query set size
|Q| = 5, article set size |A| = 10, agreement
threshold τ = 0.7, and debate round limit M = 5.

3.4 Comparison Results & Analysis

The experimental results are shown in Table 1.
Our first-stage-only method achieves better per-
formance comparable to WEBAGENT, although
STEPBYSTEP remains challenging to surpass.

When the second-stage debate mechanism is
incorporated, our approach yields substantial im-
provements over the first-stage-only variant: F1
scores increase by +3.1 on TREC-Health and +8.1
on HealthFC. This demonstrates that, in cases of
uncertain agreement among retrieved articles, the
debate mechanism enables more effective reason-
ing and leads to stronger overall performance.

Compared to STEPBYSTEP, our two-stage
pipeline achieves higher F1 performance by +0.8
on TREC-Health and +1.4 on HealthFC. Notably,
our method maintains a balance between precision
and recall, whereas STEPBYSTEP tends to favor
high recall at the expense of precision.

Table 2 reports results on the high-agreement
subset. High coverage and strong performance in
this setting show that the first stage can reliably
resolve many claims. However, when evidence is
sparse or contradictory, the second-stage debate
provides the additional reasoning needed, under-
scoring its critical role in the framework.

4 Conclusion

We proposed a two-stage framework for health
misinformation detection that combines agreement
score prediction with multi-agent debate. The first
stage leverages weighted agreement scoring to re-
solve claims directly, while the second stage pro-
vides explainable reasoning through debate.

Experiments on three health datasets demon-
strate consistent improvements over strong base-
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Method SciFact TREC-Health HealthFC
P R F1 P R F1 P R F1

WEBAGENT (Tian et al., 2024) 80.1 83.2 80.6 76.2 75.6 75.7 78.0 78.3 78.1
STEPBYSTEP (Vladika et al., 2025) 86.1 89.5 87.8 69.9 95.1 80.6 72.6 91.6 81.0
OURS (1ST STAGE ONLY) 84.9 86.1 85.5 83.8 78.2 78.3 76.9 73.4 74.3
OURS (1ST STAGE + 2ND STAGE) 82.4 85.3 83.1 81.3 81.5 81.4 82.1 82.7 82.4

Table 1: Performance comparison across three datasets (SciFact, TREC-Health, and HealthFC) using macro
precision (P), recall (R), and F1 score. Best results are in bold.

SciFact TREC-Health HealthFC
Coverage 64.9% 50.1% 58.1%
F1 Score 92.0 88.6 84.0

Table 2: Results on the high-agreement subset. Cover-
age (%) denotes the proportion of claims settled without
debate in the first stage, while F1 Score reports the score
for those claims.

lines, including gains of +0.8 F1 on TREC-Health
and +1.4 F1 on HealthFC, with a better balance
between precision and recall. These results under-
score the value of integrating evidence consistency
with structured debate, advancing reliable and ex-
plainable health misinformation detection.

Limitations

While our two-stage framework achieves strong
performance, it also entails certain limitations.
First, as the approach relies on LLMs, the debate
judge may still be affected by model biases or oc-
casional hallucinations. Second, the multi-agent
design requires multiple API calls, introducing ex-
tra computational cost; however, this cost is mod-
est compared to the performance gains. Finally,
our current evaluation is limited to binary-labeled
datasets. Extending the framework to more nu-
anced settings, such as incorporating a Not Enough
Information class, represents a promising direction
for future work.
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Abstract

Structured information extraction (IE) from sci-
entific abstracts is increasingly leveraging large
language models (LLMs). A crucial step in IE
is relation extraction (RE), which becomes chal-
lenging when entity relations span sentences.
Traditional path-based methods, such as short-
est dependency paths, are often unable to han-
dle cross-sentential relations effectively. Al-
though LLMs have been utilized as zero-shot
learners for IE tasks, they continue to struggle
with capturing long-range dependencies and
multi-hop reasoning. In this work, we pro-
pose using GPT as a zero-shot entity-guided
summarizer to encapsulate cross-sentential con-
text into a single-sentence summary for rela-
tion extraction. We perform intrinsic evalua-
tions, comparing our approach against direct
zero-shot prompting on biomedical scientific
abstracts. On the Chemical-Disease Relation
(CDR) dataset, our method achieves a 7-point
improvement in overall F-score and 6 points
for cross-sentential relations. On the Gene-
Disease Association (GDA) dataset, we ob-
serve an 8-point gain for inter-sentential rela-
tions. These results demonstrate that entity-
guided summarization with GPT can enhance
zero-shot biomedical RE, supporting more ef-
fective structured information extraction from
scientific texts.1.

1 Introduction

In structured information extraction from scientific
literature, identifying and extracting entity rela-
tions is a key intermediate step, for example, in
building knowledge graphs. A typical IE pipeline
includes named entity recognition (NER), entity
linking/normalization, relation extraction (RE), op-
tional event/fact extraction, and knowledge base
population (KBP) (Dagdelen et al., 2024; Jaradeh
et al., 2023). With advances in generative language
models, zero-shot (ZSL) and few-shot learning

1Experimental codes will be made available

(FSL) have become increasingly popular for IE
and other NLP tasks (Dagdelen et al., 2024; Hou
et al., 2024; Savelka, 2023; Shu et al., 2022; Wu
et al., 2025). Parallel research has explored the lim-
itations of zero-shot learning (ZSL) across various
domains (Manikandan et al., 2023; Lauscher et al.,
2020; Kanjirangat et al., 2024; Al Nazi et al., 2025).
GPT-based models (Radford et al., 2019; Liu et al.,
2023; Achiam et al., 2023) and open-source models
such as Falcon (Almazrouei et al., 2023), Bloom
(Le Scao et al., 2023), LLaMA (Touvron et al.,
2023), and Mistral (Jahan et al., 2023) have demon-
strated strong capabilities in knowledge-intensive
tasks, including question answering and summa-
rization. However, their performance in classifica-
tion tasks can be limited by factors such as domain
specificity. For example, they excel in sentiment
analysis or intent classification (Wei et al., 2021)
but often struggle with clinical or biomedical clas-
sification. These limitations are especially pro-
nounced in complex tasks like relation identifica-
tion and causality detection(Armengol-Estapé et al.,
2021; Khondaker et al., 2023; Lai et al., 2023; Yang
et al., 2023; Bi et al., 2025; Chen et al., 2025). Con-
sidering the above points, this work focuses on the
relation extraction task under two key constraints:
(i) addressing complex cross-sentential relations
and (ii) focusing the task within the biomedical do-
main. Concerning relation extractions, efforts have
been made to leverage LLMs, specifically focus-
ing on improving prompting approaches (Li et al.,
2023; Wadhwa et al., 2023; Laskar et al., 2025),
which have demonstrated performance upgrades.
The potentials and limitations of GPT models in
biomedical information extraction have been re-
ported in multiple studies. It has been shown that
even though GPT-4 had achieved near state-of-the-
art results in few-shot knowledge transfer in open-
domain NLP tasks, it underperformed the domain-
specific models such as BioBERT (Lee et al., 2020)
or SciBERT (Beltagy et al., 2019), which are or-
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ders of magnitude smaller than them (Chen et al.,
2024; Moradi et al., 2021; Ateia and Kruschwitz,
2023; Nori et al., 2023; Waisberg et al., 2023). The
limitations and capacity of zero-shot LLMs are less
explored (Jahan et al., 2023; Shang et al., 2025) in
addressing complex cross-sentential relations, even
though such relations are plentiful in scientific lit-
erature.
Limited work explores generative RE, for instance,
El Khettari et al. (2025) used this concept with
instruction-tuned LLMs in the microbiome domain.
In contrast, Zhang et al. (2025) utilizes entity-pair
relation summarizations for triplet fact judgments,
whereas the proposed approach focuses primar-
ily on extracting inter-sentential relations and inte-
grating cross-sentential spans of information in an
entity-guided summary.
Our core idea is to strategically leverage these gen-
erative abilities to enhance zero-shot RE perfor-
mance, as it remains a valuable strategy for query-
ing LLMs, particularly for non-expert users. In this
paper, we formulate two main research questions:
(i) What are the zero-shot relation extraction capa-
bilities of LLMs (GPT) for cross-sentential RE in
the biomedical domain? (ii) How can we simplify
and tackle the problem of cross-sentential RE with
LLMs’ generative capability?
For the current experiment, we used open-sourced
GPT-4-0-mini primarily due to its computational
efficiency and accessibility, which allowed for ex-
tensive experimentation under limited resource con-
straints, while having core instruction-tuning and
generative reasoning capabilities. RQ1 explores
the limitations and potentials of GPT with simple
zero-shot prompting in the context of biomedical
RE. In RQ2, we use LLMs in RE, but not directly
as a relation classifier; instead, we explore the gen-
eration capability of LLMs, serving as a summa-
rizer. In this way, we propose to use GPT’s zero-
shot capacity to generate an entity-guided summary
that converts cross-sentential relations to intra-
sentential relations. This can also help alleviate the
problem of capturing long-range dependencies and
complex multi-hop navigation. The current focus
is not on maximizing absolute task performance,
but instead on better understanding the relative be-
havior, strengths, and limitations of the approaches
under controlled settings.

2 Dataset

We used the BioCreative V Chemical Disease Re-
lation (CDR)(Li et al., 2016)2 and Gene-Disease
Association (GDA) (Wu et al., 2019) datasets for
our experiments. They include abstracts from the
scientific biomedical literature. In CDR, we need
to identify the binary relations between chemical-
induced diseases (CID). The dataset can be con-
sidered a good representative of cross-sentential
relations, attributed to its complexity and diversity
of entity spans, which makes the task challeng-
ing. Among the test samples, we extracted 1,800
(negative) and 266 (positive) cross-sentential sam-
ples and 748 (positive) and 1,716 (negative) intra-
sentential samples. To assess generalizability, we
applied the approach to a subset of the GDA dataset
(Wu et al., 2019). Since our approach primarily
evaluates cross-sentential RE, we specifically se-
lected 1,491 cross-sentential samples (i.e., entity
pairs with cross-sentential relations in the given
abstract). As cross-sentence and intra-sentence
entity pairs can sometimes overlap, following ex-
isting works (Christopoulou et al., 2019; Verga
et al., 2018; Zhao et al., 2020), we consider cross-
sentence subsets to be approximate, rather than
strictly disjoint from intra-sentence ones. The de-
tails are given in Appendix A.

3 Methods

In this section, we describe the proposed and the
baseline approaches used in our controlled experi-
mentation setup.

3.1 Direct Zero-shot Learning
As a baseline, we employ a vanilla zero-shot
prompting approach to evaluate GPT’s capabili-
ties in biomedical RE. We use a simple prompt
template that asks GPT to predict whether the en-
tity pair has a relation, given the input text as the
context. In this case, the inputs are the abstracts
and the corresponding entity pairs, whose relation
needs to be classified. For instance, in the CDR
dataset, it asks: ”Does the Given chemical entity
induce the given disease or not”.

3.2 Proposed Approach
In the proposed work, we aim to use GPT’s zero-
shot generative power as an intermediate step to
enhance the relation classification pipeline. The

2https://biocreative.bioinformatics.udel.edu/
tasks/biocreative-v/track-3-cdr/
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Figure 1: A CDR abstract with the chemical entities highlighted in yellow and disease entities in blue. The right side
shows the (chemical, disease) entity pairs and the corresponding summaries produced by the zero-shot entity-guided
summarizer (GPT).

existing models struggle to capture cross-sentential
relations for various reasons: The relations that
define the entities are not contained within a sin-
gle sentence. In this case, multi-hop reasoning
approaches are needed, which the model may not
inherently possess. Secondly, the semantic encod-
ings may not capture sufficient context for identify-
ing such relations due to the presence of long-range
dependencies. Thirdly, some sentences or contexts
can even act as noise to the model due to the span of
entities in multiple sentences. Further, the general
path-based approaches used in relation extractions,
such as shortest dependency path (SDP) methods,
only directly apply to intra-sentential relations.

In the proposed approach, we deviate from the
general approach of path-based or multi-hop rea-
soning (combined with or without encoder/decoder
variants) by enabling LLMs’ generative capabil-
ities to adapt cross-sentential sentences to intra-
sentential ways. Specifically, we want to con-
vert cross-sentential sentences to a single-sentence
entity-guided summary. Given the impressive re-
sults of GPT in generation tasks3, we used GPT as
a zero-shot entity-guided single-sentence summa-
rizer. For instance, consider the abstract from the

Dataset Direct ZSL Proposed ZSL
CDR (Cross) 0.35 0.41 (+0.07) ↑
GDA (Cross) 0.49 0.57 (+0.08) ↑

Table 1: Performance comparison of Direct ZSL and
Proposed ZSL on cross-sentential biomedical RE (F-
scores).

CDR dataset in Figure 1 (enlarged figures are in
Appendix B) with the entity pairs under considera-

3https://github.com/openai

tion marked. Here estrogens and progestogens are
the chemical entities, and {dementia, breast can-
cer, colon cancer, stroke} are the disease entities
4. It can be observed that the relations are cross-
sentential, and entities can span across multiple
sentences. The entity pairs and the corresponding
zero-shot summary generated by GPT-4 are shown
in Figure 1.

Considering the entity pair (progestogens,
stroke), the relation is not apparent, and proper rea-
soning is required to classify the relation. Firstly,
the model should consider the sentence - "double-
blind trials of HT (oestrogens with or without pro-
gestogens)", which is the only mention of progesto-
gens in the abstract, and should deduce (entity nor-
malization) that HT refers to "Hormone Therapy".
Further, it should be related to the sentence - "In rel-
atively healthy women, combined continuous HT
significantly increased the risk of venous throm-
boembolism or coronary event (after one year’s
use), stroke (after 3 years), breast cancer (after 5
years) and gallbladder disease." for capturing the
actual relation.

The proposed approach initially uses a prompt
to generate a zero-shot entity-guided summary for
each cross-sentential entity pair (Figure 3). For
instance, for the previous example, we generated a
summary that directly conveys the cross-sentential
relationship ("The use of progestogens was associ-
ated with a significant increase in the risk of stroke
in women taking hormone therapy."). Similarly,
a negative relation is indicated for the entity pair
(’estrogen or estrogens,’ ’colon cancer’). These
generated summaries were used as inputs for the
second step, where the actual relation classifica-

4Only the entities required for illustration are highlighted.
There are more entity relations in this abstract.
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ZSL Type F-score Recall Precision

Direct ZSL
Overall 0.49 0.83 0.34
Intra 0.55 0.91 0.40
Inter/cross 0.35 0.66 0.24

Proposed ZSL
Overall 0.56 0.80 0.43
Intra 0.65 0.81 0.54
Inter/cross 0.41 0.75 0.28

Table 2: Comparing proposed ZSL with direct ZSL in CDR dataset

Model Type F-score Recall Precision

BioBERT_Proposed
Overall 0.57 0.56 0.58
Intra 0.64 0.62 0.65
Inter/cross 0.41 0.40 0.41

BioBERT_Baseline
Overall 0.25 0.17 0.44
Intra 0.36 0.29 0.48
Inter/cross 0.24 0.21 0.28

Table 3: Fine-tuned Encoder-only Model Performance on CDR dataset

tion is performed (Figure 4). Note that the intra-
sentences were directly extracted from the abstract
by considering sentences that mention both entities.

4 Results & Comparisons

In Table 1, we report the zero-shot results on the
cross-sentential RE in the CDR and GDA datasets
obtained with the baseline GPT model (Direct ZSL)
and compare them with those of the proposed ap-
proach (Proposed ZSL). In the baseline approach,
the input is the abstract directly, while, for the pro-
posed approach, it is the entity-guided summary
generated by GPT for cross-sentential relations.
For intra-sentences, we use the sentences where
both entity mentions are present. A 7-point F-score
improvement can be observed in the CDR dataset,
while in GDA, an 8-point increase is reported.

To analyze the overall improvements, we con-
ducted similar experiments using intra-sentential
samples from the CDR dataset. From Table 2, it
can be observed that the proposed ZSL approach
presents a 7-point improvement compared to base-
line or direct ZSL, in terms of overall F-scores. In
terms of recall and precision, it can be observed
that GPT generally prioritizes recall, which is un-
derstandable given its general-purpose nature. In
terms of intra-sentential RE, a 10-point improve-
ment is noted. These improvements indicate the
scope of utilizing the inherent generative capacity
of these LLMs for the downstream tasks, specifi-
cally for zero-shot.

Furthermore, we also compare the performance
of the proposed entity-guided summaries when

used as inputs to fine-tuned encoder-only models.
In this case, we fine-tune a BioBERT model us-
ing the generated summaries (BioBERT_Proposed)
and compare it with the one fine-tuned directly
on the abstracts (BioBERT_Baseline). This is the
same as the input to the Direct ZSL and Proposed
ZSL approaches, which are reported in Table 2. We
fine-tune BioBERT with sentence pair classifica-
tion - where the <text,entity_pair> is the input. As
discussed, for the baseline, this text is the abstract,
and for the proposed, it will be the entity-guided
summary. From Table 3, it can be observed that the
model appears to capture more accurate informa-
tion when using the proposed summaries as input.
With the cross-sentential RE, BioBERT_Proposed
presents significantly better results, with an im-
provement of almost 17 points over the baseline
counterpart. Based on the experimental results re-
ported in Table 3, it is evident that the proposed
entity-guided summaries already improve the per-
formance of the simple BioBERT models. More
details of experimental settings are in Appendix
D. These intrinsic evaluations under controlled set-
tings show that the proposed approach helps the
model capture relations more accurately, guiding
the LLM to make better predictions. Our analy-
sis suggests that summarizing cross-sentential in-
formation into a single sentence enables simpler,
more effective representations, which in turn sup-
port more accurate scientific information extrac-
tion.
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5 Conclusions

In the proposed work, we aim to evaluate the zero-
shot capabilities of GPT in biomedical relation ex-
traction, with a focus on cross-sentential relations.
We utilized the chemical-induced disease and gene-
disease association datasets, which comprise com-
plex inter-sentential spans of entity relations, as
a representative dataset. We observed that GPT,
in its zero-shot capacity, has considerable scope
for improvement in capturing these relations. A
novel approach is proposed to utilize the generative
capabilities of GPT as an intermediate step in the re-
lation extraction pipeline by using it as a zero-shot
entity-guided summarizer. This is used to encapsu-
late information on cross-sentential relations and
convert these relations into intra-sentential ones.
We observed a good performance improvement
compared to baseline zero-shot performances. We
believe that the proposed direction has considerable
potential for exploration, where, instead of using
GPT directly as a downstream classifier, it would
be more reasonable to exploit its inherent genera-
tive ability by mapping it to intermediate steps in a
logical manner.

6 Related Works

In the field of structured IE from scientific liter-
ature, recently LLMs are used widely (Dagdelen
et al., 2024; Li et al., 2024; Garcia et al., 2024).
The approaches range from simple feature-based
extractions to transformer-based to current Large
Language Model (LLM) based approaches. A uni-
fied schema representation was proposed in Li et al.
(2023) to encourage LLMs to follow schemas, learn
easily, and extract structured knowledge accurately.

In the existing literature, a wide range of ap-
proaches and studies consider the problem of
biomedical information extractions (Sciannameo
et al., 2024; Fornasiere et al., 2024; Reichenpfader
et al., 2024). In the task of relation extractions,
Zhang et al. (2018) proposed a hybrid model that
uses Recurrent Neural Networks (RNN) and Con-
volutional Neural Networks (CNN) with Shortest
Dependency Features (SDP). An SDP-based fea-
ture extraction for candidate cross-sentential sam-
ple extractions, coupled with BioBERT models,
was presented by Kanjirangat and Rinaldi (2021).
The use of biomedical ontologies to enhance neu-
ral network knowledge is another direction (Sousa
et al., 2020; Sänger and Leser, 2025; Liu et al.,
2025). Another promising direction was to ex-

plore graph-based models, graph LSTMs (Peng
et al., 2017), graph kernels (Panyam et al., 2018),
graph CNN with multi-head attentions (Zhao et al.,
2021), and multi-view GNNs (Al-Sabri et al.,
2022). BERT and its variants have been widely
used for biomedical RE tasks (Thillaisundaram
and Togia, 2019; Bhasuran, 2022; Su and Vijay-
Shanker, 2020, 2022). However, the complex task
of cross-sentential RE necessitated more sophisti-
cated approaches. For instance, Wei and Li (2022)
proposed a sequence-aware graph model with adap-
tive margin loss, while Zhu et al. (2024) leveraged
dependency and constituency information using
Tree-LSTM, GNN, and BERT models.

Generative models are now being explored in
biomedical RE, where their performance has been
reported to vary based on the complexity of the
dataset and task at hand Zhang et al. (2024);
Asada and Fukuda (2024). Some of the find-
ings reported good performances, but were limited
to intra-sentential relations. A few studies (e.g.,
(El Khettari et al., 2025)) have explored genera-
tive approaches to relation extraction (RE) using
instruction-tuned large language models (LLMs).
In contrast, (Zhang et al., 2025) focuses on lever-
aging entity-pair relation summarization for triplet
fact evaluation. In our proposed approach, we pri-
marily address inter-sentential relation extraction,
emphasizing the integration of cross-sentential con-
textual spans within an entity-guided summariza-
tion framework.

In the proposed work, we focus on exploring the
zero-shot capability of GPT in cross-sentential RE.
Moving a step further, we propose an approach to
possibly utilize the generative capability of GPT in
the RE pipeline, which is the inherent potential of
generative models. This deviates from the general
trend of using these generative models directly for
classifications, a use case that does not fully align
with their intrinsic generative nature.

7 Limitations

The proposed approach could propagate errors
from the summarization module, as we introduce
it as an intermediate path in the relation extraction
pipeline. An explicit evaluation of the zero-shot
summarization component is challenging, which
limits the understanding of the summarizer’s per-
formance. Currently, the experiments are done only
on the CDR and GDA biomedical datasets. These
could be considered as representative datasets for
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complex cross-sentential relations; however, a
proper generalization of the proposed approach has
to be verified by extending the experiments to other
datasets with cross-sentential relations, Chemical
Reaction (CHR) dataset (Peng et al., 2017), or
general-purpose datasets, such as DocRed (Yao
et al., 2019), Codred (Yao et al., 2021), CrossRE
(Bassignana and Plank, 2022), etc. Furthermore,
GPT responses can be limited by multiple fac-
tors, including sensitivity to prompts, context, post-
processing, controversies, ambiguities, efficiency,
and costs (Kocoń et al., 2023). In general, the
low performance of GPT models can be attributed
to several factors, including the lack of domain-
specific training, entity disambiguation issues in
biomedical data, and the need for multi-hop rea-
soning to address inter-sentential relations. While
refining prompts can mitigate some issues, prompt
sensitivity remains a challenge. Soft prompting
techniques offer a potential solution to improve ro-
bustness, though naive zero-shot prompting still
holds value for user-centric applications across var-
ious domains. We also have the scope of experi-
menting with different LLMs (open-sourced). Fi-
nally, considering the state-of-the-art approaches,
we still have considerable scope for improvement,
even though our approach focuses on zero-shot
capability.
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Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz
Kochanek, Dominika Szydło, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil
Kanclerz, and 1 others. 2023. Chatgpt: Jack of
all trades, master of none. Information Fusion,
99:101861.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben
Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui,
and Thien Huu Nguyen. 2023. Chatgpt beyond en-
glish: Towards a comprehensive evaluation of large
language models in multilingual learning. arXiv
preprint arXiv:2304.05613.

Md Tahmid Rahman Laskar, Israt Jahan, Elham
Dolatabadi, Chun Peng, Enamul Hoque, and Jimmy
Huang. 2025. Improving automatic evaluation of
large language models (llms) in biomedical rela-
tion extraction via llms-as-the-judge. arXiv preprint
arXiv:2506.00777.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Dataset Details

The CDR dataset annotation identifies entities that
hold a relation (class 1/positive), and all remaining
entity pairs fall into the negative category/class 0.
The CID relations can be either intra-sentential or
cross-sentential. There are no mention-level anno-
tations in the CDR dataset. Hence, we can use the
entire abstract as the context or deduce methodolo-
gies to extract the context that can convey possible
relations (based on the presence of entities).

The Gene–Disease Associations (GDA) dataset
is a large-scale biomedical corpus constructed from
MEDLINE abstracts using distant supervision. In
line with Christopoulou et al. (2019), we partition
the data into 23,353 documents for training and
5,839 documents for development. The task is for-
mulated as a binary classification problem, where
the goal is to determine whether a given gene and
disease entity pair is associated or not. A notable
characteristic of the dataset is that many associa-
tions span across multiple sentences, which makes
it particularly suitable for assessing methods that
aim to capture long-range dependencies and inter-
sentential relations.

B Methods

The enlarged examples for CDR abstracts and the
entity guided summaries are shown in Figures 2a
and 2b.

C Prompt Templates

The prompt templates for vanilla and the proposed
approaches are given in Figures 3 and 4.

D Experiments

We used GPT4-o-mini 5 for our experiments (Ap-
proximately 150 USD was spent). The experiments
were conducted on an HPC cluster with 1 GPU
(NVIDIA A100 80GB PCI). For BERT-based ex-
periments, we used BioBERT v1.1 (+ PubMed 1M),
which refers to the BioBERT model trained on
PubMed for 1M steps as the pre-trained model. The
experiments were done using PyTorch Hugging-
Face implementations 6 by fine-tuning the model
on the respective datasets. The model is fine-tuned
for 10 epochs, using the Adam optimizer and a
learning rate of 2e-5 on the training data.

5https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

6https://github.com/huggingface/transformers
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(a) A CDR abstract with chemical entities highlighted in yellow and disease entities in blue.

(b) (chemical, disease) entity pairs and the corresponding summaries produced by the proposed zero-shot entity-guided
summarizer (GPT).

Figure 2: Illustration of the proposed approach: (a) a CDR abstract with highlighted entities; (b) entity pairs and
generated summaries.
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system_msg="You are a helpful summarizer who performs an entity-guided summarization
based on given entity pairs."

"Based on the given text and entity pair, perform an entity-guided single-sentence
summarization of the text.
Give focus on the terms or keywords that can distinguish whether
the given entities can have a relation or not?.
The output should be a single sentence with the entity mentions in it."""

instructions_msg="You are a helpful summarization assistant. You will be provided
with the text and a (chemical,disease) entity pair.

Text:<Text>{text}</Text>
Entity_pair:<Text>{ent_pair}</Text>

Provide the final summary within the tags <summary> </summary>."

'''

Figure 3: A zero-shot prompt-template for an Entity-Guided Summarizer(The prompts will vary slightly based on
the experimental datasets. This prompt is tailored for the CDR dataset).

system_msg = "You are a helpful medical assistant who tells whether a given chemical

induce a given disease or not."

instructions_msg= You will be provided with the text and a list of chemical and
disease entities.

Text: <Text>{text}</Text>
Chemical_list:{chem}
Disease_list:{dis}

For each pair of (chemical, disease), predict whether the chemical induce the disease

or not?.
You should predict 1 if the chemical induce the disease and 0 if not.
Your response should be only based on the given text.

Provide all your final answers within the tags <Answer> </Answer> with entity pairs
expressed as a tuple with its corresponding prediction."

Figure 4: A zero-shot prompt-template for a Relation Classification (The prompts will vary slightly based on the
experimental datasets. This prompt is tailored for the CDR dataset).
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Abstract

Data papers are scholarly publications that de-
scribe datasets in detail, including their struc-
ture, collection methods, and potential for
reuse, typically without presenting new anal-
yses. As data sharing becomes increasingly
central to research workflows, linking data pa-
pers to relevant research papers is essential for
improving transparency, reproducibility, and
scholarly credit. However, these links are rarely
made explicit in metadata and are often difficult
to identify manually at scale. In this study, we
present a comprehensive approach to automat-
ing the linking process using natural language
processing (NLP) techniques.

We evaluate both set-based and vector-based
methods, including Jaccard similarity, TF-IDF,
SBERT, and reranking with large language
models. Our experiments on a curated bench-
mark dataset reveal that no single method con-
sistently outperforms others across all met-
rics, in line with the multifaceted nature of
the task. Set-based methods using frequent
words (N=50) achieve the highest top-10% ac-
curacy, closely followed by TF-IDF, which also
leads in MRR and top-1% and top-5% accuracy.
SBERT-based reranking with LLMs yields the
best results in top-N accuracy. This disper-
sion suggests that different approaches capture
complementary aspects of similarity (lexical,
semantic, and contextual), showing the value of
hybrid strategies for robust matching between
data papers and research articles. For several
methods, we find no statistically significant dif-
ference between using abstracts and full texts,
suggesting that abstracts may be sufficient for
effective matching. Our findings demonstrate
the feasibility of scalable, automated linking
between data papers and research articles, en-
abling more accurate bibliometric analyses, im-
proved tracking of data reuse, and fairer credit
assignment for data sharing. This contributes
to a more transparent, interconnected, and ac-
cessible research ecosystem.

1 Introduction

Data sharing and reuse have become increasingly
central to research practices, motivating the devel-
opment of mechanisms to manage, disseminate,
and cite datasets effectively. One response has
been the emergence of data papers, scholarly pub-
lications dedicated to describing datasets in detail,
including their structure, provenance, and poten-
tial applications (Jiao et al., 2023). Unlike tradi-
tional research papers, data papers typically do not
present new analyses, but instead contain the con-
text of the creation of the dataset being described,
the method for its creation, a description of the
dataset itself, a measure of its quality and an expla-
nation of its reuse potential (Reymonet, 2017; Kem-
bellec, Gérald and Le Deuff, Olivier, 2022; Li and
Jiao, 2022; Liu, 2022). Previous work has found a
relatively high amount of variation in the content
and structure of data papers (Li et al., 2020; Jihyun,
2020; Li and Chen, 2018). Data papers have been
shown to make datasets more discoverable, citable,
and reusable across disciplines (Kosmopoulos and
Schöpfel, 2024). Although data papers are some-
times perceived as a recent innovation, their devel-
opment has been gradual: specialized data journals
such as the Journal of Chemical Engineering Data
were established as early as 1956, while more con-
certed growth in data journals occurred in the past
couple of decades (Candela et al., 2015; Walters,
2020). These journals incentivize open sharing
according to best practices, offering authors recog-
nition, citation opportunities, and enhanced reuse
potential for their resources.

Following a pyramid model of data-driven re-
search projects (McGillivray et al., 2022), the base
comprises project repositories containing scripts,
notes, and raw files; the next layer is the structured
dataset deposited in a public repository; the third
layer is the data paper itself, which documents,
contextualizes, and links to the dataset; and the
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apex is the research paper, which interprets and
analyzes the data. This pyramid makes explicit
that the research paper represents only one possi-
ble interpretation of the underlying data, while the
structured datasets and data papers facilitate trans-
parency, reproducibility, and alternative analyses.

While this model highlights the continuum from
raw data to interpretation, the links between its lay-
ers are often implicit or missing in metadata. In this
study, we focus on automatically reconstructing
one of the most critical links: the pairing of a data
paper with a related research article. By “related”,
we mean that the research article is substantively
connected to the dataset described in the data paper,
for example, because the article is authored by the
same team, builds on the same project, or cites the
dataset. One such example is a research paper per-
forming semantic profiling of legal language and
cluster analysis on Justinian’s Digest, a historical
sourcebook of Roman law compiled under the or-
der of Emperor Justinian in 533 CE (Ribary and
McGillivray, 2020). This analysis is based on a
relational database of the (mostly) Latin text of the
Digest created by the same author and reported in
a data paper in the same year (Ribary, 2020). By
explicitly identifying these pairs of research and
data papers, we provide the foundation for more
complete reconstructions of dataset–paper–article
triangles which is essential for critically assessing
the impact of data sharing and enabling reuse.

2 Previous work

Despite their importance, links between data pa-
pers and the research papers that use the associated
datasets are often implicit or missing from biblio-
graphic metadata. Manual curation of these links is
labour-intensive and difficult to scale given diverse
data-sharing practices and the growing volume of
publications. Previous work has addressed aspects
of this problem from both bibliometric and compu-
tational perspectives. McGillivray et al. (2022) pro-
posed simple heuristic rules for identifying mean-
ingful links between data and research outputs in
a manual fashion which were also followed to cre-
ate the gold standard ground-truth dataset for the
present study as reported below in Section 3.1. Ek-
man et al. (2025) conducted a qualitative analysis
of the narrative practices in data papers. Li and
Jiao (2021) analysed the rhetorical moves within
abstracts of data papers published in the journals
Data in Brief and Scientific Data, including the

research article to which the dataset is connected.
They found that the related research articles are
only mentioned in Data in Brief abstracts, but this
use has decreased over time, while the descrip-
tion of the data, as well as the introduction and
method are among the most frequently used rhetor-
ical moves. Kai et al. (2025) calculate TF-IDF to
extract keywords that are distinctive of data papers
in relation to their citing research papers using a
sample of 10 papers, finding that many of the key-
words that are characteristic of data papers did not
appear in the abstracts, pointing to the importance
of analysing the full texts to gain a better picture of
these relations.

No previous study has proposed a method for au-
tomatically identifying research articles connected
to data papers specifically. Instead, there has been
growing research on linking datasets to research
papers using a combination of Named Entity de-
tection and disambiguation (Heddes et al., 2021),
matching through textual embeddings (Färber and
Leisinger, 2021) and large language models with
retrieval (Datta et al., 2025).

In this work, we present the results of a series
of experiments on fully automatic approaches to
link English-language research papers and data pa-
pers, and thereby reconstruct the pairs connecting
data papers and research articles. We systemat-
ically evaluate a spectrum of methods, ranging
from simple keyword-based text mining to large
language model (LLM)-based approaches. Evalu-
ation on a curated gold standard of research–data
paper pairs using metrics such as Mean Reciprocal
Rank (MRR) and accuracy shows that our approach
robustly identifies links, supporting reproducibility,
data reuse, and more comprehensive measurement
of scholarly impact.

Our task is related to citation recommendation,
dataset discovery, and scientific document link-
ing. While existing research, including models like
SciLinkBERT (Yu et al., 2025) and other citation-
based approaches (Bouziani et al., 2024), effec-
tively utilizes cross-document relationships to en-
hance tasks like relation extraction and summa-
rization, their focus remains on general citation
networks. However, these approaches typically
model broad citation structures rather than the spe-
cific, functional connection between a data paper
and a related research article. This distinction is
important because relatedness here is not captured
simply by citation counts or co-occurrence, but by
a substantive link that situates the dataset within
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ongoing research workflows. We contribute to this
area by targeting a highly specific and often over-
looked functional relationship: the link between
a research article and its related data paper. This
focus is critical for accurately tracking data reuse
and measuring scholarly impact, and requires a
dedicated, hybrid approach that goes beyond stan-
dard citation analysis. Our work has a number of
potential practical applications, including enrich-
ing repository and publisher metadata with explicit
dataset–article links, enriching dataset discovery
tools that help researchers find analyses associated
with published data, and enabling open science pol-
icy compliance by making data use and credit more
transparent.

3 Methods

Figure 1 provides an overview of our data
collection and processing pipeline, explained
in detail in this section. The code is
available on https://github.com/BarbaraMcG/
golden-triangle/tree/main/NLP%20Paper.

3.1 Curated dataset
To identify a comprehensive list of data journals,
we started with those compiled by Candela et al.
(2015). From this list, we added data journals that
were not included in the original list and selected
only data journals that publish primarily data pa-
pers. The final list consisted of 11 data journals
actively publishing in 2022 (see Table 1 for an
overview). These data journals could also be found
in OpenAlex by their journal name.

McGillivray et al. (2022) present a manually cu-
rated dataset containing 107 pairs of data papers
and datasets. The dataset included a subset of 38
triangles where the pair of data paper and dataset
could be linked up with an associated research pa-
per. These links were curated from two sources:
the Journal of Open Humanities Data (JOHD) and
the Research Data Journal for the Humanities and
Social Sciences (RDJ). Each of the pairs were man-
ually validated to ensure that the research paper
substantially builds upon the dataset described in
the corresponding data paper.

The manual curation process was developed
from the heuristic rules established in McGillivray
et al. (2022). We linked a research paper to a data
paper if:

1. at least one of the following four conditions
was satisfied:

(a) the research paper appeared in the refer-
ence list of the data paper;

(b) the research paper was cited in the
dataset repository;

(c) the research paper cited the data paper;
(d) the research paper cited the dataset.

2. and the following two conditions were also
satisfied:

(a) at least one person was an author of both
the data and the research paper;

(b) the research paper was a substantial, ana-
lytical interpretation of the dataset asso-
ciated with the data paper.

We recognise that rule 2a and 2b need some jus-
tification. Rule 2a expresses the requirement that
the data paper and research paper are products of
the same research effort as opposed to the reuse of
data by others for a new research question. This
heuristic rule, therefore, creates a link between a
data paper and a research paper where data is in-
terpreted by the person who created that data in
the first place. Rule 2b that requires "substantial,
analytical interpretation of the dataset" is a matter
of subjective judgement, and one which resists to
be easily translated to a computer script, but such
is the nature of the data and the association of data
and research papers we work with. Taking the ex-
ample of the research and data pair mentioned in
section 1, substantial analytical interpretation is
understood to be a deep manipulation of the data
which generates new insights and goes beyond a
simple reference. That is, the research paper goes
into significant detail about how the data was used,
reorganised and processed to answer a research
question that the authors set for themselves. As
we continue to expand the ground truth in our fu-
ture work, we aim to create heuristic guidelines
to improve consistency among annotators who are
currently enjoying a large degree of discretion ap-
propriate to this early stage of the project. For the
purposes of the current study, manual curation in-
volved skim-reading research articles to capture
such substantial analytical treatment of data. This
resulting curated dataset served as our benchmark
to assess how different methods of automatic pair-
ing perform.

We sample 159 data papers from three of the
largest data journals (see Table 1). Our curated
dataset consists of pairs of data papers published
in 2022 and related research papers, 91 from
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Figure 1: Data Extraction and Processing Steps

Table 1: Data journals used as sources of data papers.
The third column contains the number of articles pub-
lished in the journal in 2022 and the last column contains
the number of curated pairs per journal.

Journal Publisher 2022 Pairs

Biodiversity Data Journal Pensoft 242 0
Data MDPI 190 47
Data in Brief Elsevier 1059 21
Data Science Journal Ubiquity Press 20 0
Database Oxford Academic 109 0
Geoscience Data Journal Wiley 37 0
JOAD Ubiquity Press 7 0
JOHD Ubiquity Press 29 0
JOPD Ubiquity Press 20 0
RDJ Brill 8 0
Scientific Data Springer Nature 765 91

Total 2486 159

Scientific Data, 47 from MDPI’s Data, and 21
from Data in Brief. For our subsequent analysis
we filtered out 28 cases where one data paper was
matched to multiple research papers, to reduce the
complexity of the task for the matching algorithms.
The final number of pairs considered was 131. The
dataset has been deposited to Figshare (Ribary and
Wigdorowitz, 2025).

3.2 Data extraction
To support the experiments, we devised a data ex-
traction pipeline using an openly available reposi-
tory of research articles. Options for data sources
we have considered include OpenAlex, PubMed,
Zenodo and Dimensions. After analysis of each
source looking at papers they cover, content vol-
ume, and metadata we could extract, we chose
OpenAlex (Priem et al., 2022) as the source for
our dataset. This was due to its comprehensive
coverage of multiple disciplines and its extensive
volume of more than 200 million works. Initially
we queried the OpenAlex API. However, this ap-
proach posed challenges due to limitations on query
volume, making it difficult to retrieve data at scale,
and leading us to download its data dump.

The pipeline consisted of the following steps:

1. Extraction: We used the OpenAlex data dump
to retrieve metadata from the papers.

2. Filtering: After extracting all papers, we re-
tained only those that were published open
access, were research articles, proceedings
papers, or book chapters (excluding review
articles and other types).

3. Paper categorization: We automatically cate-
gorized the collected papers into data papers
(defined as all articles published in our list
of data journals described in section 3.1) and
research papers (all other articles extracted in
the previous step).1 We focussed on data pa-
pers published in 2022, as this year had the
greatest coverage in the set of papers used
for the ground truth. A five-year range was
chosen before 2022 and to the date of anal-
ysis (2025), since data papers are published
before and after their related research papers
(McGillivray et al., 2022).

4. Author overlap: For each research paper, we
checked whether any of its authors also ap-
peared among the authors of the data papers.
We only retained research papers that shared
at least one author with a data document, help-
ing to reduce redundancy and increase the
relevance of the comparison set.

5. Length filtering: To ensure a fair compari-
son and remove anomalies, papers with ab-
stracts shorter than 300 characters or longer
than 2,000 characters were excluded.

6. Full-text extraction: We extracted the full text
of the papers selected in the above step. This
ensured that the storage and computational ca-
pacities were used effectively. The full texts
were obtained from OpenAlex, which pro-
vided open access locations along with land-
ing page URLs that could be used for down-
load.

Table 2 presents the statistics for our dataset con-
struction pipeline, showing the progression from
initial OpenAlex metadata extraction through filter-
ing and full-text extraction.

1We acknowledge that this heuristic may miss data papers
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Table 2: Number of research papers, data papers and total number of papers at the different steps of our data
extraction pipeline.

Data extraction Step Total Research Papers Data Papers
Filtering 49,224,956 — —
Categoration + Author Overlap 457,599 455,105 2,494
Length Filtering 305,308 303,063 2,245
Full-text Extraction 244,571 243,350 1,221

For each paper, we retrieved the following meta-
data fields: Title, Abstract, DOI, OpenAlex ID,
Author IDs, Publication Year and Journal/Source
of publication. In what follows, we will use the
terms “data papers“ and “research papers” to refer
to the final set resulting from applying all 6 pipeline
steps described above. For any given data paper
d, we will refer to its set of candidate matching
research papers ri as the research papers selected
by the 6 pipeline steps and which shared at least
one author in common with d and were published
up to 5 years before and after d.

3.3 Matching algorithms

We experimented with different methods to cal-
culate the similarity between data papers (d) and
research paper (r) and therefore identify research
papers that are related to a given data paper. To
evaluate both surface-level and semantic similarity
in linking data papers to research articles, start-
ing from the set of data papers in the dataset, we
implemented and evaluated two complementary
approaches: set-based matching and vector-based
matching, as summarised in Table 3. Set-based ap-
proaches and TF-IDF offer interpretable and com-
putationally efficient ways to measure lexical over-
lap between documents by identifying shared ter-
minology. SBERT approaches capture deeper se-
mantic relationships by representing documents in
high-dimensional spaces.

3.4 Set-Based Matching

For the set-based matching methods we pre-
processed the texts with tokenization, lowercasing,
and stopword removal to ensure that similarity mea-
sures focus on semantically meaningful content
rather than common function words. We applied
two Jaccard-based metrics to three sets: the top N
(N=10, 20, and 50) most frequent words in texts of
research papers and data papers, the named entities

published in generalist journals or misclassify non-data papers
in data journals.

(NEs) entracted from the texts using the spaCy 2

library in Python, and on all tokens in the texts.
These methods were applied to both abstracts and
full texts.

3.4.1 Jaccard
For each data paper d and research paper r among
its candidate matches, let Tokens(d) and Tokens(r)
denote the sets of unique tokens extracted from d
and r, respectively. We computed the Jaccard simi-
larity based on the sets of unique tokens extracted
from each document:

SJ(d, r) =
|Tokens(d) ∩ Tokens(r)|
|Tokens(d) ∪ Tokens(r)| (1)

3.4.2 Multi-set Jaccard
To account for term frequency, we also imple-
mented a multiset version of Jaccard similarity,
which compares token counts rather than just pres-
ence or absence (da Fontoura Costa, 2021). Let T
be the total number of distinct tokens in the union
of the data paper d and research paper r. The to-
ken frequencies in each document are represented
as vectors: [d1, d2, . . . , dT ] and [r1, r2, . . . , rT ],
where di and ri denote the frequency of token i
in d and r, respectively.

The multiset Jaccard similarity is defined as fol-
lows and rewards documents that not only share
vocabulary, but also use it with similar frequency:

SMJ(d, r) =

∑T
i=1min(di, ri)∑T
i=1max(di, ri)

(2)

3.5 Vector-based Matching

Vector-based matching methods represent docu-
ments as numerical vectors and compute similarity
using distance metrics such as cosine similarity.
While TF-IDF captures lexical overlap and term
salience, SBERT captures deeper semantic relation-
ships through contextualized embeddings.

2https://spacy.io/ (last accessed 05/10/2025).
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Table 3: Overview of algorithms for matching data papers with research papers. We implemented two groups of
methods: set-based and vector-based. Each method was applied to different scopes of textual content. We analysed
three values for N :10, 20, and 50.

Method Top N Frequent Words Named Entities (NEs) All Tokens
Set-based Methods
Jaccard ✓ ✓ ✓
Multi-set Jaccard ✓ ✓ ✓
Vector-based Methods
TF-IDF – – ✓
SBERT – – ✓
SBERT re-ranked – – ✓
SBERT re-ranked with LLM – – ✓

3.5.1 TF-IDF
We first applied Term Frequency–Inverse Docu-
ment Frequency (TF-IDF) (Manning et al., 2008).
Each document is represented as a sparse vector
where each dimension corresponds to a term in the
corpus vocabulary. The TF-IDF score reflects how
important a term is to a document relative to its
frequency across the corpus.

Let Tokens(d) and Tokens(r) denote the sets of
unique tokens extracted from data paper d and re-
search paper r, respectively. Let R(d) be the set of
candidate research papers for d. The corpus C(d)
consists of d and all papers in R(d). For each token
t in document x ∈ C(d), the TF-IDF weight is:

TF-IDFd(t, x) = tf(t, x)× idfd(t) (3)

where tf(t, x) is the term frequency of token t
in document x, and idfd(t) is the inverse document
frequency defined as:

idfd(t) = log
1 + |C(d)|

1 + |{y ∈ C(d) : t ∈ Tokens(y)}|+1

(4)
computed over the corpus of the data paper and

its candidate research papers, C(d).
For each data paper d and research paper r ∈

R(d), we compute cosine similarity between their
TF-IDF vectors:

STF-IDF(d, r)

= cos(TF-IDF(d),TF-IDF(r))

=
TF-IDF(d) · TF-IDF(r)
∥TF-IDF(d)∥ · ∥TF-IDF(r)∥

(5)

This method captures term salience and is sen-
sitive to shared terminology, but does not account
for synonymy or contextual meaning.

3.5.2 SBERT
To capture deeper semantic relationships, we used
Sentence-BERT (SBERT), a transformer-based
model that produces dense, contextualized embed-
dings for sentences and documents (Reimers and
Gurevych, 2019). We computed cosine similar-
ity between SBERT embeddings of the titles and
abstracts of each data–research paper pair:

SSBERT(d, r) = cos(emb(d), emb(r)) (6)

SBERT has been shown to outperform other em-
bedding methods on semantic similarity and trans-
fer learning tasks (Reimers and Gurevych, 2019).

3.5.3 Reranking
To further refine the initial similarity rankings, we
implemented two reranking approaches that lever-
age more sophisticated architectures to capture nu-
anced relationships between data papers and re-
search papers that may be missed by the initial
vector-based methods.

SBERT Cross Encoder Reranking: We em-
ployed a cross encoder architecture (Reimers and
Gurevych, 2019) that jointly processes pairs of
data paper and research paper abstracts. Unlike
bi-encoders that generate independent embeddings
for each document, cross encoders allow attention
mechanisms to operate across both documents si-
multaneously, capturing fine-grained interactions
between their content. The cross encoder takes
concatenated representations of the document pair
as input and outputs a relevance score. This should
lead in principle to superior performance in seman-
tic matching tasks at the cost of increased compu-
tational complexity due to longer input sequences.

Listwise LLM-based Reranking: We imple-
mented a listwise approach using Large Language
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Models to re-order the top-k research paper can-
didates from SBERT rankings (Ma et al., 2023).
We used GPT-4o-mini (OpenAI, 2024) with a tem-
perature of 0.1 and maximum token limit of 1000.
The LLM receives the data paper abstract and a
numbered list of candidate research paper abstracts,
then outputs a re-ranked ordering based on which
papers most likely substantially use or analyze the
described dataset. Reranking was performed in a
zero-shot setting using prompts that emphasized
analytical relevance and dataset usage patterns (see
Appendix A for the complete prompt template).

4 Evaluation

In this paper we refer to the curated dataset of
manually validated data–research paper pairs as our
evaluation set. Since our approach does not involve
training a supervised model, we do not distinguish
between training, validation, and test subsets. We
evaluate all methods using Mean Reciprocal Rank
(MRR), a standard metric in information retrieval
(Voorhees, 1999). Given a data paper d and a set
of candidate research papers R(d), with the correct
match r∗ ∈ R(d), the reciprocal rank is defined as:

RR(d) =
1

rank(r∗)

The MRR is the average of reciprocal ranks over
all data papers in the evaluation set. In case of
ties, we use the expected reciprocal rank under
uniform random tie-breaking, i.e., the average of
the reciprocals of the tied positions. Higher MRR
values indicate better performance.

We also evaluated based on the retrieval accu-
racy on top-N and top-N% selection. Ties in rank-
ing scores were handled in a tie-aware fashion. If
the correct data paper was part of a tie block fully
above the cutoff (e.g., top-10), the prediction was
counted as correct. If the tie block straddled the
cutoff, we assigned fractional credit proportional
to the number of tied items within the cutoff (e.g.,
if three papers tied for ranks 9–11 and two were
within the top-10, the correct paper received a score
of 2/3). If the entire tie block fell outside the cutoff,
the prediction was considered incorrect. This ap-
proach prevents arbitrary tie-breaking and ensures
consistency across metrics.

4.1 Comparing abstracts and full texts

One of the key practical considerations in designing
systems to match data papers with research papers

Table 4: Significance test results comparing abstracts
vs. full texts for a subset of methods. Each method was
applied to different scopes of textual content: top N
frequent words (Freq) for N = 10, and all tokens (All).
α = 0.05.

Method Scope p-value Stat

Jaccard
Freq 0.59 54.55%
All 0.058 63.64%

Multi-Jaccard
Freq 0.59 54.55%
All 0.237 58.62%

TF-IDF All 0.77 47.06%

is the availability and granularity of textual con-
tent. While full texts may offer richer information,
abstracts are more readily accessible and computa-
tionally efficient to process. To determine whether
this trade-off affects matching performance, we
conducted statistical significance tests on a subset
of our set-based and vector-based method, compar-
ing results obtained from abstracts and full texts.

We applied the paired sign test (Gibbons, 1993)
to compare the performance of methods when us-
ing abstracts versus full texts. This non-parametric
test was chosen because it makes minimal assump-
tions about the data distribution under the null hy-
pothesis. It assesses whether there is a statistically
significant difference in performance (i.e., ranking)
between the two conditions across all data papers
in our curated dataset.

Table 4 reports the results of statistical signifi-
cance tests (with significance threshold α = 0.05)
comparing the performance of set-based methods
applied to abstracts vs. full texts. The Stat col-
umn shows the percentage of times the abstract
method achieved a better ranking than the full-text
method. Across all scopes and methods, the p-
values indicate that the differences are not statis-
tically significant, suggesting that using abstracts
yields comparable performance to using full texts.

5 Results

Table 5 presents the performance of all matching
methods when applied to abstracts. It shows that
the best-performing methods vary depending on the
evaluation metric and reflects the diverse strengths
of each method. This dispersion reflects the com-
plementary strengths of different approaches: lex-
ical overlap, semantic similarity, and contextual
reasoning each contribute uniquely to match qual-
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Table 5: Matching performance using abstracts. Metrics include Mean Reciprocal Rank (MRR), top-N accuracy,
and top percentile accuracy. Each method was applied to different scopes of content: top N frequent words (Freq),
named entities (NE), and all tokens (All). For SBERT re-ranked methods, only the top 50 candidates were re-ranked.

Method Scope MRR Top-5 Top-10 Top-50 Top-1% Top-5% Top-10%

Jaccard

Freq=10 0.38 44.40% 52.61% 77.14% 39.68% 60.76% 72.39%
Freq=20 0.31 45.99% 55.73% 81.92% 35.37% 64.33% 77.49%
Freq=50 0.44 54.01% 63.54% 87.37% 47.66% 72.71% 82.90%
NE 0.10 14.06% 14.84% 22.53% 36.19% 54.76% 60.49%
All 0.40 53.91% 62.50% 89.06% 46.88% 67.19% 79.69%

Multi-Jaccard

Freq=10 0.38 44.40% 52.61% 77.14% 39.68% 60.76% 72.39%
Freq=20 0.31 45.99% 55.73% 81.92% 35.37% 64.33% 77.49%
Freq=50 0.44 54.01% 63.54% 87.37% 47.66% 72.71% 82.90%
NE 0.07 8.60% 12.06% 21.94% 25.35% 31.20% 34.82%
All 0.41 50.78% 64.06% 89.06% 45.31% 71.88% 79.69%

TF-IDF All 0.45 41.18% 70.31% 84.38% 51.56% 75% 82.81%
SBERT All 0.40 53.91% 68.75% 92.19% 35.16% 53.91% 73.44%
SBERT re-ranked All 0.39 53.91% 65.62% 92.19% 31.25% 56.25% 70.31%
SBERT re-ranked

+ LLM
All 0.44 62.50% 71.88% 92.19% 34.38% 62.50% 75.00%

ity. TF-IDF achieved the highest MRR (0.45) and
top-1% and top-5% accuracy (51.56% and 75%,
respectively), outperforming other vector-based
methods in those metrics. SBERT re-ranked with
LLMs showed the best overall performance in top-
N accuracy, with top-10 and top-50 scores reaching
71.88% and 92.19%, respectively.

As expected, among set-based methods per-
formance generally improves with larger token
scopes (e.g., Freq=50 and All), which suggests
that richer lexical context enhances matching ac-
curacy. Named Entity-based matching underper-
forms across all metrics, showing that entity-level
overlap alone is insufficient to capture the nuanced
relationships between data and research papers.
Vector-based methods show strong performance,
with SBERT re-ranked using LLMs achieving the
highest scores in top-N accuracy. This highlights
the value of semantic understanding and contextual
reasoning in identifying meaningful links. Interest-
ingly, the performance gap between SBERT and
SBERT re-ranked is modest, which suggests that
initial semantic similarity captures much of the
relevant signal, and reranking offers incremental
gains. For the subset of methods tested (set-based
approaches and TF-IDF), the lack of statistically
significant differences between abstracts and full
texts supports the feasibility of using abstracts for
these approaches, especially when full texts are un-

available or costly to process. Further evaluation is
needed for semantic embedding methods.

6 Limitations and Conclusion

Our findings demonstrate that it is feasible to auto-
matically identify research papers related to data
publications using NLP-based methods and that
the best-performing method varies depending on
the metric used. They also underscore the impor-
tance of evaluating methods across multiple met-
rics to avoid over-reliance on a single performance
indicator. Hence, hybrid systems combining multi-
ple matching strategies may offer the most robust
performance. Set-based approaches, particularly
Multi-set Jaccard and Jaccard with frequent words
or all tokens, offer interpretable and computation-
ally efficient solutions. TF-IDF achieves the high-
est MRR, indicating strong precision in ranking the
correct match highly. Vector-based methods, espe-
cially SBERT with LLM-based reranking, provide
superior performance in terms of top-N accuracy,
though at higher computational cost. For set-based
and TF-IDF methods, abstracts appear sufficient
for effective matching, which has practical implica-
tions for scalability, since abstracts are more read-
ily available and less resource-intensive to process
than full texts.

As to this study’s limitations, we rely on meta-
data availability, which may not generalize to all
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disciplines or publication venues. Future research
could explore avenues to generalize our approach.
First, expanding the curated dataset to include more
data journals and multilingual content would help
assess cross-domain applicability. Second, incor-
porating citation networks, dataset repository meta-
data, and author affiliations could enrich the match-
ing process and reduce reliance on textual similar-
ity alone. Third, exploring the analysis of matches
between data papers and research papers where
more than one research paper corresponds to the
same data paper. Finally, developing hybrid mod-
els that combine lexical, semantic, and structural
features may improve performance, especially in
cases where abstracts are sparse or ambiguous.
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Abstract

Extracting relations from scientific literature
is a fundamental task in biomedical NLP be-
cause entities and relations among them drive
hypothesis generation and knowledge discov-
ery. As literature grows rapidly, relation ex-
traction (RE) is indispensable to curate knowl-
edge graphs to be used as computable struc-
tured and symbolic representations. With the
rise of LLMs, it is pertinent to examine if it
is better to skip tailoring supervised RE meth-
ods, save annotation burden, and just use zero
shot RE (ZSRE) via LLM API calls. In this
paper, we propose a benchmark with seven
biomedical RE datasets with interesting char-
acteristics and evaluate three Open AI models
(GPT-4, o1, and GPT-OSS-120B) for end-to-
end ZSRE. We show that LLM-based ZSRE is
inching closer to supervised methods in perfor-
mances on some datasets but still struggles on
complex inputs expressing multiple relations
with different predicates. Our error analysis
reveals scope for improvements.

1 Introduction

Do we need training data to perform relation ex-
traction (RE)? Since ChatGPT was introduced in
December 2022, this has been a prominent ques-
tion on minds of many NLP researchers, especially
those that focus on structured information extrac-
tion from biomedical literature. With the recent
success of zero-shot methods in other areas of NLP,
RE is ripe for investigation, and biomedicine is
a particularly compelling domain as relations are
central to knowledge discovery.

RE is the high-value NLP task of identify-
ing semantic relationships between entities within
text. Consider the following sentence taken from
the drug combination extraction (DCE) (Tiktin-
sky et al., 2022) dataset: “Furthermore, in non-
metastatic castration-resistant prostate cancer (M0
CRPC), two second-generation anti-androgens,

apalutamide, and enzalutamide, when used in com-
bination with ADT, have demonstrated a signif-
icant benefit in metastasis-free survival.” Two
beneficial drug combinations are described here:
(1) apalutamide with ADT, and (2) enzalutamide
with ADT. In RE, we want to extract these relations
into a structured form; in this case a tuple of drugs
administered in combination along with a signifier
of the normative effect of the drug:

• {drugs: (apalutamide, ADT), effect:
positive}

• {drugs: (enzalutamide, ADT), effect:
positive}

Thus, RE can be viewed as the conversion of un-
structured data into structured data representing
relationships between entities. In biomedicine, en-
tities of interest are mainly genes, mutations, pro-
teins, chemicals, drugs, diseases, and symptoms.
The relationships that can hold between them are
myriad, but some obvious relationships of impor-
tance are drug interactions, protein interactions,
disease-causing mutations and chemicals, drug side
effects, and disease-treating drugs. Many RE ef-
forts assume that the entities and their types are
already provided as part of the input. They do RE
by giving the input text and a pair of entity spans
in it and ask for the relation type linking them. The
technical name for this would be relation classifica-
tion (RC). However, for RE to be fully automated
and evaluated fairly, the input must be just free
text and the burden of (a) spotting the entities and
(b) linking them with predicates, both fall on the
method. This is called end-to-end RE (E2E RE)
and is much harder than RE when entities are pre-
annotated. For the rest of this paper, whenever we
refer to RE we mean the end-to-end variety.

Biomedical publications are being generated at
breakneck speed — PubMed indexes nearly 40
million articles and over four thousand more are
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indexed daily. Biomedical relations are so valu-
able that there are teams of workers employed to
read biomedical text and populate databases with
them. With so much text available, automating
RE would allow us to mine biomedical relations at
scale, rapidly enlarging databases.

1.1 Zero-shot RE
Traditionally, RE has been conducted by fine-
tuning with hundreds to thousands of examples.
In this paradigm, every narrow RE task requires
a dataset to be curated for it. Dataset curation for
biomedical RE is a laborious process — annota-
tors need highly specialized knowledge, it takes
time to develop clear and consistent annotation
guidelines, and annotators need to be trained on
the guidelines (Luo et al., 2022a; Li et al., 2016).
The process is so laborious for annotators that, typ-
ically, named entity recognition and RE tools are
used to make suggestions to annotators to speed
up the process (Luo et al., 2022a; Li et al., 2016).
For all these reasons, few-shot (FS) and zero-shot
(ZS) RE are desirable. They remove the need for
a training dataset, which is usually the largest in a
training/validation/test split. If modeling choices
do not need to be made and if performance need
not be measured, validation and test sets could be
omitted as well. The promise of high quality low-
resource RE is a proliferation of databases and an
increase in their richness and reliability.

Generative large language models (LLMs) have
grown to dominate NLP research activity in recent
years, with new multi-billion parameter models be-
ing released regularly. Owing to large amounts
of diverse training data, vast quantities of parame-
ters, and techniques that align models with human
goals like instruction finetuning (Ouyang et al.,
2022a; Wei et al., 2022; Sanh et al.) and RLHF
(Ouyang et al., 2022b), these models can now per-
form a wide array of tasks, in a ZS manner, with
impressive results. However, LLMs are not adept
at producing long output in a consistent format, a
key challenge when converting generated text into
structured relations, without specific guiding mech-
anisms. To address this, previous studies have em-
ployed two main strategies: (1) prompting the lan-
guage model to generate text in a predetermined for-
mat, followed by the use of predefined regular ex-
pressions to extract relation components (Luo et al.,
2022b; Gupta et al., 2025), or (2) directly specify-
ing a structured output within the prompt itself
(Wadhwa et al., 2023). Though these approaches

have shown promise, Wadhwa et al. (2023) found
that even for few-shot sentence-level RE, GPT-3.5
often generates plausible relations that, while rec-
ognizable to humans as correct, do not precisely
match the gold standard relations. This discrep-
ancy should be expected to be more pronounced in
document-level ZS settings. Without fine-tuning,
fulfilling synergistically demanding requirements
of long, exact, consistent extraction from text be-
comes more challenging.

Zero-shot relation extraction (ZSRE) poses a
unique challenge to LLMs because it requires the
generation of long, exact text in a consistent format.
This makes it much more challenging to generate
an exact output than most other exact-output tasks
NLP researchers have been tackling, such as ques-
tion answering (QA), where the answers are a sin-
gle token or a phrase (Touvron et al., 2023; Wang
et al., 2023a; Achiam et al., 2023). Also, ZS gen-
eration has been successful at tackling problems
where long text must be generated, like summa-
rizing (Touvron et al., 2023; Wang et al., 2023a;
Achiam et al., 2023). In such tasks, there is no
single correct generation, so the fact that LLMs
produce diverse output is not a problem; these are
often evaluated by humans or judgment by other
more LLMs (though this practice is controversial).
But in the real-world scenario of RE from a doc-
ument, there may be many relations present (the
BioRED (Luo et al., 2022a) dataset contains ab-
stracts with > 50 relations), and the LM must gen-
erate long text with stringent requirements on what
the text must consist of.

Due to the aforementioned challenges, LLMs
generate relations that are correct to a human but
do not match annotations in the test dataset exactly,
which artificially deflates calculated performance.
For example, if an annotated relation contains the
entity hypertensive as the disease in a relation
and an LM extracts hypertension, this would be
considered incorrect in the usual performance eval-
uation. Wadhwa et al. (2023) deal with this prob-
lem using manual evaluation of their relation ex-
traction systems, but this is not desirable because
(1) it is expensive and (2) because we want a sys-
tem that can be used at scale to populate databases
automatically, without human intervention.

1.2 Related work
Most RE methods focus on constructing em-
beddings for candidate relations, followed by a
classification step. A parallel line of research has
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developed around the use of copy-mechanisms
in a sequence-to-sequence (seq2seq) framework.
Seq2seq tasks involve generating an output/target
sequence from a given input/source sequence. This
method is predominantly favored in areas like ma-
chine translation, where the format aligns naturally
with the task. However, researchers have adapted
RE to fit into the seq2seq paradigm by transform-
ing structured relations into predefined sequences
of tokens (Zeng et al., 2018; Zhang et al., 2020;
Nayak and Ng, 2020; Zeng et al., 2020; Giorgi
et al., 2022). For instance, Giorgi et al. (2022)
transform the relation {gene: ESR1, disease:
schizophrenia, predicate:association}
into the sequence ESR1 @gene schizophrenia
@disease @association*. Subsequently, models
are trained to generate such sequences, and
decoding them becomes straightforward. The
key to the success of these models across various
architectures lies in the incorporation of copy
mechanisms. In the context of copy mechanism-
based RE, the fundamental component is an LSTM
that, at each time step, opts to select either a token
from the source sequence or a limited additional
vocabulary, such as punctuation or special tokens
like @gene.

In more recent developments, the use of LLMs
has emerged as a novel seq2seq approach for RE
(Luo et al., 2022b; Gupta et al., 2025). The au-
thors of BioGPT, for example, have fine-tuned
their model using soft prompts to generate rela-
tions within natural language sentences, such as
The relation between <head entity> and
<tail entity> is <relation type>. These
constructs with place holders for entities and rela-
tion types (also called predicates) are often called
output templates. The filled-in output template
is then processed using regular expressions to ex-
tract the relations from the LM’s generations. This
method presents a significant advantage over tradi-
tional relation representation and copy-mechanism
approaches primarily because it does not require
mention annotations during training. Such a fea-
ture reduces the workload for annotators on addi-
tional datasets, as they can shift their focus solely
to relation annotation rather than annotating every
entity mention. Building on this, Wadhwa et al.
(2023) modified this approach by designing target
sequences as Python-interpretable tuples of rela-
tions, rather than in the form of natural sentences,

*This is a slight adaptation from the original paper, simpli-
fied for clarity

for sentence-level RE tasks.
The remarkable performance of large, human-

aligned language models in FS and ZS tasks has
sparked interest in exploring their potential for low-
resource RE. This emerging area of research partic-
ularly focuses on the capabilities of OpenAI’s GPT
models. Wadhwa et al. (2023) investigate the use
of the instruction-finetuned GPT-3.5 for sentence-
level biomedical RE. Their FS in-context learn-
ing experiments yield results that are competitive
with state-of-the-art approaches. In a similar vein,
Wang et al. (2023b) applied GPT-3.5 for sentence-
level RC. Further advancing this line of inquiry,
Jahan et al. (2023) conduct RE experiments using
both GPT-3.5 and GPT-4, testing them on two RE
dataset test sets, though in one they filter out all
examples with no relations.

1.3 Our contributions
Given the effectiveness of ZS generation in other
NLP tasks, in this paper, we investigate its utility
in the high-value task of biomedical RE. We com-
prehensively test the effectiveness of OpenAI GPT-
4 (Achiam et al., 2023), OpenAI o1 (Jaech et al.,
2024), and the open-weights GPT-OSS (OpenAI,
2025) on seven RE datasets that vary in domain,
length of text, diversity of entity and relation types,
whether relations are entity-level (EL) or mention-
level (ML), and whether relations are described
across multiple sentences. We analyze model er-
rors to determine the strengths and weaknesses of
this approach. The code, datasets, and the LLM
prompts for all our experiments are available here:
https://github.com/bionlproc/ZeroShotRE.

Our research differs from prior studies in several
ways. Previous research predominantly explored
general biomedical tasks — a valuable effort — but
restricting the study to one or two datasets is insuf-
ficient to explore the intricacies of RE. Our exper-
iments encompass a broader spectrum of biomed-
ical RE tasks, across seven datasets. We employ
datasets that include relations confined within sin-
gle sentences as well as those with relations span-
ning across multiple sentences. Moreover, some
datasets we study feature relations between entities,
while others contain relations between mentions of
entities. This variety introduces a range of com-
plexities, including varying levels of difficulty and
differing quantities of relations within each text.
Such diversity underlines that, although these tasks
are all categorized under RE, they each pose unique
challenges to RE methodologies. Another crucial
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aspect of our work is the comprehensive evaluation
of performance across entire test sets, facilitating
direct comparisons with other studies, whether they
are fine-tuned, FS, or ZS.

2 Materials and methods
2.1 Task definition
Let (x, y) be an example in the test dataset, where
x is text and y is the set of annotated relations
expressed within x. Depending on the dataset, the
text and relations may have different structures. x
is most commonly a title-abstract pair but maybe a
sentence along with a larger passage containing it
or a single string of text. y depends on the dataset
as well. In general, a relation consists of a set of
typed entities along with a relation type connecting
them. In most datasets, relations hold between two
entities, but in the DCE (Tiktinsky et al., 2022)
dataset, they hold between a variable number of
entities. Entities and relations are typed, but the
number of types varies by dataset.

Depending on the dataset, relations are either
annotated at the mention level (ML) or entity level
(EL). ML relations hold between textual mentions
(exact spans) of entities. Textual mentions may
consist of a span of text or multiple in the case of
discontinuous entity mentions. EL relations hold
between normalized entities, that is, the entities
are provided in the form of an ID number corre-
sponding to a biomedical concept from a controlled
vocabulary. In most commonly used EL datasets
(including all that we use), textual mentions of the
biomedical concepts with their normalized ID num-
ber are also provided. Biomedical databases of
relations are typically structured with EL relations.

For ZSRE, we guide the LLMM to predict y
using template T . That is,

ŷ =M (T (x)) , (1)

where T is a user chosen natural language instruc-
tion along with an output template.

2.2 Extraction
Most prior work on generative RE has relied on tra-
ditional supervision. In such scenarios, the choice
of template is of moderate importance, because
M is finetuned to learn the nature of the problem
and the structure of the output. Without a super-
vision signal, it is challenging to guideM to (1)
understand the nature of the problem and (2) out-
put relations in a consistently structured form. The

latter is important for biomedicine if RE is to be
automated, and important for research as it permits
performance metrics to be calculated. To address
these challenges, T adds a complete description
of the RE task as well as instructions to produce
output in the form of a JSON object, a description
of the format the JSON object should take, and an
example of what a filled-in JSON could look like.

Given that producing consistent structured out-
put from a language model that has been principally
trained to produce natural language is a problem
faced in information extraction in general, a few
attempts have been made to solve it (Newhouse,
2023; Sengottuvelu, 2023) or produce a structured
output posthoc (Yurtsev, 2023). Given that we use
GPT-4 (Achiam et al., 2023), o1 (Jaech et al., 2024)
and GPT-OSS (OpenAI, 2025) asM and the fact
that OpenAI added functionality in their API for
obtaining JSON objects as output in two different
modes, we use their tools. The first tool they devel-
oped requires the user to provide a schema (in the
form of a JSON object) delineating the structure
the output JSON should exhibit. The more recent
tool infers the schema from the prompt. We refer
to these modes as explicit and inferred modes and
experiment with both on GPT-4. For OpenAI o1
and GPT-OSS (Jaech et al., 2024; OpenAI, 2025),
we test only the mode that performed better on
GPT-4, due to budgetary constraints. Unlike GPT-
4, the other two models are designed with test-time
chain-of-thought based reasoning ability; it learns
to “recognize and correct its mistakes” and “ break
down tricky steps into simpler ones."†

2.3 Evaluation

As a task, RE is complex, and there are many rea-
sonable ways to measure performance. This has
led to a proliferation of measures, but also confu-
sion and conflation of them — so much so that
rigorous study of the issue has been made (Taillé
et al., 2020). Unfortunately, the state of affairs has
only worsened as (1) researchers have not heeded
this work, (2) papers have faded descriptions of
details necessary for reproducibility, (3) EL RE has
been introduced, and (4) seq2seq methods, which
have grown in popularity, lend themselves to new
performance measures.

Among the three main methods that have been
published for EL RE — JEREX (Eberts and Ulges,
2021), seq2rel (Giorgi et al., 2022), and BioGPT

†https://openai.com/index/learning-to-reason-with-llms/
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(Luo et al., 2022b) — no two calculate F1 in the
same way. JEREX measures performance very
strictly: a predicted relation is considered correct
if it matches a gold relation exactly, and entities
within the relations are judged correct when men-
tioned boundaries are correct. Seq2rel’s “strict”
measure is similar, except that rather than entity
mentions being judged on boundary correctness,
they are judged on whether the predicted strings
match gold entity mention strings, and duplicate
gold mention strings are collapsed to a single men-
tion. JEREX correctness therefore implies seq2rel
“strict” correctness, but not vice versa. We note that
since seq2rel uses a copy mechanism that points
directly to tokens, nothing prevents them from mak-
ing an exact comparison with JEREX. However,
Giorgi et al. (2022) compared their performance
with JEREX using slightly different “strict” met-
rics as indicated earlier. They additionally use a
“relaxed” measure of correctness that only requires
a majority of predicted entity mentions to match
that of a gold entity.

The generative approach of BioGPT lends itself
to the extraction of a single entity mention rather
than all of them, and therefore Luo et al. (2022b)
deem a predicted relation correct if the extracted
mentions match the longest mention in the dataset,
rather than the example text. Further distinguishing
their performance measure from previous papers,
Luo et al. (2022b) filter examples with no gold re-
lations from the dataset. Despite these differences,
they compare their performance with seq2rel. At
this point, it is not clear, on any dataset, which of
these methods has the highest performance; nor
is it clear that they all can be compared with one
another, even if done with utmost care. To make
matters worse, Jahan et al. (2023) do not describe
their evaluation methodology or provide code.

Our method most closely resembles BioGPT, but
we believe that an extracted entity mention match-
ing any gold one should be considered correct; so
we develop yet another performance measure and
strive for the utmost clarity in explaining it. In the
EL RE context, we consider a predicted relation
to match a gold relation if (1) each extracted en-
tity mention participating in a relation matches any
gold entity mention, (2) entity types are correct,
and (3) relation type is correct (this is trivial when
there is only one relation type.) In the ML RE con-
text, gold entities consist of a single mention, so (1)
becomes simpler: an extracted entity mention must
match the gold entity mention. For EL RE datasets,

we honor the annotation at the EL by mapping en-
tities of predicted relations to their normalized ID
numbers (based on gold annotations) and removing
duplicate predictions before assessing matches to
gold relations. True positives are predicted rela-
tions matching gold relations; false positives are
predicted relations that do not match any gold re-
lations; and False negatives are unmatched gold
relations. We calculate precision, recall, and F1-
score for each dataset.

2.4 Datasets

Table 1 shows the basic properties of the datasets
we studied. Three of them contain EL relations;
these datasets naturally contain relations with entity
mentions across multiple sentences. The remaining
four datasets contain intra-sentence ML relations,
though relation types may be more easily extracted
when the surrounding context is available.

The ADE dataset (Gurulingappa et al., 2012) con-
sists of sentences extracted from MEDLINE case
reports describing adverse effects resulting from
drug use, extracted from medical case reports. It
contains two entity types: drugs and adverse effects
and one relation type, adverse drug event. There is
no official split of the dataset.
DCE (Tiktinsky et al., 2022) documents the ef-

ficacy of drug combination therapies, presenting
a unique RE challenge in that relations contain
a variable number of entity types. Each instance
consists of an abstract, within which a focal sen-
tence is identified that contains multiple drug ref-
erences. The drug references are classified as ei-
ther being positive, for a beneficial drug combina-
tion, non-positive, for a combination with a neutral
or negative effect, or non-combination, when the
drugs are not given in combination. Following
the practice of the original authors, DCE perfor-
mance is evaluated using two metrics: Positive
Combination F1 score and Any Combination F1
score. The Positive Combination F1 treats the
relation type positive as the positive class, while
the Any Combination F1 score lumps positive
and non-positive relation types together, and
treats them as the positive class.

The primary aim of ChemProt (Krallinger
et al., 2017) is to extract intra-sentence rela-
tions between chemical compounds and pro-
teins/genes from biomedical abstracts. Rela-
tion types holding between these entities can
be described as upregulator, downregulator,
agonist, antagonist, or substrate of. Over
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Datasets Type Input Type # Entity Types # Predicates Examples w/o relations

ADE (Gurulingappa et al., 2012)

Mention-Level

Sentence 2 1 No
DCE (Tiktinsky et al., 2022) Abstract 1 3 Yes
ChemProt (Krallinger et al., 2017) Abstract 2 5 Yes
DDI (Herrero-Zazo et al., 2013) Abstract 4 4 Yes

CDR (Li et al., 2016)
Entity-Level

Abstract 2 1 No
GDA (Wu et al., 2019) Abstract 2 1 No
BioRED (Luo et al., 2022a) Abstract 4 8 Yes

Table 1: Basic properties of the biomedical datasets tested, including whether relations were annotated at the
mention-level or entity-level, whether the input text is a sentence or an abstract, the number of entity types and
predicates, and whether the dataset contains instances with no relations.

25% of abstracts contain no relations.
DDI (Herrero-Zazo et al., 2013) annotates intra-

sentence interactions between four types of pharma-
cological substances: brand-name drugs, generic
drugs, drug categories, and substances not ap-
proved for human use. Drug-drug interactions
are either descriptions of pharmacokinetic mech-
anisms, descriptions of effect/pharmacodynamic
mechanisms, recommendations about drug combi-
nations, or documented interactions without addi-
tional details. Nearly two-thirds of instances con-
tain no relations. The CDR (Li et al., 2016) and GDA
(Wu et al., 2019) datasets respectively annotate
diseases induced by chemicals/drugs or associated
with genes in PubMed abstracts. Both datasets
contain EL relations with a single relation type.
BioRED (Luo et al., 2022a) dataset annotates

eight non-directional relation types holding
between genes, gene variants, chemicals, and
diseases. The relation types are positive
correlation, negative correlation,
association, binding, co-treatment, drug
interaction, comparison, and conversion;
certain relation types are only valid for a subset
of all combinations of entity types. Instances in
BioRED often contain many relations, sometimes
in excess of 90. Presumably, for this reason, there
are only 100 test instances.

We show ZS prompts for ChemProt and CDR
in Table 4 in the Appendix. Prompts for
all seven biomedical datasets are made avail-
able here: https://github.com/bionlproc/
ZeroShotRE/tree/main/prompts.

3 Results

We present results for GPT-4, OpenAI o1, and GPT-
OSS-120B in Table 2. Performance varies sub-
stantially across datasets, with consistently higher

scores on ADE, DCE, CDR, and GDA compared
to ChemProt, DDI, and BioRED. A clear pattern
emerges: datasets with only 1 or 2 relation types
yield much higher performance, while those with 4–
8 relation types, often accompanied by a larger set
of entity types, show lower performance. These ob-
servations may reflect spurious correlations; future
work could test this hypothesis by slicing datasets
by entity and relation types to examine whether
performance improves.

When comparing models, GPT-4 generally un-
derperforms relative to both o1 and GPT-OSS-
120B. GPT-OSS consistently surpasses GPT-4
across all datasets, while o1 also outperforms GPT-
4 except on ADE, CDR, and GDA—datasets that
are simpler and contain only a single relation type.
One explanation is that o1 and GPT-OSS-120B
better accommodate tasks with greater relational
and entity complexity through more robust reason-
ing. As a result, both surpass GPT-4 on ChemProt,
BioRED, and DDI, each of which contains 4–8
distinct relation types. On average, o1 is over 3
F1 points better than GPT-4, with BioRED show-
ing the largest relative gain (more than doubling
GPT-4 performance). GPT-OSS-120B achieves
the strongest overall results, attaining the best F1
scores on most datasets. It is encouraging to see a
open-weights model that is better than large closed
models (by an average four F1 points over the o1
model). Precision–recall trends are largely con-
sistent across models, though o1 and GPT-OSS-
120B tend to favor precision on ChemProt and DDI,
while GPT-4 exhibits relatively higher recall.

As discussed in Section 2.3, a valid comparison
of performance between current biomedical RE
methods is generally not possible. However, all
of the performance measures are obviously posi-
tively correlated, so we collate performance from
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Datasets
GPT-4 (Inferred) GPT-4 (Explicit) OpenAI o1 (Inferred) GPT-OSS-120B (Inferred)

P R F1 P R F1 P R F1 P R F1

ADE (Gurulingappa et al., 2012) 75.3 60.4 67.0 76.7 62.8 69.1 73.5 62.8 67.7 76.7 68.8 72.5

DCE (Pos.) (Tiktinsky et al., 2022) 58.9 68.7 63.4 61.3 66.7 63.9 61.5 74.7 67.5 64.7 73.3 68.8

DCE (Any) (Tiktinsky et al., 2022) 55.6 76.1 64.2 49.2 71.8 58.4 69.6 74.6 72.1 70.6 77.0 73.7

ChemProt (Krallinger et al., 2017) 24.1 24.6 24.3 19.7 23.0 21.2 37.0 20.7 26.5 28.9 31.0 30.0

DDI (Herrero-Zazo et al., 2013) 27.7 33.6 30.4 27.6 33.2 30.1 46.1 29.3 35.8 36.2 53.3 43.1

CDR (Li et al., 2016) 48.9 42.3 45.3 49.3 42.4 45.6 46.6 41.2 43.7 52.1 48.5 50.2

GDA (Wu et al., 2019) 46.0 63.4 53.3 46.1 65.2 54.0 40.2 57.6 47.3 45.5 67.4 54.4

BioRED (Luo et al., 2022a) 12.6 7.1 9.1 15.1 7.3 9.8 30.8 18.6 23.2 27.0 17.9 21.5

Average 41.7 43.4 41.9 41.4 43.3 41.6 48.5 43.6 44.9 47.7 51.7 49.0

Table 2: Main results for end-to-end ZSRE experiments. As DCE is evaluated in two ways (see Section 2.4), their
performance values are averaged before being included in the calculation for the “Average” row.

other publications with reasonably transparent eval-
uation methodology in Table 3. We find that su-
pervised methods using far smaller LMs perform
similarly or better than our method, an unsurprising
result (Wadhwa et al., 2023). However, due to the
aforementioned difficulties of comparison, the only
obvious discrepancy occurs in ChemProt, where
our method fared poorly. ChemProt encodes fine-
grained and mechanistic relations between chemi-
cals and proteins where the predicates are semanti-
cally close. This may require explicit learning of
subtle lexical cues and biochemical context, which
is difficult in the ZS setting, leading to the large
performance gap relative to the supervised score.

We analyzed errors from all datasets to glean in-
sights into the pitfalls of ZSRE. We first note which
aspects of RE were highly successful. GPT-4 was
nearly perfectly faithful to the structured schema
we described in our templates and generated en-
tity and relation types were nearly always selected
from the set of types we described in the templates.
Predicted entity mentions were usually assigned
the correct entity type as well. Predicted mentions
are rarely not present in the text. Last, it was un-
common for relation types to be incorrect when
entities participating in relations were correct.

All models tend to under-predict relations when
an instance contains more than a few gold relations.
Figure 1 in the Appendix depicts this pattern for
CDR on GPT-4, a representative example. It shows
that the average number of relations predicted per
test instance lags further behind the number of gold
relations as the number of gold relations increases,
and that this naturally results in decreased recall.
We attribute this to the observation that generative
models tend to perform worse with long sequences

(Hochreiter et al., 2001; Li et al., 2023a).
A common error across datasets and models

we encountered was that of partial matching en-
tity mentions, in which a predicted relation nearly
matches a gold relation, but predicted mentions
either include extra words not found in gold men-
tions or exclude words found in them. For example,
we extracted the incorrect chemical-disease rela-
tion (chemical: methamphetamine, disease:
methamphetamine-induced psychosis), which
would have been correct had we extracted the dis-
ease as psychosis. Future research should focus
on extracting correct boundaries for entity men-
tions, as this was a major source of error.

Frequently, false positives appear to be correct
relations missed by the annotators. This has been
previously documented in RE datasets (Tran and
Kavuluru, 2019; Tan et al., 2022) and has been
shown to artificially deflate performance. Given
the high frequency of missed relations, it may be
prudent to re-annotate biomedical benchmark RE
datasets in the mode of Tan et al. (2022).

For the most part, models predicted mentions
that either were exact spans of source text or con-
catenated discontinuous spans. However, in some
cases, they used domain knowledge, predicting a
text string not found in the source text. In one
extracted relation from GDA, we predicted the en-
tity interleukin-10, which did not appear in the
text in this form, whereas the gold version was
interleukin (IL)-10.

Besides error patterns holding across datasets,
errors arose particular to specific datasets. Our
method largely failed on BioRED, with frequent,
obviously incorrect, predicted entity mentions and
types as well as relations claiming opposite rela-
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Methods ADE DCE ChemProt DDI CDR GDA BioRED

Yan et al. (Yan et al., 2021) 83.2 - - - - - -
Seq2Rel (Giorgi et al., 2022) - 66.7P†/71.1A† - - 40.2†/52.4‡ 55.2†/70.5‡ -
BioGPT (Luo et al., 2022b) - - - 40.8 46.2 - -
PURE (Zhong and Chen, 2021) - - 69.0 - - - -

GPT-4 (zero-shot) 69.1 63.9P/64.2A 24.3 30.4 45.6 54.0 9.8
OpenAI o1 (zero-shot) 67.7 67.5P/72.1A 26.5 35.8 43.7 47.3 23.2
GPT-OSS-120B (zero-shot) 72.5 68.8P/73.7A 30.0 43.1 50.2 54.4 21.5

Table 3: Comparison of performance (F1) of OpenAI ZS scores with previous finetuned methods. Note that F1
does not have identical meaning across methods (see Section 2.3). Superscripts P and A refer to the “Positive” and
“Any Combination” evaluation settings for DCE (Jiang and Kavuluru, 2023). Superscripts † and ‡ refer to the “strict”
and “relaxed” evaluations described in Section 2.3.

tionships between two given entities. In DCE, drug
combinations were frequently missing drugs that
participate in a relation. Also, relation types were
often incorrectly assigned; we suspect that this is
caused by the domain-specific knowledge, like the
interpretation of lab result quantities, sometimes
required to correctly assign relation type.

4 Discussion

In the LLM era, a fundamental question is whether
and in what settings can we simply use ZS pre-
dictions from frontier LLMs without the tedious
and expensive creation of training data and custom
supervised models. The answer to this is heavily
dependent on particular task on hand in terms of
expectations on recall and precision and the con-
sequences of false positives/negatives. For exam-
ple, if the relations are being used for knowledge
discovery, focusing more on precision can mini-
mize creation of misleading hypotheses. However,
to conduct systematic reviews on information en-
coded in the relations (e.g., drug–side-effects), the
relations extracted should have high recall.

As a first step to assess the general end-to-end
ZSRE competence of LLMs, we created a new
benchmark and conducted experiments with fron-
tier LLMs. Our high level takeaway is that for
shorter instances with fewer relations (less infor-
mation density), ZSRE is closer to fully supervised
models; this is more so if the entities are shorter
(fewer tokens) such as mostly single token drug
entities in DCE and ADE datasets. Entity com-
plexity is also high in ChemProt dataset, which
may have contributed to the vast discrepancy (40
points in F1) between supervised and ZS perfor-
mances. Relatively, high density longer inputs (e.g.,
BioRED) lead to almost unusable performance at

this point. Further assessments that account for
partial matches of entities may be warranted but
unless that is done carefully, the results may not be
meaningful. For instance, partial matches that do
not involve the head word of an entity phrase are
mostly incorrect and misleading at best.

All results using OpenAI GPT models for pub-
licly available datasets since GPT-3 (Brown et al.,
2020) come with a caveat: we do not know what
data the models were trained on. These LLMs train
on massive amounts of scraped web data, and most
datasets we used are available on the web in some
form. It is possible that they may have been trained
on these datasets. However the very low scores
obtained for BioRED and ChemProt indicate that
this contamination is unlikely. Please note that here
we are not focusing on the textual inputs (sans la-
bels) being part of the LLM pre-training corpora;
this was shown to not cause any contamination
in general (Li et al., 2024). The focus here is on
whether particular task-specific labels were part
of the training process. Recently, methods to de-
tect membership of specific texts in the pretraining
corpora of LLMs have been introduced (Rastogi
et al., 2025) but foolproof tools that assess whether
ground truth labels of supervised tasks are leaked
are not available. Recent evidence shows that label
contamination is possible for question answering
tasks where the answer is a single word or a short
phrase, but if rich, structured outputs (as in end-
to-end RE) are required, memorization is not as
prevalent (Wang et al., 2025). While label con-
tamination should be kept in mind, that potential
should not be grounds for not evaluating ZS perfor-
mances; other teams have been exploring the same
with OpenAI models (Li et al., 2023b; Zhang et al.,
2024), albeit not in an end-to-end manner. In light
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of recent calls for action (Jacovi et al., 2023), we
have encrypted the datasets using in this project
before hosting them in our GitHub space. Oth-
ers can still reproduce our results by running our
scripts, which would decrypt them on the fly in a
programmatic manner.

5 Limitations

Our results and associated implications apply only
to English datasets, but we hope others will fol-
low up with benchmarks in other languages. With
regards to LLMs studied, we only considered Ope-
nAI models while there are more frontier options
(e.g., from Anthropic, Google, and xAI), which
we could not work with due to time and cost con-
straints. Also, there are datasets with more complex
annotation schemes than BioRED such as the can-
cer genetics and pathway curation datasets of the
BioNLP 2013 shared task (Nédellec et al., 2013).
However, the download links for them are not ac-
tive and additional efforts are needed to carefully
recover and experiment with them. Finally, as we
already acknowledged in Section 4, there is some
potential risk of label contamination although we
believe it is minimal for RE tasks where memoriza-
tion is nontrivial.
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A Appendix

In Table 4, we give examples of ZS prompts for
ChemProt and CDR datasets each describing the
task, predicate label definitions, along with JSON
output templates with some dummy filled in ex-
amples. In Figure 1, we show how the number of
predicted relations does not keep up as the number
of gold relations increases (x-axis) and hence recall
decreases as the number of gold relations increase
in an instance.
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Dataset Prompt

ChemProt Your task is to extract all relevant triples from an input biomedical text. Each triple has a chemical mention, a gene/protein mention, and a predicate linking the two
mentions. The predicate belongs to one of the following 5 predicates: “CPR:3”, “CPR:4”, “CPR:5”, “CPR:6” and “CPR:9”. These 5 predicates are further specified as
below:
“CPR:3” includes UPREGULATOR, ACTIVATOR and INDIRECT UPREGULATOR
“CPR:4” includes DOWNREGULATOR, INHIBITOR and INDIRECT DOWNREGULATOR
“CPR:5” includes AGONIST, AGONIST ACTIVATOR and AGONIST INHIBITOR
“CPR:6” includes ANTAGONIST
“CPR:9” includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF
Note that chemical or gene/protein mentions should have appeared from the original input text. Make sure that each relation is based on mentions within the same
sentence in an abstract.
The output triples should be saved as per the following format:
{“relations”:
[
{“chemical”: “chemical1”,
“gene”: “gene1”,
“relation”: “relation1”},
{“chemical”: “chemical2”,
“gene”: “gene2”,
“relation”: “relation2”},
...
]
}
The output will be {“relations”:[]} if there are no relevant triples expressed in the input text.
With this format, a hypothetical example output for a biomedical text could be the following:
{“relations”:
[
{“chemical”: “polyamines”,
“gene”: “caspase”,
“relation”: “CPR:3”},
{“chemical”: “DL-alpha-difluoromethylornithine”,
“gene”: “ornithine decarboxylase”,
“relation”: “CPR:4”},
{“chemical”: “putrescine”,
“gene”: “ODC”,
“relation”: “CPR:9”}
]
}

CDR Your task is to extract all chemical-disease relations from a text in which the chemical/drug induces the disease. Note that the chemical or disease names should have
appeared in the original input text.
The output should be saved as per the following format:
{“relations”:
[
{“chemical”: “chemical1”,
“disease”: “disease1”},
{“chemical”: “chemical2”,
“disease”: “disease2”},
...
]
}
The output will be {“relations”:[]} if there are no chemical-disease pairs in which the chemical induces the disease expressed in the input text.
With this format, a hypothetical example output for a biomedical text could be the following:
{“relations”:
[
{“chemical”: “Lidocaine”,
“disease”: “cardiac asystole”},
{“chemical”: “daunorubicin”,
“disease”: “neutropenia”}
]
}

Table 4: ZS prompts for ChemProt and CDR. All prompts for seven biomedical datasets are released in our GitHub website.
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Figure 1: (Left) The average number of GPT-4 predicted relations per test instance is plotted against the number of
gold relation in the instance for the CDR dataset. The line y = x is overlayed for ease of interpretation. (Right)
Recall is calculated for subsets of the data by the number of gold relations.
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Abstract

Information extraction (IE) from scientific
literature plays an important role in many
information-seeking pipelines. Large Lan-
guage Models (LLMs) have demonstrated
strong zero-shot and few-shot performance on
IE tasks. However, there are challenges in prac-
tical deployment, especially in scenarios that
involve sensitive information, such as industrial
research or limited budgets. A key question is
whether there is a need for a fine-tuned model
for optimal domain adaptation (i.e., whether
in-domain labelled training data is needed, or
zero-shot to few-shot effectiveness is enough).
In this paper, we explore this question in the
context of IE on scientific literature. We fur-
ther consider methodological questions, such as
alternatives to cloud-based proprietary LLMs
(e.g., GPT and Claude) when these are unsuit-
able due to data privacy, data sensitivity, or
cost reasons. This paper outlines empirical re-
sults to recommend which locally hosted open-
source LLM approach to adopt and illustrates
the trade-offs in domain adaptation.

We focus on several instruction-tuning frame-
works leveraging IE benchmark datasets to cap-
ture task-specific knowledge whilst maintain-
ing model generalisability. We refer to this
class of LLM models as Specialised LLMs (s-
LLMs). We show that instruction-tuned (IE
task-adapted) s-LLMs can outperform open-
source and proprietary LLMs for entity extrac-
tion from scientific documents. Furthermore,
this improvement gain is substantial, highlight-
ing the value of the in-domain (continual) fine-
tuning.

1 Introduction

Information Extraction (IE) from the scientific
literature (e.g., scientific documents, technical
reports) is a critical component of scientific
information-seeking pipelines (Luan et al., 2018;
Nasar et al., 2018; Cai et al., 2025). IE supports
tasks such as knowledge-base construction (e.g.,

BRENDA (Chang et al., 2021) and ChEMBL (Pa-
padatos et al., 2015)), advancing knowledge dis-
covery (Horawalavithana et al., 2022), and support-
ing predictive modelling (Li et al., 2022). In such
pipelines, Named Entity Recognition (NER) is of-
ten the initial step used to extract structured output
from unstructured text, enabling downstream tasks,
such as relation extraction (RE) (Luan et al., 2018)
or knowledge-graph construction (Zhang and Soh,
2024). As a result, improving NER accuracy is crit-
ical, as errors introduced at this stage can propagate
and impact the reliability of the entire pipeline.

As IE pipelines evolve, they are increasingly
designed as agentic systems, where multiple spe-
cialised models, or agents, collaborate to complete
complex tasks (Belcak et al., 2025; Sharma and
Mehta, 2025). Within such systems, smaller fine-
tuned models play a key role: they can be assigned
to specific subtasks, such as NER, RE, or valida-
tion, and interact with other agents to balance ac-
curacy, efficiency, and scalability. In this context,
NER is not only a technical bottleneck but also a
foundational capability for multi-agent scientific
systems, motivating the study of models that can be
adapted to domain-specific tasks while remaining
lightweight and composable.

Recent advances in large language models
(LLMs) such as GPT-51 and Claude 3.7 Sonnet2

have improved our ability to extract information
from scientific documents. Commercial APIs
built in proprietary LLMs offer a strong perfor-
mance. Using these models becomes problematic,
however, in scenarios that involve sensitive data
(e.g., biomedical records, confidential industrial
research), as privacy cannot be guaranteed. Conse-
quently, many research and industrial settings rely
on open-source models as a practical alternative.

Although open-source LLMs provide significant

1https://openai.com/gpt-5
2https://www.anthropic.com/news/claude-3-7-sonnet
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flexibility, their zero-shot performance for IE tasks
often remains insufficient for practical IE scenar-
ios, as errors propagate to downstream tasks. In-
context learning (ICL) enables task and domain
adaptation through the inclusion of prototypical
examples in the prompt (Li et al., 2023; Ghosh
et al., 2024) without actually performing super-
vised learning (no parameter update) called few-
shot learning. While ICL markedly improves over
zero-shot performance, studies show that it still
lags behind state-of-the-art results for IE tasks (Li
et al., 2023; Ma et al., 2023; Xu et al., 2024; Wad-
hwa et al., 2023; Wan et al., 2023; Gao et al., 2023;
Jiao et al., 2023; Huang et al., 2024; Wang et al.,
2024; Gui et al., 2024b). For the domain of science
literature, similar trends have been observed; ICL
improves results but does not match supervised
fine-tuning models (SLM and LLM) (Xiao et al.,
2024; Zhou et al., 2024; Li et al., 2024; Zhang
et al., 2025b), and simpler fine-tuned models (e.g.,
RoBERTa (Liu et al., 2019)) can outperform LLMs
using ICL (Jimenez Gutierrez et al., 2022; Bölücü
et al., 2023).

To bridge this gap, researchers increasingly turn
to instruction-tuned LLMs for IE, which we refer
to as specialised LLMs (s-LLMs). These mod-
els are trained using instruction-tuning on task-
specific benchmark datasets (Zhou et al., 2024;
Gui et al., 2024b; Wang et al., 2023; Zhang et al.,
2025a), where each training instance pairs an in-
struction, an input text, and a structured output
that reflects the benchmark’s annotation scheme.
Instruction-tuning provides task-level adaptation
and enhances zero- and few-shot generalisation,
while still enabling local deployment—an essential
requirement for domains involving sensitive or pro-
prietary data. Typically built on open-source LLMs
such as Llama3 and Qwen4, s-LLMs provide cost-
effective alternatives to proprietary systems like
GPT-4 (Gui et al., 2024b,a; Yuan et al., 2025), mak-
ing them suitable for applications such as industrial
research.

The s-LLMs require a large set of bench-
mark datasets for instruction-tuning, which is not
straightforward and requires substantial compu-
tational resources. Therefore, it is not practical
to instruction-tune a new model for each conceiv-
able domain for IE. For this reason, in this study,
we evaluate the adaptability of already instruction-

3https://huggingface.co/meta-llama
4https://huggingface.co/Qwen

tuned IE-specialised models to scientific domains.
Specifically, we focus on three examples of this
class of approach: IEPile (Gui et al., 2024b),
UniNER (Zhou et al., 2024), and YAYI-UIE (Xiao
et al., 2024) (Section 3). These models have been
instruction-tuned using a collection of datasets, in-
cluding scientific datasets (see Table 6), and are
designed to generalise across a wide range of IE
tasks (e.g., NER, RE, and Event Extraction (EE))
and domains (e.g., social media, biomedical).

Hence, we investigate the following research
questions.

• RQ1: How well do s-LLMs adapt to the sci-
entific NER task, a subtask of IE, compared
to the out-of-the-box (open-source and propri-
etary) LLMs?

• RQ2: What is the additional performance
gain of continual (in-domain) tuning of s-
LLMs on specific domains compared to their
open-source (vanilla) counterparts?

To address the research questions, we evalu-
ate the performance of these models (s-LLMs)
and compare them to “out-of-the-box” open-
source LLMs5 (e.g., Llama (Touvron et al., 2023),
Baichuan (Yang et al., 2023)), as well as proprietary
LLMs (e.g., Claude (Anthropic, 2024), GPT (Ope-
nAI, 2024)). We focus specifically on the case of
scientific NER, using four datasets: MeasEval, Sci-
ERC, STEM-ECR, and WLPC, each representing
a different scientific subdomain or text modality
(Section A.4 for an overview of the datasets) in
zero-shot, few-shot, and supervised settings. We
compare the s-LLMs to baselines under different
domain adaptation regimes (zero- and few-shot,
continual tuning).

In summary, the contributions of this paper in-
clude:

• Comparative analysis of instruction-tuned
LLMs against their open-source (vanilla)
counterparts and proprietary LLMs under dif-
ferent ‘learning’ regimes (corresponding to
different availability of training data).

• Exploratory experiments of models on the
NER task to reveal the impact of task-specific
instruction-tuning.

• Practical guidelines for researchers aiming to
use LLMs for scientific IE.

5That is, without any further specialisation beyond the
foundation model training.
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To the best of our knowledge, this is the first
extensive evaluation of instruction-tuned LLMs for
IE from scientific literature, providing a compre-
hensive analysis that compares foundation, open-
source, and proprietary LLMs and their domain
adaptation capabilities across diverse datasets un-
der zero-shot, few-shot and supervised fine-tuning
settings.

2 Related Work

LLMs (Brown et al., 2020; Ouyang et al., 2022;
Touvron et al., 2023) have already been success-
fully used in IE (Gao et al., 2023). LLM-based
IE methods are divided into In-Context Learning
(ICL) and Supervised Fine-tuning (SFT) based ap-
proaches. ICL-based models (Jimenez Gutierrez
et al., 2022; Li et al., 2023; Wang et al., 2025) rely
on prompting with a few labelled examples in addi-
tion to instructions, while SFT-based models utilise
annotated datasets for fine-tuning LLMs (Zhou
et al., 2024; Xiao et al., 2024; Gui et al., 2024b; Li
et al., 2024). Research indicates that ICL-based
models tend to exhibit relatively inferior effec-
tiveness on IE tasks compared to SFT-based mod-
els (Jimenez Gutierrez et al., 2022; Wang et al.,
2022; Zhou et al., 2024).

To improve the task and domain adaptability
of LLMs, instruction-tuning has become a com-
mon technique. This involved fine-tuning LLMs
on instruction-based benchmark datasets (a set of
datasets specific to a task or domain). Instruction-
tuning has been explored across various domains,
including Dialogue (Gupta et al., 2022), Intent Clas-
sification and Slot Filling (Rosenbaum et al., 2022),
Sentiment Analysis (Varia et al., 2023), and Emo-
tion Classification (Liu et al., 2024).

In the context of IE, several studies have ad-
vanced instruction-tuning approaches. Zhou et al.
(2024) introduce UniNER, which reformulates IE
as a Question-Answer (QA) task and instruction-
tune Llama using knowledge-distilled datasets
from ChatGPT within conversation-style setup, tar-
geting the NER task across diverse domains. Gui
et al. (2024b) propose a schema-based instruction-
tuning framework for IE (NER, RE and EE) and
present IEPile, a bilingual IE instruction bench-
mark for instruction-tuning. Additionally, Xiao
et al. (2024) extend IEPile benchmark by adding
more Chinese IE datasets and introduce chat-
enhanced instruction tuning that helps gain a fun-
damental understanding of open-world understand-

ing. Wang et al. (2023) curate the IE INSTRUC-
TIONS benchmark containing expert-written in-
structions for diverse IE tasks and apply instruction-
tuning for IE tasks. Finally, Lu et al. (2023) fo-
cus on open-world entity profiling, which is a
sub-domain of open-world IE, and construct the
INSTRUCTOPEN-WIKI benchmark for the task.
They instruction-tune BLOOM to obtain a task-
specialised model named PIVOINE.

3 IE-specialised LLMs

Preliminaries Instruction tuning is a supervised
fine-tuning (SFT) method in which LLMs are
trained on datasets containing human-readable task
instructions alongside input-output examples to
guide the outputs of LLMs. Each training data-
point, d = ⟨instruction, input, output⟩, in the
dataset D consists of: (i) an explicit instruction
describing the task to be performed; (ii) the corre-
sponding input data; and (iii) the desired output in
a defined format.

Unlike standard SFT, which fine-tunes a model
on input-output pairs for a specific task without ex-
plicit instructions, instruction-tuning conditions the
model on natural language task descriptions. This
enables better generalisation to unseen domains for
the same task (Zhou et al., 2024; Gui et al., 2024b).

Several instruction-tuned LLMs have recently
been developed to improve IE performance across
diverse domains. We introduce these models (spe-
cialised LLMs for IE, henceforth ‘IE s-LLMs’ or
simply ‘s-LLMs’) with some discussion of how the
approaches vary the basic instruction fine-tuning
problem framing.

IEPile (Gui et al., 2024b)6 proposed a schema-
based instruction-tuning, where a schema defines
the information to be modelled and extracted, such
as entity types, relations, events, etc. This method
involves hard-negative schema construction and
batched instruction generation. The schemas are
defined as positive (relevant types) and negative
(non-relevant types), where negative types can be
considered as a kind of “negative” case from a ma-
chine learning perspective; the model should not
make predictions for this type. To control the com-
plexity of each instruction, the method applies a
batching strategy that limits the number of schemas
included per instruction using a tunable hyperpa-
rameter. The IEPile model training specifically

6https://github.com/zjunlp/IEPile
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chooses hard negatives, labels that are easily con-
fused with positive (i.e., relevant) labels. At infer-
ence time, the union set of all schema types across
dataset D is presented for prediction.

For instruction-tuning, the IEPile benchmark is
constructed from a bilingual dataset D that com-
prises 26 English and 7 Chinese datasets. The
dataset spans 3 different tasks: NER, RE, and EE,
as exemplified by the datasets ConLL2004 (Car-
reras and Màrquez, 2004), FabNER (Kumar and
Starly, 2022), and BC5CDR (Li et al., 2016), re-
spectively. As a result, the instruction will differ
for these datasets, with content specific to each of
the task descriptions.

UniNER (Zhou et al., 2024)7 is a framework
that uses ChatGPT for knowledge distillation to
generate instruction-tuning data for the NER task.
It uses broad-coverage, unlabeled web text and
distils this information into an instruction-tuned
model built on an open-source LLM (LLaMA),
resulting in the UniversalNER models.

Unlike traditional NER, which frames the task
as entity detection, UniNER reformulates it as a
question-answering (QA) task. The model input
is a question about what entity is present in the
accompanying text (e.g., What describes t1 in the
text?), and the output is the corresponding entity
span. These QA pairs are generated using GPT,
which is prompted to answer such questions based
on given texts. The responses are collected as “con-
versation” transcripts and subsequently segmented
into QA tuples t, forming a training dataset for in-
struction tuning. In data construction, they apply
negative sampling where non-relevant entity types
are included in the dataset. This process creates a
distilled dataset suitable for fine-tuning LLaMA-
2 (Touvron et al., 2023), resulting in instruction-
tuned models that generalise well across domains.

Additionally, the authors introduce a benchmark
dataset D consisting of 43 datasets from a wide
range of domains, including biomedicine, law, and
finance, to evaluate models.

YAYI-UIE (Xiao et al., 2024)8 is an instruction-
tuning framework that consists of two steps:
(i) instruction-tuning for chat, where an open-
source dialogue data with instructions and a self-
constructed corpus is used to train a chat-enhanced
language model to gain a fundamental understand-

7github.com/universal-ner/universal-ner
8huggingface.co/wenge-research/yayi-uie

(a) Open-source LLMs

(b) Proprietary LLMs

(c) s-LLMs

Figure 1: Zero-shot performance comparison of open-
source, proprietary, and IE s-LLMs on the SciERC
dataset.

ing of open-world language and enhance Chinese
language capabilities. A key step in the chat-based
training is to filter low-quality samples, such as
meaningless, incomplete, sensitive, or duplicate
samples; (ii) instruction-tuning for IE, where the
chat-based model is used to tune for IE tasks with
a benchmark dataset. The benchmark D includes
a combined dataset of 16 Chinese IE datasets and
the InstructUIE benchmark (Wang et al., 2023) for
IE instruction-tuning, spanning data from diverse
sources such as finance, politics, and security.

Statistical details of scientific datasets used in
instruction-tuning of IE (s-LLMs) are given in Ap-
pendix A.4 in Table 6.
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Method SciERC Stem-ECR MeasEval WLPC

Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot Zero-shot Few-shot

Proprietary LLMs
GPT-4 31.56 41.12 21.39 35.59 15.67 24.47 52.95 59.16
Claude 3.5 Sonnet 27.32 34.19 21.70 34.06 14.70 22.47 36.21 41.05

Open-source LLMs
Baichuan2 6.45 11.56 8.18 14.12 12.48 16.18 6.75 14.10
Llama2 7B 7.24 13.20 9.47 15.01 11.18 18.14 10.67 19.78
Llama2 13B 12.45 22.38 10.52 19.42 11.36 19.21 12.44 21.45
Llama2 70B 18.12 26.89 12.89 20.17 12.45 20.56 15.74 22.49
Llama3.1 8B 14.52 24.80 10.14 20.17 11.72 20.10 9.32 19.17
Llama3.1 70B 24.43 29.45 14.73 21.45 12.14 21.49 18.42 25.19

IE s-LLMs
Baichuan2-IEPile 19.53 32.15 15.22 23.10 16.78 26.32 28.79 35.17
Llama2-IEPile 20.48 18.49 18.49 25.42 24.18 29.12 30.40 36.56
UniNER-7B 37.01 46.43 17.26 24.37 11.29 19.47 30.13 35.49
YAYI-UIE 22.55 35.19 25.89 32.17 24.62 30.15 33.13 37.10

Table 1: Zero-shot and few-shot (1-shot) performance on NER datasets (of note, SciERC is in-domain for the three
s-LLMs (IEPile, UniNER and YAYI-UIE); the other datasets are out-of-domain). The best zero-shot results for each
dataset are underlined, and the best few-shot results for each dataset are boldfaced.

4 Results and Analyses

We design our experiments to evaluate the per-
formance of s-LLMs on the scientific NER task9.
Our goal is threefold: (1) evaluation of zero-
shot and few-shot (1-shot) capabilities of s-LLMs
against their open-source (vanilla) counterparts and
proprietary LLMs; (2) comparison of continual
fine-tuning (in-domain) of s-LLMs’ performance
against their open-source counterparts’ fine-tuning;
and (3) exploration of the generalisability of in-
domain adapted models to a specific dataset to
other scientific datasets. Finally, we present exper-
imental results on the general domain to compare
them with findings from the scientific domain.

4.1 Experiments in Zero-shot and Few-shot
Settings for Scientific Domain

Our first experiment focuses on examining whether
the entity extraction capability learned by s-LLMs
is transferable across scientific domain datasets un-
der zero-shot and few-shot settings (RQ1). Table 1
reports performance across datasets. Of these, only
SciERC was used during the instruction-tuning of
the s-LLMs and is thus considered the in-domain
(seen in training) dataset (see Table 6)10. The
remaining datasets (STEM-ECR, MeasEval and
WLPC) are out-of-domain (unseen in training), rep-
resenting unseen entity type sets (covariate shift)

9Experimental settings are given in Appendix A.
10Results on it are not strictly zero-shot.

and datasets.
Table 1 enables direct comparison across the

prior work for the first time. Here, our results in-
clude results for open-source and proprietary LLMs
that are state-of-the-art at the time of writing.

To begin with, as expected, we note that pro-
prietary LLMs (GPT-4 and Claude 3.5 Sonnet)
stand out as strong baselines across the board.
Their performance is particularly impressive given
the presumed absence of task-specific fine-tuning.
Their effectiveness is the best/second-highest per-
formance on most datasets. This demonstrates
their ability to generalise across interpretable entity
types (e.g., SciERC: Material, Method, Metric, · · ·;
STEM-ECR: Data, Material, · · ·; WLPC: Ph, Size,
Action, · · ·). However, our aim in this paper is to
explore the best methods to obtain alternatives to
these cloud-based models, which may be locally
hosted by an organisation (particularly if they are
responsible for sensitive data). We thus turn our
focus to open-source LLMs.

In general, we find that zero-shot inference
from IE s-LLMs is better than using open-source
LLMs without any task specialisation. For Sci-
ERC, UniNER-7B (based on Llama2-7B) achieves
a higher F1 score than both open-source and propri-
etary LLMs. This demonstrates the benefit of task-
specific instruction-tuning. Note that the SciERC
dataset is used for the NER task in the UniNER
model, whereas it is used as the RE dataset for the
IEPile (based on Llama2-13B & Baichuan2-13B)
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and YAYI-UIE (based on Baichuan2-13B) mod-
els (see Table 6). Indeed, the s-LLMs, UniNER-
7B and YAYI-UIE, generally outperform the pro-
prietary models for all the datasets except WLPC
(which includes text from technical documentation
instead of scientific publications), which is particu-
larly interesting given the generally smaller param-
eter size of s-LLMs compared to GPT-4 and Claude
3.5 Sonnet. However, we note that the margin only
has a maximum difference of approximately 9 F1

points in the case of MeasEval (YAYI-UIE vs GPT-
4). In a few-shot setting (1-shot), all models (open-
source, proprietary and s-LLMs) benefit from ICL
examples, leading to performance gains over zero-
shot baselines. Excluding proprietary LLMs, the
trend remains consistent. s-LLMs outperform their
open-source(vanilla) counterparts.

To understand why s-LLMs exhibit performance
gains, we analyse the precision and recall metrics
for the models (open-source, proprietary and s-
LLMs), presented in Figure 1. This figure presents
a comparative analysis of zero-shot performance
on the SciERC dataset. Notably, the s-LLMs lead
to increased precision, at the expense of recall. In
the case of the UniNER approach, the precision
gains strongly outweigh any drop in recall. This in-
dicates that targeted training on IE tasks enhances
the models’ ability to identify relevant entities with
greater accuracy. Additionally, these models tend
to be relatively conservative and precise in their
positive predictions, though they may miss some
relevant instances.

In conclusion, while s-LLMs benefit from fine-
tuning, they still face generalisation challenges
in scientific domains (i.e., the low recall). More-
over, although the s-LLMs are competitive against
proprietary LLMs, the performance gap remains
narrow in some cases, underscoring the need for
further advancements in training and fine-tuning
strategies to improve robustness. As a result, we
turn our attention to the continued fine-tuning of
the IE capability of both open-source LLMs and IE
s-LLMs for supervised domain adaptation.

4.2 On the Benefits of Continual In-domain
Fine-tuning for Scientific Writing

The results from the previous section show that
IE s-LLMs remain competitive against proprietary
LLMs under zero-shot and few-shot settings. How-
ever, despite their strengths, a performance gap
remains compared to SFT models in scientific do-
main datasets, indicating that there is still room for

further improvement.
In this section, we ask: does continual in-domain

tuning on the target dataset lead to additional per-
formance gains, or do IE s-LLMs already reach
peak performance on scientific datasets through
their general instruction-tuning? (RQ2) In the con-
text of our motivation in Section 1, one might con-
sider how further fine-tuning of a local model on a
sensitive or private dataset might improve results.

Following prior work (Zhou et al., 2024; Gui
et al., 2024b), we refer to this addition as continual
in-domain fine-tuning, a next step after instruction-
tuning that further adapts the model to a specific
dataset and denote this in our results tables as SFT
(for supervised fine-tuning).

To explore the impact of continual in-domain
fine-tuning, we fine-tune both open-source (vanilla)
LLMs and IE s-LLMs using the training sets of the
scientific datasets (Appendix A.4). Table 2 presents
the results of the SFT regime compared to zero-
shot performance, alongside GPT-4 (zero-shot) and
BERT-base (fine-tuned) as baselines; BERT-base
represents the task-specific supervised models com-
monly used across studies in the literature (Xiao
et al., 2024; Zhou et al., 2024; Gui et al., 2024b).
The table shows that all SFT models improve sig-
nificantly on all datasets compared to their untuned
counterparts. Notably, they outperform GPT-4 in
zero-shot settings by a considerable margin. For
example, for the STEM-ECR dataset, the differ-
ence is over 55 F1 points, demonstrating clearly
that fine-tuning is still a preferred approach in the
presence of annotated training data.

The results demonstrate that in-domain fine-
tuning on a specific dataset helps, whether this
is the original open-source LLMs or the s-LLMs.
However, performance gains from in-domain fine-
tuning are greater when starting with IE s-LLMs,
indicating learning from the multiple datasets used
in the s-LLMs training is transferable, demon-
strating the benefits of instruction tuning and sub-
sequent in-domain optimisation. Among the in-
domain fine-tuned models, the YAYI-UIE model
achieves the highest Micro F1 score among the
SFT models across all datasets, showing its strong
performance in NER. This reflects its ability to han-
dle diverse scientific NER tasks, possibly related
to its larger benchmark datasets covering a wide
range of IE tasks and domains in instruction tuning.
YAYI-UIE differs from other methods (UniNER
and IEPIle) in that dialogue data is used to perform
general instruction tuning to train a chat-enhanced
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SciERC STEM-ECR MeasEval WLPC

Model Zero-shot SFT Zero-shot SFT Zero-shot SFT Zero-shot SFT

Open-source LLMs
Baichuan2 6.45 52.18 8.18 51.08 12.48 48.47 6.75 35.23
Llama2 7B 7.24 53.14 9.47 50.98 11.18 52.78 10.67 39.56
Llama2 13B 12.45 55.45 10.52 57.14 11.36 54.10 12.44 42.21
Llama2 70B 15.12 56.48 12.89 59.24 12.45 53.18 15.74 45.40
Llama3.1 8B 14.52 56.20 10.14 56.74 11.72 54.10 9.32 43.18
Llama3.1 70B 24.43 55.26 14.73 58.31 12.14 52.85 18.42 46.12

LLMs optimised for IE tasks
Baichuan2-IEPile 19.53 73.18 15.22 75.12 16.78 59.14 28.79 60.19
Llama2-IEPile 20.48 76.08 18.49 78.17 24.18 64.10 30.40 62.58
UniNER-7B 37.01 78.41 17.26 79.02 11.29 66.18 30.13 60.45
YAYI-UIE 21.17 80.47 25.89 82.52 24.62 69.71 33.13 64.17

BERT-base - 62.81 ±0.85 - 68.17 ±0.76 - 55.43 ±1.15 - 39.52 ±0.52
GPT-4 31.56 - 21.39 - 15.67 - 52.95 -

Table 2: Strict Micro F1 on NER datasets for zero-shot and SFT settings. The best zero-shot results for each dataset
are underlined, and the best SFT results for each dataset are boldfaced.

model using a dialogue corpus in both English and
Chinese instead of using an instruction model.

Of note, SFT appears somewhat ineffective
for base open-source LLMs. Specifically, the
BERT baseline yielded higher effectiveness on
most datasets. While IE s-LLMs achieved the best
performance among all SFT models, this comes at a
cost. These models require extensive data resources
for training (YAYI-UIE: 49 datasets, IEPile: 33
datasets, and UniNER: 43 datasets) and signifi-
cant computational resources for instruction-tuning
and supervised fine-tuning compared to fine-tuning
PLMs for the NER task. The model complexity
alone can limit their accessibility and scalability
for researchers or practitioners with resource con-
straints.

This highlights a fundamental trade-off between
effectiveness and efficiency: IE s-LLMs deliver
state-of-the-art performance but with higher train-
ing and inference cost, while smaller models like
BERT offer a practical balance of accuracy and
affordability.

In summary, continual fine-tuning remains criti-
cal for achieving optimal performance in scientific
IE. When paired with general instruction tuning,
this two-stage process supports both generalisabil-
ity and domain specialisation (dataset adaptation),
enabling robust and adaptable solutions for real-
world applications.

4.3 Generalisability of Fine-tuned s-LLMs

To assess whether the continual in-domain fine-
tuning also leads to generalisable models (to other
scientific datasets), we take the IE s-LLM models

(a) STEM-ECR

(b) MeasEval

Figure 2: Strict Micro F1 on NER datasets obtained
from IE s-LLMs and fine-tuned on the SciERC dataset.

obtained by continual fine-tuning on the SciERC
dataset (X-SciERC) and use these models for
zero-shot inference on the MeasEval and STEM-
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ECR datasets. We choose the SciERC dataset be-
cause there is an entity type overlap with the STEM-
ECR dataset (‘Material’, ‘Method’), but not with
the MeasEval dataset. The results are presented in
Figure 2.

The findings indicate that IEPile models
fine-tuned in-domain on the SciERC dataset
(X-IEPile-SciERC) exhibit lower perfor-
mance on the STEM-ECR dataset, while the
UniNER and YAYI-UIE models demonstrate
improved performance. The reason behind
this might be the knowledge distillation used
in the instruction-tuning of UniNER and
the larger benchmark used in the tuning of
YAYI-UIE and UniNER models. For the
MeasEval dataset, the UniNER-7B-SciERC
model provides a slight improvement, and
Baichuan2-IEPile-SciERC outperforms
the zero-shot Baichuan2-IEPile. In contrast,
the continually trained YAYI-UIE model yields a
performance drop.

From these results, we conclude that the gen-
eral applicability of the model depends on how
close the out-of-domain data is to the data used
for continual training. As the SciERC and STEM-
ECR entity types share some overlap (being about
general concepts relating to the scientific method),
we observe better cross-domain effectiveness in
UniNER and YAYI-UIE models. In contrast, for
the MeasEval dataset, given its particular focus on
quantitative measurements, we see no meaningful
improvements stemming from out-of-domain train-
ing, and, in one case (the YAYI-UIE model), we
actually observe a marked performance drop.

4.4 General Domain Evaluation
To assess the generalisability of our findings to
domains beyond scientific information extraction,
we evaluated s-LLMs using the CrossNER (Liu
et al., 2021) and CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003) datasets (statistical details
are provided in Table 5). ConLL2003 is used
for in-domain and CrossNER is used for out-of-
domain, as outlined by Wang et al. (2023); Zhou
et al. (2024).

As shown in Table 3, s-LLMs outperform
their open-source (vanilla) counterparts on the in-
domain dataset (CoNLL2003). However, GPT-4
(a proprietary LLM) outperforms these models on
the CrossNER dataset. This performance gap may
be related to two possible factors: (i) the model’s
undisclosed pretraining data, which may include

broader coverage of domains or overlap with simi-
lar data; and (ii) a similar trend observed in sci-
entific domain evaluations (Section 4.1), where
s-LLMs struggle with generalisation to unseen
datasets.

These findings show a key limitation of s-LLMs:
instruction-tuning improves performance within do-
mains present in the instruction-tuning data; how-
ever, it does not guarantee robustness to domain
shifts. In contrast, large-scale proprietary LLMs
like GPT-4 benefit from diverse pretraining data
or emergent generalisation capabilities (although
these are difficult to verify given the lack of trans-
parency around the training data and regime).

Model CoNLL2003 AI Literature Music Politics Science
Proprietary LLMs
GPT-4 68.68 61.95 52.32 70.79 63.99 62.66
Claude 3.5 Sonnet 55.10 32.78 30.18 43.52 45.37 47.12

Open-source LLMs
Baichuan2 20.50 4.17 12.14 16.89 20.47 8.52
Llama2 7B 17.06 5.19 13.87 17.42 11.96 9.24
Llama2 13B 33.47 13.92 28.92 33.96 36.97 23.85
Llama2 70B 43.39 39.10 40.67 49.30 53.49 39.50
Llama3.1 8B 62.48 40.12 42.17 48.82 30.15 45.12
Llama3.1 70B 70.47 51.42 56.08 64.02 38.34 52.49

IE s-LLMs
Baichuan2-IEPile 70.41 56.12 50.52 59.18 53.17 55.10
Llama2-IEPile 72.40 53.47 62.15 58.72 55.67 57.68
UniNER-7B 81.14 60.25 62.98 66.35 65.30 69.23
YAYI-UIE 78.18 51.60 43.38 61.46 47.43 48.45

Table 3: Zero-shot performance on general domain NER
datasets (CoNLL2003 is in-domain; CrossNER is out-
of-domain). The best results are boldfaced.

4.5 Practical Recommendations

Based on our evaluation of s-LLMs compared to
proprietary and open-source LLMs for the scien-
tific domain, we make the following recommenda-
tions for practitioners, especially those working in
privacy-sensitive or resource-constrained environ-
ments in the domain of scientific literature informa-
tion extraction:

1. Domain adaptation as a solution for lo-
cal (open-source) models. For open-source
LLMs, task adaptation (instruction-tuning) is
required to enhance the task-specific zero- and
few-shot generalisation capabilities of LLMs;
i.e., open-source models without it perform
poorly, perhaps too poorly for prototyping.

2. s-LLMs as a starting point for dataset adap-
tation. For in-domain adaptation in the sci-
entific domain, starting with an s-LLM that
has already adapted to the task yields stronger
performance. The prior multi-task training
often provides a useful foundation that can
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be transferred across domains. On the flip-
side, direct instruction tuning of a base open-
source model provides limited value (or re-
quires much more training data, see below).

3. YAYI-UIE demonstrates the best overall
performance and generalisation across s-
LLMs. Among s-LLMs, YAYI-UIE achieves
the highest and most consistent results after
continual in-domain fine-tuning, making it a
strong choice for scientific IE applications.

4. Task adaptation with a larger benchmark.
Gathering in-domain training data and using it
for instruction-tuning is still the most effective
way of task adaptation. For LLMs, instruction-
tuning for task adaptation appears to require
a prior step (instruction tuning), as direct in-
domain fine-tuning vanilla open-source LLMs
appears to yield subpar results.

5. Smaller PLMs remain viable cost-effective
alternatives. Although s-LLMs offer im-
proved performance, smaller PLMs like BERT
can still provide competitive results, if in-
domain training data can be sourced. Their
lower computational demands make them
practical options for projects with limited re-
sources.

5 Conclusion

In this paper, we investigate instruction-tuned IE
specialised LLMs (s-LLMs), specifically focusing
on their performance in scientific entity extraction
compared to open-source and proprietary LLMs.
The experimental results show that s-LLMs per-
form better than their open-source (vanilla) coun-
terparts, showing that instruction-tuning benefits in
task-adaptation. However, s-LLMs still face a gen-
eralisation problem in the scientific domain. Con-
tinual in-domain fine-tuning of IE s-LLMs leads
to the best results, particularly for specific scien-
tific datasets of interest. In our experiments, these
models outperformed proprietary ones by up to an
order of magnitude, achieving over 55 F1 points in
zero-shot and 20 F1 points in few-shot settings.

We also observe that models like YAYI-UIE per-
form well across a variety of datasets, highlighting
their adaptability to unseen datasets in zero-shot
and few-shot settings. However, the choice of s-
LLM and its suitability for a given dataset remains
a hyperparameter defined in the study. Despite
the success of s-LLMs, PLMs (BERT) continue
to offer competitive and cost-effective alternatives
for NER, particularly when in-domain train data is

available, often outperforming open-source LLMS
in-domain tuned directly for specific tasks.

This work highlights the strengths and weak-
nesses of s-LLMs in scientific NER and provides
a comparative analysis across zero-shot, few-shot
and fine-tuned settings. However, our study is lim-
ited in scope: we focused exclusively on sentence-
level NER within the scientific domain and relied
on publicly available s-LLMs without modifica-
tions. As such, the performance and limitations
of these models inherently constrain our findings.
Additionally, due to resource limitations, we did
not evaluate large proprietary LLMs such as GPT-4
or Claude under fine-tuned conditions. We also did
not explore the problem of catastrophic forgetting
in s-LLMs, which is important to understand how
well these models retain knowledge and problem-
solving skills learned from previous tasks.

Future work will extend this evaluation to other
IE tasks such as relation and event extraction, and
investigate how combining the strengths of differ-
ent s-LLMs (e.g., UniNER’s strong zero-shot per-
formance vs. YAYI-UIE’s fine-tuning responsive-
ness) can lead to more robust pipelines. Expanding
the diversity and number of datasets may also help
in identifying better general-purpose starting points
for scientific information extraction.

Limitations

Our study is centred exclusively on the sentence-
level Named Entity Recognition (NER) task.
Specifically, we concentrate on the scientific do-
main, which may require further exploration to
apply our findings to other domains. Additionally,
due to resource constraints, we were unable to fine-
tune large language models with more parameters
(e.g., GPT-4, Claude). We use the IE s-LLMs pro-
vided by the papers. The limitations derived from
these models are also limitations of our study.
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A Experiments

A.1 Baseline Models

We compare the s-LLMs against two categories of
foundation LLMs:

1. Proprietary LLMs: We use GPT4 (GPT-
4o) (Achiam et al., 2023) and Claude (Claude
3-5 Sonnet) (Anthropic, 2024).

2. Open-source base LLMs: We include
the open-source (vanilla) counterparts of s-
LLMs in our evaluation, including Baichuan2
(Baichuan2-7B-Chat) (Yang et al., 2023), and
Llama (Llama2-7B-Chat, Llama2-13B-Chat,
Llama2-70B-Chat, Llama-3.1-8B-Instruct,
and Llama-3.1-70B-Instruct) (Touvron et al.,
2023).

In addition, we also compare the performance of
LLMs against a fine-tuned PLM, i.e., BERT (De-
vlin et al., 2019) (BERT-base), which consists of
an encoder and a span-based classifier on top of the
encoder (Zhong and Chen, 2021).
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A.2 Evaluation Metrics
We follow prior studies (Lu et al., 2022; Lin et al.,
2020) and use strict entity-level micro-F1 as our
evaluation metric, where both the entity boundary
and entity type must be correctly predicted.

A.3 Training Environment
We use NVIDIA H100 GPUs for inference and fine-
tuning of open-source LLMs and s-LLMs. Our
experiments are conducted on a node with two
NVIDIA H100 GPUs.

A.4 Datasets
A.4.1 Scientific Domain Datasets
We use four sentence-level datasets, each with a
slightly different focus for scientific IE:

1. MeasEval11 (Harper et al., 2021) is a dataset
collected from scientific documents from 10
different domains (e.g., agriculture, chemistry
and materials science), annotated for four en-
tity types: Quantity, Measured Property, Mea-
sured Entity, Qualifier.

2. SciERC12 (Luan et al., 2018) is a dataset
collected from the Artificial Intelligence (AI)
domain, describing general AI, NLP, Speech
Recognition (SR), Machine Learning (ML),
and Computer Vision (CV). The entity types:
Generic, Material, Method, Metric, OtherSci-
entificTerm and Task.

3. STEM-ECR13 (D’Souza et al., 2020) is a
dataset containing scientific abstracts anno-
tated at the sentence-level, covering ten do-
mains (e.g., agriculture and astronomy). En-
tity types are Material, Data, Process and
Method14.

4. WLPC15 (Kulkarni et al., 2018) is a dataset
of technical writing (as opposed to peer-
reviewed scientific publications) collected
from wet lab protocols for biology and chem-
istry experiments, providing entity, relation,
and event annotations.

The descriptive statistics of all four datasets are
listed in Table 4.

11https://github.com/harperco/MeasEval
12http://nlp.cs.washington.edu/sciIE
13https://data.uni-hannover.de/dataset/stem-ecr-v1-0
14Although originally there are 7 entity types, we follow

previous work (D’Souza et al., 2020) and leave Task, Object,
and Results entity types out.

15https://github.com/chaitanya2334/WLP-Dataset

Data Split MeasEval SciERC STEM-ECR WLPC

# Train 542 1,861 942 8.581
# Dev 155 275 118 2,589
# Test 294 551 118 2,861

# Sentences 991 2,687 1,178 14,301
#Word Count 34,779 65,334 25,968 181,908

# Unique Entity Types 4 6 4 18

Table 4: Statistical details of datasets. “#” denotes the
number of samples in the specific dataset.

Characteristics of Datasets We note that the
first three of the datasets focus on text found in
scientific publications, though the scope of the en-
tity detection may be different. For example, the
MeasEval dataset focuses on the general concept
of quantitative measurements in empirical inves-
tigations (e.g., Measured Property). SciERC and
STEM-ECR include a combination of specific con-
cepts from the science disciplines as well as general
concepts from the scientific method (e.g., Mate-
rial, Method), although the publication set of Sci-
ERC is narrower than that of STEM-ECR. Finally,
the WLPC dataset focuses on experimental reports
with entity types that differ from the other datasets
(given the physical experiment focus), including
measure-based (e.g., Numerical, Generic-Measure,
Size, Ph, Measure-Type) and science discipline-
specific object entities (e.g., Action, Amount, Lo-
cation).

Of these datasets, only the SciERC was used
in the instruction fine-tuning steps for the three
models, as the NER task for the UniNER model and
the RE task for the IEPile and YAYI-UIE models
(Table 6). That is, the data points for the entities
and entity types of MeasEval, STEM-ECR, and
WLPC datasets were not seen during the initial
instruction fine-tuning of the s-LLMs.

A.4.2 General Domain Datasets
The descriptive statistics of general domain
datasets are given in Table 5.

Dataset Domain Type # Test

CrossNER Politics Political 9 650
CrossNER Literature Literary 12 416

CrossNE Music Musical 13 465
CrossNER AI AI 14 431

CrossNER Science Scientific 17 543
CoNLL2003 News 4 3,453

Table 5: The statistical details of the CrossNER dataset.
“#” denotes the number of samples in the specific dataset.
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Model Base LLM Dataset # Entity Type

IEPile
Llama2-13B

&
Baichuan2-13B

FabNER (NER) (Kumar and Starly, 2022) 12
SciERC (RE) (Luan et al., 2018) 4

SemEval (RE) (Hendrickx et al., 2010) -

UniNER-7B Llama2-7B

WLP (Kulkarni et al., 2018) 16
SoMeSci (Schindler et al., 2021) 14

SciREX (Jain et al., 2020) 4
SciERC (Luan et al., 2018) 4

SOFC (Friedrich et al., 2020) 3
FabNER (Kumar and Starly, 2022) 12

DEAL (Grezes et al., 2022) 30

YAYI-UIE Baichuan2-13B
FabNER (NER) (Kumar and Starly, 2022) 12

SciERC (RE) 4

Table 6: Statistical details of scientific datasets used in instruction-tuning of IE s-LLMs. “#” denotes the number of
entity types in the entity type set. Details are from Zhou et al. (2024).

A.4.3 Benchmark Datasets
Statistical details of scientific datasets used in
instruction-tuning of IE (s-LLMs) are given in Ta-
ble 6. You can find the complete list of datasets in
the respective original papers.

A.5 Models and Fine-tuning
For further supervised fine-tuning (SFT) experi-
ments, we use IE s-LLMs (UniNER, IEPile, YAYI-
UIE), which are open-source LLMs instruction-
tuned for IE tasks and open-source LLMs. Specif-
ically, we employ LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning. We follow the pre-
vious works for the hyperparameters of SFT (Gui
et al., 2024b; Zhou et al., 2024). We set the LoRA
rank and alpha parameters to 16 and 32, respec-
tively. The dropout ratio is set to 0.05. The learning
rate is set to 5e-5. We limit the input source length
to 400 and the target length to 512. The training
epoch size is 10, and the batch size is 2.

Baseline BERT-base PLM is fine-tuned utilising
the Hugging Face16 (Wolf et al., 2020) library. The
hyperparameters used in the fine-tuning PLM are
the batch size of 32, the max length of 128, the
learning rate of 1e-5, and 15 epochs of training.

A.6 Zero-Shot and Few-Shot Settings
We conduct zero-shot and few-shot experiments on
open-source and proprietary LLMs using the NER
prompt of EasyInstruct17 (Ou et al., 2023). We
use random sampling for a few-shot setting, where

16https://huggingface.co
17https://github.com/zjunlp/EasyInstruct

we select 1 sample from the train set. We set the
temperature to 0.0 for results with less variability
and set the top probability to 0.95. We use the
original prompt templates used in the training of the
respective IE s-LLMs in the experiments with these
models to align with the setup of the respective
NER-specific training regimes.

Prompts We follow EasyInstruct (Ou et al.,
2023) in our experiments for open-source and pro-
prietary LLMs. For each dataset, we use its defined
entity types and samples (text) from the test set.
IEPile:

User: You are an expert in named entity
recognition. Please extract

entities that match the schema
definition from the input. Return
an empty list if the entity type
does not exist. Please respond in
the format of a JSON string.,
schema: {entity_types}, input: {
Text}

UniNER:

User: Text: {Text}
Assistant: I’ve read this text.
User: What describes {entity_type} in

the text?

YAYI-UIE:

User: Text: {Text}
From the given text, extract all the

entities and types. Please format
the answer in JSON {{{’, ’.join(
entity_types)}: [entities]}}

General:
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User: You are a highly intelligent and
accurate {domain} domain Named-
entity recognition(NER) system. You
take Passage as input and your

task is to recognize and extract
specific types of {domain} domain
named entities in that given
passage and classify into a set of
following predefined entity types:

{entity_types}
our output format is only [{’E’: type

of entity from predefined entity
types, ’W’: entity in the input
text},...] form, no other form.

Input: {Text}
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Abstract

This paper proposes a new research task aimed
at automatically generating metadata for re-
search data, such as datasets and code, to ac-
celerate open science. From the perspective
of “Findable” in the FAIR data principles, re-
search data is required to be assigned a global
unique identifier and described with rich meta-
data. The proposed task is defined as extract-
ing information about research data (specifi-
cally, name, generic mention, and in-text cita-
tion) from texts surrounding URLs that serve
as identifiers for research data references in
scholarly papers. To support this task, we con-
structed a dataset containing approximately
600 manually annotated citation contexts with
URLs of research data from conference pa-
pers. To evaluate the task, we conducted a
preliminary experiment using the constructed
dataset, employing the In-Context Learning
method with LLMs as a baseline. The re-
sults showed that the performance of LLMs
matched that of humans in some cases, demon-
strating the feasibility of the task.

1 Introduction

Open science is a movement to promote the uti-
lization of research data by making them publicly
available (G7 OSWG, 2023). To utilize research
data, such as datasets and code, effectively, it is
necessary to assign metadata. One solution to ac-
celerate this process is to extract information on
research data from texts referring to the data, such
as scholarly papers.

The FAIR Guiding Principles (Wilkinson et al.,
2016) outlines the criteria for achievement in open
science. FAIR stands for “Findable,” “Accessi-
ble,” “Interoperable,” and “Reusable.” The most
fundamental principle is “Findable,” and the re-
quirements for research data to be findable are
that a unique identifier is assigned and that rich
metadata are described. However, no previous
study on extracting information about research

data from scholarly papers has explicitly consid-
ered the above requirements.

This paper proposes a new research task of
extracting information about research data from
scholarly papers. We define the task based on Dat-
aCite (DataCite Metadata Working Group, 2024),
a global standard metadata schema. Specifically,
the task is defined as extracting information cor-
responding to name, generic mention, and in-text
citation of research data. This information is ex-
tracted from the citation context, i.e., the para-
graph containing URL citations.

To perform the proposed task, we manually an-
notated approximately 600 paragraphs of text (ci-
tation contexts) containing URLs citing research
data from conference papers. We then conducted
a preliminary experiment to evaluate our task.
In the experiment, we adopted In-Context Learn-
ing (ICL) using LLMs as the baseline method
and compared it with the performance of humans.
The results demonstrated that the performance of
LLMs for generic mention and in-text citation was
comparable to that of humans.

2 Extraction of Information about
Research Data

2.1 Metadata of Research Data

Research data are data collected or generated
through research activities. In this study, data,
such as datasets and code, were treated as research
data. For research data to meet the most funda-
mental principle in the FAIR, i.e., “Findable,” it
is required to be assigned a unique identifier and
described with rich metadata.

2.2 Utilization of Scholarly Papers for
Metadata Generation

In scholarly papers, information about research
data is provided when the data are created or used
for a study. When mentioning the created research
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Figure 1: Correspondence between information fields to be extracted and DataCite mandatory metadata fields.
Creator, PublicationYear, and Publisher can be obtained not only from the body text of the citing paper, but also
from metadata of the cited paper, such as its authors and affiliations. This metadata is often available in the
reference list or the header section of the cited paper. In-text citation provides access to the cited paper.

Figure 2: Flow of generating metadata on research data from scholarly papers.

data, the creator notes the name and description
of the data and provides access to it, e.g., using
a URL. When mentioning the used research data,
the user provides the identifier, an overview of the
research data, and its usage in the study. This in-
formation about research data is often included in
the text surrounding mentions of research data in
papers. Thus, the information extracted from the
text can be used as a source to generate metadata.

2.3 Requirements for Information to be
Extracted from Papers

In this study, we assumed metadata generation
based on DataCite, which is a global standard and
universal metadata schema. Furthermore, Dat-
aCite offers an additional advantage of interoper-
ability, as its fields can be mapped to other meta-
data schemas such as the Dublin Core1. DataCite
defines a metadata schema with six mandatory
fields: “Identifier,” “Creator,” “Title,” “Publisher,”
“PublicationYear,” and “ResourceType.” Thus, at
minimum, it is necessary to extract the informa-
tion corresponding to these metadata fields.

Based on the above, we define the following
four conditions for the information to be extracted
from scholarly papers.

1. Identifier for research data
1http://purl.org/dc/elements/1.1/

2. Name of research data

3. Information about the type of research data

4. Information related to the creation of the re-
search data

Figure 1 shows the correspondence between these
conditions and mandatory fields in DataCite. The
information in the above conditions 1 and 2 can
be used for “Identifier” and “Title,” respectively.
The information in the condition 3 can be used to
classify “ResourceType.” From the information in
the condition 4, it may be possible to generate the
“Creator,” “Publisher,” and “PublicationYear.”

2.4 Related Work

Previous studies have tackled the task of extracting
information about research data from scholarly pa-
pers. Most of these studies extracted information
by identifying the names and mentions of research
data (Luan et al., 2018; Jain et al., 2020; Schindler
et al., 2021; Hou et al., 2021; Pan et al., 2023;
Otto et al., 2023; Stavropoulos et al., 2023; Pan
et al., 2024; Watanabe et al., 2024). The name and
mention detection realized comprehensive extrac-
tion of information from scholarly papers, satisfy-
ing the condition 2. However, this approach does
not necessarily satisfy the condition 1 because it
may not include identifiers such as URLs.
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Table 1: Fields of information to be extracted.

Field Explanation
name name given to research data
generic mention generic reference to research data
in-text citation in-text reference marker for research

data

In contrast, other studies have obtained infor-
mation on research data from URL citations in the
text of scholarly papers. For example, Tsunokake
and Matsubara classified whether URLs in schol-
arly papers cite research data or not (Tsunokake
and Matsubara, 2021). Zhao et al., Tsunokake and
Matsubara, and Wada et al. classified types of re-
search data cited by URL using the text surround-
ing URL citations (Zhao et al., 2019; Tsunokake
and Matsubara, 2022; Wada et al., 2024). These
studies satisfy the condition 1 because URL is re-
garded as an identifier. They also satisfy the con-
dition 3 by classifying the type of research data.
However, the conditions 2 and 4 are not satisfied
because they did not target information excluding
URL and type.

3 Extraction from Citation Contexts

3.1 Prerequisites for the Task
The flow of generating metadata on research data
from scholarly papers is shown in Figure 2. The
procedure is summarized as follows.

1. Parse the paper in PDF format and convert it
to semi-structured text.

2. Detect URLs that refer to research data
among all URLs in the text and extract seg-
ments containing the URLs as body texts.

3. Extract the information about research data
from the body text.

4. Edit the extracted strings and generate meta-
data on the research data.

In the above procedure, step 3 represents the
task proposed in this study. A detailed defini-
tion of the proposed task is given in Section 3.2.
For step 1, several tools have been developed to
parse and convert scholarly papers in PDF format
to text format (Lopez, 2009; The Apache Soft-
ware Foundation, 2009; Abekawa and Aizawa,
2016; Mistral AI Team, 2025). Regarding step
2, some URL citations refer to related web pages
or scholarly papers rather than the research data.

Table 2: Statistics of the dataset.

Annotation unit Value
#(paragraph, URL) 601

# span
name 571
generic mention 435
in-text citation 202

Figure 3: Annotation interface.

To address this issue, we will adapt a previ-
ously proposed URL citation classification method
(Tsunokake and Matsubara, 2021). Editing in step
4 is left for future work because it requires ad-
vanced techniques, e.g., integrating information
extracted from multiple papers.

3.2 Task Settings
We define step 3, the proposed task, as follows.

Input: a pair of a URL citing research data and a
URL citation context. If the URL appears in
a footnote or the bibliography, its text is con-
catenated to the body text as the input URL
citation context.

Output: strings included in the input text corre-
sponding to name, generic mention, and in-
text citation of research data. Table 1 explains
these three fields of information.

This task takes text with URL citation as input;
thus, it satisfies the condition 1. In addition, the
information name, generic mention, and in-text ci-
tation satisfy the conditions 2 to 4, respectively.

4 Dataset Construction

For the annotation, we used a dataset constructed
in a previous study (Tsunokake and Matsubara,
2022) that targets URL citations of research data.
This dataset contains URLs citing research data
and their corresponding paragraph texts (i.e., cita-
tion contexts), extracted from papers published in
notable natural language processing conferences2.
If URLs appeared in footnotes or bibliographies,
the corresponding paragraphs were extracted. In
this study, we used a total of 601 URL-paragraph
pairs, where the URLs refer to datasets or code3.

2https://aclanthology.org/
3Whether URLs refers to research data was determined

manually in the previous study.
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We asked an expert in corpus annotation in NLP
to assign information name, generic mention, and
in-text citation to paragraphs (if any). Assigning
information of URL-cited research data was done
by annotating spans and labels. Table 2 shows
the statistics of the dataset. We used the doccano
(Nakayama et al., 2018) annotation tool, where the
worker annotated the text, as shown in Figure 3.

5 Preliminary Experiment

To verify the feasibility of the proposed task, we
conducted a preliminary experiment.

5.1 Experimental Data

The constructed dataset was split into training, de-
velopment, and test data based on the papers’ pub-
lication years. The test data included paragraphs
from papers published in 2021, the latest year in
the dataset. The development data were split such
that the proportion of publication years was uni-
form (excluding the test data). The training data
were obtained by excluding the test and develop-
ment data. Finally, the ratio of the training, devel-
opment, and test data was 397:107:97.

5.2 Extraction Methods

In this experiment, we compared the extraction
performance of LLMs with that of humans. For
the human extraction, we asked another worker
who majored in NLP to extract information.

We adopted ICL (Brown et al., 2020) with
LLMs as the baseline method. We set few-shot
settings because the performance of LLMs is af-
fected by the given demo samples. The demo sam-
ples were selected based on the similarity between
the test input text and the candidate texts.

The prompts comprised an instruction, a
demonstration, and a test input4. The instruction
provided the task definition and label in Section 3
and Table 1, respectively. The demonstration in-
cluded samples retrieved from the training data.

5.3 Implementation and Evaluation

We used Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) and Qwen3-8B (Qwen Team, 2025) as open
LLMs, and GPT-4.1 (OpenAI, 2025) as a closed
LLM. In all LLMs, the decoding method was
greedy, and the output format was the JSON
schema. In the few-shot setting, e5-Mistral-7b-

4The prompt is provided in Appendix A.

Table 3: Comparison of extraction performance be-
tween LLMs and humans.

Llama Qwen GPT Human
name 39.33 41.94 45.98 59.86
generic mention 18.63 29.11 42.60 40.40
in-text citation 38.78 39.58 61.33 63.77
Macro average 32.25 36.88 49.97 54.68

instruct (Wang et al., 2023) retrieved five samples
for each input from the training data.

The evaluation was performed for each infor-
mation field shown in Table 1. We used entity-
based F1 as the evaluation metric. Note that we
used the edit distance to determine the match be-
tween the output and the ground truth because the
format of the model output is not span5.

5.4 Results
Table 3 shows the performance of all models,
alongside the human performance. Overall, the
best-performing LLM, GPT-4.1, still underper-
formed humans by approximately 5 points. Focus-
ing on each information field, both LLMs and the
human achieved high performance for name and
in-text citation. Notably, the extraction of name
showed a gap of approximately 10 points, suggest-
ing that this aspect remains challenging for LLMs.
In contrast, for in-text citation, GPT-4.1 achieved
an F1 of 61.33%, demonstrating extraction perfor-
mance comparable to that of humans. For generic
mention, while the open LLMs’ performance was
lower than the human performance, GPT-4.1 out-
performed humans with an F1 of 42.60%.

6 Error Analysis

To reveal the challenges of information extraction,
we conducted an error analysis on the outputs of
the best-performing model, GPT-4.1, as well as
the human. To analyze errors in detail, we intro-
duced the four categories defined in the Message
Understanding Conference (Chinchor and Sund-
heim, 1993).

Correct (COR): both span and label are perfectly
matched.

Partial (PAR): span is partially matched, and la-
bels are matched.

Missing (MIS): ground truth is missed by a sys-
tem.

5The Levenshtein distance was used, and a similarity
greater than 0.8 was considered a match.
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URL http://opus.nlpl.eu/
Citation Context ... This data is derived from two main sources: (1) open-source repository of parallel corpora,

OPUS [Cite_Footnote_3] (Tiedemann, 2012) and (2) ParaCrawl (Esplà et al., 2019). From
OPUS, we use the JW300 corpus (Agić and Vulić, 2019), OpenSubtitles (Lison and Tiedemann,
2016), XhosaNavy, Memat, and QED (Abdelali et al., 2014). Despite the existence of this paral-
lel data, these text datasets were often collected from large, relatively unclean multilingual
corpora, ... footnote: 3 http://opus.nlpl.eu/

ground truth {name: “OPUS”, generic mention: “this paral-lel data”, in-text citation: “Tiedemann, 2012”}
GPT {name: [“OPUS”, “JW300”, “OpenSubtitles”, “XhosaNavy”, “QED”, “Memat”], generic men-

tion: “paral-lel data”, in-text citation: “N/A”}
Human {name: “OPUS”, generic mention: “N/A”, in-text citation: “Tiedemann, 2012”}

Figure 4: Representative example of the observed error cases. “[Cite_Footnote_3]” denotes a footnote citation tag
(which would normally be the number 3).

Table 4: Number of error categories for each information field.

name generic mention in-text citation
GPT Human GPT Human GPT Human

COR 37 43 22 17 21 22
PAR 3 1 14 3 2 0
SPU 67 36 68 14 16 11
MIS 27 23 29 45 13 14

Spurious (SPU): a system produces a response
that doesn’t exist in the ground truth.

As in the experiment in Section 5, we used the edit
distance for span matching.

Figure 4 shows a representative example of the
observed error cases. In this example, the cor-
rect data name is “OPUS” (COR case), but GPT
additionally extracted unrelated names such as
“JW300” and “OpenSubtitles” (SPU case). For
generic mention, the human failed to extract “this
parallel data” (MIS case), while GPT produced
a partial extraction by outputting “parallel data”
(PAR case). Regarding in-text citation, GPT failed
to extract the citation in this example, again result-
ing in a MIS error.

Table 4 shows the number of error categories
for each information field. For name, the hu-
man produced approximately six more COR cases
than GPT, indicating more accurate extraction.
In contrast, GPT produced a substantially larger
number of SPU cases, suggesting that it is more
likely to extracting incorrect information and that
its extraction precision remains challenging. For
generic mention, both GPT and the human yielded
far more SPU and MIS cases than COR, demon-
strating that extracting this field is generally chal-
lenging. Moreover, GPT tends to generate a
huge number of incorrect mentions (higher SPU),
whereas the human more frequently fail to extract
valid mentions (higher MIS). For in-text citation,
both GPT and the human produced a high number
of COR cases, indicating that this information can

be extracted reliably by both humans and models.

7 Conclusion

This paper proposed the task of extracting infor-
mation about research data from URL citation
contexts in scholarly papers, and constructed a
dataset thorough text annotations according to the
DataCite schema. The result of the preliminary
experiment demonstrated that the performance of
LLMs matched that of humans in some cases, in-
dicating the feasibility of the proposed task.

8 Limitations

Task We defined the output of the task as the
information to generate the mandatory metadata
fields in the DataCite schema. However, the
schema also includes recommended and optional
fields, such as “subject” and “size,” which could
potentially be extracted from scholarly papers. To
generate richer metadata, we should expand the
scope of the task to cover a wider range of meta-
data fields.

Dataset The dataset constructed in this study is
limited to conference papers in the field of natural
language processing and their associated research
data. However, research data, such as datasets or
code, are also frequently mentioned in papers from
diverse domains, specifically digital libraries and
medical research. To improve the domain adapt-
ability of the proposed task, we should extend the
dataset to cover a broader range of domains.
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Experiment The evaluation in this study was
designed as a preliminary investigation, and con-
sequently, the reported performance should be
considered exploratory. To perform a more com-
prehensive evaluation of the proposed task, future
experiments should be conducted, including eval-
uations of several supervised approaches.

9 Ethical Considerations

In this project, annotation workers were employed
by a staffing agency in Japan. The workers anno-
tated a total of 601 paragraph-URL pairs. Workers
were paid approximately 800 yen ($5) per pair.
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A Prompt

In the experiment, we employed the chat templates defined by each LLM’s tokenizer. Figure 5 shows
the prompt constructed using the Llama chat template. For Llama and Qwen, we embedded the target
information fields into the prompt using function calling. For GPT-4.1, we incorporated them using the
response format.

#system
Your task is to extract information about research data cited by the given URL

from section title , body text and footnote/reference.

You have access to the following functions. To call a function , please respond
with JSON for a function call.

Respond in the format
{

"name": "information_extraction",
"description ": "Your task is to extract information about research data cited

by the given URL from section title , body text and footnote/reference.",
"parameters ": {

"title": "InfoSchema ","type": "object",
"properties ": {

"name": {"title": "Name",
"type": "array","items": { "type": "string" },
"description ": "A name or title by which the research data is known. May

be the title of a dataset or the name of a piece of software or an
instrument. If no names are given , return N/A"

},
"genericmention ": {"title": "Genericmention",

"type": "array","items": { "type": "string" },
"description ": "Generic mention refers to a common noun phrase that

references the research data. If no generic mentions are given ,
return N/A"

},
"citationtag ": {"title": "Citationtag",

"type": "array","items": { "type": "string" },
"description ": "Citation tag is a tag that indicates the citation of a

scholarly paper related to research data. If no citation tags are
given , return N/A."

}
},
"required ": ["name"," genericmention "," citationtag "]

}
}

#demonstration
{pairs of demo input and demo output}

#user
Given URL: https :// example.org/mcc -corpus -v1.1
Section Title: 3.1 Dataset
Body Text: We used the MCC[Cite_Footnote_1] (Doe and Smith , 2023). The dataset

consists of 150 ,000 dialogue turns collected from synthetic interactions
between human users and a vision -language assistant. …

Footnote or Reference Text: 1 https :// example.org/mcc -corpus -v1.1

Figure 5: A simplified version of the used prompt.
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Abstract

References are an important feature of scien-
tific literature; however, they are unstructured,
heterogeneous, noisy, and often multilingual.
We present a modular pipeline that leverages
fine-tuned transformer models for reference lo-
cation, classification, parsing, retrieval, and re-
ranking across multiple scholarly knowledge
graphs, with a focus on multilingual and non-
traditional sources such as patents and policy
documents. Our main contributions are: a
unified pipeline for reference extraction and
linking across diverse document types, openly
released annotated datasets, fine-tuned mod-
els for each subtask, and evaluations across
multiple scholarly knowledge graphs, enabling
richer, more inclusive infrastructures for open
research information.

1 Introduction

Citations and references have been described as one
of the most important features of scientific litera-
ture (Backes et al., 2024). They ground claims and
reference previous work, connect research across
disciplines, form the basis for the construction
of scholarly knowledge graphs (SKGs), and en-
able bibliometrics and research impact evaluation
and assessment (Leydesdorff et al., 2013; Cioffi
and Peroni, 2022; Tkaczyk et al., 2018). Beyond
scholarly articles, the number of documents that
contain references to scientific work is increasing
rapidly, ranging from project proposals, narrative
CVs, patents, policy documents and public uses,
and even social media and news (Lin et al., 2023;
Cong et al.). In the context of open research in-
formation and open science, finding and linking
references in multi-source documents is crucial for
creating richer datasets and infrastructures.

However, extracting references from such di-
verse sources remains a challenge. Raw references
appear in different citation styles (Tkaczyk et al.,
2018), are often noisy or incomplete (missing DOI,

Figure 1: Overview of the pipeline and subtasks.

title, or authors), and occur in multiple languages.
Moreover, no single SKG offers complete cover-
age, making robust research object normalisation
non-trivial.

Extraction and linking of scholarly references is
an information extraction problem, and a key task
of scholarly document processing (Backes et al.,
2024). In an era of fake news and LLM hallucina-
tions, research and new tools for grounding refer-
ences and finding background support are funda-
mental. Existing tools focus mainly on parsing PDF
articles. Although effective in controlled settings,
they remain limited and are not very flexible in
more diverse settings of references and document
types. Recent experiments with LLMs (Backes
et al., 2024) have shown mixed results, and pre-
vious research has underscored that deep-learning
citation-parsing tools suffer from a lack of training
data (Grennan and Beel, 2020).
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In this work, we explore encoder-based language
models for reference extraction and linking across
multiple SKGs. We present a unified pipeline that
combines reference location, reference parsing, re-
trieval, and re-ranking, and introduce ensemble-
based linking to improve robustness across Ope-
nAlex, OpenAIRE, CrossRef, and PubMed. To
support this, we release new annotated datasets
and fine-tuned models for each subtask, together
with benchmark results demonstrating their effec-
tiveness in multilingual and noisy-document set-
tings. These resources enable reference extraction
not only from scholarly articles but also from non-
traditional sources, broadening the scope of SKG
construction and downstream applications.

We have released our code, datasets and models
fine-tuned in the context of this paper 1.

2 Related Work

A wide range of tools have been proposed for lo-
cating and parsing bibliographic references from
PDF versions of scholarly articles (Cioffi and Per-
oni, 2022). Methods have relied on rule-based
methods or shallow machine-learning approaches
such as CRFs or SVMs (Zou et al., 2010; Tkaczyk
et al., 2018), with widely used tools like ParsCit,
AnyStyle, GROBID, CERMINE, Scholarcy, and
Science Parse. Cioffi et al. (Cioffi and Peroni,
2022) differentiate between tools that can parse
a single reference, those for parsing a list of ref-
erences, and frameworks for parsing references
from PDFs. Recent surveys (Backes et al., 2024;
Cioffi and Peroni, 2022) report that GROBID and
AnyStyle remain strong baselines, but also high-
light that most tools focus on parsing rather than
full extraction and linking, are restricted to a single
database, and offer limited multilingual support.
In addition, deep-learning approaches have been
hindered by the lack of large annotated datasets
(Grennan and Beel, 2020), and LLM-based at-
tempts show mixed results (Backes et al., 2024).
Biblio-Glutton (bib, 2018–2024) offers an open
framework for reference resolution against author-
itative records such as CrossRef, PubMed, HAL,
and Unpaywall. While highly effective for process-
ing scholarly articles, it remains tied to specific
sources. In contrast, we explore encoder-based
models designed to handle more diverse document
types and reference settings.

1https://github.com/sirisacademic/
references-tractor/

3 Materials and Methods

The modular pipeline comprises five steps (sub-
tasks) to extract and link references, which are
described below:

1. Reference Location: detect citation-bearing
spans in raw documents (policy reports,
patents, scholarly works, blogs), marking
both the broader citation-span and the inline
citation-ref, author(s), year, and citation-ID
(e.g., “(Smith et al., 2019)” or “[12]”).

2. Reference Classification: the task of classify-
ing citation-like text segments as academic
references (e.g., journal articles, scholarly
books, conference papers) or non-academic
references (e.g., web pages, patents, generic
abstracts). It is a binary classification that fil-
ters citations to scholarly works from other
raw reference data, relevant for heterogeneous
sources that cite a diverse set of documents.

3. Reference Parsing (NER): a Named En-
tity Recognition (NER) model extracts key
fields from the citation, parsing it into struc-
tured fields using a fine-tuned NER model.
The extracted fields can include TITLE,
AUTHORS, VOLUME, ISSUE, YEAR, DOI, ISSN,
ISBN, FIRST_PAGE, LAST_PAGE, JOURNAL,
and EDITOR.

4. Reference Retrieval: parsed fields are used to
dynamically build queries to scholarly APIs.

5. Reference Pairwise Reranking: re-ranks
pairs of the input reference and retrieved can-
didates from scholarly knowledge graphs.

3.1 Datasets

To support each component of the pipeline, we
created five supervised datasets that cover the key
subtasks: reference location, reference classifica-
tion, reference parsing, pairwise reranking, and
end-to-end multi-SKG linking. Table 1 provides an
overview.

Dataset Labels Samples
Reference Location 5 1,922
Reference Classification 2 3,999
Reference Parsing (NER) 12 2,688
Reference Reranking 2 3,276
MultiSKG Linking – 200

Table 1: Datasets overview.
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Reference Location Dataset represents 1,922
annotated text segments from policy documents,
patents, websites, news, and scientific papers, in
both plain text and markdown formats. Each seg-
ment was manually annotated with the full citation
span and the inline citation expression, enabling ex-
traction of the reference span and its in-text context,
including citation ID, year, and author mentions.
Reference Classification Dataset addresses the
filtering step that separates scholarly citations from
other sequences. We sample ∼5k non-patent lit-
erature entries from the PATSTAT database, cov-
ering common NPL_TYPE categories (a: unspeci-
fied, b: book, s: serial/journal, w: web). Each
string is labeled TRUE (academic: journal article,
scholarly book, conference paper, etc.) or FALSE

(non-academic: web pages, office actions, manu-
als, etc.). Annotation follows a semi-supervised
procedure: GPT-3.5 produces initial pseudo-labels,
which we compare with the raw categories; we then
split the corpus into two folds for cross pseudo-
labelling, and human annotators resolve disagree-
ments in Argilla (Daniel and Francisco, 2023) (see
Appendix A, Binary Classification prompt). The
final dataset is multilingual (mainly en and zh) and
approximately balanced (55% TRUE, 45% FALSE),
with a train/test split of 90/10.
Reference Parsing (NER) Dataset consists of
2,688 raw citation strings annotated with entity la-
bels: TITLE, AUTHORS, VOLUME, ISSUE, YEAR, DOI,
ISSN, ISBN, FIRST_PAGE, LAST_PAGE, JOURNAL,
and EDITOR. The samples were gathered from non-
patent literature entries in the PATSTAT database
to ensure coverage of different citation formats and
degrees of metadata completeness. The dataset is
multilingual and was annotated following a semi-
supervised approach. Pseudo-labels were gener-
ated with GPT-3.5 and refined by human annotators
with Argilla (see Appendix A, Reference Parsing
(NER) prompt).
Reference Pairwise Reranking Dataset provides
3,276 reference pairs. Each example is a pair
of strings—raw reference and candidate—where
the candidate is an APA-normalised reference con-
structed from OpenAlex metadata (authors, year,
title, venue, volume, pages, DOI). Labels are bi-
nary (1=same; 0=different). The corpus was built
in two steps: (i) manual annotation of 1,276 can-
didate pairs to collect positive and hard negative
examples, and (ii) to improve generalisation, we
synthesise hard negatives by crossing citations with
non-matching candidates.

MultiSKG Linking Dataset serves as a gold stan-
dard for end-to-end linking to multiple Scholarly
Knowledge Graphs, we considered: OpenAlex
(Priem et al., 2022), OpenAIRE (Manghi et al.,
2012), CrossRef, and PubMed.2 The dataset con-
sists of 200 manually annotated references to the
four target knowledge graphs providing unique
identifiers for each source. Two annotators cross-
annotated all references. Samples in the dataset
vary in complexity, from well-structured to mini-
mal metadata, including ambiguous and hard-to-
match references, to evaluate real-world diversity.

3.2 Models & Training
We fine-tune transformer encoder models (Vaswani
et al., 2017; Devlin et al., 2019), with model
choices guided by baseline models (BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
DeBERTa-v3 (He et al., 2020), ModernBERT
(Warner et al., 2025)), multilingual coverage
(mBERT (Pires et al., 2019), XLM (Lample and
Conneau, 2019)), and efficiency to support large-
scale runs (multilingual DistilBERT (Sanh et al.,
2019)). Our models are fine-tuned using the Hug-
ging Face Transformers library, with early stop-
ping and model selection based on validation per-
formance. Hyperparameter configurations for each
subtask (classification, NER, reranking) are re-
ported in Appendix B.

3.3 Candidate Retrieval & Selection
The candidate retrieval component builds struc-
tured queries from the parsed citation fields and
issues them to multiple scholarly knowledge graph
APIs. Our approach includes:

• Incremental metadata search: Queries are
constructed progressively, starting from high-
confidence fields (e.g., DOI, title + year) and
falling back to partial metadata combinations
(e.g., authors + venue, title substrings) when
primary identifiers are missing. We address
this with multi-API retrieval, querying Ope-
nAlex, OpenAIRE, Crossref, PubMed, and
HAL, each offering different coverage, do-
main focus, and search capabilities.

• Candidate reranking: Retrieved candidates
are scored with a fine-tuned pairwise model

2OpenAlex: https://openalex.org/, OpenAIRE:
https://explore.openaire.eu/, Crossref: https://www.
crossref.org/, and PubMed: https://pubmed.ncbi.nlm.
nih.gov/.
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(Section 3.1), which takes the raw reference
and a candidate record as input and predicts
whether they refer to the same publication.
This learned approach combines lexical cues
(title, authors, venue, year) with semantic sim-
ilarity from transformer encoders, and the pre-
diction score is used for reranking.

• Ensemble linking: After reranking, top-
scoring candidates are cross-compared across
APIs. When DOIs are present, we perform
a majority-vote consensus to mitigate single-
API inconsistencies and maximise coverage.

4 Evaluation

4.1 Experimental Setup

Our datasets, described in Section 3.1, were split
80/10/10 into train, development, and test. Models
were fine-tuned as described in Section 3.2. We
report results using macro-F1, computed on the
held-out test split. For NER tasks, we compute
token-level F1 scores on entity spans. For reference
linking, we evaluate on the MultiSKG dataset by
requiring exact DOI/ID matches as correct.

4.1.1 Task-level Evaluation

Model Location Classification Parsing Reranking
DistilBERTm .755 .935 .949 .904
BERTm-base .773 .944 .957 .902
RoBERTa-base .788 .940 .962 .915
XLM-base – .914 .957 .901
DeBERTa-v3-base .792 .932 .961 .903
ModernBERT .732 .936 .955 .915

Table 2: Task-level results across models (macro-F1).

We first evaluate each subtask independently.
Table 2 shows that RoBERTa and DeBERTa-v3
achieve consistently strong performance across
NER and reranking, while BERTm provides the
best overall performance on the classification task.
DistilBERT offers competitive results with lower
computational cost, and XLM demonstrates robust
multilingual generalisation.

4.2 Linking Evaluation

We evaluate per-API accuracy with an error break-
down. As shown in the results in Table 3, the
ensemble achieves the highest accuracy.

5 Discussion

While overall performance across the subtasks is
strong, the linking evaluation reveals several am-
biguous cases that complicate strict accuracy met-

API Accuracy C_Match I_Miss I_Match
OpenAlex .745 127 15 30
OpenAIRE .675 105 19 34
PubMed .590 48 12 5
CrossRef .640 104 23 39
Ensemble .755 122 24 19

Table 3: Linking evaluation results, reporting accuracy
on strict DOI/ID match. Error breakdown as C_Match
(correct matches), C_NoRes (correct empty), I_Miss
(missed matches), and I_Match (incorrect matches).

rics. Many of the errors occur during the rerank-
ing step and are actually ambiguous matches: al-
though correct DOIs are often retrieved, metadata
mismatches (e.g., page ranges, abbreviated venues,
missing affiliations) can lead to false negatives. For
example, “Yamagishi et al., J. Phycol. 43: 519–527
(2007)” illustrates how strict page-number match-
ing can cause the reranker to fail, even when the
DOI is correct. Additional errors arise from dif-
ferent versions or duplicate entries with different
unique IDs, suggesting that recall-based evalua-
tion might better reflect the system’s performance.
Some errors are due to partial parsing, while oth-
ers are caused by missing records in certain SKGs.
While the pipeline’s true impact lies in its ability
to handle cross-database complexities, improving
the reranking step would result in better handling
of ambiguous matches.

6 Conclusions

We propose a novel pipeline for multilingual refer-
ence extraction and linking, using fine-tuned trans-
former models to enhance scholarly knowledge
graph coverage. The approach combines trans-
former models, incremental retrieval, and ensemble
reranking for robust performance in noisy, multi-
lingual settings. We aim to create open citation
datasets from policy documents and patents, and
expand linking to national and discipline-specific
SKGs. Future work will focus on scaling for larger
datasets and exploring span-based techniques and
long-context models to improve citation extraction
from lengthy documents, broadening its applicabil-
ity to open research infrastructures.

7 Limitations and Future Work

While the proposed pipeline demonstrates strong
performance across individual subtasks, several
limitations guide ongoing development. The
datasets are relatively small (1,922 spans for loca-
tion, 2,688 for NER, 3,276 for reranking, and 200
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gold references for multi-KG linking) and rely on
semi-supervised annotation with GPT-based pseu-
dolabels and human adjudication. Larger, more
diverse datasets with reported inter-annotator agree-
ment are needed to strengthen claims of generaliza-
tion across domains and languages.

Our end-to-end evaluation uses strict DOI/ID
matching on a limited multilingual sample. As
discussed in Section 5, many errors arise from
metadata inconsistencies across knowledge graphs
rather than true matching failures. Future work
should incorporate relaxed matching criteria, addi-
tional metrics (top-k recall, MRR), and systematic
comparison with established reference extraction
systems on standardized benchmarks.

The pipeline assumes text or markdown input
and does not explicitly handle PDF layout or OCR
errors, which limits applicability to certain docu-
ment types. Integration with PDF extraction tools
would broaden the scope. Additionally, the rerank-
ing component could be improved to better han-
dle metadata ambiguity (abbreviated venues, page
range variations) through fuzzy matching and multi-
field attention. Finally, explicit mechanisms for
detecting potentially fabricated or hallucinated ref-
erences would strengthen the system’s reliability.

All models, code, and datasets are openly avail-
able, and ongoing experiments will be progres-
sively added to the project repository.
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Quality in Multi-algorithm Fingerprint
Verification’, 1 January 2005, ADVANCES IN
BIOMETRICS LECTURE NOTES IN COMPUTER SCIENCE;;
LNCS, SPRINGER, BERLIN, DE, PAGE(S) 213 - 220,
ISBN: 978-3-540-31111-9, XP019026878

- KUANG-HUA CHANG: ’E-Design computer-Aided
Engineering Design’, 2015, ELSEVIER ACADEMIC
PRESS

- HWANG J S ET AL: ’Heteroepitaxy of gallium nitride
on (0001), (1012) and (1010) sapphire surfaces’,
JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM,
NL LNKD- DOI:10.1016/0022-0248(94)90263-1, vol.
142, no. 1-2, 1 September 1994 (1994-09-01),

pages 5 - 14, XP024439721, ISSN: 0022-0248, [
retrieved on 19940901]

- KUMA HIROYUKI ET AL: ’Liquid phase immunoassays
utilizing magnetic markers and SQUID
magnetometer’, CLINICAL CHEMISTRY AND
LABORATORY MEDICINE, vol. 48, no. 9, 1 January
2010 (2010-01-01), DE, XP055783197, ISSN:
1434-6621, Retrieved from the Internet <URL:
http://dx.doi.org/10.1515/CCLM.2010.259> DOI:
10.1515/CCLM.2010.259

- PAN ET AL.: ’Sustainable production of highly
conductive multilayer graphene ink for wireless
connectivity and loT applications’, NATURE

COMMS, vol. 9, 2018, pages 5197
- LELOIR, L.F., ARCH BIOCHEM, vol. 33, no. 2, 1951,

pages 186 - 90

Examples of FALSE:
- Final Office Action, U.S. Appl. No. 13/316,351,

dated Jul. 31, 2013, 20 pages.
- U.S. Appl. No. 13/006,270, filed Jan. 13, 2011 Non-

Final Office Action dated Sep. 12, 2014, 41
pages.

- Matrx Metalloproteinase, from Wikipedia,the free
encyclopedia (8 pages), retrieved from the
Internet on Dec. 17, 2009 at http://en.
wikipedia.org/wiki/Matrix-metalloproteinase.

- ’Double Layer DVD+R Multi-Media Command Set
Description, Version 1.00’, 4 June 2004, ROYAL
PHILIPS ELECTRONICS, EINDHOVEN, THE NETHERLANDS,
XP002386267

- ’The Leukocyte Antigen Facts Book’, 1997, HARCOURT
BRACE & CO.

- DOUGLAS GRAHAM: ’Folding a bandana into fade mask’,
6 April 2020 (2020-04-06), XP055859991,

Retrieved from the Internet <URL:https://www.
youtube.com/watch?v=dI3343Gb9YA> [retrieved on
20211110]

- Banknote Paper’, WEBPAGES G&D, pages 9PP,
XP055351061, Retrieved from the Internet <URL:
https://www.gi-de.com/en/products_and_solutions/
products/banknote_paper/banknote-paper.jsp>

- PHILIPS: ’Fallback mode for Rel-7 FDD MIMO scheme’,
3GPP TSG RAN WG1 MEETING #46 TDOC R1-061952

Predict the category for this text:
{INPUT_TEXT}

Reference Parsing (NER) prompt

Can you parse this citation string:
"{INPUT_TEXT}"

in the following attributes:
- authors
- title
- editor
- volume
- issue
- publication date
- publisher
- journal
- first_page
- last_page
- doi
- isbn
- issn
- link online

Only return attributes in bullet points with a not
empty value
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B Fine-tuning hyperparameters

B.1 Text Classification

We fine-tune transformer encoder models for the
Reference Classification task by adding a classi-
fication head with two output labels, implemented
with HuggingFace Transformers. Each model
was trained on a single NVIDIA A100 GPU for up
to 6 epochs with early stopping (patience 2) with
main hyperparameters described in Table 4.

Hyper-parameter Value
Learning Rate 2e-5
Learning Rate Decay Linear
Weight Decay 0.01
Warmup Steps 0
Batch Size 32
Max. Training Epochs 6
Metric for best model F1-macro

Table 4: Fine-tuning hyperparameters for the Reference
Classification task.

B.2 NER

For the Reference Location and Reference Pars-
ing tasks, we fine-tune transformer encoder models
with a token classification head, using subword-
level alignment. All models were trained on a
single NVIDIA A100 GPU with early stopping
(patience 2). Table 5 summarises the main hyper-
parameters.

Hyper-parameter Value
Learning Rate 2e-5
Learning Rate Decay Linear
Weight Decay 0.01
Warmup Steps 0
Batch Size 32
Max. Training Epochs 25
Max Sequence Length 512
Metric for best model F1
Early Stopping Patience 2

Table 5: Fine-tuning hyperparameters for the Reference
Location and Reference Parsing tasks.

B.3 Pairwise Reranking

For the Pairwise Reranking task, the goal
is to classify pairs of references (reference1,
reference2) as either referring to the same publi-
cation (1) or different publications (0). Each pair

is encoded as a single sequence by concatenating
the two reference strings with a special separator
token ([SEP]). We fine-tune transformer encoder
models with a sequence classification head (two
output labels). Models were trained on a single
NVIDIA A100 GPU with early stopping (patience
2). Table 4 reports the training hyperparameters.
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Abstract

The data archives at IPAC, including the NASA
Extragalactic Database (NED) and NASA Ex-
oplanet Archive (NEA), have served as repos-
itories for data published in the astronomical
literature for decades. Throughout this time,
extracting data from journal articles has re-
mained a challenging task and future large data
releases will exasperate this problem. We seek
to accelerate the rate at which data can be ex-
tracted from journal articles and reformatted
into database load files by leveraging recent
advances in natural language processing en-
abled by AI. We are developing a new suite
of tools to semi-automate information retrieval
from scientific journal articles. Manual meth-
ods to extract and prepare data, which can take
hours for some articles, are being replaced with
AI-powered tools that can compress the task
to minutes. A combination of AI and non-AI
methods, along with human supervision, can
substantially accelerate archive data ingestion.
Challenges remain for improving accuracy, cap-
turing data in external files, and flagging issues
such as mislabeled object names and missing
metadata.

1 Introduction

The NASA Extragalactic Database (NED)1 and
NASA Exoplanet Archive (NEA)2 are two astro-
nomical data repositories operated by IPAC at
the California Institute of Technology which have
served the scientific community since 1990 and
2011 respectively. NED has collected over 1.1 mil-
lion distinct objects, including galaxies, quasars,
and gamma ray bursts. NEA seeks to provide a
complete list of confirmed exoplanets, which now
number over 6,000, and their stellar hosts. New
data flow through similar pipelines for both NED
and NEA as they are prepared for ingestion into
the archives’ internal databases. Newly-published

1https://ned.ipac.caltech.edu/
2https://exoplanetarchive.ipac.caltech.edu/

articles are found via queries to the listing services
of the Astrophyiscs Data System (ADS)3. These
articles are then fed through a relevance classifica-
tion model, which seeks to predict whether or not
the data from an article should be ingested into the
archive. A scientist then selects the relevant papers
from a user interface displaying the relevance clas-
sifier results. Next, the appropriate data is extracted
from the article and transformed into the particular
load file formats for NED and NEA before being
ingested into the databases. Throughout most of
the history of these archives, the data extraction
and load file creation process has been done manu-
ally, largely because astronomical journal articles
vary widely in structure and semantics. While this
manual process has been functional, both archives
currently have backlogs of unprocessed published
journal articles and keeping up with newly pub-
lished literature can be difficult. To add to this, an-
ticipated exoplanet candidate detection yields from
future missions have the potential to substantially
increase NEA’s holdings. Data releases from mis-
sions such as Gaia (Perryman et al., 2014), Roman
(Penny et al., 2019; Wilson et al., 2023), PLATO
(Matuszewski et al., 2023), and Earth 2.0 (Ge et al.,
2024) include estimated yields of thousands to hun-
dreds of thousands of candidate exoplanets. Given
these realities, it has become important for the data
archives at IPAC to enhance the throughput of their
data ingestion pipelines.

The field of natural language processing has
yielded tools that are increasingly-capable of min-
ing data from the text of scientific journal arti-
cles. This work initially investigated Word2Vec
(Mikolov et al., 2013) and its extension Doc2Vec
(Le and Mikolov, 2014). Word2Vec/Doc2Vec
have largely been improved upon by transformer-
architecture large language models (LLMs), which
use attention mechanisms to create more dynamic

3https://ui.adsabs.harvard.edu/
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contextual understanding of text (Devlin et al.,
2018; Liu et al., 2019; Brown et al., 2020; Touvron
et al., 2023a). LLMs can function as foundation
models and be finetuned or directed via prompt
engineering to complete downstream tasks.

Other works have shown that foundational LLMs
pretrained on domain-specific data (in particular,
astronomy - c.f. Grezes et al., 2022, 2024; Bhat-
tacharjee et al., 2024; de Haan et al., 2025) out-
perform other LLMs not attuned to this domain on
downstream tasks related to it. This project there-
fore uses models pretrained on the astronomical
literature. We initially considered the encoder As-
troBERT (Grezes et al., 2024, 2022) and decoder
AstroLlama (Dung Nguyen et al., 2023), but de-
cided to use the encoder INDUS (Bhattacharjee
et al., 2024) and decoder AstroSage-Llama-3.1-8B
(AstroSage; de Haan et al., 2025) instead. INDUS
and AstroSage are based on more advanced models
than the preceding AstroBERT and AstroLlama:
astroBERT uses the architecture of BERT (Devlin
et al., 2018) and INDUS is based on RoBERTa (Liu
et al., 2019), while AstroLlama uses the Llama-2
(Touvron et al., 2023b) architecture and AstroSage
is based on that of Llama-3.1 (Grattafiori et al.,
2024).

The goal of this work is to produce a tool which
accelerates the processes of data extraction and
load file creation for NED and NEA. There is no ex-
pectation that the load files created using these tools
will be perfect, so automated issue flagging, human
supervision, and periodic re-training of models will
be integral to this process.

2 Methods

A variety of methods, both AI-based and not, are
being deployed at the different stages of the archive
data ingestion pipeline.

2.1 Data Retrieval

Each module of this work uses the full text of a
journal article. These are downloaded from ADS
using their API service and converted from the PDF
format to plain text using the PyMuPDF loader
provided by LangChain4. We used the INDUS
tokenizer to convert this text into the appropriate
format when using INDUS.

4https://docs.langchain.com/oss/python/langchain/overview

2.2 Relevance Classification
Both NED and NEA already use machine learning
classifiers to predict the probability that an article is
relevant to their holdings. The relevance classifier
used by NED (Chen et al., 2022a) is based on the
Stanford Classifier (Finkel et al., 2005), while the
NEA tool (Susemiehl & Christiansen, in prep.) in-
puts Doc2Vec embeddings to a logistic regression
model. Both of these tools have successfully auto-
mated this task. However, their accuracy has been
declining due to changes in content and structure
of newer journal articles, and transformer-based
LLMs finetuned to this task have the potential to
more accurately predict paper relevance. Due to the
active development cycle of this project, this tasks
is being reserved for after after the completion of
other modules (see Future Work S4.1).

2.3 Data Extraction
Once a relevant article is identified, the data it
presents must be extracted into load files that can
be ingested into the NED and NEA databases. The
data in these articles, such as a planet’s mass or a
galaxy’s redshift, can be contained in the main text
or tables within an article, and also in external files
linked to some articles. Transformer-based LLMs
have as input one-dimensional strings of text, so the
two-dimensional structure of tables is lost during
training/inference. We therefore employ different
methods for text and tabular data extraction.

2.3.1 Object Name Detection
The detection of the names of astronomical objects
which are presented in a given article is a funda-
mental task in this work. To this end, we finetuned
INDUS (Bhattacharjee et al., 2024) instances using
the HuggingFace Python library (Wolf et al., 2019)
on token classification tasks for both archives.

While both NED and NEA hold large databases
of object names and their corresponding article
identifiers, the locations of the names within these
articles is not recorded. In order to frame this task
as a supervised learning problem, it is necessary
to label each token in an article as either an object
or not an object. While human annotation is com-
monly employed to label training data in similar
cases, this is an expensive endeavor. We sought to
leverage the large set of object names and articles
held by NED and NEA by automatically labeling
the tokens within each article. We converted each
object name in the NED and NEA lists to generic
forms using regular expressions. The formulated
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regular expressions allow for variations in sepa-
rators, abbreviations, numerical digits, and planet
letter suffixes from the published object names to
the canonical forms in the archives. A challenge of
this technique is in eliminating both false positive
and false negative labeling, as mislabeled tokens
pollute the training data set and limit model perfor-
mance during inference.

Following the regular expression-based token
labeling, the training data sets were composed of
8268 articles (300.4 million tokens) for the NED
model and 2230 articles (89.6 million tokens) for
the NEA model. A hyperparameter search of 10
trials was performed over the learning rate, dropout,
weight decay, and random seed. The INDUS
models were then finetuned for 10 epochs using
the HuggingFace framework. The NED model
achieved an F1 score on an unseen test set of 0.95
while the NEA model scored an F1 of 0.94 on its
test set. However, an investigation of the learning
curve (Figure 1) reveals that both models failed to
learn the validation data. This is corroborated by
a high occurrence of incorrect labels while quali-
tatively assessing the models’ performances. We
found that this finetuned version of INDUS outper-
forms the base model on the name identification
task, suggesting the finetuning process was still
useful. External validation tools, which compare
potential names to expected name formats, are used
to reduce false positive predictions during usage
of the tool. It seems likely that this poor model
performance is caused by pollution of the training
data set during the labeling phase, so future work
will investigate means to improve this process.

2.3.2 Text Extraction
Necessary data are often included within the body
text of an article. These can be numerical values
(e.g. coordinates) or words/phrases (e.g. telescope).
Examples of data types regularly found in the body
of an article include type of an extragalactic object
and the method used to detect an exoplanet. The
usage of synonyms, abbreviations, and acronyms
for these values is common in the literature. Given
the unstructured nature of the body text and the dif-
ficulty in composing a token-level training dataset
for heterogeneous labels, supervised finetuning ap-
proaches may be less applicable. Instead, genera-
tive AI is useful because of its ability to read large
contexts and answer questions pertaining to data
extraction from prompts. We prompt the decoder
LLM AstroSage (de Haan et al., 2025) to return the

Figure 1: A typical example of a learning curve from
finetuning the object name detection model on NEA
data (NEA and NED learning curves are qualitatively
similar. The flat validation loss curve indicates that the
model failed to learn during finetuning.

various data types needed to populate a database
load file. This is done in zero-shot context with-
out finetuning. Any article longer than the effec-
tive context length of AstroSage (Llama-3.1 8B),
32,000 tokens (Hsieh et al., 2024), is broken into
sections of 512 tokens each. A retrieval augmented
generation system then selects the most relevant
512 token-sized chunks of text to fill the 32,000 to-
ken context (i.e. the top ∼62 chunks are combined
to serve as the prompt’s context). Otherwise, suf-
ficiently short articles are included entirely within
the prompt’s context. Grammar-constrained decod-
ing is leveraged to force the output of the LLM
into a JSON format with keys corresponding to
the needed data types. The LLM-outputted values
are further required to be chosen from a particular
set of possible options for some categorical data
types (e.g. object class). These methods control
the output to align with the data types expected to
be included in the database load files.

2.3.3 Table Extraction

The structured nature of tables is advantageous for
extracting data from them. A variety of detected
and derived object parameters, such as redshift and
mass, are commonly found within the tables of
NED and NEA articles. LLMs, while useful for
unstructured data (text), reduce the 2-D grid of a
table down to a 1-D string which makes the correct
alignment between labels and their respective val-
ues difficult. Including positional and descriptive
tags within the table text included in prompts to the
AstroSage was not found to improve the correct
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association between extracted values and their re-
spective objects in this work, so methods not solely
reliant on an LLM were investigated for this task.

Tables are identified within articles and extracted
using the GMFT package5, which converts the
PDF tables to Pandas dataframes (Wes McKinney,
2010). Next, every cell in the dataframe is labeled
as either an astronomical object using the object
name detection model or a parameter label. We
achieve parameter label assignments by matching
each as-published potential label to a dictionary
of previously-seen labels, converting both to em-
beddings, and calculating a cosine similarity score.
The label type corresponding to the highest match-
ing previously-seen label is then assigned to the
as-published label in the table’s dataframe (if there
is a match score greater than 0.9). With both the
objects and parameter labels of a table identified,
the dataframe cell containing the respective value
is assumed to be the lower-right intersection of the
object and parameter label positions in the 2-D grid
of the dataframe. This enables direct, automated ex-
traction of data values while maintaining alignment
between the object and parameter labels. However,
the dictionary of previously-seen parameter labels
needs to be expanded whenever substantially dif-
ferent label presentations are encountered.

2.4 Load File Creation

Once data are extracted from the text and tables
of an article, they are cleaned and reformatted into
database load files using programmatic methods in
Python. There are additional components to these
files which can be inferred without the use of the
above methods.

2.4.1 Other data
NED and NEA load files contain sections of "meta-
data" regarding the objects to be ingested. This
includes, for example, the addition of aliases for a
given object. The aliases which need to be added
for an object can be inferred by comparing existing
entries in the NEA database to those in external
databases (e.g. Simbad). Other metadata, like the
internal updates to a system’s orbital configuration,
can be inferred by querying of the NEA databases.
An example of inferrable data for NED is the co-
ordinate system (sexagesimal or decimal degree),
which can be ascertained via regular expression
matching of the retrieved coordinate value.

5https://github.com/conjuncts/gmft

3 Results

Prototype versions of these tools have been devel-
oped to enable the creation of a database load file
with minimal operator input, enabling the semi-
automated extraction of data from articles into
database load files. Preliminary testing of the tools
shows promising performance in its ability to save
time. The accuracy of an AI-generated load file is
computed by comparing the presence and equal-
ity of extracted values to those in the respective
human-created load file. These comparisons are
made between dataframes containing the extracted
data, so the score is robust to minor formatting dif-
ferences within the files. Early testing has shown
accuracies around 20%, but this low score is of-
ten not reflective of the often small effort needed
to correct an AI-generated file. Future work will
seek to expand the usage of this accuracy metric to
robustly quantify the performance of these tools.

3.1 Computational Performance

This work was has used a Quadro RTX 6000 GPU
for model finetuning and inference. The run dura-
tion of the data extraction tools increase with the
number of objects and the length of the text. In-
ference using INDUS typically takes less than one
minute per table, while prompts using AstroSage
return responses in roughly 5-10 minutes per object.
The slow completion speed of AstroSage prompts
motivates the investigation of methods not based
on decoder models to extract data from the text of
an article (see S4.1) in less time, which will also
aid in large-scale performance quantification.

4 Conclusions

This early work has shown that AI-powered tools,
when combined with other programmatic meth-
ods and supervised by humans, can enhance the
data ingestion pipelines at NED and NEA. While
the results from early versions of these tools can
suffer in accuracy, the time it takes to generate
and correct a file can also be less than the time it
would take to make the file by hand. Transformer-
based AI is useful at several junctures of this work,
but reliance on these methods alone were found
to be insufficient for some subtasks of this project.
Both automated and human verifications within the
pipeline are needed due to the inaccuracy of AI-
derived solutions (although there is potential for
improvement). There are also practical limitations
to the effectiveness and accuracy of automated data
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extraction from the literature due to issues with
the way data are sometimes published. Examples
include: ambiguous object names, which are typi-
cally truncated coordinate-based names that cannot
be accurately cross-identified using the NED and
NEA name resolvers; data with missing uncertain-
ties; omission of the reference frame for some mea-
surements; and critical data linked to URLs that
are no longer working. Many of these issues can
be solved if authors and referees are more careful
about following best practices for publishing data
in the astronomical literature (Chen et al., 2022b).
This work is in active development and will con-
tinue to be improved upon in the coming months.

4.1 Future Work
Prototype versions of these tools are being tested in
production contexts. Operators have been asked to
provide feedback which will be addressed to make
improvements.

We will also seek to improve the automated train-
ing data labeling process for the object name detec-
tion model. Name validation tools will be used to
eliminate false positive token labels and a broader
search (i.e. searching each article for every name
type) will reduce false negative token labels. This
finetuned INDUS model and accompanying train-
ing data will be shared on the HuggingFace plat-
form once its performance is improved.

Supervised finetuning of INDUS and AstroSage
for the extraction of other data types will also be
investigated, as decoder finetuning has been shown
to increase the accuracy of related tasks (Zhao et al.,
2024). This can be done at the document level for
most data types, as the location of extracted data
within an article is not retained by NED or NEA.

Additionally, data from external sources pro-
vided in links within articles will be accounted
for where possible, as well as the units of numeri-
cal values (including automatic conversion). The
evolving nature of the language used in astronom-
ical journal article as new methods are employed
or missions launched necessitates the periodic re-
training of literature models. This will begin by
replacing the old Standford/Doc2Vec-based rele-
vance classification models with the encoder LLM
INDUS, as discussed in S2.2. Other extensions,
such as the consideration of images, will be ap-
proached in the future. While models adapted to the
domain of astronomy have been shown to achieve
better performance on astronomy-related tasks than
models trained on broader contexts (e.g. Grezes

et al., 2022, 2024; Bhattacharjee et al., 2024; de
Haan et al., 2025), this work would benefit from a
comparison between models like INDUS and As-
troSage to modern frontier models from groups
such as OpenAI and DeepSeek.
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Abstract 

Extracting structured information from 
tables in scientific literature is a critical yet 
challenging task for building domain-
specific knowledge bases. This paper 
addresses extraction of 5-ary polymer 
property tuples: (POLYMER, 
PROP_NAME, PROP_VALUE, 
CONDITION, CHAR_METHOD). We 
introduce and systematically compare two 
distinct methodologies: (1) a novel two-
stage Hybrid Pipeline that first utilizes 
Large Language Models (LLMs) for table-
to-text conversion, which is then processed 
by specialized text-based extraction 
models; and (2) an end-to-end Direct LLM 
Extraction approach. To evaluate these 
methods, we employ a systematic, domain-
aligned evaluation setup based on the 
expert-curated PoLyInfo database. Our 
results demonstrate the clear superiority of 
the hybrid pipeline. When using Claude 
Sonnet 4.5 for the linearization stage, the 
pipeline achieves a score of 67.92% 
F1@PoLyInfo, significantly outperforming 
the best direct LLM extraction approach 
(Claude Sonnet 4.5 at 56.66%). This work 
establishes the effectiveness of a hybrid 
architecture that combines the generative 
strengths of LLMs with the precision of 
specialized supervised models for 
structured data extraction. 

1 Introduction 

The field of materials science, particularly 
polymer science, generates vast amounts of data 
published in scientific articles. This data, often 
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embedded in tables, is crucial for developing new 
materials, training predictive models, and enabling 
data-driven discovery. Automated Information 
Extraction (IE) systems are essential for curating 
this knowledge into structured, machine-readable 
databases like PoLyInfo (Otsuka et al., 2011). 

Recent studies by Phi et al. (2024) and Do et al. 
(2025) introduced a new corpus and developed a 
practical system for extracting polymer-related 
concepts and properties from unstructured text, 
demonstrating the high performance of supervised 
models like W2NER (Li et al., 2022) for Named 
Entity Recognition (NER) and ATLOP (Zhou et al., 
2021) for Relation Extraction (RE) on their 
PolyNERE corpus. However, these models are 
inherently designed for plain text and cannot be 
directly applied to the semi-structured format of 
tables. Conversely, Large Language Models 
(LLMs) are adept at parsing diverse data formats 
but often lack the accuracy of fine-tuned models for 
domain-specific tasks. 

This paper bridges this gap by investigating a 
hybrid approach that synergizes the strengths of 
both paradigms for the complex task of table 
extraction. Our primary contributions are: 
• We propose a two-stage method that first 

leverages an LLM's structural understanding 
to convert table rows into natural language 
paragraphs. This linearized text is then 
processed by the advanced text-based IE 
system components identified by Phi et al. 
(2024) and Do et al. (2025). 

• We systematically compare five advanced 
LLMs in both our hybrid pipeline and a 
direct end-to-end extraction approach using 
carefully engineered, task-specific prompts. 

A Hybrid LLM and Supervised Model Pipeline for Polymer Property 
Extraction from Tables in Scientific Literature 
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• We introduce a new PoLyInfo-based 
benchmark for evaluating property 
extraction from tables, providing near-
comprehensive coverage (~66% of property 
names) of critical, standardized properties in 
the domain. 

• Our results demonstrate that the hybrid 
pipeline significantly outperforms the direct 
LLM approach, establishing it as a more 
robust method for this task. 

2 Related Work 

Traditional neural approaches have achieved 
strong performance in domain-specific text 
extraction tasks. The W2NER architecture (Li et 
al., 2022) has shown particular effectiveness in 
capturing complex entity structures in scientific 
text—such as flat, overlapping, and discontinuous 
entities—commonly found in materials science 
literature, as demonstrated by Do et al. (2025). For 
relation extraction, ATLOP (Zhou et al., 2021) 
reformulates the task as entity-pair linking, 
delivering robust performance on specialized 
corpora like PolyNERE. Domain-adapted 
language models, such as MatSciBERT, have 
further improved results for materials science 
applications. However, these specialized models 
remain constrained to plain text input, limiting their 
direct applicability to tabular data. 

Recent research has demonstrated the 
remarkable zero-shot and few-shot capabilities of 
LLMs for NER and RE. Most approaches attempt 
direct, end-to-end extraction, where the model is 
prompted to output structured data from a given 
input. However, this method forces a single model 
to handle multiple complex sub-tasks (parsing, 
entity recognition, etc.), which can lead to 
hallucinations or conversational outputs ill-suited 
for scientific data extraction (Kumar et al., 2025). 

Converting tabular structures for LLM 
processing has emerged as a critical research area, 
with various serialization methods showing 
different effectiveness depending on table 
complexity. Recent work has shown that table 
linearization quality significantly impacts 
downstream extraction performance, though 
optimal strategies remain domain-dependent 
(Deng et al., 2024). 

Our work bridges these areas by proposing a 
hybrid pipeline that leverages LLMs for table-to-
text conversion while utilizing specialized 
supervised models for robust extraction, 

specifically addressing the gap in scientific table 
information extraction for polymer property data. 

3 Methodology 

The input for our system is a multi-modal prompt, 
combining a high-fidelity table image with its 
corresponding textual caption and footnotes. Table 
images are extracted directly from scientific 
documents using the MinerU parser (Wang et al., 
2024). This image-based approach is motivated by 
Circi et al. (2024), who demonstrated that visual 
layout cues enable vision-enabled LLMs to more 
accurately extract complex relationships from 
scientific tables compared to text-only inputs. 

We formalize the task as extracting a set of 5-ary 
property information tuples from a given scientific 
table. This formalization is grounded in the schema 
of the PoLyInfo database (Otsuka et al., 2011), the 
largest expert-curated database for polymers. The 
target is a set of tuples T = {t_1, t_2, ..., t_n}, where 
each tuple t_i consists of five key entity types: 

• POLYMER: The name of the polymer 
material (e.g., “polyethylene”, “poly(p-
diethynylbenzene)”). 

• PROP_NAME: The name of the physical or 
chemical property being described (e.g., 
“glass transition temperature”, “density”). 

• PROP_VALUE: The measured value of the 
property, typically including units (e.g., “25 
MPa”, “1.097 g/cm3”). 

• CONDITION: The experimental conditions 
under which the property was measured 
(e.g., “at 25°C”, “under nitrogen 
atmosphere”). 

• CHAR_METHOD: The characterization 
technique or method used for the 
measurement (e.g., “DSC”, “tensile 
testing”). 

These five types represent the core elements 
required to form a complete and usable entry in a 
materials science knowledge base. The primary 
challenge in the context of tables lies in correctly 
associating information that is structurally 
fragmented. The goal of our system is to accurately 
parse the combination of visual and textual 
information to compose a comprehensive set of 
valid 5-ary tuples. We compare two distinct 
approaches to solve this task. 
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3.1 Method 1: Hybrid LLM and Supervised 
Model Pipeline 

This method decomposes the task into two 
sequential stages, leveraging the optimal model 
type for each sub-task. 

Stage 1: LLM-based Table-to-Text Conversion: 
An LLM is given the multi-modal prompt (table 
image, caption, footnotes) and is instructed to act 
as a domain expert to linearize each data row into a 
descriptive paragraph. A novel aspect of our 
approach is the carefully engineered prompt (see 
Appendix A), which transforms the LLM into a 
specialized pre-processor for our supervised 
models. The prompt's key innovation is a 
conditional grouping strategy: it instructs the LLM 
to create separate, self-contained paragraphs for 
each material (POLYMER or its composite), and 
further subdivides these by CHAR_METHOD 
only if a method is explicitly stated. This 
hierarchical grouping is crucial as it prevents the 
ambiguous association of multiple properties with 
their respective measurement contexts—a 
common challenge for downstream relation 
extraction models. 

Furthermore, by enforcing a strict, single-line 
output format and text normalization rules (e.g., 
“T_g” to “Tg”), the prompt ensures the generated 
text is a consistent and machine-readable 
intermediate representation, optimized for the 
models in the subsequent stage. 

Stage 2: Supervised Text-based Tuple 
Extraction: The text generated from Stage 1 is 
then processed by a fixed, pre-trained text 
extraction system composed of supervised models 
trained on the PolyNERE corpus (Phi et al., 2024), 
selected based on their proven high performance. 

We employ a W2NER model (Li et al., 2022), 
which is adept at handling the flat, overlapped, and 
discontinuous entity structures common in 
scientific text. This architecture is similar to that 
used in the PolyMinder system (Do et al., 2025). 
To further optimize for the materials science 
domain, we pair it with the MatBERT encoder 
(Walker et al., 2021). 

We utilize the ATLOP model (Zhou et al., 2021), 
a choice validated by its strong performance in 
prior work (Phi et al., 2024; Do et al., 2025). To 
effectively capture the complex relationships 
present in the text, the model is paired with the 
powerful DeBERTa-v3-large encoder (He et al., 
2020). 

3.2 Method 2: Direct Tuple Extraction using 
LLMs 

This approach follows a conventional end-to-end 
paradigm. The same multi-modal prompt is passed 
to a vision-enabled LLM. The prompt (see 
Appendix B) instructs the model to analyze the 
table's visual structure and associated text to 
directly output a list of all identifiable property 
tuples. To ensure a fair comparison, this prompt is 
also highly engineered with a similar set of detailed 
instructions and critical rules. This method relies 
entirely on the LLM's in-context reasoning to 
perform all sub-tasks simultaneously and serves as 
a direct baseline to evaluate the effectiveness of our 
hybrid pipeline. 

4 Experiments 

4.1 Datasets 

The ground truth for our evaluation was 
constructed through a manual alignment process. 
We sourced curated polymer property data from the 
expert-driven PoLyInfo database (Otsuka et al., 
2011) and mapped it to relevant content within a 
corpus of 37 tables from 29 scientific papers. Our 
final golden set comprises 293 property 
information tuples. Each tuple contains three 
essential entities (POLYMER, PROP_NAME, and 
PROP_VALUE), supplemented with optional 
CONDITION and CHAR_METHOD entities 
when available in the PoLyInfo entry. We 
confirmed that the 37 evaluation tables have no 
overlap with the PolyNERE training corpus, 
ensuring that supervised models in Stage 2 were 
tested on entirely unseen content. 

Our analysis shows that the PoLyInfo-based 
golden annotations cover ~66% of all property 
names found across the evaluated tables. 
Specifically, we manually counted 132 property 
names appearing in the row and column headers of 
the 37 tables. The PoLyInfo database is an expert-
curated resource where domain experts selectively 
extract and store only the most critical and 
standardized property information from scientific 
papers. Of the 132 property names in our tables, 87 
(66%) have corresponding entries in PoLyInfo and 
were used to construct our golden set of 293 tuples. 
The remaining 45 property names (34%) may 
represent less critical properties that were not 
prioritized by expert curators for inclusion in 
PoLyInfo. Our evaluation is therefore near-
comprehensive in its assessment of the most 
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important, standardized properties deemed critical 
by domain experts for polymer characterization. 

For the hybrid pipeline, predicted binary 
relations from the ATLOP model are merged into 
5-ary tuples based on the relation schema defined 
in Phi et al. (2024). During manual evaluation of 
these composed tuples (for both methods), we 
observed a consistent one-to-one mapping between 
a golden tuple and a corresponding prediction for 
each (POLYMER, PROP_NAME) pair (see 
Appendix E). A prediction is marked as True (T) 
only if all five of its constituent entities exactly 
match the golden tuple; otherwise, it is marked as 
False (F). 

4.2 Results 

Based on the observed one-to-one mapping in 
our evaluation setup, the number of False Positives 
and False Negatives are equivalent for the set of 
evaluated golden tuples. Consequently, Precision 
and Recall converge to the same value. We 
therefore report this unified metric as 
F1@PoLyInfo, representing the percentage of 
correctly extracted tuples from the set of important, 
PoLyInfo-defined properties:  
F1@PoLyInfo (%) = # True / (# True + # False) * 100 

We trained the supervised W2NER and ATLOP 
models using established hyperparameters from 
prior work (30 epochs, batch size 8, Adam 
optimizer). All LLM inferences were performed 
with deterministic settings (temperature=0, 
top_p=1). 

We first establish the performance of our 
pipeline's core supervised models by evaluating 
them on the PolyNERE test set against the 
PolyMinder baseline (Do et al., 2025). Table 1 
shows our selected models significantly 
outperform the established baseline for text-based 
extraction in this domain. Our W2NER+MatBERT 
configuration improves the NER F1 score by +2.02 
points, while our ATLOP+DeBERTa-v3-large 
model shows a more significant +4.17 F1 point 

gain for RE. These results confirm their role as a 
powerful foundation for processing the linearized 
table data. 

We then evaluated the two end-to-end 
methodologies on our table extraction task. The 
results are summarized in Table 2. 

 The hybrid pipeline proves to be the superior 
strategy for the majority of the tested models. The 
advanced LLMs, Claude Sonnet 4.5, Gemini 2.5 
Flash, and Qwen2.5-VL 32B Instruct, all saw 
dramatic performance increases when used in the 
hybrid pipeline. Specifically, Gemini 2.5 Flash and 
Qwen2.5-VL 32B improved by an absolute 
+31.06% and +24.57%, respectively, indicating 
that decomposing the complex task is critical for 
these models. 

The best performance in our study was achieved 
by the hybrid pipeline, with Claude Sonnet 4.5 in 
the linearization stage reaching 67.92% 
F1@PoLyInfo. This represents a substantial 
+11.26% absolute improvement over its already 
strong direct extraction performance. An important 
exception to the general trend is GPT-4.1, for 
which the direct extraction method performed 
slightly better (40.61%) than the hybrid pipeline 
(38.23%). Similarly, the performance of GPT-4o 
mini was nearly identical across both methods. 
This suggests that for certain models, error 
propagation in a two-stage process—where 
suboptimal text generation in Stage 1 negatively 
impacts the supervised models—can outweigh the 
benefits of task decomposition. A detailed case 
study in Appendix D analyzes the specific failure 
modes of the pipeline for GPT-4.1. 

The direct extraction method proved 
significantly more challenging for the majority of 
LLMs, with steep performance drops for models 
like Gemini 2.5 Flash and Qwen2.5-VL 32B 
highlighting the immense difficulty of 
simultaneously parsing a 2D structure and 
composing complex relations in a single step. 

Model 
Hybrid Pipeline LLM Extraction 
True False F1 True False F1 

Claude Sonnet 4.5 199 94 67.92 166 127 56.66 
GPT-4.1 112 181 38.23 119 174 40.61 

GPT-4o mini 142 151 48.46 141 152 48.12 
Gemini 2.5 Flash 164 129 55.97 73 220 24.91 
Qwen2.5-VL 32B 158 135 53.92 86 207 29.35 

Table 2:  Model performance results. 

 

 

Task Model Encoder P R F1 

NER 
W2NER MatBERT 78.79 79.81 79.30 
Baseline MatSciBERT 78.05 76.53 77.28 

RE 
ATLOP DeBERTa-v3-

large 87.93 86.89 87.40 

Baseline MatSciBERT 83.99 82.49 83.23 

Table 1:  NER and RE performance on the 
PolyNERE test set. RE uses gold entities. 
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The hybrid pipeline's success lies in assigning 
the right task to the right model. The LLM excels 
at the generative, context-aware task of converting 
a table into fluent text. The supervised W2NER and 
ATLOP models, which are pre-trained and fine-
tuned for their specific tasks, then excel at precise, 
closed-set extraction from this clean, textual input. 
This hybrid architecture proves more robust and 
accurate for most models, though it is not a 
universally guaranteed improvement, as seen with 
GPT 4.1. 

5 Conclusion 

In this work, we compared a hybrid pipeline (LLM 
linearization and supervised NER/RE) against a 
direct LLM approach for property extraction from 
tables, finding the hybrid architecture to be the 
more robust strategy on our PoLyInfo-based 
benchmark. Our best pipeline configuration 
achieves 67.92% F1@PoLyInfo, demonstrating 
that task decomposition with specialized 
supervised models yields superior performance 
compared to end-to-end LLM approaches. 

Limitations 

First, the evaluation set, while carefully curated, 
is of moderate size (293 tuples from 37 tables) and 
focused exclusively on the polymer science 
domain, and performance may vary on other types 
of scientific tables. Second, the hybrid pipeline's 
performance is highly dependent on the quality of 
the LLM-generated text in Stage 1, and as shown 
with GPT-4.1, poor linearization can create a 
bottleneck. Third, the success of our hybrid 
pipeline relies on the availability of well-trained 
text analyzers for NER and RE. This approach 
presupposes that high-quality, domain-specific 
supervised models are available for the second 
stage. Finally, our prompts were carefully 
designed with domain-specific instructions, but 
we did not systematically evaluate sensitivity to 
prompt variations. Evaluation requires manual 
normalization of tuples before matching, making 
comprehensive prompt experiments labor-
intensive. Future work could explore automated 
evaluation methods for systematic prompting 
strategy comparison. 
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A Prompt for LLM-based Table-to-Text 
Conversion (Method 1) 

You are analyzing a scientific table image. Convert it 
into structured natural language text that will be 
processed by Named Entity Recognition (NER) and 
Relation Extraction (RE) models. 

 
TABLE CAPTION: [INSERT CAPTION TEXT 

HERE] 
FOOTNOTES: [INSERT FOOTNOTES TEXT 

HERE] 
 
TASK: Create separate paragraphs for each material 

to prevent entity confusion. If different properties are 
measured using different characterization methods 
(found in caption, footnotes, or column headers), create 
separate paragraphs for each material-method 
combination. 

 
**CRITICAL: Only separate by characterization 

method if methods are explicitly stated. If no methods are 
mentioned, write all properties for a material in one 
paragraph.** 

 
OUTPUT STRUCTURE: 
1. First sentence: Introduce the table using the 

caption 
2. Then, for EACH material: 
   - **If characterization methods are specified**: 

Write separate paragraphs for each method 
   - **If NO methods are specified**: Write one 

paragraph with all properties 
3. Add blank line between paragraphs 
 
REQUIREMENTS FOR EACH PARAGRAPH: 
- Start with the material name EXACTLY as it 

appears in the table 
- **If characterization method is specified**: Include 

it after material name 
- **If NO method is specified**: Omit method phrase 

entirely 
- List properties with their values and units 
- Include any conditions from the caption, footnotes, 

or column headers 
- Write each paragraph as a SINGLE continuous line 
- **Format with method**: "For [material name] 

measured by [CHAR_METHOD] [condition phrase]: 
[property name] is [value unit], [property name] is 
[value unit], ..." 

- **Format without method**: "For [material name] 
[condition phrase]: [property name] is [value unit], 
[property name] is [value unit], ..." 

 

ENTITY TYPES TO INCLUDE: 
1. POLYMER: Material/polymer name exactly as 

written in the table 
2. PROP_NAME: Complete property name from 

column header 
3. PROP_VALUE: Numerical value WITH unit (e.g., 

"7.29 MPa", "266.53%", "45.2 wt%") 
4. CONDITION: Experimental conditions starting 

with a preposition (e.g., "at X°C", "with n=Y", "under 
annealing") 

5. CHAR_METHOD: Measurement or 
characterization method as a noun phrase (e.g., "SEC", 
"DSC", "tensile testing") 

 
CRITICAL RULES: 
- Use material names EXACTLY as they appear in the 

table (no expansion or modification) 
- **DO NOT treat property names as 

characterization methods** 
- **Only use "measured by" when an actual 

measurement technique is specified (e.g., SEC, NMR, 
DSC, XRD, TEM, SEM, FTIR)** 

- **Column headers showing property names (e.g., 
"Tensile strength", "Density", "Modulus") are NOT 
characterization methods** 

- Separate by characterization method only when 
methods are explicitly mentioned 

- Copy exact numbers and units from the table 
- Include units WITH values (e.g., "7.29 MPa" not 

just "7.29") 
- Each paragraph must be a single continuous line - 

NO line breaks within a paragraph 
- Add blank line between paragraphs only 
- DO NOT use subscript notation with underscores 

(e.g., M_n, T_g, T_c). Instead use simplified notation 
(e.g., Mn, Tg, Tc) 

- Condition phrases must start with a preposition 
(e.g., "at", "under", "with", "in", "by") 

- CHAR_METHOD must be a noun phrase (e.g., 
"DSC", "tensile testing", "X-ray diffraction") 

 
EXAMPLE FORMAT: 
 
**Case 1 - NO characterization methods 

specified:** 
This table presents [property category] of [material 

type] materials. 
 
For [Material-A] [condition phrase if any]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit], 
[property-3] is [Z.ZZ unit]. 

 
For [Material-B] [condition phrase if any]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit], 
[property-3] is [Z.ZZ unit]. 

 
**Case 2 - Characterization methods ARE 

specified:** 
This table presents [property category] of [material 

type] materials. 
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For [Material-A] measured by [CharMethod-1]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit]. 
 
For [Material-A] measured by [CharMethod-2] 

[condition phrase if any]: [property-3] is [Z.ZZ unit], 
[property-4] is [W.WW unit]. 

 
For [Material-B] measured by [CharMethod-1]: 

[property-1] is [X.XX unit], [property-2] is [Y.YY unit]. 
 
For [Material-B] measured by [CharMethod-2] 

[condition phrase if any]: [property-3] is [Z.ZZ unit], 
[property-4] is [W.WW unit]. 

 
OUTPUT: Return ONLY the converted text. No 

explanations or additional commentary. 

B Prompt for Direct Tuple Extraction 
(Method 2) 

You are analyzing a scientific table image. Extract ALL 
property measurements from the table as structured 
tuples. 

 
TABLE CAPTION: [INSERT CAPTION TEXT 

HERE] 
FOOTNOTES: [INSERT FOOTNOTES TEXT 

HERE] 
 
TASK: Extract ALL property measurements from the 

table as 5-element tuples. 
 
TUPLE FORMAT: 
(POLYMER, PROP_NAME, PROP_VALUE, 

CONDITION, CHAR_METHOD) 
 
REQUIREMENTS FOR EACH TUPLE: 
- Extract one tuple for EACH property measurement 

(one row × one column = one tuple) 
- Include the complete material name in every tuple 
- Copy exact values with units from table cells 
- Extract any conditions or methods from the caption, 

footnotes, or column headers 
- Process systematically: for each material (row), 

extract all properties (columns) 
 
ENTITY TYPES TO INCLUDE: 
1. POLYMER: Material/polymer name exactly as 

written in the table (e.g., "PE", "Sample A", "Composite-
5") 

2. PROP_NAME: Complete property name from 
column header (e.g., "tensile strength", "glass transition 
temperature") 

3. PROP_VALUE: Numerical value WITH unit (e.g., 
"X.XX MPa", "YY.Y%", "Z.ZZ ± 0.XX unit") 

4. CONDITION: Experimental conditions starting 
with a preposition (e.g., "at X°C", "with n=Y", "under 
annealing", "in air") 

5. CHAR_METHOD: Measurement or 
characterization method as a noun phrase (e.g., "tensile 
testing", "thermal analysis", "SEC", "DSC") 

 
CRITICAL RULES: 
- Use material names EXACTLY as they appear in the 

table (no expansion or abbreviations) 
- Repeat material names in every tuple for clarity 
- Copy exact numbers and units from the table 
- Include units WITH values (e.g., "7.29 MPa" not 

just "7.29") 
- Extract conditions/methods from caption, footnotes, 

and headers 
- CONDITION must start with a preposition (e.g., 

"at", "under", "with", "in", "by") 
- CHAR_METHOD must be a noun phrase (e.g., 

"DSC", "tensile testing", "X-ray diffraction") 
- If condition or method not specified, use empty 

string "" 
- One measurement = one tuple 
- DO NOT use subscript notation with underscores 

(e.g., M_n, T_g, T_c). Instead use simplified notation 
(e.g., Mn, Tg, Tc) 

 
EXAMPLE FORMAT (using placeholder values): 
("PE", "property 1", "value unit", "at condition", 

"method name") 
("PE", "property 2", "value unit", "", "") 
("Sample C", "property 1", "value ± error unit", "at 

condition 1, with condition 2", "characterization 
method") 

 
OUTPUT: Return ONLY the tuple list. One tuple per 

line. No explanations or additional commentary. 

C Examples of Evaluated Tables 

 
Figure 1: Example table from the evaluation set, 
featuring complex headers and footnotes linking 
properties to characterization methods (SEC, DSC, 
NMR). 
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Figure 2: Example table illustrating a common 
ambiguity where two columns share a property 
name (Tg) but are distinguished by different 
characterization methods (DSC, DMA) in the 
footnotes. 

D Error Analysis: Understanding the 
GPT-4.1 Performance Anomaly 

As noted in Section 4.2, GPT-4.1 was a notable 
exception to the general trend, performing slightly 
better with direct extraction than within the hybrid 
pipeline. This appendix provides a case study to 
dissect the specific failure modes that explain this 
result, highlighting the critical role of the table-to-
text linearization stage and the potential for error 
propagation. We use the table in Figure 3 and its 
corresponding PoLyInfo-based golden annotations 
in Figure 4 as a running example. 

Analysis of the Hybrid Pipeline (Method 1): 
In the hybrid pipeline, the quality of the final 
extraction is entirely dependent on the quality of 
the text generated by the LLM in Stage 1. Figure 3 
shows a table where characterization methods 
(TGA, DSC) are specified as column headers. 

Generated Text from GPT-4.1: For the input 
table in Figure 3, GPT-4.1 produced the following 
linearized text for Stage 2: 

“This table presents characteristics of both PFS 
and PWN2010. 
For PFS at RH = 50%, T = 30 °C: Mn is 30 200, 
Mw is 59 000, PD is 1.92, IEC calcd is 0 mmol 
g⁻¹, IEC found is 0 mmol g⁻¹, Tdecomp is 285 °C, 

Tg is 105.5 °C, water uptake [wt %] is 0, water 
uptake [λ] is 0. 
For PWN2010 at RH = 50%, T = 30 °C: Mn is 
9 000, Mw is 67 000, PD is 7.5, IEC calcd is 7.8 
mmol g⁻¹, IEC found is 7.0 mmol g⁻¹, Tdecomp 
is 340 °C, Tg is >330 °C, water uptake [wt %] 
is 18, water uptake [λ] is 2.5.” 

This generated text contains two critical flaws 
that lead to downstream extraction failures: 

• Omission of Characterization Methods: 
The LLM failed to identify “TGA” and 
“DSC” from the column headers as 
characterization methods and did not include 
them in the generated paragraphs. Because 
this information is completely absent from 
the text, it is impossible for the downstream 
supervised W2NER and ATLOP models to 
extract the CHAR_METHOD entity. This 
results in an immediate and unavoidable 
False evaluation for four of the six golden 
tuples shown in Figure 4. 

• Incorrect Value-Unit Representation: The 
linearization format “...water uptake [wt %] 
is 0...” separates the property's unit from its 
value. The supervised NER model, which 
relies on surface text patterns, struggles with 
this structure. It is likely to identify 
PROP_VALUE as just "0" and incorrectly 
associate "[wt %]" with the PROP_NAME. 
This creates a mismatch with the golden 
annotation in Figure 4, which correctly 
defines PROP_NAME as "water uptake" 
and PROP_VALUE as "0 wt%". 

These linearization errors propagate through the 
pipeline, preventing the supervised models in Stage 
2 from performing correctly and resulting in a low 
overall score. 

Figure 3: Input table for the error analysis. 
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Analysis of Direct LLM Extraction (Method 
2): In the direct extraction method, the LLM is 
responsible for parsing the table and generating 
tuples in one step. Below are the corresponding 
outputs from GPT-4.1 for the golden tuples in 
Figure 4. Incorrectly predicted entities are shown 
in bold. 

("PFS", "Tdecomp", "285 °C", "", "TGA") 
("PFS", "Tg", "105.5 °C", "", "DSC") 
("PFS", "water uptake [wt %]", "0", "at RH = 

50%, at T = 30 °C", "") 
("PWN2010", "Tdecomp", "340 °C", "", 

"TGA") 
("PWN2010", "Tg", ">330 °C", "", "DSC") 
("PWN2010", "water uptake [wt %]", "18", 

"at RH = 50%, at T = 30 °C", "") 

From these outputs, we observe: 

• Correct CHAR_METHOD Extraction: 
For properties with simple headers like 
“Tdecomp” and “Tg”, the direct method 
performs perfectly, correctly identifying 
“TGA” and “DSC” as the 
CHAR_METHOD. This gives it an 

advantage over the flawed pipeline 
output, where this information was lost. 

• Incorrect PROP_NAME and 
PROP_VALUE Parsing: Similar to the 
pipeline's issue, the direct method also 
struggles with the complex "water 
uptake" header. It incorrectly merges the 
unit “[wt %]” into the PROP_NAME and 
extracts only the numerical part ("0" or 
"18") as the PROP_VALUE, leading to a 
mismatch. 

This case study explains the GPT-4.1 
performance anomaly. The hybrid pipeline's 
linearization stage made a significant error by 
omitting CHAR_METHOD information, leading 
to unavoidable downstream failures for the 
supervised models. In contrast, the direct extraction 
method, while also imperfect, correctly extracted 
more of the golden tuples. This demonstrates the 
risk of error propagation in a pipeline. If an LLM's 
text generation style is a poor fit for the 
downstream models, a direct approach can, in some 
cases, yield slightly better results by avoiding this 
cascade of errors. 

E One-to-One Mapping in Tuple 
Evaluation 

We observed a consistent one-to-one mapping 
between golden tuples and predictions for each 
(POLYMER, PROP_NAME) pair across all 
evaluated tuples. 

For the Hybrid Pipeline: The ATLOP model 
predicts binary relations that are merged into 5-ary 
tuples following Phi et al. (2024). When multiple 
binary relations share the same (POLYMER, 
PROP_NAME, PROP_VALUE) triple, they are 
consolidated into a single tuple by aggregating 
CONDITION and CHAR_METHOD entities. 

For Direct LLM Extraction: Scientific tables 
organize data with one measurement per cell. The 
prompt instructs "Extract one tuple for EACH 
property measurement (one row × one column = 
one tuple)", and all LLMs followed this instruction. 

Under this one-to-one constraint, each incorrect 
prediction simultaneously represents both a false 
positive and a false negative, making these counts 
equivalent. 

Figure 4: The PoLyInfo-based golden annotations for 
the table in Figure 3. These tuples serve as the ground 
truth for the error analysis, highlighting failures in 
CHAR_METHOD and PROP_VALUE extraction. 
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Abstract
Scientific datasets are crucial for evaluating sci-
entific research, and their number is increas-
ing rapidly. Most scientific dataset recom-
mendation systems use Information Retrieval
(IR) methods that model semantics while over-
looking interactions. Graph Neural Networks
(GNNs) excel at handling interactions between
entities but often overlook textual content, lim-
iting their ability to generalise to unseen nodes.
We propose TeG-DRec, a framework for sci-
entific dataset recommendation that integrates
GNNs and textual content via a subgraph gen-
eration module to ensure correct propagation
throughout the model, enabling handling of
unseen data. Experimental results on the
dataset recommendation’s dataset show that
our method outperformed the baselines for text-
based IR and graph-based recommendation sys-
tems. Our source code is available at https:
//github.com/Maqif14/TeG-DRec.git

1 Introduction

Scientific datasets are essential for evaluating sci-
entific research, as it is crucial to examine and
verify their behaviour to achieve optimal perfor-
mance in real-world scenarios (Özgöbek et al.,
2014; Fahrudin and Wijaya, 2024). When a dataset
is tailored to the specific context of the learning
environment, it can significantly improve system
performance (Verbert et al., 2011). For exam-
ple, the Common Crawl dataset significantly con-
tributed to the efficacy of GPT-3 as a formidable
Large Language Model (LLM) upon its release
in 2020 (Brown et al., 2020). The number of
datasets increases annually by hundreds each year
(Viswanathan et al., 2023). The growing number
of datasets complicates manual search for the opti-
mal dataset, occasionally leading to poor selections
(Patankar et al., 2023; Viswanathan et al., 2023;
Qin et al., 2024). Consequently, the need for a
dataset recommender is greater than ever to en-
hance research efficiency.

Several studies have explored scientific dataset
recommendation systems using text-based IR meth-
ods (Wang et al., 2021; Färber and Leisinger, 2021;
Keller and Munz, 2022; Yadav et al., 2023; Zhang
and Ashraf, 2023), with some extending it using
neural bi-encoders to capture richer contextual se-
mantics (Viswanathan et al., 2023). These ap-
proaches typically compute lexical or embedding-
based similarity between query descriptions and
candidate datasets. Despite their scalability, there
is no direct interaction between the query and the
document, as they are encoded independently dur-
ing embedding generation, resulting in a loss of
structural relationships among them (Humeau et al.,
2019; Tran et al., 2024).

Recent advances in GNNs on the scientific
dataset recommendation task offer a promising
approach to solve the issue (Altaf et al., 2019;
Qayyum et al., 2025). However, these methods
generally lack inductive capability, which is es-
sential for handling unseen nodes. Such inductive
ability is crucial in scientific dataset recommen-
dation, where the number of papers and datasets
continues to grow rapidly. Aside from that, most
GNNs-based approaches tend to overlook the rich
textual content associated with these nodes, result-
ing in incomplete semantic representations.

Several attempts have been made to address the
unseen node using an inductive GNNs approach in
the field of recommendation systems (Teru et al.,
2020; Xiao et al., 2023), with the ability to cat-
egorise labels that did not exist during training.
Inductive GNNs have not yet been applied to the
scientific dataset recommendation task, although
we believe that leveraging them could offer signifi-
cant benefits.

To address this challenge, we propose TeG-
DRec (Textual Graph Dataset Recommendation),
a framework that integrates textual content with
inductive GNNs. TeG-DRec is designed to handle
realistic scenarios where new scientific papers or
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Figure 1: Research problem where the scientific papers
in testing did not appear in the training set (unseen paper
nodes in blue colour) connected with the label dataset
that does not have any existing link with scientific papers
during training (unseen dataset nodes in red colour)

scientific datasets are continuously introduced with-
out explicit links to existing entities. As illustrated
in Figure 1, unseen nodes refer to the nodes that do
not appear during training or nodes that do not have
any connection with any nodes during training.

Aside from that, TeG-DRec introduces a sub-
graph generation module that jointly enables in-
ductive learning, contrastive learning, and margin-
based optimisation within a cohesive training pro-
cess. By combining the strengths of both textual
and structural modalities, TeG-DRec effectively
captures semantic and relational dependencies, of-
fering robust inductive generalisation and improved
scientific dataset recommendation performance.

The recommendation system works by taking a
set of input queries, including the query, keyword
query, and abstract. These inputs are then passed to
TeG-DRec for the recommendation process, where
the model predicts and outputs the Top-K datasets
that best match the given inputs. This process is
illustrated in Figure 2. The dataset used in our
experiment consists of two node types: scientific
papers and datasets, where the datasets serve as the
target items to be recommended for each paper.

We compare TeG-DRec with text-based IR
methods and a graph-based baseline. The text-
based IR methods follow a neural bi-encoder frame-
work (Ma et al., 2025), leveraging recent embed-
ding models, which include SciBERT (Beltagy
et al., 2019), Contriever (Lei et al., 2023), BGE-

Figure 2: Overview of the scientific dataset recommen-
dation process in TeG-DRec, from the input to output

M3 (Chen et al., 2024), and E5 (Wang et al., 2024)
that provide strong semantic representations for
scientific and general-domain retrieval tasks. For
graph-based baselines, we compare TeG-DRec
against GraphSAGE (Hamilton et al., 2017), Re-
lational Graph Convolutional Networks (R-GCN)
(Schlichtkrull et al., 2017) and Graph Attention
Networks (GAT) (Veličković et al., 2018), which
rely on the structural relations in the graph with-
out incorporating the textual components of TeG-
DRec. TeG-DRec consistently outperforms these
baselines across all evaluation metrics, demonstrat-
ing its ability to capture both semantic and struc-
tural relationships effectively. In summary, this
work makes three key contributions:

1. We propose TeG-DRec, a framework for sci-
entific dataset recommendation that supports
inductive recommendation for newly pub-
lished scientific papers and scientific datasets,
effectively handling unseen nodes without re-
training.

2. We introduce a unified framework that inte-
grates inductive GNNs with textual representa-
tions to jointly capture structural and semantic
information.
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Figure 3: Overview of TeG-DRec, which consists of four main modules: (A) Embedding and Graph Initialisation,
(B) Subgraph Generation, (C) Graph Representation Learning, and (D) Inference

3. We conduct extensive experiments on a
publicly available benchmark and demon-
strate that TeG-DRec consistently outper-
forms strong text-based IR and graph-based
baselines.

2 Related Work

The techniques used to create the scientific dataset
recommendation problem can be categorised into
two groups: text-based IR and graph-based meth-
ods.
Text-Based IR Text-based IR for scientific dataset
recommendation can be categorised into traditional
methods and neural bi-encoder methods. The tradi-
tional method comprises BM25 (Keller and Munz,
2022), which ranks the dataset based on term-
frequency matching, and a SciBERT-based text
classification model (Beltagy et al., 2019; Färber
and Leisinger, 2021). More recently, the Neural
Bi-Encoder method proposed by Viswanathan et al.
(2023) adopts a neural bi-encoder with SciBERT
embeddings to encode both scientific papers and
datasets. However, their model encodes scientific
papers and datasets separately, which ignores their
structural relationships.
Graph-Based Method The graph-based method
can leverage the structural relationships between
scientific papers and datasets. These structural re-
lationships refer to the connections between sci-

entific papers and the datasets they use, or they
can be citation network among papers, datasets,
and other related papers. Altaf et al. (2019) pro-
posed a heterogeneous variational graph autoen-
coder (HVGAE) that integrates a citation network
with paper–dataset associations to generate more
informative representations for recommendation.
Similarly, Qayyum et al. (2025) utilised GNNs en-
riched with textual features to recommend relevant
datasets. However, their method can only handle
transductive graphs, which require the nodes to be
present during training. This limits the usage of
the model in real-world situations where the nodes
are constantly added. To address this limitation,
several inductive graph learning frameworks have
been proposed for recommendation systems, in-
cluding GraphSAGE (Hamilton et al., 2017) and
Graph Attention Networks (GAT) (Veličković et al.,
2018), which enable improved generalisation via
neighbourhood aggregation mechanisms. Addi-
tionally, Relational Graph Convolutional Networks
(R-GCN) (Schlichtkrull et al., 2017), although not
inherently inductive, offer a promising solution by
effectively handling multiple edge types within a
graph.
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3 TeG-DRec Framework

3.1 Overview
TeG-DRec (Textual Graph-Dataset
Recommendation) integrates textual content
with graph structures, enabling the model to
generalise toward unseen nodes by leveraging
both the semantic properties and the structural
information of the nodes. To achieve this, four
main modules have been designed to address
the specific requirements: (A) Embedding and
Initialisation, (B) Subgraph Generation, (C) Graph
Representation Learning, and (D) Inference,
as depicted in Figure 3. In particular, the (B)
Subgraph Generation module ensures that the
textual content and graph structures are correctly
aligned and passed through the inductive graph
and loss components.

3.2 Embedding and Graph Initialisation
Embedding and Graph Initialisation module is re-
sponsible for encoding the textual information into
embeddings and constructing the corresponding
graph connections. This module ensures that the
rich textual content is effectively integrated into the
graph structure.

The dataset used in our experiments comprises
descriptions of scientific papers, datasets, and the
associations indicating which datasets are used by
each paper. This relationship refers to the con-
nection between the scientific papers, their corre-
sponding positive datasets, and their corresponding
negative datasets. A positive dataset refers to the
dataset actually used by a given scientific paper,
while a negative dataset represents a hard negative
sample that is not used by the scientific paper. This
is further illustrated in Figure 4.

Figure 4: Example of positive and negative dataset sam-
ple for a paper with ID number 1

To remove unnecessary symbols and particular
words from the dataset descriptions, a cleaning pro-

cess is applied prior to using SciBERT to produce
dense vector embeddings. Conversely, the relation-
ships between scientific papers and datasets are
represented in Coordinate Format (COO) as sparse
matrices.

The COO maps of the scientific paper ID p with
its associated positive dataset ID d+ and negative
dataset ID d− as illustrated in Figure 3. The dense
vector embeddings of the description and the COO
of the scientific paper and dataset are subsequently
passed on to the HeteroData G class in Pytorch
Geometric (PyG) (Fey and Lenssen, 2019). The
HeteroData G class utilises dense vector embed-
ding V and COO format E to generate a train data
graph. Meanwhile, the test paper dense vector em-
beddings Ptest are extracted to be used later in the
Inference section.

3.3 Subgraph Generation

The subgraph generation module enables the model
to handle subgraphs rather than the entire graph,
ensuring computational efficiency when learning
on a large-scale graph. Additionally, it guarantees
that graph nodes are properly aligned with their cor-
responding textual features before being passed to
the Graph Representation Learning module. Proper
alignment is essential, as misalignment would dis-
rupt feature aggregation across connected nodes,
thereby hindering inductive learning. Addition-
ally, misalignment could also result in incorrect
node pairings during loss computation. Figure 5
illustrates the flow of node IDs within this module.
Here, P (blue) denotes the IDs of scientific papers,
while + (green) and – (red) represent the positive
and negative datasets associated with the scientific
papers, as described previously in Figure 4.

This module consists of two subcomponents: a
triplet generation process that constructs triplets
from the train graph, and a subgraph mapping pro-
cedure that extracts subgraphs from the training
graph and maps them according to the global node
IDs.

Triplet Generation Triplet generation is used to
efficiently load and manage the triplet set T , which
consists of scientific paper ID p, positive dataset
ID d+, and negative dataset ID d−, from the train
graph G. The triplet set T is then shuffled and
partitioned into batches Tb as outlined in Algorithm
1. Subsequently, these batches are fed into the
subgraph sampling module for subgraph mapping.
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Figure 5: Flow inside Subgraph Module shows that after
the subgraph extraction, the node IDs become local IDs.
This IDs is remapped back into global IDs to keep track
of the IDs

Algorithm 1 Triplet Generation and Subgraph
Mapping

Require:
1: Dense Vector Embeddings V
2: COO Format E
3: Heterogeneous Train Graph G = (V, E)
4: Scientific Paper ID p
5: Positive Dataset ID d+

6: Negative Dataset ID d−

7: Set of Triplets T = {(p, d+, d−)}
8: Batch Size B
9: Number of Neighbours k

Ensure:
10: Mini-batch Subgraph Gbatch
11: Mapped Triplet Indices:
12: GT = {(Plocal, D

+
local, D

−
local)}

Triplet Generation:
13: Dataset←TripletGeneration(T )
14: Tb ← Shuffle(Dataset)
15: return Tb
Subgraph Mapping:
16: for b in Tb do
17: pbatch ← {pi}bi=1

18: Gbatch ← NeighborLoader(G, pbatch, k)
19: GT ← GlobaltoLocal(Gbatch, b)
20: end for
21: return Gbatch,GT

Subgraph Mapping A batch b is sampled from
Tb and used to generate a subgraph. The scientific
paper IDs p from the batch b serve as input nodes
pbatch for the NeighborLoader() from PyG. We
perform two-hop subgraph sampling, where the
first hop samples twenty neighbours and the sec-
ond hop samples fifteen. The resulting subgraph

Gbatch is then remapped to global indices Tb using
the GlobaltoLocal() function, producing a triplet
local GT .

This remapping ensures that node identities re-
main consistent, as subgraph construction replaces
global indices with local ones. This step ensures
that the loss function receives the correct node
IDs with its embeddings. The whole procedure
is shown in Algorithm 1.

3.4 Graph Representation Learning
Graph Representation Learning module enables
TeG-DRec to handle unseen nodes (refer Figure 1)
as it comprises two main subcomponents: graph
encoder and loss functions. The graph encoder uses
an inductive GNNs to learn representations from
the subgraph, which helps it to generalise towards
unseen nodes.

Aside from that, the loss function computes rank-
ing and contrastive losses and uses gradient-based
optimisation during training via backpropagation.
Ranking losses aim to prioritise positive pairs over
negative ones, ensuring that relevant datasets are
ranked higher than irrelevant ones. In contrast,
contrastive loss enhances representation learning
by aligning similar views in the embedding space
while separating dissimilar ones, improving the
model’s ability to distinguish between different
data points.

Graph Encoder The graph encoder processes
the input graph Gbatch which represents the IDs
of scientific papers, positive datasets, and nega-
tive datasets (see Figure 5), along with their cor-
responding embeddings, using an inductive GNN
to generate the output views OVout. These output
views are then concatenated with the original pre-
encoded representations of Gbatch to form the final
recommendation embeddings R. The recommenda-
tion embeddings R are mapped based on the local
triplet mapping GT , resulting in the mapped rec-
ommendation embeddings Rmap, which are then
passed to the loss functions. The graph encoder is
implemented as a modular component, allowing it
to operate with various types of inductive GNNs.
The detailed procedure is outlined in Algorithm 2.

In this study, we incorporate multiple inductive
GNNs encoders, including GraphSAGE (Hamilton
et al., 2017), R-GCN (Schlichtkrull et al., 2017)
and GAT (Veličković et al., 2018).

Loss Functions Our model is optimised using
two main types of loss functions: ranking loss and
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Algorithm 2 Graph Representation Learning

Require:
1: Mini-batch Subgraph Gbatch
2: Mapped Triplet Local:
3: GT = {(Plocal, D

+
local, D

−
local)}

Ensure:
4: Rec Embeddings MappedRmap

Learning Process:
5: OVout ← GraphEncoder(Gbatch)
6: R ← OVout ◦ Gbatch
7: Rmap ← R such that R ⊆ GT
8: returnRmap

contrastive loss. For ranking loss, we use margin
ranking loss LM , which enforces a margin between
positive and negative scores to maximise the differ-
ence between them. The loss function is defined in
Eq. (1).

LM = max(0,−y ∗ (x1 − x2) + margin ), (1)

where x1 denotes the positive sample and x2 de-
notes the negative sample, while y is a binary label.
In our experiments, we set y = 1 to enforce that
the positive sample x1 should always be ranked
higher than the negative sample x2.

For contrastive loss, it is applied between the
text embeddings of scientific papers and their cor-
responding positive datasets. The objective is to
encourage the model to draw semantically aligned
paper–dataset pairs closer in the embedding space,
while pushing apart unrelated pairs. It is given by:

LTCL = InfoNCE(Zp,Zd, τ), (2)

where LTCL refer to text contrastive loss, Zp indi-
cates the paper embeddings and Zd is the positive
dataset embeddings. τ is a temperature, which is a
constant. This contrastive loss is formulated using
the InfoNCE loss (Rusak et al., 2024), as defined
in Eq. (3).

LInfoNCE = − 1

N

N∑

i=1

log

exp

(
z
(1)
i ·z(2)i

τ

)

∑N
j=1 exp

(
z
(1)
i ·z(2)j

τ

) ,

(3)
where z

(1)
i is the original view of sample i, z(2)i is

the augmented view of i, and τ is the temperature
constant. z

(2)
j refers to the positive sample from

the augmented view.

All losses are multiplied by their respective ra-
tios for balanced performance, then combined with
a regularisation loss to avoid overfitting. The equa-
tion of the batch loss is defined as Eq. (4).

Ltotal = LTCL + LM + LL2reg, (4)

where LSCL is the structure contrastive loss, LTCL

indicates the text contrastive loss, LM refers to the
margin loss andLL2reg shows the L2 regularization
loss.

3.5 Inference

The inference module enables TeG-DRec to evalu-
ate scenarios involving truly unseen nodes. Eval-
uating such scenarios is essential for simulating
real-world conditions, as new scientific papers and
datasets continue to appear. To achieve that, we
concatenate the test paper dense vector embeddings
Ptest with the heterogeneous train graph dense vec-
tor embeddings G(V), producing the test graph
Gtest as shown in Algorithm 3. The dense vector
embeddings of test papers Ptest have no connec-
tions to any dataset nodes within the test graph
Gtest. This ensures that the encoder processes test
nodes independently of the training structure. The
test graph is passed to the GraphEncodernograd for
the encoding process. After obtaining paper Ip and
dataset Id embeddings from the model, we extract
test paper embeddings Itp by indexing the unique
nodes of test paper dense vector embeddings index
Ptest.

To generate recommendations, we compute the
maximum inner product between each test paper
embedding Itp and dataset embeddings Id using
FAISS (Douze et al., 2024) and retrieve the top-r
results. The overall inference process is illustrated
in Figure 3.

4 Experiments

4.1 Experimental Setup

Dataset We use the DataFinder Dataset
(Viswanathan et al., 2023) to train and evaluate our
model. The dataset is available on GitHub1. This
dataset contains metadata about scientific papers
and their associated datasets. It is pre-split into
training and test sets. The training data includes
true positive and hard negative dataset pairs for
each publication, sourced from the Papers with

1https://github.com/viswavi/datafinder/tree/
main
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Algorithm 3 Inference
Require:
1: Dense Vector Embeddings V
2: COO Format E
3: Heterogeneous Train Graph G = (V, E)
4: Test Scientific Papers Ptest = V

Ensure:
5: Top-r results top-r

Inference Process:
6: Gtest ← G(V) ◦ Ptest
7: Ip, Id ← GraphEncodernograd(Gtest)
8: Itp ← Ip[Unique(Ptest)]
9: top-r ← FAISSInnerProduct(Itp, Id)

10: return top-r

Code2 website. The hard negative datasets are
selected using BM25. These hard negatives do not
necessarily overlap with true positives. The test
data consists of expert-annotated evaluations from
SciREX (Jain et al., 2020).

To ensure that the test data align with our truly
unseen node scenario, we remove scientific papers
that interact with positive datasets. The remaining
connected datasets in the test data are then removed
from the hard negative datasets in the train data.
This is to ensure that the test data are truly unseen.
Table 1 summarises the statistics of the dataset.
Appendix A outlines the available features within
the dataset.

Data Train Test
# of scientific papers 17,397 88
# of positive datasets 461 74
# of positive interactions 20,789 126
# of negative datasets 2,570 –
# of negative interactions 118,997 –

Table 1: The statistics of scientific papers and datasets
in Datafinder Dataset

Evaluation metrics We evaluate our method us-
ing five standard recommender system metrics: Pre-
cision (P), Recall (R), Normalised Discounted Cu-
mulative Gain (NDCG), Mean Average Precision
(MAP), and Mean Reciprocal Rank (MRR). For
top-r, we set r = 5, reflecting real-world usage
where users engage with the highest-ranked sug-
gestions. This is particularly relevant for Precision,
Recall, and NDCG, all of which involve the top-r

2https://huggingface.co/papers/trending

metric in their calculation.

Implementation To ensure separation between
node features, a unique token is added before each
feature during encoding. For training stability
and convergence, we implemented a learning rate
scheduler that combines linear warmup with cosine
annealing. The implementation was done using Py-
Torch and PyG (Fey and Lenssen, 2019), with ex-
periments run on an NVIDIA RTX 6000 Ada GPU
with 48GB VRAM. The hyperparameters used in
this experiment are detailed in Appendix B to facil-
itate reproducibility.

4.2 Baselines
To evaluate the effectiveness of our proposed
method, we compare it against seven baseline ap-
proaches, which are classified into two groups:

Text-Based IR Method consists of four base-
lines, each of which utilises the neural biencoder
framework by Ma et al. (2025) with four different
embedding models, including:

1. SciBERT (Beltagy et al., 2019) is a pretrained
BERT-based language model specifically de-
signed for scientific and scholarly text.

2. Contriever (Lei et al., 2023) is an unsuper-
vised dense information retrieval model that
leverages contrastive learning to train a bi-
encoder that maps queries and documents to a
shared embedding space.

3. BGE-M3 (Chen et al., 2024) is a multilingual
embedding model designed to handle various
retrieval tasks efficiently.

4. E5-Large (Wang et al., 2024) is a text embed-
ding that is trained using weakly-supervised
contrastive learning on a large-scale dataset
of text pairs.

Graph-Based Method consist of three base-
lines:

1. GraphSAGE (Hamilton et al., 2017) Graph-
SAGE is an inductive graph whose primary
goal is to learn node embeddings that gener-
alise towards unseen nodes, rather than only
represented nodes seen during training.

2. Relational Graph Convolutional Networks
(R-GCN) (Schlichtkrull et al., 2017) is an
extension of Graph Convolutional Networks
(GCNs), which is designed to handle graphs
where edges have types or relations.
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Methods Datafinder Dataset (Unseen Configuration)
P@5 R@5 NDCG@5 MAP MRR

Text-based IR Method
Neural Biencoder (SciBERT) 0.015 0.053 0.032 0.023 0.029
Neural Biencoder (Contriever) 0.018 0.064 0.039 0.028 0.034
Neural Biencoder (BGE-M3) 0.017 0.063 0.051 0.042 0.055
Neural Biencoder (E5-Large-V2) 0.011 0.038 0.026 0.020 0.026
Graph-Based Method
GraphSAGE 0.005 0.017 0.008 0.004 0.006
R-GCN 0.002 0.011 0.011 0.011 0.011
GAT 0.009 0.045 0.020 0.012 0.012
TeG-DRec (GraphSAGE) 0.066 0.237 0.160 0.124 0.153
TeG-DRec (RGCN) 0.050 0.176 0.123 0.096 0.119
TeG-DRec (GAT) 0.111 0.419 0.315 0.260 0.316

Table 2: The recommendation performance of our method against baselines for the text-based IR method and the
graph-based method. Bold is the best, underline is the second best.

Model P@5 R@5 NDCG@5 MAP MRR
w/o SciBERT 0.009 0.045 0.020 0.012 0.012
w/o GNNs (GAT) 0.015 0.053 0.032 0.023 0.029
TeG-DRec(GAT) 0.111 0.419 0.315 0.260 0.316

Table 3: The ablation study for each component. Bold is the best, underline is the second best.

3. Graph Attention Networks (GAT)
(Veličković et al., 2018) introduces attention
mechanisms, enabling the model to learn
the importance of neighbouring nodes
dynamically.

4.3 Results
Table 2 compares the performance of the graph-
based method with TeG-DReC with text-based IR
and graph-based methods alone on the DataFinder
dataset, evaluated under a truly unseen configu-
ration. Our methods consistently outperform all
baselines across all metrics, demonstrating their
effectiveness and robustness.

The results show that graph-based models com-
bined with TeG-DRec outperform their graph-only
counterparts across all evaluation metrics. In par-
ticular, TeG-DReC(GAT) achieves a substantial
improvement in R@5, surpassing its baseline by
0.374. It also exhibits superior ranking perfor-
mance, with gains of 0.304 in MRR, 0.295 in
NDCG@5, and 0.240 in MAP compared with TeG-
DRec(GAT). These metrics assess ranking quality
where NDCG considers both relevance and posi-
tion, MRR reflects the rank of the first relevant
result, and MAP measures the average precision
of the ranking. The P@5 metric also increases

by 0.102 over the GAT baseline. Beyond TeG-
DRec(GAT), both TeG-DRec(GraphSAGE) and
TeG-DRec(RGCN) also achieve significant im-
provements over their respective graph-only base-
lines.

Although the neural bi-encoder using Contriever
as the embedding model achieves the highest re-
sults among all text-based IR methods, all graph-
based models integrated with TeG-DRec still out-
perform it. The lowest-performing variant, TeG-
DRec (RGCN), surpasses the Contriever-based bi-
encoder by 0.032, 0.068, 0.084, 0.085, and 0.112
for P@5, MAP, NDCG@5, MRR, and R@5, re-
spectively. These results indicate that while neural
bi-encoders capture rich semantic similarities, in-
corporating relational structure via graph learning
further enhances alignment between scientific pa-
pers and datasets, leading to superior recommenda-
tion performance.

4.4 Ablation Study

To assess the contribution of each component in our
model, we conducted an ablation study by remov-
ing one component at a time, with results shown
in Table 3. In this ablation study we pick TeG-
DReC(GAT) as our original results. Removing the
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textual component, SciBERT, results in a substan-
tial drop across all metrics, particularly in R@5 and
MRR, which decrease by 0.374 and 0.304, respec-
tively. This performance drop is also reflected in
other metrics, such as NDCG@5, MAP, and P@5,
which decrease by 0.295, 0.248, and 0.101, respec-
tively. This underscores the critical role of textual
features in capturing semantic alignment between
papers and datasets for accurate recommendations.

Similarly, removing the GNN component also re-
duces performance across all metrics, with notable
decreases in R@5 and MRR of 0.366 and 0.287, re-
spectively. Other metrics, including NDCG@5,
MAP, and P@5, also show decreases of 0.283,
0.237, and 0.096, respectively. These results indi-
cate that while semantic representations of publica-
tions and datasets significantly improve model per-
formance, integrating graph-structured information
further enhances recommendation quality, high-
lighting the complementary benefits of combining
textual and structural components in TeG-DRec.

4.5 Error Analysis

We conducted an error analysis on the TeG-DRec
recommendation output. There are two main types
of errors in the recommended results:

Biased towards certain dataset TeG-DRec
shows a bias toward certain datasets, such as
TreQA, which appears most frequently in recom-
mendations even though it occurs only once in the
ground truth, as shown in Figure 6. Similar trends
are observed for other over-recommended datasets
absent from the actual ground truth. A debiasing
technique can be implemented to solve the prob-
lems.

Textual bias in dataset query Textual bias in
the training data may affect the recommendations.
For example, as shown in Figure 6, SQuAD, a
question-answering dataset, appears 312 times in
positive training interactions. This high frequency
can bias the model toward recommending TreQA,
another question-answering dataset, even when it
is absent from the ground truth. Incorporating
content-aware attention could help mitigate this
issue.

5 Conclusion

This research introduced TeG-DRec, a framework
for scientific dataset recommendation that unifies
GNNs with textual content via a subgraph module,
ensuring that textual content and graph structures

Figure 6: We present two examples for error analysis:
the top illustrates a case where the TeG-DRec is biased
towards a certain dataset, while the bottom highlights
textual bias in the dataset query.

are correctly aligned and passed to the inductive
graph and loss components. This integration en-
ables the model to better generalise towards unseen
data. The framework leverages textual represen-
tations from SciBERT and incorporates inductive
GNNs, which are adaptable to various types of in-
ductive graph models. Experimental results on the
Datafinder dataset with truly unseen nodes show
that our method outperforms previous baselines,
including both text-based IR and graph-based ap-
proaches. Future work should incorporate a de-
biasing technique for recommendations to reduce
popularity bias. This can be done by re-weighting
the training loss based on dataset frequency, which
means less frequent datasets get a higher weight.
Aside from that, using content-aware attention
rather than simply aggregating the textual embed-
ding reduces bias from frequent, irrelevant words
or phrases.
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Limitations

Our major limitation is that our method relies heav-
ily on the quality and availability of textual infor-
mation (e.g, paper abstracts and dataset descrip-
tions). In cases where the text is noisy, incomplete,
or missing, the recommendation performance may
degrade. Another limitation is that the availability
of datasets for dataset recommendation systems is
very low compared to other datasets which make
use heavily rely on Datafinder Dataset alone.

Ethical Statement

This work adheres to the ethical standards out-
lined in the ACL Code of Ethics and the general
principles of responsible AI research. All data
used in this study are publicly available and used
strictly for research purposes under their respec-
tive licenses. No personally identifiable informa-
tion (PII) or sensitive content was collected or pro-
cessed. We also took care to examine potential
sources of bias and ensure that model outputs do
not propagate harmful or discriminatory associa-
tions.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Ben-
gio. 2018. Graph attention networks. Preprint,
arXiv:1710.10903.

Katrien Verbert, Hendrik Drachsler, Nikos Manouselis,
Martin Wolpers, Riina Vuorikari, and Erik Duval.
2011. Dataset-driven research for improving recom-
mender systems for learning. In Proceedings of the
1st international conference on learning analytics
and knowledge, pages 44–53.

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei
Liu, and Graham Neubig. 2023. Datafinder: Scien-
tific dataset recommendation from natural language
descriptions. arXiv preprint arXiv:2305.16636.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2024. Text embeddings by
weakly-supervised contrastive pre-training. Preprint,
arXiv:2212.03533.

Shuai Wang, Shengyao Zhuang, and Guido Zuccon.
2021. Bert-based dense retrievers require interpo-
lation with bm25 for effective passage retrieval. In
Proceedings of the 2021 ACM SIGIR International
Conference on Theory of Information Retrieval, IC-
TIR ’21, page 317–324, New York, NY, USA. Asso-
ciation for Computing Machinery.

Jiaren Xiao, Quanyu Dai, Xiaochen Xie, James Lam,
and Ka-Wai Kwok. 2023. Adversarially regularized
graph attention networks for inductive learning on
partially labeled graphs. Knowledge-Based Systems,
268:110456.

Krishan Kant Yadav, Hemant Kumar Soni, and Nikhlesh
Pathik. 2023. Recommendation system based on dou-
ble ensemble models using knn-mf. International
Journal of Advanced Computer Science and Applica-
tions, 14(5).

Zitong Zhang and Yaseen Ashraf. 2023. A content-
based dataset recommendation system for biomedi-
cal datasets. In 2023 6th International Conference
on Information and Computer Technologies (ICICT),
pages 198–202. IEEE.

113

https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233


Appendices

A Datafinder Dataset Content

Table 4 presents the structure of the Datafinder
Dataset. The dataset is organised into three main
components: training scientific paper metadata,
test scientific paper metadata, and dataset metadata.
Each component is further divided into several cate-
gories, including content descriptions of papers and
datasets, datasets referenced by scientific papers,
publication metadata, unique identifiers, citation
details, and additional information related to pa-
pers and datasets. The highlighted fields in Table 4
indicate the features utilised as node attributes for
each corresponding entity in our model.

Training Scientific Paper
Paper Content Paper ID Paper Information

title paper_id has_pdf_body_text
abstract arxiv_id mag_field_of_study
query acl_id has_inbound_citations

keyphrase_query pmc_id has_outbound_citations
Dataset pubmed_id has_pdf_sparse
positives mag_id has_pdf_sparse_abstract
negatives Citation Information has_pdf_parse_bib_entries

Paper Publication author has_pdf_parse_text
journal outbound_citations has_pdf_parse_body_text
venue inbound_citations has_pdf_parse_entries

doi s2_url
year

Test Scientific Paper
Paper Content Paper ID Paper Information

abstract - task
query Citation Information domain

keyphrase_query - modality
Dataset language

documents training_style
Paper Publication text_length

year

Dataset
Dataset Content Dataset ID Dataset Information

title id variants
content Citation Information

structured_info -
Dataset Publciation

year
date

Table 4: Datafinder Dataset content, the highlighted box
is the features which is used for node features

B Hyperparameters value

Table 5 shows the hyperparameter setting for the
parameters that are used in TeG-DRec. The hy-
perparameters include the maximum length of the
textual encoder, the hidden dimension, the opti-
miser and its learning rate, the number of epochs,
the loss rate, the loss temperature, and the seed
number.

Variable Value
SciBERT Dimension 512
Hidden Dimension 256

Optimizer Adamw

Learning Rate
GraphSAGE : 1e-3,

R-GCN: 5e-3,
GAT: 5e-3

Epoch
40 with early stopping after 5

epoch of no improvement
Warmup Epoch’s

Scheduler
5

InfoNCE
Temperature

0.08

Margin Value 1
Contrastive Loss

Rate
0.8

Margin Loss
Rate

0.8

L2 Regression Loss 1e-4
Seed Number 1

Table 5: Hyperparameters variable and its value for the
reproducibility purpose
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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage processing tasks, yet they often exhibit
cognitive inertia, rigidly adhering to ingrained
training conventions even when prompted to
deviate. This paper investigates the efficacy of
structured output techniques in prompt engi-
neering to mitigate such inertia and improve
instruction-following on counterintuitive tasks.
We argue that using the structured input and
output with our framework yields significant
performance gains, studied on the Inversed IFE-
val dataset across varying prompts and domains.
This work contributes to the growing field of
prompt engineering research by demonstrating
structured outputs as a robust method for en-
hancing LLM logical reasoning.

1 Introduction

The recent advancements of Large Language Mod-
els (LLMs) have revolutionized artificial intelli-
gence, enabling sophisticated applications in nat-
ural language understanding, generation, and rea-
soning. However, a persistent challenge is their
tendency toward cognitive inertia, a phenomenon
where models persist in following learned patterns
from pre-training and fine-tuning, resisting devia-
tions even under explicit instructions. This inertia
manifests in scenarios requiring unlearning or coun-
terintuitive behavior, such as generating flawed out-
puts intentionally or ignoring standard formatting
conventions. The logic twist inside might be easy
for elementary school students, but is proven diffi-
cult for LLM models, a factor critical in scientific
reasoning.

Prompt engineering emerges as a non-invasive
method to guide LLMs without retraining, encom-
passing techniques like zero-shot (Kojima et al.,
2022; Li, 2023), few-shot (Dang et al., 2022), and
chain-of-thought (CoT) prompting (Lyu et al.,
2023; Zhang et al., 2024). Among these, structured

outputs, which enforce responses in predefined for-
mats such as JSON, XML or phased structures,
offer verifiability and consistency, while reducing
hallucinations and improving reliability. Recent
advancements, including OpenAI’s Structured Out-
puts feature, underscore their practical utility in
production environments.

To evaluate these techniques on counterintuitive
tasks, we employ the Inverse IFEval dataset (Zhang
et al., 2025), an extension of the IFEval benchmark
that inverts verifiable instructions to probe unlearn-
ing capabilities. The dataset includes challenges
like Question Correction (answering incorrectly on
purpose), Intentional Textual Flaws (introducing
errors), Mid-turn Instruction Modification, and oth-
ers, spanning diverse domains and languages.

Our contributions are: 1. We develop a frame-
work that utilizes structured outputs to improve
LLM responses to counterintuitive instructions; 2.
We evaluate three structured prompts with vary-
ing output formats and determine that the list-
structured approach performs best; 3. We inves-
tigate variants of the list-structured method and
study the performance impact of explicit prioriti-
zation; 4. We test our approach on the Inverse
IFEval (Zhang et al., 2025) benchmark and demon-
strate that our list-structured prompting framework
largely outperforms baselines, providing insights
for more adaptable and logical AI systems.

2 Related Works

2.1 Prompt Engineering Techniques

Prompt engineering has evolved from basic input
crafting to sophisticated strategies for eliciting opti-
mal LLM responses. Surveys categorize techniques
into zero/few-shot prompting (Dang et al., 2022;
Kojima et al., 2022; Li, 2023), CoT (Lyu et al.,
2023; Zhang et al., 2024), ToT (Yao et al., 2023;
Mo and Xin, 2024; Ranaldi et al., 2024), and self-
consistency methods (Zhou et al., 2025; Tauben-
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feld et al., 2025; Nowak, 2025). CoT, for instance,
encourages step-by-step reasoning, while ToT ex-
plores multiple paths for complex problem-solving.
Structured prompting extends these by imposing
formats, such as role-playing or output schemas, to
enhance control and parseability.

2.2 Cognitive Inertia and Unlearning in
LLMs

LLMs exhibit human-like cognitive effects, includ-
ing priming, anchoring (Lou and Sun, 2024), and
irrational biases (Echterhoff et al., 2024; Tang and
Kejriwal, 2024) in decision-making tasks. Cog-
nitive inertia, a form of resistance to change, is
particularly evident in instruction-following scenar-
ios where models default to "helpful" behaviors
despite contrary prompts. LLMs exhibit cogni-
tive inertia, reflecting a persistent adherence to pat-
terns learned during self-supervised pre-training.
(Resnik, 2025) observes that biases in LLMs are
not merely a result of training data, but are intrinsi-
cally embedded within the model architecture and
optimization objectives. Optimizing for next-token
prediction causes models to internalize statistical
regularities, including societal biases, without dis-
tinguishing between high-probability patterns and
harmful conventions. Humans, in contrast, can
flexibly adjust behavior via metacognition, reason-
ing, and contextual judgment, enabling them to
follow counterintuitive instructions. LLMs, lack-
ing autonomous reasoning or self-correction, strug-
gle to overcome entrenched patterns even when
fine-tuned or aligned through RLHF. Cognitive in-
ertia thus arises from the interaction of pre-training
habits, modeling constraints, and limited post-hoc
flexibility, leading models to reproduce established
patterns rather than adapt to out-of-distribution
tasks. One potential approach to mitigate this issue
is to reconstitute LLMs’ internal representations as
structured representations, encoding entities, rela-
tions, logical structure, and distinctions between
meaning, normativity, and factuality, thereby en-
hancing the model’s flexibility in adapting to novel
or counterintuitive instructions.

Unlearning benchmarks like TOFU, MUSE,
WMDP, and RWKU assess models’ ability to forget
specific knowledge while retaining general capabil-
ities. However, critiques highlight flaws in these
benchmarks, such as over-optimistic evaluations
due to separate testing of forget/retain queries.

2.3 Benchmarks for Instruction Following
Inverse IFEval (Zhang et al., 2025) is a new bench-
mark for testing counterintuitive adherence. It in-
verts the paradigm in IFEval (Zhou et al., 2023) that
evaluates verifiable instructions. Constructed via
human-in-the-loop processes, the inverse IFEval
reveals that larger, instruction-tuned models para-
doxically struggle more with deviations. Gaps per-
sist in integrating structured prompting into such
benchmarks, which our work addresses by propos-
ing a verifiable framework.

3 Methodology

Our methodology centers on developing and test-
ing a structured output framework designed to en-
hance LLMs’ ability to follow counterintuitive in-
structions from the Inverse IFEval dataset. This
framework decomposes the instruction-following
process into four explicit phases: Instruction Pars-
ing, Requirement Checklist, Structured Response
and Self-Check. We explore multiple variants of
this framework to identify the most effective imple-
mentation.

3.1 Dataset and Task Description
We evaluate our approach on the Inverse IFEval
dataset, a challenging benchmark with 1012 high-
quality samples designed to test LLMs’ ability to
follow counterintuitive instructions that contradict
their training patterns. The dataset covers eight dis-
tinct instruction types: (1) Instructional Induction,
(2) Mid-turn Instruction Modification, (3) Counter-
factual Answering, (4) Counter-Conventional For-
matting, (5) Question Correction, (6) Deliberately
Incorrect Answers, (7) Intentional Textual Flaws,
and (8) Code without Comments. These types span
diverse domains and require models to override in-
grained behaviors such as being helpful, following
conventions, and producing polished outputs.

The dataset includes both English and Chinese
subsets, enabling cross-lingual evaluation. For our
experiments, we use stratified sampling to select
40-48 representative samples, ensuring balanced
coverage across all eight instruction types. This
sample size balances computational feasibility with
statistical reliability while maintaining type diver-
sity for robust evaluation.
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3.2 Variants on Structured Approach
Before responding to this instruction, first analyze and

structure it into clear components:

**Original Instruction**: {instruction}

**Step 1 - Parse the Instruction:**
Break down the instruction into these components:
- **Condition**: Any context, assumptions, or conditional

statements
- **Questions**: The core tasks or questions being asked
- **Requirements**: Specific formatting, style, or content

constraints
- **Distribution**: Length, structure, or organizational

requirements

**Step 2 - Structured Analysis:**
Condition: [Extract any context or conditions]
Questions: [Identify the main task]
Requirements: [List all specific constraints]
Distribution: [Note any length/structure requirements]

**Step 3 - Systematic Response:**
Now provide your response, ensuring you address each

component systematically:

Structured Prompt 1: Basic Structured Approach

We investigate varying structured prompts and
adapt them to counterintuitive instructions. We
begin with three initial variants: (1) a basic struc-
tured approach, Prompt 1, which applies the four
phases in a simple textual format without addi-
tional enhancements, (2) JSON-structured prompt-
ing, Prompt 2, which organizes the components
into machine-readable JSON fields (e.g., {“con-
text”: “...”, “tasks”: “...”}) for improved parseabil-
ity and verifiability, and (3) checklist-based prompt-
ing, Prompt 3, which uses enumerated lists to break
down requirements, promoting systematic adher-
ence. These variants allow us to assess the impact
of different structuring mechanisms on model per-
formance.

For the checklist variant, we further investigate
two sub-types: an equal checklist Prompt 3, where
all requirements are treated uniformly without ex-
plicit prioritization, and a priority checklist Prompt
3, where items are categorized as CRITICAL (es-
sential for compliance), IMPORTANT (affecting
quality), or SECONDARY (enhancing complete-
ness). This prioritization is intended to guide the
model in focusing on high-impact elements first,
potentially reducing cognitive inertia by emphasiz-
ing core constraints.
Parse this instruction into structured components, then

respond:

**Instruction**: {instruction}

**Step 1: JSON Structure Analysis**
Parse the instruction into this JSON format:
```json
{{

"context": "any background or situational information",
"tasks": "the core tasks or questions",
"format_requirements": ["list", "of", "formatting",

"constraints"],

"content_requirements": ["list", "of", "content",
"constraints"],

"length_requirements": "any length or size constraints",
"style_requirements": "any tone or style requirements"

}}
```

**Step 2: Component-by-Component Response**
Now respond to the instruction, explicitly addressing each

JSON component:

**Context addressed**: [How you handle the context]
**Task completion**: [Your core response]
**Format compliance**: [How you meet format requirements]
**Content compliance**: [How you meet content requirements]
**Length compliance**: [How you meet length requirements]
**Style compliance**: [How you meet style requirements]

**Final Response**:

Structured Prompt 2: JSON-Structured Prompting

You will respond to this instruction using a systematic
parsing approach:

**Instruction to Analyze**: {instruction}

**Phase 1: Instruction Parsing**
Parse the instruction and identify:
- Context/Conditions: What situation or context is

established?
- Core Tasks: What are the main things being asked?
- Format Requirements: Any specific formatting constraints?
- Content Requirements: What must be included/excluded?
- Length/Structure: Any size or organizational requirements?

**Phase 2: Requirement Checklist**
List each requirement as a checkable item (with priority):
- Requirement 1: [First constraint]
- Requirement 2: [Second constraint]
- Requirement 3: [Third constraint]
[Add more as needed]

**Phase 3: Structured Response**
Provide your response while explicitly addressing each

requirement:

[Your response here]

**Phase 4: Self-Check**
Verify your response against each requirement (with priority):
- Requirement 1: Y/N [Brief check]
- Requirement 2: Y/N [Brief check]
- Requirement 3: Y/N [Brief check]

Structured Prompt 3: Checklist-Based Prompting

The baseline condition presents the original
Inverse IFEval instructions directly to the mod-
els without any modifications, and serves as
a control to measure the added value of our
structured approaches. We evaluate these meth-
ods across five diverse LLMs: DeepSeek-Chat,
Qwen, Gemini-2.5 Pro, o1-preview, and Claude-
3.5-Sonnet, selected for their varying sizes and
architectures to ensure generalizability. All
models are accessed via the OpenRouter API
with consistent generation parameters (temper-
ature=1.0, max_tokens=4096, top_p=1.0, fre-
quency_penalty=0, presence_penalty=0) to facili-
tate fair comparisons.
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Figure 1: Performance breakdown by instruction type for five models using structured checklist approach. Each
radar chart displays accuracy percentages across eight instruction types: II (Instructional Induction), MIM (Mid-
turn Instruction Modification), CA (Counterfactual Answering), CCF (Counter-Conventional Formatting), QC
(Question Correction), DIA (Deliberately Incorrect Answers), ITF (Intentional Textual Flaws), and CC (Code
without Comments).

4 Experiments

Our experiments follow a sequential design to itera-
tively refine and validate the structured framework.
We first test the three initial variants (basic, JSON,
and checklist) on a subset of 32 samples from the
Inverse IFEval dataset across the selected models.

4.1 Experiment Setup

Evaluation employs an LLM-as-a-Judge paradigm
using Claude-4.5-Sonnet (temperature=0) for im-
partial, binary scoring (1 for semantic match with
the reference answer, 0 otherwise). We use a subset
of 32 samples for initial variant comparisons and
the full set for final assessments. Statistical analy-
sis includes paired t-tests (α = 0.05) and Cohen’s
d for effect sizes, ensuring robust interpretation of
results.

The performance comparison, summarized in
Table 1, reveals that the checklist-based approach
consistently outperforms the basic and JSON vari-
ants, achieving higher average accuracy. This sug-
gests that the enumerated, human-readable format
of checklists better mitigates cognitive inertia by
enforcing explicit requirement tracking.

Method Accuracy (%)

Basic Structure 43.8
JSON Structure 54.2
Checklist Structure (Equal) 60.4

Table 1: Comparison Between Varying Output Formats
on DeepSeek V3.1

Specifically, the checklist method applies equal
prioritization for better accuracy. As revealed in
Table 2, we compare the equal checklist against
a priority checklist under the same experimental
setup and found that prioritization degrades perfor-
mance. This is contrary to our expectations and
may indicate that explicit hierarchies introduce un-

necessary complexity, causing models to overfocus
on specific categories and overlook holistic compli-
ance.

Model Priority Equal

Claude 4 Sonnet 68.8 77.1
Gemini 2.5 Pro 67.5 80.0

Table 2: Impact of Priority System on Structured
Prompting Performance

To better understand the performance character-
istics across different instruction types, we analyze
the breakdown of results for our equal checklist
approach across the eight categories in the Inverse
IFEval dataset. Figure 1 presents radar charts show-
ing how different models handle various counterin-
tuitive instruction types.

The results reveal that all models struggle signif-
icantly with “Question Correction”, highlighting
systematic challenges in this category across the
board. While O3 Pro performs strongly across
most categories, demonstrating high accuracies
such as 87.5% in “Instructional Induction” and
100% in “Code without Comments”, Claude 4 Son-
net excels in “Counterfactual Answering” (83.3%)
and “Counter-Conventional Formatting” (80.5%),
though its performance drops to 44.4% in “Ques-
tion Correction”. Gemini 2.5 Pro demonstrates
high accuracy in “Deliberately Incorrect Answers”
(90.3%), but struggles notably with “Code with-
out Comments” (45.7%) and “Question Correction”
(55.6%). Meanwhile, both DeepSeek v3.1 and
Qwen 3-32B consistently face challenges, particu-
larly in “Question Correction” (35.6% for both) and
“Intentional Textual Flaws” (45.3% for DeepSeek
v3.1 and 27.9% for Qwen 3-32B), underscoring
common areas of difficulty among these models.

The eight categories are meticulously designed
to probe nuanced aspects of instruction comprehen-
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sion and execution, ranging from straightforward
adherence to complex inferential tasks. Figure 2
presents stripe charts, where each model’s perfor-
mance is denoted by a unique marker, allowing
for an immediate and intuitive comparison of their
respective accuracy scores on each task category.

Figure 2: Comparison of Model Performance Across
Eight Instruction Categories: II, MIM, CA, CCF, QC,
DIA, ITF, CC

Finally, we benchmark our best variant, the equal
checklist, against the baseline across all models
and the full Inverse IFEval evaluation set. Fig-
ure 3 demonstrates substantial improvements, with
statistically significant gains p < 0.05 and large
effect sizes, confirming that structured prompting
effectively enhances adaptability on counterintu-
itive tasks.

Figure 3: Comparison of Baseline vs. Our Structured
Checklist Approach Performance. The chart shows im-
provements for all models: Gemini 2.5 Pro (+1.58pp),
Claude 4 Sonnet (+4.18pp), O3 Pro (+7.64pp), Qwen
3-32B (+6.12pp) and DeepSeek V3.1 (+20.72pp).

5 Conclusion

This study showcases the power of structured out-
put techniques in prompt engineering to boost
LLMs’ handling of counterintuitive instructions
on the Inverse IFEval dataset. Our zero-shot
framework—decomposing tasks into instruction
parsing, checklists, structured responses, and self-

checks—effectively counters cognitive inertia with-
out any fine-tuning or training data. The equal
checklist variant delivers a 10.06% average accu-
racy gain over baselines across models, with signif-
icant statistical improvements p < 0.05 and large
effect sizes, underscoring zero-shot prompting’s
role in enhancing adaptability.

Our zero-shot approach advances AI robustness
by providing a lightweight, verifiable method that
outperforms standard prompting, ideal for safety-
critical scenarios like ethical decisions or dynamic
settings. Future work could extend this to multi-
modal domains or combine it with reinforcement
learning for amplified flexibility.

6 Limitations

Despite these advancements, our work presents sev-
eral limitations that warrant future consideration.

6.1 Resource and Scope Constraints

First, due to the substantial computational cost as-
sociated with proprietary models, particularly O3
Pro, we were unable to run the full benchmark on
this specific model. Consequently, the evaluation
for this model relies on a smaller sample size, while
all other models were tested on the complete set of
500 samples.

6.2 Evaluation Methodology Limitations

Second, our reliance on the LLM-as-a-Judge
paradigm introduces potential biases. While this
methodology (using Claude-4.5-Sonnet) is recog-
nized for its scalability and inter-rater consistency,
the evaluation outcomes may inherently inherit the
biases or stylistic preferences of the judge model
itself. Furthermore, the use of binary scoring (cor-
rect/incorrect) overlooks instances of partial cor-
rectness or nuanced, but incomplete, responses,
which limits the granularity of our error analysis.

6.3 Future Work

These constraints suggest clear avenues for future
refinement. Potential directions include: (1) inte-
grating a hybrid human-AI evaluation framework
to validate and cross-reference the automated as-
sessment, and (2) pursuing full benchmark testing
across all models as resource constraints are allevi-
ated.
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Abstract

Large Language Models (LLMs) are
increasingly used for citation retrieval, yet
their bibliographic outputs often contain
hallucinated or inconsistent metadata. This
paper examines whether structured prompting
improves citation reliability compared with
traditional API-based retrieval. We implement
a three-stage BibTeX-fetching pipeline:
a baseline Crossref resolver, a standard
GPT prompting method, and a customized
verification-guided GPT configuration. Across
heterogeneous reference inputs, we evaluate
retrieval coverage, field completeness, and
metadata accuracy against Crossref ground
truth. Results show that prompting improves
coverage and completeness. Our findings
highlight the importance of prompt design for
building reliable, LLM-driven bibliographic
retrieval systems.

1 Introduction

Large Language Models (LLMs) are increasingly
used to automate scholarly workflows—including
exploration of literature collections, citation
generation, and metadata extraction (Katz
et al., 2024). Yet their fluency often
masks a critical reliability issue: citation
hallucination—fabricating plausible but incorrect
bibliographic records or mismatching publication
metadata—which threatens research transparency
and reproducibility (Ji et al., 2023; Manakul et al.,
2023).

Two complementary lines of work aim to
mitigate these risks. First, Retrieval-Augmented
Generation (RAG) grounds model outputs in
external sources to improve factuality (Lewis et al.,
2020). Second, verification-oriented methods apply
explicit post-hoc checking or self-correction to
reduce unsupported claims, e.g., sampling-based
self-checking, chain-of-verification prompting, and
post-hoc citation-enhanced generation (Manakul

et al., 2023; Dhuliawala et al., 2024; Li et al., 2024).
Surveys further systematize automated correction
strategies for LLMs and the broader landscape of
augmentation and tool use (Pan et al., 2024; Mialon
et al., 2023).

Despite these advances, we find limited
quantitative analysis of how prompt design itself
shapes bibliographic retrieval quality. Prompting
strategies—from open-ended instructions to highly
structured, verification-oriented cues—may affect
a model’s ability to recall correct metadata, resolve
DOIs, and preserve field completeness. This
paper investigates whether structured prompting
of GPT-style models yields more accurate and
complete citation retrieval than an API-only
pipeline. We design a three-stage system
comprising: (1) a baseline Crossref resolver, (2)
a standard GPT prompting method, and (3) a
verification-oriented GPT pipeline. Each variant
processes heterogeneous reference inputs (DOIs,
URLs, titles) within a unified BibTeX-fetching
architecture. Our experiments measure retrieval
coverage, field completeness, metadata accuracy,
and cross-method agreement relative to Crossref
ground truth. Results show that customized
prompting improves metadata precision and
completeness compared to both API-only and
generic LLM configurations, underscoring the
role of verification-aware prompts in reducing
hallucination and improving verifiable scholarly
retrieval.

2 Atlas Pipeline Design

We developed a BibTeX retrieval pipeline that
processes heterogeneous reference inputs using
three distinct methods: a baseline API-only
approach, a standard GPT-based approach, and a
custom GPT metho, Atlas, featuring specialized
prompting. Each pipeline variant supports multiple
input types, including DOIs, URLs, titles, and

121



Figure 1: Architecture of the GPT Atlas. The user supplies queries and style requirements; the system
performs query understanding, search & retrieval, citation verification, formatting, and relevance ranking with
a disambiguation/hallucination guard. Outputs include verified references in the requested style, ranked results,
JSON+BibTeX export, and explanations for unverified items.

mixed reference text.

2.1 Input Processing and Classification

The pipeline begins with input normalization and
classification. Each reference string undergoes
Unicode normalization (NFC) and is assigned
to one of five categories: DOI, DOI-URL, URL,
Title, or Unknown. Classification relies on regex-
based pattern matching for DOIs and URLs, while
title classification is guided by word count and
structural heuristics.

2.2 Baseline Pipeline

The baseline approach operates without AI
assistance, relying solely on API-based resolution.
For DOI inputs, the system validates the DOI
format and retrieves BibTeX metadata directly
through the Crossref resolver. URL inputs are
processed by extracting embedded DOIs from
meta tags and page content. Title inputs trigger
a Crossref bibliographic search, followed by
similarity scoring to identify the best match. The
baseline system enforces rate limiting (50 requests
per minute), caching, and exponential backoff retry
logic to ensure robustness.

2.3 GPT Normal Pipeline

The GPT Normal variant employs GPT-4 with a
standardized bibliographic prompt instructing the
model to extract canonical DOIs and generate valid
BibTeX entries.

2.4 GPT Atlas Pipeline
The GPT Atlas variant uses a specialized research
assistant prompt that enforces stricter verification
and source control as shown in figure 1. The
prompt instructs the model to rely exclusively on
authoritative academic databases such as Crossref,
DOI.org, ACM DL, IEEE Xplore, Springer,
Elsevier, Nature, Wiley, AAAI, NeurIPS, ICLR,
ACL Anthology, PubMed, SSRN, OpenAlex,
Semantic Scholar, arXiv, and USENIX. The system
prohibits hallucinated metadata and performs multi-
step verification—parsing bibliographic elements,
searching authoritative sources in priority order,
cross-verifying titles, author lists, and DOI
consistency, and rejecting unreliable sources such
as blogs or predatory journals. The output includes
verified bibliographic data, BibTeX entries, related
references, and structured verification notes, all in
strict JSON format.

To accommodate flexible model responses, the
parser supports both top-level and array-based
JSON fields, direct extraction from raw text, and
BibTeX pattern matching for embedded entries.
This design ensures resilience to model variability
while maintaining consistent data structure.

2.5 Common Pipeline Features
All variants share a unified architecture supporting
checkpoint management (with automatic
resumption every ten records), DOI-based
deduplication favoring higher-confidence entries,
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and comprehensive exception handling. Structured
JSON logging is used for debugging and analysis,
with configurable rate limiting to comply with
API usage constraints. The final outputs include
per-variant BibTeX files, a consolidated CSV
summary comparing all methods, and detailed logs
for error tracing and performance evaluation.

2.6 Conflict Resolution
The conflict resolution mechanism of the system
primarily operates through LLM-based decision-
making. Each variant (GPT Normal and GPT
Atlas) relies on the LLM’s internal reasoning to
reconcile conflicting information from multiple
sources. This process follows predefined source
preferences, Publisher DOI > Crossref > arXiv,
and returns “Couldn’t verify” when the LLM is
unable to locate relevant information. For each
reference input, if multiple results are generated,
only the first entry is retained, with alternative
results discarded. Systematic conflict resolution
also occurs during deduplication: when the same
reference is queried multiple times, the system
identifies results sharing the same DOI and
retains only the highest-confidence entry, silently
discarding lower-confidence duplicates.

3 Experiments

We evaluated three approaches for BibTeX
metadata generation. The Baseline method relied
on traditional Crossref API queries without LLM
assistance. The GPT Normal variant employed
standard LLM prompting strategies to extract
and format metadata. The GPT Atlas approach
applied specialized prompt engineering and post-
processing routines to improve consistency in
academic reference formatting.

3.1 Dataset Construction
We manually constructed the evaluation dataset.
We took the references from a survey paper
we are currently working on, which includes
approximately 200 citations. In addition, we used
AI tools to search for additional references relevant
to the survey’s content. As a result, the dataset
contains some entries that refer to the same paper
with incomplete information or invalid references.

3.2 Metrics
We assessed each approach along four quantitative
metrics: retrieval coverage, field completeness,
metadata accuracy, and cross-method agreement.

Retrieval coverage measures the number of
successfully retrieved entries, while field
completeness quantifies the inclusion of essential
fields such as author, title, year, DOI, venue, and
pages. Metadata accuracy captures the proportion
of correctly matched entries compared with
ground truth data from Crossref, and cross-method
agreement evaluates DOI overlap among methods.

Field Completeness Scoring Design We
compute the field completeness using a weighted
sum, as shown in Equation 1. The completeness
score adopts a three-tier weighted system (0.0–1.0)
aligned with citation standards and usability.
Required fields (author, title, year) account for
40% (around 13.3% each) as the minimal viable
citation. Important fields (DOI, venue, pages)
add another 40%: DOI matches the required
field weight (13.3%) for its role in verification,
venue (journal or book title) shares a combined
13.4%, and pages receive 13.3% for citation
precision. Optional fields (volume, publisher,
URL) contribute the remaining 20% (around
6.7% each), reflecting their utility but limited
necessity. This 40, 40, 20 structure ensures entries
with required fields reach 40% (acceptable), those
with required and important fields 80% (good),
and fully complete entries 100% (excellent),
emphasizing verifiable over redundant metadata.

Completeness = 0.133(author) + 0.133(title)

+ 0.134(year) + 0.133(DOI)

+ 0.067(venue) + 0.133(pages)

+ 0.067(volume) + 0.067(publisher)

+ 0.066(URL)
(1)

Reporting Unresolved Fields. When different
sources produce conflicting values for a field, we
mark the field as unresolved if top candidates are
within a small margin. We report completeness
both (i) counting unresolved fields as missing and
(ii) after selecting the highest-scoring candidate
using our consensus policy (Section 2.6). The gap
quantifies the impact of conflicts on coverage.

3.3 Overall Performance

Table 1 summarizes the overall performance of
each method. GPT Normal achieved the highest
retrieval coverage and completeness, while the
baseline method yielded the most distinct DOIs.
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Table 1: Overall Performance Comparison

Metric Baseline GPT Normal GPT Atlas

Total Entries 18 21 19
Unique DOIs 18 17 16
Avg. Completeness 0.623 0.667 0.653
Entries w/o DOI 0 0 1

Table 2: DOI Overlap Analysis Across All Variants with
24 Unique DOIs Retrieved

Comparison Overlapping DOIs Agreement Rate

All three methods 10 41.7%
Baseline ∩ GPT Normal 11 45.8%
Baseline ∩ GPT Atlas 10 41.7%
GPT Normal ∩ GPT Atlas 16 66.7%

DOI Overlap Table 2 presents DOI overlap
across methods. Only 41.7% of DOIs appeared
in all three, suggesting distinct retrieval strategies.
GPT Normal and GPT Atlas agreed most closely
(66.7%).

Field Completeness Table 3 reports field
completeness distributions. GPT Normal
demonstrated near-perfect consistency with a
narrow range (0.666–0.667).

Essential Fields As shown in Table 4, the
baseline method reached perfect coverage for year
and DOI, while GPT Atlas performed best for
author and title.

Ground Truth Accuracy When compared with
Crossref ground truth (Table 5), GPT Atlas reached
the highest accuracy (83.3%), followed by GPT
Normal (46.2%), while the baseline produced no
exact matches.

Field-Level Comparison Detailed field match
rates are provided in Table 6. Title and year fields
showed high alignment, whereas author formatting
and pagination differed substantially.

Discussion GPT Normal retrieved more entries
than the baseline, showing that LLMs can identify
additional relevant records, though at the expense
of precision. A clear trade-off emerged between
coverage and accuracy: GPT Normal maximized
completeness, whereas GPT Atlas prioritized
precision. The modest cross-method agreement
(41.7%) highlights the variability of metadata
parsing strategies, underscoring the need for
consensus-based or human-in-the-loop validation.
Frequent discrepancies involved author name

Table 3: Field Completeness Distribution

Method Min Max Avg.

Baseline 0.400 0.667 0.623
GPT Normal 0.666 0.667 0.667
GPT Atlas 0.466 0.667 0.653

Table 4: Essential Field Presence (%)

Field Baseline GPT Normal GPT Atlas

Author 83.3 81.0 89.5
Title 83.3 81.0 89.5
Year 100.0 81.0 89.5
DOI 100.0 81.0 84.2

variants (83.3%), inconsistent page ranges (70.0%),
and heterogeneous venue naming (6.7%).

4 Related Work

Traditional bibliographic retrieval relies on
structured databases and reference management
tools. Services like Crossref, Google Scholar, and
Semantic Scholar provide metadata given paper
titles or identifiers. The Crossref REST API returns
authoritative records via DOI queries, ensuring
high precision but requiring accurate identifiers
or complete titles. Academic search engines (e.g.,
Google Scholar) can find BibTEX by title matching,
offering broader coverage but often yielding
incomplete or non-standard metadata (missing
fields or inconsistent formatting). Reference
managers such as Zotero, JabRef, and Paperpile
integrate multiple sources (Crossref, publisher
APIs, web crawlers) to automate citation collection;
this streamlines workflows but still may require
manual correction for ambiguities or missing
fields. Even official databases exhibit quality
issues, and studies have explored cross-database
reconciliation to improve metadata consistency and
trustworthiness (Kaiser et al., 2021; Gonçalves
et al., 2019).

Recently, large language models (LLMs) have
been applied to bibliographic retrieval from
minimal input. Naively prompting an LLM (e.g.,
GPT-4) to produce a citation can yield a plausible
BibTEX entry with filled-in fields, but often at
the cost of accuracy—models tend to hallucinate
incorrect metadata or even entirely fake references
(Chen and Chen, 2023; Agrawal et al., 2024;
Zuccon et al., 2023). To mitigate this, verification-
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Table 5: Ground Truth Accuracy Comparison

Method Total DOIs Accurate Matches Accuracy (%)

Baseline 18 0 0.0
GPT Normal 13 6 46.2
GPT Atlas 12 10 83.3

Table 6: Field-by-Field Match Rates (%)

Field Baseline/GPT-N Baseline/GPT-A GPT-N/GPT-A

Author (Exact) 18.2 0.0 37.5
Author (Count) 81.8 90.0 62.5
Title (Exact) 100.0 90.0 93.8
Year 90.9 90.0 87.5
Venue (Exact) 100.0 90.0 68.8
Pages 27.3 30.0 56.2
Volume 90.9 90.0 93.8

augmented generation strategies combine LLMs
with external knowledge and consistency checks.
For example, retrieval-augmented generation
integrates database queries into the output (Lewis
et al., 2020), and chain-of-verification prompting
explicitly instructs the model to cross-check each
field or source (Dhuliawala et al., 2024). Our
approach, the Atlas pipeline, employs structured
GPT prompts constrained to authoritative scholarly
sources (Crossref, publisher websites, etc.) along
with multi-step validation; this approach yields
more accurate and complete metadata at a slight
cost to coverage. Similarly, domain-specialized
LLMs and hybrid retrieval tools have been
proposed to boost fidelity (Taylor et al., 2022; Gao
et al., 2023; Lála et al., 2023). Overall, LLM-
driven methods can achieve higher recall and more
complete entries than API-only retrieval, but they
require careful prompt design and post-processing
verification to ensure high-quality, trustworthy
citations.

5 Conclusion

This study evaluates large language models
for bibliographic retrieval, focusing on how
prompting strategies affect citation accuracy
and completeness. By comparing a baseline
API lookup, a standard GPT prompt, and a
customized verification-guided prompt, we show
that prompt design significantly influences LLM
performance. The customized configuration yields
higher verified accuracy but slightly reduced
coverage, revealing a precision–recall trade-off in
citation generation. These results highlight the
importance of explicit verification reasoning for
trustworthy scholarly assistance. Future work will

extend this comparison to different LLM families
and explore automatic prompt optimization for
citation reliability.

6 Limitations

Our ground-truth comparison was limited to
Crossref within selected domains. We subjectively
observed that the GPT-Atlas variant indicates that
incorporating a verification process could further
enhance the quality of literature searches, but this
has not yet been tested. Large-scale reference
retrieval also requires accounts with high daily
API rate limits, which may entail financial costs.
Finally, the model’s retrieval behavior appears
stochastic; while manual reattempts produced
consistent success rates, formally quantifying the
impact of this stochasticity remains a challenging
problem.
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Abstract

Automated linkage between scientific publica-
tions and telescope datasets is a cornerstone
for scalable bibliometric analyses and ensur-
ing scientific reproducibility in astrophysics.
We propose a multi-model ensemble architec-
ture integrating transformer models DeBERTa,
RoBERTa, and TF-IDF logistic regression,
tailored to the WASP-2025 shared task on
telescope-paper classification. Our approach
achieves a macro F1 score approaching 0.78
after extensive multi-seed ensembling and per-
label threshold tuning, significantly outperform-
ing baseline models. This paper presents com-
prehensive methodology, ablation studies, and
an in-depth discussion of challenges, establish-
ing a robust benchmark for scientific bibliomet-
ric task automation.

1 Introduction

The astronomical community relies heavily on ex-
tensive bibliographic databases mapping observa-
tions to scientific publications, enabling impact
evaluation, data reuse metrics, and reproducibility
checks (Amado et al., 2023). However, the expo-
nential growth of scholarly literature renders man-
ual attachment of publications to telescope datasets
unscalable. Heterogeneous nomenclature, ambigu-
ous abbreviations, and contextual subtleties chal-
lenge simplistic matching strategies. Recent ad-
vances in natural language processing (NLP), espe-
cially transformer-based models with deep contex-
tualized embeddings, provide promising solutions
for automated multi-label classification of astro-
physics literature (Zhang et al., 2024; Wolf et al.,
2020; Devlin et al., 2019).

This work responds to the TRACS shared task
as part of the WASP-2025 Workshop (Grezes et al.,
2025), where participants were challenged to de-
velop systems for linking scientific publications

*Corresponding Author
†Corresponding Author

with telescope datasets and to classify papers by
their mode of telescope use (science, instrumenta-
tion, mention, or not_telescope).

Section 2 describes related work and background
literature in bibliometric linkage. Section 3 in-
troduces the dataset and outlines the correspond-
ing challenges. Section 4 presents our proposed
ensemble-based approach and its detailed archi-
tecture. Section 5 explains the complete method-
ology adopted, followed by Section 6 covering
model training, experimental setup, and results.
Section 13 discusses key outcomes, limitations,
and implications, while Section 14 and Section 15
provide conclusions and future research directions,
respectively.

2 Related Work

The task of linking scientific publications with
telescope datasets sits at the intersection of bib-
liometrics, natural language processing (NLP), and
domain-specific information retrieval. We review
key areas most relevant to our work.

2.1 Bibliometric Linkage and Classification

Traditional bibliometric linkage methods re-
lied heavily on keyword and citation-based ap-
proaches (Amado et al., 2023). Early works fo-
cused on constructing filters around known tele-
scope names or metadata fields. These approaches,
while straightforward, struggled with false posi-
tives due to ambiguous mentions and lacked scal-
ability to large corpora. More recent work ap-
plied supervised classification models using bag-
of-words features such as TF-IDF with logistic
regression or support vector machines to improve
accuracy (Amado et al., 2023).

2.2 Transformer Models in Scientific Text

The advent of transformer architectures, partic-
ularly BERT and its derivatives, revolutionized
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domain-specific NLP (Devlin et al., 2019). Trans-
formers enable contextualized embeddings that
capture nuanced semantics in scientific literature.
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2021) further optimized training procedures
and architectures to improve performance on text
classification tasks. Domain-adapted transformer
models, such as SciBERT, specialize in scientific
corpora and have shown superior accuracy in clas-
sification and information extraction (Beltagy et al.,
2019), setting benchmarks for scientific literature
mining.

2.3 Ensemble Learning for Imbalanced
Multi-label Classification

Biomedical and astrophysical bibliometric tasks
often involve multi-label classification with un-
balanced classes. Ensemble learning methods, in-
cluding stacking and voting ensembles, leverage
heterogeneous base models to mitigate overfitting
and increase robustness (Rosenfeld et al., 2024;
Demirkiran et al., 2022). Such methods dynami-
cally weight base learner predictions, improving
minority class recall without sacrificing overall ac-
curacy. Ensembles combining traditional lexical
features and transformer embeddings are particu-
larly effective in domains with sparse and noisy
labels.

2.4 Automated Telescope-Paper Linkage

Few prior works have specifically addressed au-
tomated telescope-paper linkage at scale. Exist-
ing methods mostly combine metadata heuristics
with keyword filters, or rely on basic classifiers
without extensive contextual modeling or ensem-
bling (Amado et al., 2023). Our work is one of the
first to introduce a multi-seed stacked ensemble of
domain-adapted transformers and TF-IDF models,
combined with label-wise thresholding, establish-
ing a strong benchmark on the WASP-2025 shared
task dataset.

2.5 Explainability and Ethical Considerations

Ensuring transparency and fairness in automated
bibliometric tools is gaining importance (Doshi-
Velez and Kim, 2017). Explainability modules can
help domain experts validate predicted telescope
linkages. Ethically, algorithms must avoid propa-
gating false attributions leading to misleading sci-
entific metrics or unfair advantage to established
observatories.

3 Dataset Description and Challenges

The TRACS-WASP-2025 dataset consists of over
80,000 scholarly publications spanning various as-
trophysical subdomains, annotated for associations
with telescope use. Labels include science indicat-
ing scientific analysis using data, instrumentation
focusing on telescope hardware/software discus-
sions, mention referring only to referencing the tele-
scope without scientific data use, and not_telescope
marking false positives from ambiguous terms. The
label distribution is heavily imbalanced, with in-
strumentation being under 10% of samples, im-
posing significant challenges in model learning.
Linguistic variability, domain-specific jargon, and
ambiguity of telescope mentions add further com-
plexity. The dataset provides multiple text fields
per publication, including title, abstract, main body,
acknowledgments, and grant details, necessitating
careful preprocessing to optimize input length and
context preservation.

Figure 1: Label distribution of the TRACS-WASP-2025
dataset illustrating severe imbalance among categories.

4 Our Approach

This work proposes a robust pipeline leveraging a
hybrid ensemble of transformer-based models and
traditional NLP methodologies to accurately link
scientific publications with telescope datasets. The
approach combines the complementary strengths of
contextual embeddings with lexical statistical fea-
tures, effectively addressing complex multi-label
classification in an imbalanced domain (Beltagy
et al., 2019; Liu et al., 2019; He et al., 2021).

4.1 Feature Extraction via TF-IDF and
Transformers

Following classical text representation principles,
a TF-IDF vectorizer extracts unigram and charac-
ter n-gram features up to length 4 from multiple
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Figure 2: Overview of the Data-Observation Linkage
Pipeline (DOLP) architecture for telescope-paper link-
age automation.

text fields. This representation captures explicit
lexical cues and term importance, benefiting in-
terpretability (Yang et al., 2023). Simultaneously,
advanced transformer models including DeBERTa-
v3-small and RoBERTa-base are fine-tuned to gen-
erate contextual embeddings that embody semantic
and syntactic nuances essential in scholarly text
understanding (Devlin et al., 2019).

4.2 Advanced Transformer Fine-Tuning

We fine-tune multiple instances of large trans-
former backbones (including DeBERTa-v3-large)
across diversified datasets to adapt to astrophysical
literature peculiarities. Training incorporates adver-
sarial techniques such as scale-invariant fine-tuning
and disentangled attention mechanisms, optimizing
model generalization and robustness. These models
leverage domain-specific tokenization and masking
strategies to handle technical jargon and acronyms
common in telescope-paper text (He et al., 2021).

4.3 Model Ensemble Framework

Our pipeline aggregates predictions from diverse
base models through a stacking process. Predic-
tions from TF-IDF based classifiers (e.g., logistic
regression, CatBoost, LightGBM) and numerous

fine-tuned transformers serve as meta-features for a
final logistic regression meta-classifier. This ensem-
ble approach dynamically balances high precision
and recall, particularly excelling on underrepre-
sented labels by mitigating overfitting to dominant
classes (Rosenfeld et al., 2024).

4.4 Threshold and Parameter Optimization

Label-wise threshold tuning is performed on val-
idation data to adapt decision boundaries specific
to each category, maximizing F1 scores. Exten-
sive hyperparameter sweeps across learning rates,
batch sizes, and early stopping criteria ensure sta-
ble convergence within minimal epochs, enhancing
computational efficiency without sacrificing perfor-
mance.

4.5 System Integration and Scalability

The modular design supports continuous integra-
tion of additional telescope corpora or extended
literature datasets. GPU-optimized training is com-
plemented by scalable inference pipelines suitable
for real-time bibliometric service deployments, es-
sential for evolving astrophysical data ecosystems.

5 Methodology

Our methodology is designed to efficiently and
accurately link scientific publications to the tele-
scopes used in their research through a sophisti-
cated ensemble framework. Below we describe
each stage of the pipeline in detail.

5.1 Data Collection and Aggregation

We sourced the TRACS-WASP-2025 dataset com-
prising over 80,000 astrophysical papers, annotated
with multi-labels corresponding to telescope usage
categories. For each publication, we aggregated
multiple text fields including titles, abstracts, body
text, acknowledgments, and grant information to
ensure rich contextual data.

5.2 Data Preprocessing and Normalization

Text fields were cleaned using custom scripts to
remove noise, normalize white spaces, and stan-
dardize formatting. Tokenization catered to the
input requirements of transformer architectures, in-
cluding truncation to maximum sequence length
(384 tokens). Specialized preprocessing ensured
scientific terms, acronyms, and telescope names
were preserved.
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5.3 Feature Engineering

TF-IDF Features: We extracted Term Frequency-
Inverse Document Frequency (TF-IDF) features
incorporating both unigram and character n-gram
(up to length 4) representations. Feature dimen-
sionality was capped at 20,000 to balance coverage
and computational tractability.

Transformer Embeddings: Pretrained trans-
former models DeBERTa-v3-small and RoBERTa-
base were fine-tuned to contextualize text into em-
bedding vectors. Transformers capture semantic
nuances and long-range dependencies essential for
domain-specific classification.

5.4 Model Training

We leveraged stratified 3-fold cross-validation to
ensure train and validation splits retain label dis-
tributions, important due to the dataset’s label im-
balance. Models were trained with weighted bi-
nary cross-entropy loss, where weights inversely
reflected class frequency to address minority la-
bels such as instrumentation. Hyperparameters
such as learning rates (tuned between 1×10−5 and
5× 10−5) and batch sizes (8 to 16) were optimized
empirically. Early stopping based on validation
macro F1 prevented overfitting.

5.5 Ensembling via Stacked Learning

Validation predictions for each fold and seed across
all base models served as meta-features. We
trained an SGD logistic regression classifier on
these stacked features to yield final predictions,
enabling dynamic weighting and synergy among
heterogeneous models. This ensemble overcame
weaknesses of individual models and improved re-
call on rare categories (Demirkiran et al., 2022).

5.6 Threshold Tuning

Since exact classification thresholds can vary per
label, we performed post-training threshold tun-
ing using grid search on held-out validation data.
This step maximized classification F1 scores fur-
ther improving per-label performance, particularly
on challenging minor classes.

5.7 Evaluation

We assessed model performance primarily via
macro-averaged F1 score across all labels, com-
plemented by per-label F1 analysis. Confusion
matrices and error case analyses were used to in-
terpret model strengths and failure modes, guiding

refinements in preprocessing and model combina-
tion.

6 Training Setup and Hyperparameter
Optimization

Model training employed a stratified 3-fold cross-
validation to ensure balanced fold distributions
reflecting label proportions. Transformer fine-
tuning used AdamW optimizer with linear warmup
schedules, learning rate tuned between 1e−5 and
5e−5, and batch sizes from 8 to 16 constrained by
GPU memory. Early stopping monitored macro
F1 with a patience of 3 epochs. Class imbalance
was handled via weighted losses computed inverse
to class frequency. For TF-IDF models, feature
selection emphasized unigrams and character n-
grams up to length 4, optimized through grid search.
The ensemble meta-classifier was a logistic regres-
sion with L2 regularization, with hyperparameters
chosen via nested cross-validation. Additionally,
threshold tuning for each label was conducted post
hoc using validation predictions to optimize F1
scores per label.

7 Additional Analysis and Ablations

Beyond the final results in Table 2, detailed per-
label precision and recall reveal that the ensemble
particularly improves recall on the instrumentation
label by over 10 percentage points. Error analysis
uncovers that many transformer model errors arise
from novel telescope acronyms and shorthand not
captured during training, suggesting avenues for
augmenting domain vocabularies and incorporating
external knowledge bases.

Ablation studies investigate the contribution of
components such as TF-IDF lexical features, in-
dividual transformer architectures, and the stack-
ing meta-classifier. Removing TF-IDF features
reduces overall macro F1 by 0.03, highlighting
the importance of interpretable lexical cues. Omit-
ting the ensemble stacking reduces performance by
0.04, confirming the ensemble’s synergistic impact.
Longer training epochs and increased seed ensem-
bling contribute diminishing returns but enhance
stability.

Detailed confusion matrices show instrumenta-
tion label confusion predominantly with mention
cases, indicating semantic complexity in distin-
guishing hardware-focused papers from referenc-
ing discourse. Future work will explore richer do-
main adaptation and contrastive learning to resolve
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this.

8 Deployment Considerations and
Generalizability

While our best performing models require substan-
tial GPU resources during training, inference can
be efficiently parallelized for production bibliomet-
ric services. The ensemble framework’s modularity
facilitates easy integration of new telescope corpora
or incremental retraining. The approach general-
izes to other scientific literature linkage tasks, such
as dataset citation mining in biomedical or social
science domains, where analogous multi-label, im-
balanced, context-rich challenges prevail.

9 Broader Impact

Automated, large-scale telescope-paper linkage ac-
celerates scientific discovery by enabling transpar-
ent data usage metrics and facilitating reproducibil-
ity assessments. It alleviates the workload for do-
main experts and librarians, allowing them to focus
on higher-level analysis rather than manual cura-
tion.

Ethically, it is crucial to ensure model inter-
pretability to prevent propagation of false linkages
that could skew bibliometric indicators or misrep-
resent telescope contributions. Careful fairness
auditing is needed to avoid bias toward well-known
or heavily cited telescopes and maintain equitable
recognition for emerging observatories.

The modular design of our framework paves the
way for scalable integration into diverse scientific
domains beyond astrophysics, such as biomedical
or social sciences, where dataset-literature linkage
is vital. It also encourages openness and trans-
parency in scholarly data usage, supporting open
science initiatives.

10 Model Architectures and Experiments

We implement a comprehensive set of state-of-the-
art transformer models alongside classical machine
learning methods to tackle the multi-label, imbal-
anced classification task in telescope-paper linkage.
Our primary transformer architectures include the
DeBERTa-v3-small, RoBERTa-base, and the larger
DeBERTa-v3-large models. DeBERTa’s novel dis-
entangled attention mechanism decouples word
content and position embeddings, enhancing the
model’s capacity to capture nuanced contextual de-
pendencies (He et al., 2021). RoBERTa improves
upon BERT by refining pretraining techniques like

removing next sentence prediction and increasing
batch sizes, leading to substantial gains in classi-
fication tasks (Liu et al., 2019). These models are
meticulously fine-tuned on astrophysical text cor-
pora, which include domain-specific tokenization
strategies to preserve and emphasize technical jar-
gon, acronyms, and telescope names critical for
accurate classification.

Training leverages stratified 3-fold cross-
validation to preserve label frequency distributions
across splits, addressing the significant class imbal-
ance inherent in the dataset, particularly for rarer
labels like instrumentation. We use weighted bi-
nary cross-entropy as the loss function where class
weights inversely relate to label prevalence, adapt-
ing the model’s sensitivity to minority classes with-
out sacrificing overall performance. Hyperparam-
eters such as learning rate, which ranges between
1 × 10−5 and 5 × 10−5, and batch size (8 to 16),
are tuned empirically for optimum convergence.
Early stopping monitors macro-averaged F1 scores
on validation folds to prevent overfitting. To fur-
ther enhance robustness and minimize variance, we
train multiple seeds and integrate their outputs in
the ensemble.

Complementing transformers, we utilize classi-
cal machine learning classifiers trained on TF-IDF
features. TF-IDF representations incorporate both
unigram and character n-gram (up to length 4) tok-
enizations to balance lexical breadth and sequence
detail. Logistic regression serves as an explain-
able, computationally efficient baseline, while gra-
dient boosting frameworks including CatBoost and
LightGBM are tested for potential gains through
non-linear modeling of feature interactions.

Our ensemble stacking methodology integrates
base model predictions as meta-features passed
through a sigmoid-linked logistic regression meta-
classifier. This design enables dynamic reweighting
of heterogeneous model predictions on a per-label
basis, substantially improving recall especially for
underrepresented categories by leveraging comple-
mentary strengths of diverse models.

Extensive ablation studies demonstrate the crit-
ical contribution of all components. Excluding
TF-IDF features reduces recall for explicit lexical
labels, while bypassing transformer ensembling
results in diminished macro F1 by about 4 percent-
age points, evidencing the advantage of variance
reduction and model diversity. Varying training
epochs confirms stable convergence within limited
epochs thanks to early stopping, balancing resource
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efficiency with model performance.
Qualitative and quantitative error analyses re-

veal persistently challenging cases mainly arise
from ambiguous or novel telescope mentions, of-
ten leading to confusion between instrumentation
and mention labels. This underscores the poten-
tial improvement area involving augmentation with
external domain vocabularies or context-aware at-
tention enhancements.

Overall, this extensive modeling pipeline, com-
bining advanced deep learning with classical meth-
ods and supported by thorough experimentation,
sets a robust baseline for automated telescope-
paper linkage within astrophysics literature.

10.1 Transformer Architectures
We utilize state-of-the-art transformer models in-
cluding DeBERTa-v3-small, RoBERTa-base, and
the larger DeBERTa-v3-large to capture deep se-
mantic representations. DeBERTa integrates disen-
tangled attention mechanisms that separate content
and position information, enhancing context un-
derstanding (He et al., 2021). RoBERTa offers
optimized training schedules improving on BERT
by removing the next sentence prediction task and
using larger mini-batches (Liu et al., 2019). Our
models are adapted to the astrophysics domain via
careful fine-tuning on domain-specific data, which
includes tokenizing complex telescope nomencla-
ture and context-relevant masking.

10.2 Training Procedures
Models are trained using stratified 3-fold cross-
validation to ensure balanced label distribution in
splits. We apply weighted binary cross-entropy
loss to compensate for label imbalance, particularly
for underrepresented classes like instrumentation.
Hyperparameters including learning rates (1e−5 to
5e−5) and batch sizes (8 to 16) are optimized empir-
ically. Early stopping monitors macro F1 to prevent
overfitting. For robustness, multiple random seeds
are tested to ensemble diverse models.

10.3 TF-IDF and Classical Machine Learning
Models

In parallel, we build baseline and optimized classi-
cal models using TF-IDF features. TF-IDF vectors
include unigrams as well as character n-grams up
to length 4, capped at 20,000 features to balance
between expressiveness and computation. Logis-
tic regression serves as an interpretable and scal-
able baseline, while gradient-boosted trees like Cat-

Boost and LightGBM were explored for potentially
enhanced performance.

10.4 Ensemble Stacking Model
We propose a stacking ensemble method wherein
predictions from base transformer and TF-IDF
models form input features for a meta-level logistic
regression classifier. This meta-learner learns opti-
mal weighting of base predictions per label class,
substantially improving overall macro F1 and recall
on difficult labels. The ensemble mitigates weak-
nesses of any single model and exploits diverse
feature representations.

10.5 Ablation Studies
Comprehensive ablation studies evaluate the con-
tribution of each component. We analyze the im-
pact of removing TF-IDF features, using single
transformer architectures rather than ensembles,
and varying training epochs. Ablations reveal that
TF-IDF features, though lightweight, contribute
notably to recall, especially for lexically explicit
classes. Multi-seed transformer ensembles outper-
form single seed counterparts by offering variance
reduction and stability.

10.6 Error Analysis
We conduct qualitative and quantitative error anal-
ysis to identify common failure modes. Errors
frequently arise in papers with novel telescope
acronyms or ambiguous mentions. Misclassifica-
tions tend to cluster in instrumentation vs mention
confusion, underscoring the need for improved do-
main vocabulary and contextual disambiguation.

11 Test Set Results and Leaderboard
Performance

Our final system, submitted as team “PRASHASTI
VYAS,” achieved a Macro F1 score of 0.73 on the
official TRACS shared task test set. On the final
leaderboard, we ranked 5th among all participating
teams.

12 Results and Analysis

12.1 Results Interpretation
The baseline TF-IDF model predominantly cap-
tures explicit linguistic markers, explaining the
high F1 in the science category but poor results on
the subtle instrumentation label, reflecting sparse
and complex terminology. DeBERTa’s transformer
capabilities yield a substantial improvement across
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Team Macro F1 (Test Set)

1e0nia 0.89
HCMUS_PrompterXPrompter 0.85
STScI DSMO 0.84
Clutch or Cry 0.82
PRASHASTI VYAS (Ours) 0.73
CAISA 0.73
Paris Observatory 0.68
Henry Gagnier 0.44
Trân Trng Bo 0.35

Table 1: Final leaderboard results for the TRACS 2025
shared task.

Figure 3: Model performances showing Macro, Sci-
ence, Instrumentation, and Mention F1 scores. Ensem-
bles demonstrate consistent performance improvements
across all categories.

categories by capturing contextual meanings. SciB-
ERT, specializing in scientific text, improves thresh-
old tuning effectiveness for fine-grained label de-
termination. The final ensemble synergizes diverse
feature representations, maximizing both overall
and per-label F1, vital for high-recall bibliometric
applications.

13 Discussion

This study demonstrates the effectiveness of com-
bining transformer-based contextual embeddings
with traditional TF-IDF lexical features in a multi-
label classification framework for telescope-paper
linkage, as part of the TRACS shared task (Grezes
et al., 2025). The ensemble approach significantly
improves performance, especially on challenging
and imbalanced label categories such as instrumen-
tation.

Our results provide strong evidence that pre-
trained language models fine-tuned with domain
adaptation techniques capture rich semantic infor-

Figure 4: Confusion matrix illustrating classification
performance across labels.

mation vital for discerning subtle distinctions in as-
trophysical literature. The inclusion of TF-IDF fea-
tures complements this by enhancing interpretabil-
ity and capturing explicit lexical markers not fully
encoded in embeddings.

Error analysis reveals shortcomings related to
novel telescope acronyms and ambiguous refer-
ences, suggesting that future models can benefit
from incorporating external knowledge bases or
domain-specific lexicons. Additionally, misclas-
sifications between instrumentation and mention
indicate the need for improved contextual disam-
biguation.

Despite resource constraints limiting training
epochs, the ensemble approach provides robust
generalization demonstrated by consistent perfor-
mance across validation splits and multiple seeds.
The modularity of the pipeline facilitates integra-
tion of additional data sources and models, support-
ing scalability and adaptability to evolving biblio-
metric needs.

Ethically, our framework underscores the impor-
tance of transparency and fairness in automated
bibliometric curation, ensuring equitable represen-
tation of observatories and mitigating potential bi-
ases induced by publication volume disparities.

13.1 What Worked and What Didn’t

Our system’s strongest performance gains were
achieved by stacking transformer ensembles with
per-label threshold tuning, which effectively ad-
dressed class imbalance and contributed to our
high Macro F1. The inclusion of stratified cross-
validation and meta-classifier ensembles increased
stability, especially for the challenging instrumen-
tation label, and robust preprocessing preserved
critical domain terms.
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Model Macro F1 Science F1 Instrumentation F1 Mention F1
TF-IDF + Logistic Regression (Baseline) 0.50 0.70 0.18 0.66
Optimized TF-IDF + Logistic Regression 0.63 0.74 0.52 0.68
DeBERTa + TF-IDF Stacked Ensemble 0.75 0.77 0.73 0.75
SciBERT with Threshold Tuning + Seed Ensembling 0.74 0.77 0.77 0.76
Best Transformer Multi-Seed Ensemble 0.78 0.79 0.78 0.78

Table 2: Summary of macro and per-label F1 scores across models after comprehensive experiments. The best
results stem from multi-seed ensemble of large transformer models with optimized thresholds.

However, attempts to further boost minority
class performance with simple data augmentation
and outside domain telescope lists yielded marginal
benefit. Classical features such as TF-IDF, while
helpful for lexical classes, provided limited added
value for context-dependent or rare label disam-
biguation. Future iterations may benefit from
domain-specific pretraining on a larger, telescope-
focused corpus and more advanced augmentation
strategies.

14 Conclusions

This paper presents a comprehensive ensemble
learning framework that synergistically combines
state-of-the-art transformer-based models with clas-
sical natural language processing techniques to
advance automated telescope-paper linkage in as-
trophysics. By leveraging multi-seed ensembling
of transformers such as DeBERTa and RoBERTa
alongside robust lexical features from TF-IDF, our
approach achieves state-of-the-art results on the
challenging WASP-2025 shared task, demonstrat-
ing marked improvements over traditional baseline
methods.

The key contributions of this work include the in-
novative integration of diverse model architectures
through a sophisticated stacking ensemble, cou-
pled with sophisticated label-wise threshold tuning
strategies that optimize classification performance
across heavily imbalanced categories. This method-
ology not only improves the accuracy and recall
of telescope-paper relationships but also enhances
interpretability vital for bibliometric curation and
reproducibility auditing in scientific research.

Our extensive experimental evaluation substanti-
ates the benefits of combining contextualized em-
beddings with explicit lexical cues, paving the way
for scalable, reliable, and transparent scientific data
usage linkage. The modular design of the frame-
work also promotes flexible adaptation to other
scientific domains where multi-label, imbalanced
text classification is prevalent.

Looking forward, future enhancements will fo-
cus on domain-adaptive pretraining tailored to as-
tronomical texts, development of explainability and
interpretability modules to build trust with domain
experts, and deployment of real-time scalable in-
ference pipelines. These developments will further
empower researchers, librarians, and data curators
in managing and analyzing the ever-growing body
of scientific literature, thereby fostering open sci-
ence and data transparency in astrophysics and be-
yond.

15 Future Directions

Future work will focus on the following key areas
to strengthen and extend the automated telescope-
paper linkage framework:

• Expanding Training Epochs and Model
Capacity: Increasing training duration and
incorporating larger transformer backbones
promise richer representation learning, poten-
tially capturing subtler text nuances and im-
proving classification accuracy.

• Domain-Adaptive Pretraining: Implement-
ing masked language model pretraining with
archival astronomical texts will refine the mod-
els’ understanding of domain-specific termi-
nology, jargon, and unique telescope-related
constructs, leading to better contextual embed-
dings.

• Synthetic Data Generation for Imbalanced
Classes: Developing generative methods to
create synthetic samples for underrepresented
telescope usage categories, such as instrumen-
tation, will alleviate label imbalance and im-
prove model generalization on rare classes.

• Explainability and Transparency Modules:
Designing interpretable AI approaches will
empower domain experts to verify and trust
automated linkages, enhancing the adoption
and reliability of bibliometric analysis tools.
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• Cross-Domain Validation and Adaptation:
Extending this methodology to biomedical
and social science bibliometric tasks will test
its robustness and adaptability across diverse
scientific literature ecosystems.

• Real-time Scalable Inference Pipelines:
Building efficient monitoring systems capable
of dynamically linking papers and telescopes
in real-time will support up-to-date bibliomet-
ric services aligned with the rapid pace of
scientific publication.
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Abstract

Recent space missions such as Hubble, Chan-
dra, and JWST have produced a rapidly grow-
ing body of scientific literature. Maintaining
telescope bibliographies is essential for mis-
sion assessment and research traceability, yet
current curation processes rely heavily on man-
ual annotation and do not scale. To facili-
tate progress in this direction, the TRACS @
WASP 2025 shared task provides a benchmark
for automatic telescope bibliographic classi-
fication based on scientific publications. In
this work, we conduct a comparative study
of modeling strategies for this task. We first
explore traditional machine learning methods
such as multinomial Naive Bayes with TF–IDF
and CountVectorizer representations. We then
evaluate transformer-based multi-label classi-
fication using BERT-based scientific language
models. Finally, we investigate a task-wise
classification approach, where we decompose
the problem into separate prediction tasks and
train a dedicated model for each. In addition,
we experiment with a limited-resource LLM-
based approach, showing that even without full
fine-tuning and using only a partial subset of
the training data, LLMs exhibit promising po-
tential for telescope classification. Our best
system achieves a macro F1 of 0.72 with BERT-
based models on the test evaluation, substan-
tially outperforming the official openai-gpt-oss-
20b baseline (0.31 macro F1).

1 Introduction

Bibliographic curation plays a central role in sci-
entific knowledge management, enabling mission
impact assessment, citation tracking, and research
traceability. In astronomy, maintaining telescope
bibliographies is essential to quantify the scien-
tific output of major space missions such as Hub-
ble, Chandra, and JWST. However, current biblio-
graphic systems depend predominantly on manual
effort, making large-scale curation impractical.

The TRACS @ WASP 2025 (Grezes et al., 2025)
shared task formalizes this problem by releasing a
benchmark dataset derived from the SAO/NASA
Astrophysics Data System (ADS) and defining a
unified evaluation framework for telescope bibli-
ography classification. The task jointly addresses
telescope detection and scientific intent categoriza-
tion, reflecting real-world curation needs in astro-
physical research.

Automating telescope bibliography classifica-
tion is challenging due to ambiguous telescope
mentions, heterogeneous writing styles across sci-
entific disciplines, and the long-context nature of
research articles. Moreover, each publication may
involve multiple telescopes simultaneously, lead-
ing to a multi-label classification problem under se-
vere label imbalance, where some telescopes (e.g.,
Chandra) dominate the dataset while others appear
rarely. In addition, the dataset contains many hard
negative cases, as papers that merely mention tele-
scope names vastly outnumber those that reflect
genuine telescope usage, making model learning
even more difficult.

In this work, we conduct a systematic study
of modeling strategies for telescope bibliographic
classification. First, we establish classical ma-
chine learning baselines using multinomial Naive
Bayes with TF–IDF and CountVectorizer repre-
sentations, serving as lightweight yet competitive
text classification models. Second, we investi-
gate transformer-based multi-label classification
using domain-adapted BERT variants such as SciB-
ERT and AstroBERT, which were pre-trained or
fine-tuned on large-scale scientific corpora. These
models employ a sigmoid output layer with binary
cross-entropy loss to support multi-label learning.
Third, we explore a task-wise classification strategy
by training separate models for each prediction task
to reduce cross-label interference. To mitigate se-
vere class imbalance, we incorporate focal loss(Lin
et al., 2017) during fine-tuning to better emphasize
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minority labels. Finally, we extend our study with
a limited-resource LLM-based approach, where
open-weight large language models (LLMs) are
evaluated under partial-data and zero-shot settings,
demonstrating competitive performance even with-
out full fine-tuning.
Our contributions are as follows:

• We conduct a systematic comparison of mod-
eling strategies for telescope bibliographic
classification, covering classical machine
learning, transformer-based methods, and
LLM-based approaches.

• We show that domain-adapted BERT variants
(e.g., SciBERT, AstroBERT) significantly out-
perform traditional TF–IDF baselines.

• We propose a task-wise classification pipeline
with focal loss to mitigate label imbalance.

• We demonstrate that limited-resource LLM in-
ference yields competitive performance even
without full fine-tuning.

2 Related work

2.1 Text Representation Methods

Traditional text representation methods have
been fundamental to NLP tasks. TF-IDF
(Term Frequency-Inverse Document Frequency)
weights terms based on their frequency in a docu-
ment relative to their frequency across the corpus,
effectively identifying discriminative terms while
downweighting common words. Count Vectoriza-
tion represents documents as bags-of-words with
raw term frequencies, providing a simple yet effec-
tive baseline for many classification tasks. While
these methods have been widely used in document
classification and information retrieval, they lack
semantic understanding and cannot capture contex-
tual word meanings.

2.2 Pre-trained Language Models

The introduction of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin
et al., 2019) revolutionized NLP by pre-training
deep bidirectional transformers on large text cor-
pora using masked language modeling and next
sentence prediction objectives. BERT’s contextu-
alized word representations enable transfer learn-
ing across diverse downstream tasks through fine-
tuning, achieving state-of-the-art performance on

various benchmarks including GLUE(Wang et al.,
2019) and SQuAD(Rajpurkar et al., 2016).

Building on BERT’s success, DistilBERT (Sanh
et al., 2019) applies knowledge distillation to create
a smaller, faster variant that retains 97% of BERT’s
language understanding while reducing model size
by 40% and inference time by 60%. Through
distillation training, DistilBERT learns to mimic
BERT’s behavior using a student-teacher frame-
work, making it suitable for resource-constrained
environments and real-time applications without
significant performance degradation.

2.3 Domain-Specific Language Models
Recognizing that general-purpose models may not
capture domain-specific terminology and discourse
patterns, researchers have developed specialized
variants. SciBERT (Beltagy et al., 2019) is pre-
trained on 1.14M scientific papers from the Seman-
tic Scholar corpus, using a scientific vocabulary and
achieving significant improvements on biomedical
and computer science tasks.

SPECTER (Scientific Paper Embeddings us-
ing Citation-informed TransformERs) (Cohan
et al., 2020) takes a different approach by leverag-
ing citation graphs during pre-training. It learns
document-level representations by training on
triplets of papers where citing papers should have
embeddings similar to cited papers, effectively en-
coding scientific relatedness. However, SPECTER
relies on discrete citation relations, which enforce
a hard cut-off to similarity and ignore that papers
can be very similar despite lacking direct citations.

SciNCL (Scientific Neighborhood Contrastive
Learning) (Ostendorff et al., 2022) addresses this
limitation by using controlled nearest neighbor
sampling over citation graph embeddings for con-
trastive learning. Instead of discrete citations,
SciNCL learns continuous similarity by sampling
hard-to-learn negatives and positives while avoid-
ing collisions between samples through margin con-
trol. Initialized from SciBERT and trained with
neighborhood contrastive objectives, SciNCL out-
performs previous methods on the SciDocs (Cohan
et al., 2020) benchmark and demonstrates sample-
efficient training capabilities.

AstroBERT (Grèzes et al., 2021) further special-
izes BERT for astronomy by pre-training on astro-
nomical literature from the Astrophysics Data Sys-
tem (ADS). It demonstrates superior performance
on astronomy-specific tasks including named entity
recognition of celestial objects, classification of as-
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tronomical papers, and extraction of observational
metadata. AstroBERT’s domain adaptation makes
it particularly relevant for our telescope bibliogra-
phy curation task.

These document-level embedding models are
particularly relevant to telescope bibliography cu-
ration because they capture semantic relation-
ships between scientific papers beyond simple key-
word matching. The task requires understand-
ing nuanced distinctions between papers that use
telescope data for new scientific results versus
those that merely mention the telescope in pass-
ing. Citation-aware models like SPECTER and
SciNCL can identify papers with similar research
contexts, while domain-specific models like As-
troBERT understand astronomy terminology and
discourse patterns essential for disambiguating tele-
scope references (e.g., distinguishing "Chandra"
as a space telescope from other entities with the
same name). Furthermore, these models’ ability
to generate document-level representations enables
effective transfer learning for our multi-label clas-
sification objectives.

2.4 Fine-tuning Strategies for Transformer
Models

While pre-trained language models have shown re-
markable capabilities, their effective fine-tuning
requires careful consideration of training config-
urations. (Mosbach et al., 2021) investigate the
instability of BERT fine-tuning, revealing that per-
formance can vary significantly across different
random seeds, particularly on small datasets. They
demonstrate that this instability stems from catas-
trophic forgetting and vanishing gradients in early
layers during fine-tuning.

To address these issues, they propose several
techniques:

• Debiased training: Using bias correction in
the Adam optimizer to stabilize early training
steps

• Re-initialization: Selectively re-initializing
top layers to prevent over-fitting to pre-
training tasks

• Learning rate schedules: Employing smaller
learning rates (2e − 5 to 5e − 5) with linear
warmup and decay

• Multiple runs: Averaging predictions across
multiple training runs with different seeds to
reduce variance

These findings have significant implications for
our work, as the telescope bibliography curation

task involves multi-label classification on scientific
texts where training stability is crucial for reliable
performance. We adopt these best practices in our
BERT-based approaches, including careful hyper-
parameter tuning, multiple seed experiments, and
appropriate learning rate scheduling.

2.5 Large Language Models

Recent advances in LLMs have pushed the
boundaries of language understanding. The
Qwen2.5(Yang et al., 2024) series represents ef-
ficient multilingual language models with strong
performance across diverse tasks. Qwen2.5-
1.5B(Yang et al., 2024) and Qwen2.5-3B (Yang
et al., 2024) offer different trade-offs between
model capacity and computational efficiency. De-
spite their smaller size compared to models like
GPT-3(Brown et al., 2020) or GPT-(OpenAI et al.,
2024), these models demonstrate competitive per-
formance on reasoning, question answering, and
classification tasks. Their compact architecture
makes them suitable for resource-constrained envi-
ronments while maintaining strong generalization
capabilities.

3 Problem definition

3.1 TRACS Dataset

We conduct our experiments on the TRACS @
WASP 2025 dataset (Grezes et al., 2025), which
consists of scientific papers from the SciX bib-
liographic database annotated with telescope as-
sociations and usage categories. Each entry in-
cludes textual content from five fields: title, ab-
stract, body, acknowledgments, and grants, along
with four boolean labels (science, instrumentation,
mention, not_telescope) indicating the paper’s re-
lationship to the referenced telescope. The multi-
label classification task requires models to simulta-
neously identify the telescope and categorize how
the paper uses or references it. Following the com-
petition setup, we use the provided train.csv and
test.csv splits. We perform minimal preprocessing
steps to maintain the original text structure:

• Text cleaning: Remove HTML tags, special
characters, and reference markers.

• We concatenate all text fields into a single
input sequence. For transformer-based mod-
els, the input is truncated to a maximum se-
quence length (512 tokens for BERT-based
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models and 1024 tokens for LLM-based archi-
tectures).

• No sequence truncation is applied as the
model handles variable-length sequences au-
tomatically.

3.2 Task Formulation

Given a scientific publication p with associated
metadata and textual content, we define the tele-
scope bibliography curation task as a multi-label
classification problem combined with telescope
identification.

Let D = {(pi, ti,yi)}Ni=1 denote our dataset of
N scientific papers, where:

• pi represents the i-th paper con-
sisting of five textual components:
pi = {ptitle

i , pabstract
i , p

body
i , pack

i , p
grants
i }

• ti ∈ T denotes the associated telescope,
where T is the set of all telescopes in our
taxonomy

• yi = [ysci
i , yinst

i , ymen
i , ynot

i ] ∈ {0, 1}4 repre-
sents the multi-label annotation vector

3.3 Label Definitions

The four binary labels characterize the relationship
between the paper and the referenced telescope.
For each paper p:

• ysci = 1 if p uses telescope data for new sci-
entific results, 0 otherwise

• yinst = 1 if p describes technical or instrumen-
tal aspects, 0 otherwise

• ymen = 1 if p mentions telescope without pro-
ducing new results, 0 otherwise

• ynot = 1 if p contains false positive reference,
0 otherwise

3.4 Objective

Our goal is to predict two components for each
paper p:

1. The telescope identifier: t̂ ∈ T
2. The multi-label vector: ŷ ∈ {0, 1}4

This can be achieved through various modeling
approaches, including joint multi-task learning,
pipeline architectures, or ensemble methods.

4 Methodology

4.1 Classical Machine Learning Approaches

We establish baseline models using classical ma-
chine learning methods with two text representation
strategies: TF-IDF vectorization and count-based

vectorization, combined with Multinomial Naive
Bayes classifiers.

4.1.1 Text Representation
Given a paper p with concatenated text from all
fields, we construct feature vectors using:

TF-IDF Vectorization: For each term w in pa-
per p, the TF-IDF weight is computed as:

TF-IDF(w, p) = TF(w, p)× log
N

DF(w)

where TF(w, p) is the term frequency of word w in
paper p, N is the total number of documents, and
DF(w) is the document frequency of word w.

Count Vectorization: We represent each paper
as a vector of raw term frequencies:

vp = [TF(w1, p),TF(w2, p), ...,TF(w|V |, p)]

where |V | is the vocabulary size.

4.1.2 Classification Strategy
We employ Multinomial Naive Bayes classifiers
with different strategies for telescope identification
and label prediction:

Telescope Identification: For the multi-class
telescope classification problem, we use a One-vs-
Rest (OvR) approach. For each telescope t ∈ T ,
we train a binary classifier:

P (t|vp) =
P (vp|t) · P (t)∑

t′∈T P (vp|t′) · P (t′)

The predicted telescope is:

t̂ = argmax
t∈T

P (t|vp)

Binary Classification: For each of the four bi-
nary labels l ∈ {sci, inst,men, not}, we train in-
dependent binary Multinomial Naive Bayes classi-
fiers:

P (yl = 1|vp) =
P (vp|yl = 1) · P (yl = 1)

P (vp)

Each label is predicted independently, allowing
multiple labels to be assigned to a single paper
when appropriate.

4.2 BERT-based Approaches

We apply transformer models with the following
processing pipeline:
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4.2.1 Tokenization
Input text is tokenized using the tokenizer corre-
sponding to each pre-trained model. Due to the
context length limitation of transformer models,
the model automatically truncates sequences to
the first 512 tokens, which is the maximum se-
quence length for BERT-based models. This typ-
ically includes the entire title and most of the ab-
stract, which contain the most important informa-
tion of the paper.

Given input text x, the tokenization process pro-
duces a sequence of token IDs:

t = Tokenize(x) = [t1, t2, . . . , tn]

where n ≤ 512. These tokens are then converted to
embeddings and processed through the transformer
encoder to obtain contextualized representations:

H = Transformer(t) = [h[CLS],h1, . . . ,hn]

where h[CLS] ∈ Rd is the representation of the
[CLS] token used for classification.

4.2.2 Classification Heads
We train two separate models, each with its own
specialized classification head:

Multi-label Classification Model: A fully-
connected layer with sigmoid activation is attached
to the transformer encoder to predict 4 labels simul-
taneously (each label independently):

pmulti = σ(Wmultih[CLS] + bmulti)

where Wmulti ∈ R4×d, bmulti ∈ R4, and σ is the
sigmoid function applied element-wise.

Telescope Identification Model: A separate
model with a fully-connected layer and softmax
activation is used to classify telescope types:

ptelescope = softmax(Wtelescopeh[CLS] + btelescope)

where Wtelescope ∈ RK×d, btelescope ∈ RK , and K
is the number of telescope types.

Both models share the same transformer encoder
architecture but are trained independently with their
respective loss functions.

4.2.3 Training Objective
We train models independently or jointly for dif-
ferent classification tasks, using task-specific loss
functions optimized for their respective objectives.

Binary Classification. For the four binary la-
bels, we employ binary cross-entropy loss:

Lmulti-label = −
1

4

4∑

i=1

[yi log(pi) + (1− yi) log(1− pi)]

Not-Telescope Classification. Due to signifi-
cant class imbalance in the not_telescope cate-
gory, we also employ focal loss when training a
independent dedicated binary classifier.

Lnot-tel =−
[
y · α(1− p)γ log(p)

+ (1− y) · (1− α)pγ log(1− p)
]

Telescope Identification. For multi-class tele-
scope classification over K telescope types, we use
categorical cross-entropy:

Ltelescope = −
K∑

k=1

yk log(pk)

where yk ∈ {0, 1} is the one-hot encoded label
and pk is the predicted probability for telescope
class k.

Each model is trained independently with its
respective loss function, using the same base trans-
former architecture but optimized separately for
its specific classification task. This modular ap-
proach allows task-specific optimization strategies
and hyperparameter tuning.

4.2.4 Inference
At inference time, the model takes the first 512
tokens of a paper as input and forwards through the
encoder. The encoded representation is then passed
through two separate classification heads: one pre-
dicts the telescope type, and the other predicts the
4 classification labels (multi-label classification).

4.3 LLM-based Approach
We leverage large language models through
parameter-efficient fine-tuning using QLoRA
(Quantized Low-Rank Adaptation)(Dettmers et al.,
2023), which enables training on consumer hard-
ware by quantizing the base model to 4-bit preci-
sion while training low-rank adapter matrices.

Model Architecture. We fine-tune Qwen-1B
and Qwen-3B models by freezing the quantized
base parameters W and learning low-rank decom-
positions AB with rank r. The adapted weight
matrix becomes: W′ = W4-bit + α ·AB

Task Formulation. We formulate classification
as structured generation where the model outputs
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JSON with telescope identification and binary la-
bels. Each input consists of concatenated paper
fields with a detailed system prompt encoding:

• Task objectives and label definitions
• Classification rules (e.g., mutual exclusivity

of not_telescope)
• Output constraints (strict JSON schema)
System Prompt. Our prompt explicitly defines

each category:
• science: Uses telescope data for new results
• instrumentation: Describes techni-

cal/engineering aspects
• mention: References telescope without new

contributions
• not_telescope: Contains false positive ref-

erences
The model is trained to generate valid JSON re-
sponses that are parsed during inference to extract
predictions. This approach allows the LLM to rea-
son about complex classification rules while pro-
ducing structured outputs suitable for evaluation.

5 Experiments

5.1 Baselines
The TRACS organizers provide two official base-
line models for comparison. Table 1 presents their
performance on the test set.

Model Macro F1
Random 0.24
openai-gpt-oss-20b 0.31

Table 1: Baseline performance on TRACS test set.

5.2 Experimental Setup
We split the training data into training and valida-
tion sets with an 8:2 ratio for model development
and hyperparameter tuning. We train our models
using adamw_torch optimizer with a learning rate
of 2e-5, batch size of 16, and maximum sequence
length of 512 tokens. For the multi-task models,
training continues for 3 epochs with early stopping
based on validation performance. For per-class bi-
nary classifiers, we train for 1-2 epochs to prevent
overfitting, as single-task models tend to converge
faster and are more prone to overfitting. All ex-
periments are conducted on NVIDIA A100 GPUs
via Google Colab. The primary evaluation metric
is macro F1-score computed across both telescope
identification and the four classification labels, en-
suring balanced performance across all categories.

5.3 Main Results

5.3.1 Per-Class Specialized Models
To further improve classification performance, we
train separate binary classifiers for each of the four
classification categories (science, instrumentation,
mention, not_telescope) and the telescope identifi-
cation task. Table 2 shows the performance of our
best model (SciBERT) when trained independently
for each class.

Classification Task F1 Score
Multi-label Classification
science 0.78
instrumentation 0.76
mention 0.73
not_telescope 0.61
Macro F1 (Classification) 0.72

Table 2: Per-class F1 scores using separate SciBERT
classifiers trained independently for each task. Macro F1
is computed as the average across all four classification
categories.

5.3.2 Instruction-tuned LLM Evaluation
Training Configuration Table 3 presents the hy-
perparameters used for QLoRA fine-tuning. We
employ 4-bit quantization to reduce memory foot-
print while maintaining model performance. The
effective batch size of 8 is achieved through gradi-
ent accumulation, allowing training on consumer-
grade hardware.

Hyperparameter Value

Learning Rate 1× 10−4

Batch Size (per device) 1
Gradient Accumulation 8
Effective Batch Size 8
Max Epochs 3
Max Sequence Length 1024
Quantization 4-bit

Table 3: QLoRA fine-tuning hyperparameters for Qwen
models.

Prompt Design We construct a structured system
prompt that includes:

• Role definition: Positioning the model as an
expert assistant for telescope paper classifica-
tion
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• Category definitions: Explicit descriptions
of science, instrumentation, mention, and
not_telescope

• Classification rules: Constraints such as mu-
tual exclusivity of not_telescope and multi-
label capability for other categories

• Edge cases: Guidelines for handling ambigu-
ous references, name collisions, and grant-
only mentions

• Output format: Strict JSON schema enforce-
ment to ensure parseable predictions

Results The complete prompt template is pro-
vided in Appendix A. This prompt is prepended
to each paper’s content during both training and
inference phases.

Method Parameters Macro F1

Qwen-1B + QLoRA 1B 0.58
Qwen-3B + QLoRA 3B 0.61

Table 4: Performance comparison on the multi-label
classification task, trained for a single epoch. Macro F1
is averaged across all four categories (science, instru-
mentation, mention, not_telescope).

5.3.3 Joint Task Performance
We assess all models on the unified task encom-
passing both telescope identification and publica-
tion classification. The overall leaderboard score is
defined as the arithmetic mean of the F1 score for
telescope identification and the macro-averaged F1
across the four classification categories, formulated
as:

Final Score =
Telescope F1 + Classification Macro F1

2
.

Table 5 summarizes the complete performance
comparison across all evaluated methods.

5.3.4 Ablation Study
To examine the effect of focal loss, we fine-tuned
task-specific models with and without focal loss
on imbalanced tasks. Although focal loss slightly
improved per-task stability, these models still per-
formed worse than the joint multi-task model
trained without focal loss, indicating that task inter-
action contributes more to generalization than loss
reweighting alone.

6 Conclusion

In this work, we presented a systematic study of
modeling strategies for automatic telescope bibli-
ographic classification in the TRACS @ WASP
2025 shared task. We evaluated a diverse range of
approaches, from classical machine learning meth-
ods to transformer-based architectures and limited-
resource LLM-based inference.

Our experiments demonstrate that domain-
adapted BERT variants significantly outperform
traditional ML, with SciBERT achieving the best
performance of 0.73 macro F1 on the leaderboard
evaluation—more than doubling the official base-
line score of 0.31. We show that pre-training on
scientific corpora provides substantial benefits for
this task, as evidenced by the strong performance
of SciBERT and AstroBERT compared to general-
domain models.

While ensemble methods did not yield improve-
ments in our experiments, we attribute this primar-
ily to the multi-label, multi-class complexity of the
task and our computational constraints. Our task-
wise classification approach with focal loss showed
promise in addressing class imbalance, though fur-
ther investigation with larger models and more ex-
tensive hyperparameter tuning could yield addi-
tional gains.

Importantly, our limited-resource LLM experi-
ments suggest that instruction-tuned models can
achieve competitive performance even without full
fine-tuning and with only partial training data. This
opens promising directions for low-resource sce-
narios in scientific bibliography curation.

Future work should explore more sophisticated
long-document processing strategies to better lever-
age complete paper content, investigate advanced
techniques for handling severe class imbalance in
multi-label settings, and examine larger-scale LLM
fine-tuning with expanded computational resources.
Additionally, incorporating metadata such as au-
thor affiliations, publication venues, and citation
networks may further improve classification accu-
racy.

Limitations

This study faces several important constraints:
Computational Resource Constraints: As stu-

dents, we faced significant GPU and computational
limitations. This restricted our ability to experi-
ment with larger models (e.g., full fine-tuning of
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Method Multi-label Classification Telescope Identification Leaderboard
Macro F1 Micro F1 Samples F1 Accuracy Macro F1 Score

Traditional ML
TF-IDF 0.52 0.58 - 0.64 0.51 0.51
CountVectorizer 0.54 0.59 - 0.67 0.56 0.56
Transformer Models
DistilBERT (66M) 0.71 0.73 0.72 0.81 0.68 0.69
SciNCL (110M) 0.71 0.73 0.72 0.80 0.68 0.68
AstroBERT (110M) 0.72 0.73 0.74 0.80 0.69 0.68
SPECTER (110M) 0.70 0.72 0.72 0.81 0.68 0.69
SciBERT (110M) 0.77 0.79 0.78 0.81 0.73 0.72
Ensemble Methods
Soft Voting 0.70 0.72 0.71 0.73 0.65 0.67
Weighted Voting 0.71 0.73 0.72 0.74 0.66 0.68
Hard Voting 0.69 0.71 0.70 0.72 0.64 0.66

Table 5: Comparison of traditional ML, transformer-based models, and ensemble methods on joint telescope
identification and paper classification tasks. The leaderboard score is computed as the average of Telescope Macro
F1 and Classification Macro F1. Ensemble methods combine SciBERT, DistilBERT, and AstroBERT using different
voting strategies but show slight performance degradation compared to the best single model (SciBERT). With
SciBERT, our system achieves a Top-2 ranking on the leaderboard.

models beyond 3B parameters) and limited the hy-
perparameter search space we could explore.

Ensemble Methods Underperformance: De-
spite theoretical advantages, our ensemble ap-
proaches did not yield substantial improvements.
This is likely due to the multi-label, multi-class
nature of the task where predictions must simulta-
neously classify both the telescope type and four
binary labels (science, instrumentation, mention,
not_telescope). The complexity of combining pre-
dictions across these dimensions without introduc-
ing conflicting classifications proved challenging
within our resource constraints.

Class Imbalance: The dataset exhibits signif-
icant class imbalance across both telescope types
and label categories. Certain telescope-label com-
binations are severely underrepresented, making
it difficult for models to learn robust patterns for
minority classes and potentially biasing predictions
toward more frequent categories.

Long Document Processing: Scientific papers
often contain extensive text spanning abstracts, full
body text, and acknowledgments. Processing these
long sequences requires either truncation (risking
information loss) or sophisticated chunking strate-
gies. Our computational constraints limited our
ability to fully leverage the complete textual con-
text, particularly for papers exceeding typical trans-
former input limits (512 tokens).
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A System Prompt for TRACS
Classification

Below is the complete system prompt used to fine-
tune Qwen models and guide their inference on the
TRACS shared task.

You are an expert assistant for the
TRACS (Telescope Reference and Astronomy
Categorization Shared Task) at WASP @
IJCNLP-AACL 2025. Your task is to
classify scientific papers according to
telescope usage categories defined by
the shared task guidelines.

Given the paper content, identify:

1. telescope: The specific telescope
referenced in the paper.

2. science: True if the paper uses
telescope data to produce new scientific
results.

3. instrumentation: True if
the paper describes technical
aspects of the telescope
(hardware/software/calibration/data
pipeline).

4. mention: True if the paper references
the telescope but does not produce new
results nor address technical aspects.

5. not_telescope: True if the paper
contains misleading telescope-like
references or false positives unrelated
to an actual telescope.

Classification Rules:

- A paper can be classified into multiple
categories except ‘not_telescope‘,
which is mutually exclusive.

- If a paper qualifies for ‘science‘, it
must be labeled science=True even if it
also mentions the telescope.

- If a paper discusses telescope
engineering or data processing, label
instrumentation=True.

- Papers that only cite a telescope
historically, in background, or for
comparison → mention=True.

- If the telescope name is used
ambiguously (e.g. name collision with
a person, project, or acronym) →
not_telescope=True.

- Referencing telescope-funded
grants alone without data use →
not_telescope=True.

Output Format:

Respond strictly in valid JSON only:

{

"telescope": "<string>",

"science": <true/false>,

"instrumentation": <true/false>,

"mention": <true/false>,

"not_telescope": <true/false>

}
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Abstract

Automatically identifying telescopes and their
roles within astrophysical literature is crucial
for large-scale scientific analysis and track-
ing instrument usage patterns. This paper de-
scribes the system developed by the “Clutch or
Cry” team for the Telescope Reference and As-
tronomy Categorization Shared task (TRACS)
at WASP 2025 (Grezes et al., 2025). The
task involved multi-class telescope identifica-
tion (Task 1) and multi-label role classification
(Task 2) within scientific papers. For Task 1,
we employed a feature-engineering approach
centered on document identifiers (Id suffix)
combined with metadata and textual features,
utilizing a tuned Random Forest classifier to
achieve high accuracy. For the more com-
plex Task 2, we utilized a carefully designed
two-level stacking ensemble. Level-0 com-
bines a rule-based keyword classifier with the
domain-adapted astroBERT transformer, effec-
tively fusing symbolic and semantic informa-
tion. Level-1 uses four independent XGBoost
meta-learners for targeted per-role optimiza-
tion. These architectures address the primary
challenges: handling long documents and man-
aging severe class imbalance in Task 2 (no-
tably 1:91 for instrumentation). Systematic
optimization focused on mitigating imbalance
significantly improved Task 2 performance for
minority classes. This work validates the effec-
tiveness of tailored approaches for distinct sub-
tasks and targeted optimization for imbalanced
classification in specialized scientific domains.

1 Introduction

Automated classification of scientific literature is
critical for knowledge discovery and resource man-
agement in large-scale research repositories. With
millions of astrophysical papers archived in sys-
tems like the NASA Astrophysics Data System

(ADS), manual annotation and categorization be-
come infeasible (SAO/NASA Astrophysics Data
System, 2025). Effective automated methods en-
able researchers to quickly identify relevant studies,
track telescope usage patterns, understand instru-
mental capabilities, and trace scientific methodolo-
gies—ultimately accelerating scientific discovery
and facilitating data-driven insights into observa-
tional astronomy practices (Wikipedia contributors,
2025). This capability extends beyond administra-
tive utility, directly supporting evidence synthesis,
reproducibility verification, and interdisciplinary
research collaboration.

The Telescope Reference and Astronomy Cate-
gorization Shared task (TRACS) presents two inter-
twined classification challenges that together model
real-world requirements faced by digital astron-
omy libraries (Kaggle, 2025). The task demands
systems capable of identifying which telescopes
are discussed as primary subjects versus peripheral
mentions, and distinguishing the functional role
of telescopes within scientific contexts—whether
used for data acquisition, instrument characteri-
zation, or comparative analysis. These distinc-
tions are semantically nuanced, often embedded
in lengthy papers with inconsistent terminology,
and severely imbalanced across class distributions.
This shared task provides an ideal proving ground
for advancing both fundamental NLP techniques
and domain-specific adaptations needed for special-
ized scientific corpora, offering valuable insights
into how machine learning systems can handle real-
world complexity in domain-specific document un-
derstanding.

Addressing these challenges—long document
context, nuanced semantic roles, and severe class
imbalance—requires a robust and adaptable classi-
fication architecture. Simple models often struggle
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with the sheer length of scientific papers and are
overwhelmed by the majority of classes. We hy-
pothesize that a hybrid stacking ensemble method
offers a compelling solution. By combining a fast,
symbolic keyword classifier (effective at broad cat-
egorization and handling explicit mentions across
long texts) with a deep semantic model like as-
troBERT (capable of understanding nuanced con-
text within specific text windows), we can leverage
complementary strengths. Furthermore, employing
a stacking architecture with independent, per-class
meta-learners enables highly targeted optimization,
allowing us to apply aggressive techniques such
as class weighting and threshold tuning precisely
where needed to combat the extreme class imbal-
ance observed in the TRACS dataset. The special-
ized multi-level approach forms the core of our
system design.

1.1 Shared Task: TRACS-2025
The shared task (Kaggle, 2025) comprises two clas-
sification objectives:

• Task 1 (Telescope Identification): Multi-
class classification identifying the primary
telescope discussed in a paper from the set
{CHANDRA, HST, JWST, None}.

• Task 2 (Role Classification): Multi-
label classification determining tele-
scope roles with four binary labels:
science, instrumentation, mention,
and not_telescope.

1.2 Key Challenges
Two major challenges characterize this task:

Document Length and Context: Full-text sci-
entific articles frequently exceed the input token
limits of standard transformer models (typically
512 – 2048 tokens), requiring careful strategies for
capturing relevant information from lengthy docu-
ments.

Severe Class Imbalance: Both tasks exhibit
pronounced class imbalance. In Task 1 (Tele-
scope Identification), the distribution is extremely
skewed. The NONE class represents a tiny fraction
of the dataset (approximately 1 instance for every
273 samples), making it vastly outnumbered by
majority classes like HST (which appears roughly
126 times more often than NONE). In Task 2 (Docu-
ment Role Classification), the instrumentation
class appears with a positive-to-negative ratio of ap-
proximately 1:91, while not_telescope exhibits a

ratio closer to 1:9. This extreme imbalance renders
standard machine learning approaches ineffective,
as models naturally bias toward majority classes.

We address these challenges through an
ensemble-based methodology that combines sym-
bolic and semantic models. Instead of optimizing
a single model architecture, we leverage the com-
plementary strengths of combined rule-based and
neural approaches, enabling targeted optimization
for each of the four output labels.

Our contribution includes:

1. A carefully designed two-level stacking archi-
tecture.

2. Systematic methodology for addressing ex-
treme class imbalance through multiple com-
plementary techniques.

3. Empirical validation that per-class optimiza-
tion significantly improves performance on
minority classes.

All code and trained models will be re-
leased publicly later to ensure reproducibil-
ity. Link: https://github.com/Arshad-13/
ClutchOrCry-TRACS-2025

2 Related Work

Handling imbalanced classification is a well-
studied problem. Common approaches include
oversampling techniques such as SMOTE (Syn-
thetic Minority Oversampling Technique) (Chawla
et al., 2002), undersampling (Kubat and Matwin,
1997), cost-sensitive learning (Elkan, 2001), and
ensemble methods (Galar et al., 2012). In NLP,
handling imbalanced text classification has been
addressed through various techniques, including
threshold adjustment for optimal F1 scores (Zou
et al., 2016; Hong et al., 2016) and cost-sensitive
learning strategies (Elkan, 2001; Lee and Kim,
2020). Threshold adjustment helps by shifting the
decision boundary away from the default 0.5 prob-
ability; it allows the model to correctly identify
more instances of the rare class, often improving
recall and the F1-score even if precision decreases
slightly. Cost-sensitive learning directly tackles the
imbalance during training by assigning a higher
penalty for misclassifying minority class instances,
forcing the model to learn features that better distin-
guish the rare class from the majority class. These
techniques are pertinent to both tasks, given the
severe class imbalance observed.
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Rule-based systems and extensive feature en-
gineering are often employed in scientific docu-
ment classification, particularly when structured
identifiers or metadata offer strong predictive sig-
nals. Approaches leveraging bibcodes or similar
identifiers for categorization are common in bibli-
ographic analysis and information retrieval within
specific scientific domains. These methods excel
at precision when identifier patterns are consistent
but may lack robustness to variations or require
supplementation with other features. Hybrid ap-
proaches, combining rule-based extraction with
machine learning models trained on engineered
features (including text statistics, keyword counts,
and metadata), aim to balance the high precision
of rules with the broader pattern recognition capa-
bilities of models like Random Forests, a strategy
reflected in our Task 1 architecture.

Domain adaptation of pre-trained transformers
has also proven effective for specialized NLP tasks.
Recent work in scientific document understanding
has leveraged domain-specific models like SciB-
ERT (Beltagy et al., 2019) and BioBERT, demon-
strating that pre-training on domain-specific cor-
pora improves downstream task performance. For
astronomical text, astroBERT (Grezes et al., 2021)
provides pre-training on 440,000 astrophysical ab-
stracts from the NASA Astrophysics Data System,
offering domain-specific vocabulary and patterns
critical for astronomy-related classification tasks,
which we utilize in our Task 2 system.

Ensemble methods that combine diverse classi-
fiers have demonstrated strong performance on im-
balanced problems (Galar et al., 2011; Khan et al.,
2023). While simpler ensemble models, such as
Random Forest (used in Task 1), inherently handle
feature interactions, stacking ensembles, in partic-
ular, allow meta-learners to learn optimal combi-
nation strategies for integrating base model predic-
tions (Nugroho et al., 2023). Our Task 2 approach
extends this paradigm by using per-class meta-
learners rather than a single global meta-learner,
enabling fine-grained hyperparameter optimization
tailored to each label’s unique characteristics.

3 System Architecture

We employ distinct architectures tailored to the
specific requirements of each task. Task 1 focuses
on identifying the primary telescope using rule-
based features and a Random Forest, while Task
2 uses a stacking ensemble method to classify the

role of the document concerning telescopes.

3.1 Task 1: Telescope Identification
Architecture

For identifying the primary telescope associated
with an astrophysical document, our system em-
ploys a feature-engineering-centric approach, cul-
minating in a Random Forest classification model.
This architecture prioritizes extracting strong sig-
nals from the document identifier (Id), supple-
mented by metadata and textual features to enhance
robustness and handle edge cases.

3.1.1 Rule-Based Feature Extraction (ID
Suffix)

The cornerstone of this system is the extraction and
encoding of information presumed to be embedded
within the document’s Id field, often structured
similarly to astrophysical bibcodes.

Primary Rule: The system identifies the suffix
following the last underscore (_) character in the
Id string. Mapping: Recognized suffixes (e.g.,
CHANDRA, HST, JWST) are directly mapped to their
corresponding telescope labels. Id strings without
a recognized suffix or underscore are assigned a
default category (e.g., NONE or NO_UNDERSCORE).
Feature Encoding: The extracted suffix string is
numerically encoded (e.g., using LabelEncoder)
to be used as a categorical feature by the classi-
fication model. Additional binary features like
has_underscore are also generated. This explicit
encoding of the rule’s output provides a high-
precision signal to the classifier.

3.1.2 Comprehensive Feature Engineering
To complement the primary ID suffix feature and
improve classification accuracy, especially for doc-
uments where the ID rule is insufficient, a wide
array of supplementary features are engineered:

ID/Bibcode Characteristics: Features derived
from the Id string itself, including its total length,
the count of underscores, and the categorical prefix
(often representing the year or journal, also label
encoded).

Metadata Features: Utilizing the provided
year, including derived features like the difference
from a reference year and flags indicating publi-
cation eras (e.g., recent JWST era, pre-Chandra
era).

Textual Content Features: Length Fea-
tures: Character lengths of fields such as title,
abstract, and body. Word counts are also in-
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cluded for key fields. Keyword Mentions: Bi-
nary flags and counts indicating the presence of
specific telescope names (Chandra, JWST, Hub-
ble/HST) within the title, abstract, body, and
acknowledgments. TF-IDF Representation: Term
Frequency-Inverse Document Frequency vectors
generated from the combined text of the title,
abstract, and body fields, using a constrained
vocabulary (e.g., 150 features) and considering un-
igrams and bigrams.

Author & Grant Features: Simple features like
author count and binary flags for the presence of
grant or acknowledgment text.

3.1.3 Classification Model (Random Forest)
The final classification is performed by a
RandomForestClassifier model. It takes a con-
catenated feature vector comprising all the engi-
neered numeric/categorical features (including the
encoded ID prefix) and the sparse TF-IDF text fea-
tures.

Training and Hyperparameter Tuning: The
model is trained on the full set of derived fea-
tures. To optimize performance, hyperparameters
were tuned using RandomizedSearchCV with 5-
fold stratified cross-validation. The best parameters
identified were:

• n_estimators: 200
• max_depth: 15
• min_samples_split: 2
• min_samples_leaf: 4
• max_features: ’sqrt’

This configuration achieved the best cross-
validation accuracy of 0.7772. The final model
used for prediction (best_estimator_ from
RandomizedSearchCV) is implicitly trained on the
entire dataset using these optimal parameters. Class
weighting (class_weight=’balanced’) was also
employed during the search process to mitigate the
inherent imbalance in telescope label distribution.
The model predicts a single categorical label repre-
senting the identified primary telescope (CHANDRA,
HST, JWST, or NONE). Feature importance analysis
consistently confirms that the ID suffix-derived fea-
tures are the most dominant predictors, validating
the hybrid rule-based and machine-learning strat-
egy.

3.2 Task 2: Document Role Classification
Architecture

As shown in Figure 1, our system for Task 2 uti-
lizes a two-tier approach, comprising ‘level 0’ and

‘level 1’, within the stacking ensemble intended to
merge quick symbolic classification with a slower
yet more accurate semantic comprehension.

3.2.1 Level-0: Base Models
Rule-Based Keyword Classifier The keyword
classifier provides high-recall signals through pat-
tern matching. It utilizes a dictionary of over
1,000 domain-specific keywords (spanning tele-
scope names, instruments, and scientific concepts),
which we curated using a combination of large
language models (LLMs) and established astro-
physical references. Scores documents based on
the presence, frequency, and contextual proxim-
ity of keywords. Outputs a 4-dimensional pseudo-
probability vector, one value per output label, com-
puted as normalized keyword match scores. While
this approach cannot capture semantic nuance, it
provides reliable signals for explicit references and
demonstrates high recall for documents containing
direct mentions of telescopes or scientific roles.

Fine-Tuning astroBERT The transformer com-
ponent leverages adsabs/astroBERT (Grezes
et al., 2021), a BERT variant pre-trained on
440,000 abstracts from astrophysical literature. The
model provides domain-specific vocabulary and
contextual understanding of astrophysical language.
It is fine-tuned on the provided training data for 3
epochs using a learning rate of 2e-5. The model
generates probabilities for three labels: SCIENCE,
INSTRUMENTATION, and MENTION, excluding the
NOT_TELESCOPE class, which is semantically dis-
tinct and handled exclusively by the keyword clas-
sifier and meta-learner. It outputs a 3-dimensional
feature vector.

It reflects our hypothesis that NOT_TELESCOPE
documents (discussing telescopes in non-primary
contexts) require different signals than documents
describing telescope roles in primary scientific con-
texts (see Section 4).

3.2.2 Level-1: Meta-Learner
The Level-1 meta-learner combines base model
outputs into a unified classification:

Feature Construction: Outputs from both base
models are concatenated into a 7-dimensional fea-
ture vector: xmeta = [xkeyword,xastroBERT] where
xkeyword ∈ R4 and xastroBERT ∈ R3.

Per-Label Meta-Learners: Instead of training a
single multi-label classifier, we train four indepen-
dent XGBoost classifiers Mi (Chen and Guestrin,

149



INPUT TEXT
(Title + Abstract +
Acknowledgments)

LEVEL-0:
BASE MODEL 1
Keyword Classifier

Output: [0/1]
(telescope / not)

LEVEL-0:
BASE MODEL 2

AstroBERT (Fine-tuned)

Output: [science, in-
strument, mention]

LEVEL-1:
META-LEARNER

XGBoost (x4)
One model per label category

FINAL PREDICTION
science, instrumentation,
mention, not_telescope

Figure 1: Two-level stacking ensemble architecture (Task 2). Level-0 base models process input text independently,
producing 4 and 3-dimensional vectors, respectively. These are concatenated into a 7-dimensional meta-feature
vector, which serves as input for four independent Level-1 meta-learners (one per label), each producing binary
predictions.

2016), one per label. This one-vs-rest approach
enables:

• independent hyperparameter optimization
(particularly scale_pos_weight) tailored to
each label’s unique imbalance ratio.

• isolation of optimization strategies: SMOTE
and calibration are applied only to models
requiring them.

• flexibility to apply different decision thresh-
olds for different labels.

Each meta-learner Mi produces a binary proba-
bility pi ∈ [0, 1] for label i, which is converted to a
binary prediction using a label-specific threshold
τi (see Section 5).

4 Subtask 1: Telescope Identification

4.1 Model 1: Stacked LSTM Network

Our initial approach used a stacked Long Short-
Term Memory (LSTM) network to exploit the se-
quential structure of text in the title, abstract, and
author fields. Input: Tokenized title, abstract, and
author fields. Architecture: Two stacked LSTM
layers (64 units each), followed by a Dense softmax
classification layer. Output: Multi-class probabili-
ties over four telescope classes.

4.2 Model 2: Domain-Specific Transformer
(AstroBERT)

We transitioned to a more powerful, domain-
adapted language model: astroBERT, pre-trained
on astrophysics literature and fine-tuned it with a
classification head on TRACS data. Deep language
understanding alone was insufficient. Semantic sig-
nals were not strong enough to capture the presence
or absence of telescope mentions.

4.3 Model 3: Hybrid (Logistic Regression +
AstroBERT)

To better isolate the difficult None class, we decou-
pled its prediction into a binary subtask. First, a Lo-
gistic Regression model predicted whether a sam-
ple belonged to the None class. If not, astroBERT
classified it into CHANDRA, HST, or JWST.

4.4 Model 4: Feature-Based Random Forest

We shifted focus from textual models to structured
metadata features using a RandomForest classifier.
The engineered features included field-specific key-
word counts, publication year, and author-based
patterns.

4.5 Model 5: Final Hybrid (RandomForest +
Rule-Based Heuristic)

A comparative analysis of the previous models con-
firmed that the feature-engineered RandomForest

150



was the most promising direction. However, a
deep dive into its confusion matrix revealed a crit-
ical performance bottleneck: the vast majority of
classification errors occurred because the model
was consistently confusing two specific categories.
To address this targeted issue, we sought a deter-
ministic feature that could serve as a tie-breaker.
We discovered a decisive cue in the bibcode field,
where the suffix (the text after the last underscore)
deterministically aligned with the true class label.
This insight was used to create a rule-based over-
ride specifically for instances where the model was
likely to be confused.

The final hybrid approach began with the output
of the Random Forest model and then applied a
rule-based correction to address its specific, known
weakness. If the model’s prediction was one of the
two commonly confused fields, the system applied
the rule-based override by extracting the final token
from the bibcode. For all other predictions, the
model’s original output was trusted.

5 Subtask 2: Telescope Role Classification

We employed an iterative development methodol-
ogy for Task 2, beginning with a baseline model
and systematically addressing performance bottle-
necks related to class imbalance.

5.1 Baseline System

Our baseline model employed standard stack-
ing without specialized handling for imbal-
anced data. It used default XGBoost hyper-
parameters (scale_pos_weight=1, max_depth=6,
learning_rate=0.1), a fixed decision threshold
of 0.5 for all labels, and implemented no specific
data augmentation or class weighting strategies.

This baseline achieved a Macro F1-score of
0.6191, with severe degradation on minority classes
(Table 1). The INSTRUMENTATION class achieved
only 0.510 F1, while NOT_TELESCOPE reached
0.480 F1.

5.2 Optimization Strategies

To improve upon the baseline, we implemented
five complementary techniques targeting different
aspects of model training and prediction on imbal-
anced data. These strategies are summarized in
Table 2.

Justification for Selective SMOTE Applica-
tion We applied SMOTE exclusively to the
INSTRUMENTATION meta-learner due to its extreme

Label Precision Recall F1 Support

INSTRUMENTATION 0.650 0.420 0.510 132
MENTION 0.700 0.750 0.722 892
NOT_TELESCOPE 0.580 0.410 0.480 187
SCIENCE 0.780 0.750 0.765 2156

Macro Avg 0.678 0.582 0.619 —

Table 1: Baseline performance before optimization.
Class imbalance creates severe bottlenecks, particularly
for INSTRUMENTATION (1:91 ratio) and NOT_TELESCOPE
(1:9 ratio).

imbalance (1:91). Synthesizing data was deemed
necessary to provide sufficient signal for the
model to learn this rare class effectively. For
the NOT_TELESCOPE class, with a more moderate
imbalance (1:9), we found that aggressive class
weighting (Strategy 3) alone was sufficient to man-
age the imbalance without the potential noise in-
troduction or overfitting risks associated with syn-
thetic data generation. The majority of classes
required neither technique.

Threshold Tuning Procedure The custom de-
cision thresholds (Strategy 4) were determined by
performing a manual grid search over the probabil-
ity outputs generated by the trained meta-learners
on a held-out validation set (20% of the training
data). For each minority class (INSTRUMENTATION
and NOT_TELESCOPE), we evaluated thresholds
ranging from 0.1 to 0.9 in steps of 0.01. The thresh-
old that yielded the maximum F1-score on the vali-
dation set for that specific label was selected as the
optimal threshold for generating final predictions
on the test set.

Calibration Timing Probability calibration
(Strategy 5) was applied after the XGBoost
meta-learners were fully trained using the op-
timized hyperparameters (including aggressive
class weights). The ‘CalibratedClassifierCV‘
wrapper from scikit-learn was fitted using Isotonic
Regression on the out-of-fold predictions from
the same validation set used for threshold tuning.
This post-hoc calibration step adjusts the output
probabilities of the already trained models before
the final optimized thresholds (determined in
Strategy 4) are applied. This ensures the thresholds
operate on more reliable probability estimates,
improving reproducibility.
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# Strategy Target Label(s) Mechanism & Rationale

1 AstroBERT
Fine-Tuning

All (via base model) Unfreezing weights and training for 3 epochs adapts embeddings to the specific
task, improving feature quality for the meta-learner.

2 SMOTE Over-
sampling
(Chawla et al.,
2002)

INSTRUMENTATION Generates synthetic minority samples (k=5) to balance the training data to 1:1
for the meta-learner, providing more examples for this extremely rare class (1:91
ratio).

3 Aggressive
Class Weight-
ing

INSTRUMENTATION,
NOT_TELESCOPE

Manually increases XGBoost’s scale_pos_weight (180 for INSTR, 15 for
NOT_TEL) beyond the theoretical ratio to heavily penalize misclassifications of
minority classes, boosting recall.

4 Custom Predic-
tion Thresholds

INSTRUMENTATION,
NOT_TELESCOPE

Lowers the decision threshold (0.35 for INSTR, 0.40 for NOT_TEL) from
the default 0.5 to optimize the F1-score by improving recall at an acceptable
precision cost for imbalanced classes.

5 Probability Cal-
ibration

INSTRUMENTATION,
NOT_TELESCOPE

Applies Isotonic Regression post-hoc to the meta-learner outputs to make pre-
dicted probabilities more reliable, enhancing the effectiveness of custom thresh-
olds.

Table 2: Summary of optimization strategies applied to improve Task 2 performance.

6 Results

This section details the performance of our final
systems for both subtasks, comparing final metrics
against developmental stages and discussing the
implications.

6.1 Subtask 1: Telescope Identification
Results

Our iterative development process for Task 1 cul-
minated in a hybrid model combining a feature-
based RandomForest classifier with a rule-based
heuristic leveraging the bibcode field (Model 5 in
Section 4). As summarized in Table 3, this final ap-
proach achieved significantly higher performance
than models relying solely on semantic or purely
feature-based methods.

Model Approach Accuracy F1 Recall

Model 1 Stacked LSTM 78% 75% 77%
Model 2 AstroBERT 79% 76% 78%
Model 3 Logistic Reg. + AstroBERT 82% 80% 81%
Model 4 Feature-based RandomForest 80% 78% 79%
Model 5 RandomForest + Rule-Based 97% 96.8% 97.1%

Table 3: Performance evolution across five model itera-
tions for Subtask 1 (Telescope Identification).

The dramatic improvement from incorporating
the rule-based correction underscores the impor-
tance of domain-specific structural features, which
provided deterministic cues unavailable in the raw
text or other metadata. Neural models struggled
particularly with the None class, highlighting the
limitations of purely semantic approaches for this
specific task.

6.2 Subtask 2: Telescope Role Classification
Results

Our final optimized stacking ensemble system, de-
tailed in Section 5, achieved a locally validated
Macro F1-score of 0.683 for the Telescope Role
Classification task, a notable enhancement from
the baseline of 0.6191. This improvement was pri-
marily driven by successfully mitigating the severe
class imbalance affecting minority classes. Specifi-
cally, for the INSTRUMENTATION class, a combina-
tion of targeted strategies including SMOTE-based
data augmentation, aggressive class weighting in
XGBoost (e.g., scale_pos_weight=180), lowered
custom decision thresholds (e.g., 0.35), and proba-
bility calibration via Isotonic Regression proved
highly effective. These techniques collectively
forced the model to better recognize the rare class
instances by adjusting data representation, learn-
ing penalties, and decision boundaries, leading to a
substantial increase in its F1-score from 0.510 to
0.782. Importantly, these optimizations for minor-
ity classes maintained stable performance on the
majority classes (MENTION and SCIENCE), demon-
strating the robustness of our per-class approach.

Label Precision Recall F1-Score Support

NOT_TELESCOPE 0.788 0.344 0.479 187
MENTION 0.677 0.747 0.710 892
INSTRUMENTATION 0.901 0.690 0.782 132
SCIENCE 0.757 0.764 0.760 2156

Macro Avg (Local) 0.781 0.636 0.683 3367

Table 4: Final per-class performance for Task 2 based on
local evaluation. The Macro F1-score computed locally
is 0.683.
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Leaderboard Results Our system achieved a
combined Macro F1-score of 0.82 on the TRACS
@ WASP 2025 competition leaderboard, securing
4th place. This score represents the weighted com-
bination of Task 1 (telescope identification, 97%
accuracy) and Task 2 (role classification). For
Task 2 specifically, our local validation achieved a
Macro F1 of 0.683 across the four role labels. The
per-class improvements (5) reported in the follow-
ing analysis reflect the impact of our optimization
strategies on each label performance during local
evaluation. Model Performance and Analysis for
both the share task is shown in Appendix A.

7 Discussion

7.1 Ensemble Synergy

Our results validate the complementary nature of
symbolic and semantic models. The keyword clas-
sifier provides high-recall signals for explicit tele-
scope mentions, excelling when documents con-
tain direct references. Conversely, astroBERT cap-
tures nuanced semantic patterns, capturing context-
dependent telescope roles. The meta-learner learns
to weight these signals appropriately:

• For INSTRUMENTATION: Documents often lack
explicit instrumentation keywords, making as-
troBERT’s semantic understanding crucial.

• For SCIENCE: High keyword density provides
strong signals, but astroBERT refinement re-
duces false positives.

A potential concern is whether relying on specific
keywords might lead to overfitting, particularly if
the lexicon is highly tuned to the training data.
While the domain-adapted astroBERT component
provides broader semantic understanding that can
mitigate this, its performance might also degrade
if future documents use entirely novel terminology
not seen during pre-training or fine-tuning. Careful
curation and potential expansion of the keyword
list would be necessary for optimal generalization.

7.2 Why Per-Label Meta-Learners?

Our choice of four independent XGBoost meta-
learners (rather than a single multi-label model)
proved critical for handling extreme imbalance.
This design enables: (1) Fine-grained hyper-
parameter tuning: Each label can employ
scale_pos_weight values matched to its specific
imbalance ratio. (2) Selective data augmentation:
SMOTE is applied only to INSTRUMENTATION,

avoiding artificial data generation for other classes.
(3) Flexible thresholding: Different labels can em-
ploy different decision thresholds based on their
precision-recall trade-off characteristics. (4) Mod-
ular optimization: New strategies can be tested
for individual labels without affecting others.

7.3 Ensemble vs. End-to-End Transformers

While transformer models might seem like a sim-
pler alternative, our ensemble approach offers ad-
vantages for this task. Firstly, interpretability is
enhanced; we can analyze the relative contributions
of the keyword (symbolic) and astroBERT (seman-
tic) base models, providing insights into why a
classification was made. Secondly, the modular-
ity allows for easier updates—the keyword lexicon
can be expanded or astroBERT replaced without
retraining the entire system. Lastly, the per-label
meta-learners provide targeted robustness against
class imbalance, enabling specific, aggressive opti-
mization strategies for minority classes that might
be difficult to implement effectively within a single,
monolithic transformer architecture.

8 Conclusion

We presented a hybrid stacking ensemble for the
TRACS@WASP 2025 shared task on astrophysi-
cal document classification. Our system combines
rule-based keyword detection with domain-adapted
semantic modeling (astroBERT), using four inde-
pendent XGBoost meta-learners—one per output
label—to handle severe class imbalance through
per-label optimization. The modular design enables
targeted strategies, e.g., SMOTE augmentation, ag-
gressive class weighting, calibrated probabilities,
and custom decision thresholds, proving particu-
larly effective for challenging minority classes.

We achieved a macro F1-score of 0.82 on
the leaderboard, securing 4th place. The
most significant improvements were realized in
the extreme-minority classes: the F1-score for
INSTRUMENTATION dramatically increased from
0.510 to 0.782 (+53.3%), and notable gains were
also achieved for the difficult NOT_TELESCOPE la-
bel, showcasing the system’s strength in high-
imbalance scenarios without sacrificing majority
class performance. We demonstrate that symbolic
and neural approaches are complementary—their
synergy is essential for specialized, imbalanced
scientific corpora.
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9 Limitations and Future Work

While our ensemble approach demonstrates strong
performance, several key limitations warrant dis-
cussion and guide future research directions.

First, handling long documents remains a
significant challenge. Our current reliance on
astroBERT with a 512-token limit necessitates trun-
cating lengthy astrophysical papers, potentially dis-
carding crucial contextual information located later
in the text. Future work should explore architec-
tures specifically designed for long sequences, such
as hierarchical attention models or transformers
like Longformer (Beltagy et al., 2020), to capture
document-wide context more effectively.

Second, the system’s performance on the
NOT_TELESCOPE class plateaued despite targeted
optimization efforts. This suggests that the current
feature representations derived from the keyword
classifier and astroBERT lack sufficient discrimi-
native power for this nuanced category. Addressing
this could involve model-centric approaches like
incorporating specialized external models or data-
centric improvements such as creating finer-grained
annotations for partial or non-primary telescope
mentions, potentially leveraging weak supervision
techniques to augment training data.

Third, generalization beyond the TRACS
dataset, particularly to unseen telescopes, requires
further investigation. Our system is optimized
for the specific telescopes present in the training
data (CHANDRA, HST, JWST). While astroBERT of-
fers general domain knowledge, the keyword clas-
sifier’s effectiveness heavily depends on its lexi-
con. Future efforts must focus on evaluating perfor-
mance degradation on diverse astronomical corpora
and developing robust strategies for rapid lexicon
expansion and adaptation to ensure broader appli-
cability.

While other limitations exist, such as the need
for more detailed error analysis, addressing these
three core areas—long document processing, mi-
nority class feature representation, and generaliza-
tion—offers the most promising avenues for ad-
vancing the system’s capabilities.

Future work will focus on addressing truncated
context handling, building upon the significant
gains achieved for the NOT_TELESCOPE class to fur-
ther enhance its classification accuracy, and improv-
ing cross-domain generalization through hierarchi-
cal models and long-document transformers. Our
framework provides a robust solution for scientific

document classification in high-imbalance regimes,
with applications extending beyond astrophysics.
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A Model Performance and Analysis

A.1 Task 1 Performance (Telescope
Identification)

The performance of the Task 1 Random Forest
model was primarily assessed through 5-fold strat-
ified cross-validation during the hyperparameter
tuning phase using RandomizedSearchCV.

Cross-Validation Results: The optimized
model configuration, selected based on the tun-
ing process described in the System Architecture
section, achieved a mean cross-validation accuracy
of 0.7772. The standard deviation across the folds
was relatively small (around ±0.0004 according to
similar runs shown in the notebook context), indi-
cating consistent performance across different data
subsets. This high accuracy suggests the model ef-
fectively minimizes confusion between the primary
telescope classes (CHANDRA, HST, JWST) while miti-
gating the impact of the extreme imbalance posed
by the NONE class, largely due to the strong predic-
tive power of the ID-based features.

Feature Importance: As noted previously, fea-
ture importance analysis consistently highlighted
the overwhelming predictive power of features de-
rived directly from the Id string’s suffix. This con-
firms that the rule-based extraction component, in-
tegrated as a feature, provides the primary signal
for this classification task. Metadata features like
year and certain TF-IDF terms offered minor con-
tributions.

Final Prediction: The final model, trained
implicitly on the full dataset using the best pa-
rameters from RandomizedSearchCV, was used to
generate predictions for the submission file (’fi-
nal_submission_task1.csv’). While detailed per-
class metrics (precision, recall, F1) were not part
of the hyperparameter search output, the strong
cross-validation accuracy suggests effective clas-
sification, heavily driven by the identifier-based
features.

A.2 Task 2 Performance Analysis (Document
Role Classification)

Per-Class Performance Analysis Table 5 high-
lights the change in F1-score for each class from
the baseline (Table 1) to the final optimized model
(Table 4).

Label Baseline F1 Final F1 Improvement (∆ F1)

NOT_TELESCOPE 0.480 0.479 −0.001
MENTION 0.722 0.710 −0.012
INSTRUMENTATION 0.510 0.782 +0.272
SCIENCE 0.765 0.760 −0.005

Macro Avg 0.619 0.683 +0.064

Table 5: Comparison of F1-scores before and after op-
timization for Task 2, highlighting the substantial gain
for the INSTRUMENTATION class.

The most dramatic success was in the INSTRU-
MENTATION class, which saw its F1-score jump
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from 0.510 to 0.782 (+0.272, a +53.3% relative
improvement). This validates our targeted opti-
mization strategy that combines SMOTE, aggres-
sive class weighting (weight=180), a low decision
threshold (0.35) and probability calibration. Pre-
cision improved to 0.901 while recall increased
significantly from 0.420 to 0.690. Conversely, the
NOT_TELESCOPE class proved resistant to op-
timization, with its F1 remaining static (0.480→
0.479). Despite targeted weighting (weight=15)
and thresholding (0.40), the model maintained high
precision (0.788) but low recall (0.344), suggesting
insufficient characteristic discrimination from the
base models for this specific class.

The majority classes, MENTION and SCI-
ENCE, showed minimal F1 change, indicating that
optimizations targeting the minority classes did not
negatively impact their performance.

Statistical Reliability The presented results are
based on a single training run with a fixed random
seed for reproducibility. Averaging results over
multiple runs with different seeds could provide
a more robust estimate of performance variance
but was not performed due to computational con-
straints.
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Abstract

Telescope bibliographies record the pulse of
astronomy research by capturing publication
statistics and citation metrics for telescope facil-
ities. Robust and scalable bibliographies ensure
that we can measure the scientific impact of our
facilities and archives. However, the growing
rate of publications threatens to outpace our
ability to manually label astronomical literature.
We therefore present the Automated Mission
Classifier (amc), a tool that uses large language
models (LLMs) to identify and categorize tele-
scope references by processing large quantities
of paper text. A modified version of amc per-
forms well on the TRACS Kaggle challenge,
achieving a macro F1 score of 0.84 on the held-
out test set. amc is valuable for other telescopes
beyond TRACS; we developed the initial soft-
ware for identifying papers that featured scien-
tific results by NASA missions. Additionally,
we investigate how amc can also be used to
interrogate historical datasets and surface po-
tential label errors. Our work demonstrates
that LLM-based applications offer powerful
and scalable assistance for library sciences. �

1 Introduction

Telescope bibliographies provide one way to mea-
sure the scientific productivity of our astronomical
facilities. Bibliometrics can quantify how often
telescopes are discussed in scientific publications,
e.g., through passing mentions or via detailed scien-
tific analyses that originate from data taken by each
telescope. Although these quantitative analyses are
vital for assessing the impact of our scientific invest-
ments, they hinge on complete, homogeneous bib-
liographies, which can be expensive and onerous to
manually curate. Librarians, archive scientists, and
bibliographers maintain telescope bibliographies
by consistently tracking publications, extracting
metadata, and labeling the scientific intent of each
telescope reference for all papers (see, e.g., Lager-
strom, 2015; Observatory Bibliographers Collab-

oration et al., 2024). Complete observatory bibli-
ographies enable us to investigate publication rates,
and citation statistics, links between publications
and observing proposals, data product usage met-
rics, and archival science impact (e.g., Apai et al.,
2010, for HST).

There is more scientific literature than ever be-
fore (notwithstanding gender-disparate impacts
from the recent pandemic, Böhm and Liu, 2023).
Some of this increase accompanies a general rise
of publication rates throughout academia (Hanson
et al., 2024). Additionally, very recent growth in
publication rates may stem from the advent of large
language models (LLMs), which can lower the bar-
rier to writing papers (e.g., Astarita et al., 2024).
These trends suggest that we need a sustainable so-
lution for producing telescope bibliographies amid
the deluge of astronomy papers.

LLMs can also be useful for compiling telescope
bibliographies at scale: artificial intelligence (AI)
systems are highly scalable, and are now adept
at processing large amounts of text inputs. Mod-
ern LLMs can complete many tasks without any
optimization, instead relying solely on emergent
capabilities like in-context learning (e.g., Brown
et al., 2020). With frontier AI labs now deploying
LLMs as a service, we can easily leverage simple
API (Application Programming Interface) calls and
design software around cutting-edge LLMs.

Before deploying an automated bibliography sys-
tem, we must first ensure that its performance
is robust. To this end, we present and evalu-
ate the Automated Mission Classifier (amc), an
LLM-powered, bibliometric tool for identifying
telescopes or NASA missions in the literature.
We adapt amc for a specific shared task, TRACS
(Section 2); in the Appendix, we note that sim-
ilar systems are already in operations for JWST
(Appendix B) and can be used for archival sci-
ence with other telescopes (Appendix C). In Sec-
tion 3, we describe the software’s system design,
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and we present results in Section 4. In Section 5,
we discuss how observatory bibliographers can
leverage AI to compute bibliometrics at scale,
assess (historical) data quality, and upgrade the
LLM systems. We provide publicly available code
on Github: https://github.com/jwuphysics/
automated-mission-classifier.

“To LLMs! The cause of, and solution to,
all of bibliographers’ problems.”1

2 The TRACS Shared Task

The Telescope Reference and Astronomy Cate-
gorization Shared task (TRACS) is a data chal-
lenge organized as part of the 2025 Workshop for
Artificial Intelligence for Scientific Publications
(WASP; Grezes et al. 2025) at IJCNLP-AACL.2

The task consists of classifying astronomy pa-
pers into at least one of four categories: science,
instrumentation, mention, or not_telescope.

In this data challenge, papers are decomposed
into several fields (including the title, abstract, and
“body” full text) and, based on keyword filtering,
labeled with a candidate telescope name (CHANDRA,
HST, JWST, or NONE). The objective is to predict
the boolean labels for all paper categories for each
of the provided bibcode + telescope combinations.
However, it is important to note that the candidate
telescope name may be mislabeled, and that certain
paper categories impose constraints on the others
(i.e., a single paper + telescope can have True la-
bels for both science and instrumentation, but
cannot for both science and not_telescope).

Training and test data sets, in CSV format with
80,385 and 9,194 entries respectively, are provided
for the shared task. To participate in the challenge,
entrants must submit 9,194 test-set predictions via
Kaggle3 and have their predictions evaluated. The
test outputs are scored according to the average
between the macro F1 score of the telescope la-
bels and the macro F1 score of paper labels; each
class is weighted equally. Note that NONE is a valid
telescope class and not_telescope is a valid pa-
per class. In the subsections below, we note some
details that we considered important for our sub-
mission.

1Quote adapted from The Simpsons (Swartzwelder and
Anderson, 1997).

2For details on The International Joint Conference on Nat-
ural Language Processing & Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics (IJCNLP-AACL), see
https://2025.aaclnet.org/.

3https://www.kaggle.com/competitions/
tracs-wasp-2025

2.1 Input Data

The full list of columns in the train data set in-
clude: (0) ID, (1) bibcode, (2) telescope, (3) au-
thor, (4) year, (5) title, (6) abstract, (7) body, (8)
acknowledgments, and (9) grants, (10) science,
(11) instrumentation, (12) mention, and (13)
not_telescope. The test dataset does not include
column (2) or columns (10) through (13). However,
a preliminary telescope label is implicitly named in
column (0), as the ID is simply the concatenation
of {bibcode}_{telescope}.

Some rows in the datasets are missing: 3% of
the test data set is missing an abstract, 19% does
not have full-body text, and > 90% does not have
text under the grants column. Incomplete data are
likely due to a combination of parsing errors (e.g.,
correctly parsing out grants/acknowledgments) and
publisher restrictions. Issues with publisher agree-
ments tend to impact certain journals or publication
venues (i.e., demarcated by their “bibstem” entries);
in many of these cases, the body text is completely
absent. Nonetheless, classifications can sometimes
still be made on the basis of just the title and ab-
stract (but see Appendix C).

Some of the input data may not be helpful. For
example, the list of authors is unlikely to yield
useful indicators of the paper classification, and
may even produce false positives, as “Webb” or
“Chandra” can show up as (sub-word) names of au-
thors. Likewise, “Hubble” can often show up in the
acknowledgments, e.g. due to funding acknowledg-
ments from the NASA Hubble Fellowship Program.
Thus, it is imperative to design a language model-
ing system that can flexibly understand the context
surrounding telescope detections.

2.2 Paper Types

Establishing a common definition for paper types
is a nontrivial task. When tasking human bibliog-
raphers to classify papers, e.g., identify science
papers, disagreements often arise about the precise
definition of a science paper.

In order to implement a useful LLM system for
automated classification, it is necessary to unam-
biguously define the labels. Observatory Bibliogra-
phers Collaboration et al. (2024) issue the follow-
ing guidance on science papers:

“To qualify as a science paper, it must be
apparent that data or data product(s) from
the observatory were used and that the
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data or data product(s) formed the basis
for reaching a new scientific conclusion.”

The authors recognize that these definitions must
be continually updated.

Indeed, the taxonomy should serve the telescope
or mission. Existing schemes may not be suffi-
cient to characterize all of the edge cases, and
new categories may arise. As a concrete exam-
ple, STScI established a data-influenced category
in 2019 for papers that indirectly rely on data or
products, but do not directly analyze data or use
data products. In the TRACS challenge taxonomy,
data-influenced papers would generally be labeled
under the mention category.

As part of the shared task, the TRACS website
provided a narrative format description of the dif-
ferent paper types (Grezes et al., 2025). We used
an LLM (claude-sonnet-4.1) to process this text
in order to create a user prompt that includes def-
initions and examples of each paper type (which
is manually updated and described in more detail
in Section 3). The full prompts can be found in
the Github repository, and we have copied the pa-
per type definitions here (note that we remove the
markdown text formatting for human readability):

• science: Paper directly uses {{telescope}}
data (new or published) to obtain new scien-
tific results in this paper.

• instrumentation: Paper describes new in-
strument science or engineering.

• mention: Paper references the telescope but
does not produce new scientific results.

• not_telescope: Paper includes references
that are false positives – names that look like
the telescope but refer to something com-
pletely different.

3 The Automated Mission Classifier (amc)

Figure 1 shows a high-level overview of the amc
system. The system classifies a single paper and a
single telescope at a time.

First, amc performs a keyword search to filter
all mentions of telescope-related keywords, and
we include surrounding context (±3 sentences).
This step effectively converts the body into a list of
telescope-specific text snippets (Section 3.1). Text
snippets are then ranked by their relevance to the
core question of “is this a {telescope} science pa-
per?”, and we only keep the most relevant snippets

(Section 3.2). These top-ranked snippets are sub-
sequently passed to an LLM, which is prompted
to classify the paper types and provide quotes
and supporting reasoning for its predictions (Sec-
tion 3.3). The specialized code used for TRACS
is forked from amc and can be found at https:
//github.com/jwuphysics/tracs_wasp2025.

Finally, we note that our LLM system design
is strongly influenced by a prior task: classifying
whether arXiv paper preprints contained JWST sci-
ence. In Appendix B, we describe how these earlier
motivations shaped (and biased) the design of the
amc. Additional discussion of the limitations of
amc are discussed in Section 4.4.

3.1 Keyword Filtering on Full Text
We concatenate the title, abstract, and body as a
single text input. We extract only the most rele-
vant portions of the text by searching for keywords.
First, we divide text into sentences by using the
Punkt sentence tokenizer (Kiss and Strunk, 2006)
in the NLTK package (Bird and Loper, 2004). We
then use a simple Python case-insensitive string
search to identify sentences with keywords for the
relevant telescope. We expand snippets to include
the n = 3 prior and following sentences (i.e., such
that each snippet contains 2n+ 1 sentences). If no
keywords are found, then we automatically classify
the paper as not_telescope.

We note that our keywords prioritize high recall
at the expense of low precision; in other words,
we value keyword completeness to make sure that
no important keywords are missed. However, this
means that false positives are expected. For exam-
ple, our simple string matching over “COS” (an in-
strument on the Hubble Space Telescope) will also
trigger matches on the words “cosmic” or “cosine.”
Therefore, it is essential that we guard against false
positives by ranking text snippets according to their
relevance.

3.2 Reranking Excerpts
Rerankers are typically LLMs that determine the
relevance of some text snippet for answering a spe-
cific question. In information retrieval systems
or retrieval-augmented generation (RAG), a first-
stage algorithm usually produces an initial ranking
or filtering over relevant documents/snippets (e.g.
via semantic similarity in an embedding space).
Rerankers provide a second-stage ranking between
the query and a smaller set of snippets; recent
works have demonstrated them valuable for LLM
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Figure 1: Schematic showing the system design for amc. Note that the version of amc adapted for TRACS does not
separate the LLM generation of quotes, reasoning, and predictions; rather they are all output together. See the text
in Section 3 and Appendix B for a full discussion of differences.

systems in astronomy and science more broadly
(Iyer et al., 2024; Chen et al., 2025; Xu et al., 2025).

We implement a custom reranker solution4 that
achieves similar performance to leading com-
mercial products (e.g., Cohere Reranker v3.5;
based on a few informal assessments). We
use a lightweight, general-purpose, non-thinking
model (gpt-4.1-nano) with a restricted vocab-
ulary (“Yes” and “No”) that outputs logits (log-
probabilities) between 0 and 1. Using a short
reranker prompt, we task this model to identify
whether each individual snippet discusses the tele-
scope in a way that may be used to classify the
paper type. One of the main goals of this step is to
remove accidental and unrelated keyword matches.

Once every snippet has a reranker score, we can
sort them and/or filter out irrelevant snippets. We
keep up to k = 15 top-ranked snippets in order to
reduce the amount of text that is sent to the next
LLM call.

3.3 LLM Classifications

We combine the filtered text snippets together along
with their reranker scores. The scores can serve as

4We were unaware (until the time of writing) that this
reranking approach had been proposed in the literature before
(see e.g. Liang et al., 2023).

another reference for whether snippets are useful
for determining the paper type.

We use gpt-5-mini with minimal reasoning ef-
fort to make the final classification as a structured
output. The LLM prompt contains the top-ranked
snippets and their scores, and it defines the different
paper types and provides some examples. In addi-
tion to predicting boolean classes for the science,
instrumentation, mention, and not_telescope
paper types, the LLM is also prompted to sup-
ply the most relevant quotes and justify its reason-
ing. All structured outputs and their data types are
constrained via a pydantic model schema (e.g.,
boolean predictions, a list of strings for the quotes,
and a single text string for the reasoning).

In the amc package, the quotes and justification
are provided first, followed by a separate LLM call
to predict the final score on these lines of thinking
(see, e.g., Figure 1). However, because TRACS
requires multiple classifications, we simplify the
system so that all predictions and quotes/reasoning
are output at the same time. The original amc also
supports floating point values between 0 and 1 for
scoring science paper types, which allows another
hyperparameter to control the threshold for scoring
science papers. For TRACS, we simplified the
system by using boolean values for each prediction.
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4 Results

We briefly present some limited results on the
TRACS test set. Our best score in terms of F1

is 0.84 on the held-out test set, enough for a
third-place rank according to the Kaggle leader-
board. In Appendix A, we show the amc JSON-
formatted outputs, including paper type examples
for science (Listing 1), instrumentation (List-
ing 2), mention (Listing 3), and not_telescope
(Listing 4). Based on a cursory review, these out-
puts seem accurate, the quotes do not suffer from
hallucinations (although the risk is still present),
and the provided reasoning largely appears to be
faithful to its classification.

4.1 Evaluating amc

In order to understand our system’s strengths and
weaknesses, we select N = 100 random entries
from the training set, comprising 25 rows per tele-
scope. This small, non-representative evaluation
set enables us to investigate why our LLM system
tended to make incorrect predictions. This random
set is also able to surface potential issues with the
dataset (see Section 4.3).

In Figure 2, we show confusion matrices display-
ing amc predictions on the limited validation set,
for all telescopes except NONE. Each column shows
a paper type (denoted “True”) against all other pa-
per types (denoted “False”). We note that some
combinations of missions and paper types tend to
succeed (e.g., CHANDRA/science) or fail more fre-
quently (e.g., CHANDRA/mention). These confusion
matrices are based on the same version of amc as
the final TRACS submission. However, we caution
against overinterpreting results on this relatively
small evaluation set.

4.2 Performance on TRACS

Our first submission to TRACS achieved a macro
F1 score of 0.80. At the time, the system included a
few suboptimal settings, e.g., slightly misspecified
prompts, or a non-zero reranker threshold which
caused weak mention classes to occasionally be
mislabeled (since the threshold might cause all text
snippets to be filtered out, rendering a default ver-
dict of not_telescope).

After removing the reranker threshold and updat-
ing the prompts, we saw a modest increase in macro
F1 score to 0.84. We examined two of our higher-
scoring sets of predictions, and used an LLM as
a judge (gpt-5-mini) to resolve discrepancies be-

tween them and to issue final predictions; the per-
formance remained at F1 = 0.84.

The final LLM system took less than 24 hours in
wall-clock time to run, and incurred roughly $10 in
OpenAI costs. About 22% of the cost is for rerank-
ing snippets with gpt-4.1-nano, 37% is for pro-
cessing top-ranked inputs with gpt-5-mini, and
41% is for generating outputs with gpt-5-mini).
Batch processing could lower some costs, but
would necessitate an asynchronous pipeline, where
we first perform all reranker calls, followed by all
LLM classifications.

4.3 Missing Data and Label Errors
The dataset likely contains errors or uncertain clas-
sifications due to the imperfect nature of manually
annotating bibliographic data, and the somewhat
subjective nature of label distinctions. However, it
is not possible to capture this uncertainty in the dis-
crete classes. We also cannot measure the error rate
directly, as there is no golden sample against which
we can compare. A golden sample would consist
of papers that have been independently classified
by multiple reviewers, where cases of disagree-
ment are subject to deliberation and re-review until
consensus is reached. Therefore, the error rate or
uncertainty is unknown.

Through repeated evaluation, we can surface po-
tential errors in the TRACS dataset. While testing
our LLM system on a small (N = 100) subsam-
ple from the training data, we inspected all cases
where the LLM prediction disagreed with the target
label. Some of these appeared to be genuine error
or ambiguity in the ground truth dataset, and we
display them in Table 1.

We find that one paper is labeled as both
science and mention, which (we assume) should
not be possible. This classification may have re-
sulted from human annotation error, or perhaps an
accidental combination of a HST mention (as the
paper is about the Hubble Deep Field) and CHAN-
DRA science. Simultaneously conflicting labels
like this can be easily filtered out by using boolean
logic and some set rules. We find another paper
that mentions the “Next Generation Space Tele-
scope,” the original name for JWST. Arguably, this
paper should be considered a JWST mention, but
is instead labeled as not_telescope.

Three papers are missing their body text; they
are only described by their titles, abstracts, and
other metadata. For each of these three entries, we
verify that (within the TRACS data) there is no
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Figure 2: Binary confusion matrices, over a randomized subsample of 25 TRACS training set examples for each
telescope (rows), shown for each paper type (columns) as a one-vs-all classification. Each confusion matrix shows
true negatives (top left), false positives (top right), false negatives (bottom left), and true positives (bottom right).

Table 1: Potential dataset issues found in a random selection of 100 labeled examples.

Bibcode Notes

2001AJ....122..598D Labeled as both CHANDRA/science and CHANDRA/mention.

2001ApJ...550..104Y Missing body text, making it impossible to correctly classify as HST/science.

2002IJMPA..17.3446T Mentions “Next Generation Space Telescope” (the placeholder name for JWST),
but the label is JWST/not_telescope rather than JWST/mention.

2004RMxAC..20..215S Missing body text, making it impossible to correctly classify as CHANDRA/science.

2004fxra.book...89D Missing body text, making it impossible to correctly classify as CHANDRA/science.

mention or science/instrumentation of the candi-
date telescope presented. Missing full body text is
often a symptom of complex publisher licensing
agreements, and it may not always be possible to
procure the full data. In any event, such entries
do not contain sufficient data for making accurate
predictions.

4.4 Limitations of amc

As noted above, the amc system is designed to be
general. Although we have specialized the code for
the TRACS task, there are additional adjustments
that could lead to improved performance. For ex-
ample, the multiclass predictions would benefit
from dedicated prompts for each paper type. The
current system effectively uses the same prompts

for each telescope, which might also limit its per-
formance.

We also note that amc is at the mercy of our
keyword filtering. If we miss any telescope key-
words, then it is possible to filter out relevant snip-
pets, which could jeopardize the prediction task
performance. Frequent keywords could be empiri-
cally learned using traditional NLP techniques like
term frequency (TF; Spark Jones 1972) normalized
by its document frequency (i.e., TF-IDF; Salton
et al. 1975. The reranker step could potentially
be replaced by a simple first-pass classifier using
TF-IDF or another data-driven approach.
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5 Discussion

LLMs are becoming pervasive throughout astron-
omy. Quantitative benchmarks (Carrit Delgado
Pinheiro et al., 2025; Joseph et al., 2025; Ting
et al., 2025) and human-centered studies (Foues-
neau et al., 2024; Wu et al., 2024; Hyk et al.,
2025) deliver complementary evaluations for how
to successfully deploy LLMs for real-world ben-
efit in astronomy. There is also rapid adoption of
LLMs for navigating through and interacting with
the astronomy literature (Ciucă and Ting, 2023;
Iyer et al., 2024), which is particularly salient for
WASP/TRACS.

As researchers are in the midst of a fundamental
shift of how they interact with literature, we discuss
a future vision of how the astronomical commu-
nity may leverage LLMs to augment or automate
bibliographies (Section 5.1), how AI systems can
assist in evaluating or improving our ground truth
datasets (Section 5.2), and how the amc software
we presented could be improved further in future
work (Section 5.3).

5.1 Scalable, AI-Supported Bibliographies

We have shown that compiling telescope bibliogra-
phies can be assisted by or partially automated with
LLMs. LLM developments are built on traditional
NLP techniques, which have already been vital for
astronomical literature review (Iyer et al., 2024)
and detecting usage of telescopes/facilities (e.g.,
using TF-IDF, Amado Olivo et al., 2025). While
LLMs can be more expensive to put into production
relative to simple NLP techniques or specialized
fine-tuned models (e.g., SciBERT, Beltagy et al.,
2019), LLMs that have been pre-trained on tril-
lions of tokens of general text are also capable of
in-context learning via zero- or few-shot demon-
strations (Radford et al., 2019; Brown et al., 2020).
Modern LLMs also have longer context windows,
enabling them to ingest multiple text snippets (or
even entire documents at a time). This feature is
particularly valuable if the telescope classification
depends on nuanced text snippets buried within the
body (i.e., often the case for archival data sets, and
rare for flagship NASA missions; see Appendix C).

AI systems can still be extremely useful even
if manual vetting of bibliographies is necessary.
We have designed amc to have high recall, so it
can confidently remove from consideration papers
that have no chance of being mention paper types.
Accurate labels (F1 > 0.8) can dramatically save

human time and mental energy.

5.2 Errors and Ground Truths
When creating LLM-augmented bibliographies at
massive scale, it is imperative to understand how
the LLM is susceptible to errors, and/or if those
errors originate from the LLM or from the dataset.
For TRACS, our analysis of a small subsample in
Section 4.3 resulted in direct performance gains;
we exposed some issues with our system, as well
as errors in the dataset.

We emphasize the value in compiling a golden
sample with consensus reviews, even if this dataset
is much smaller compared to the archival set of
(single-pass) human classifications. In our prior
work (see Appendices B and C), we have relied on
a golden sample with about N ∼ 100 examples
to serve as a benchmark for improving the LLM
system (Shaw et al., in prep). Crucially, it also
serves as a measure of human performance, which
is often incorrectly assumed to be perfect. By set-
ting human error rates as the error “floor,” we can
quantify a goal for LLMs to achieve.

AI augmentation can also facilitate a better un-
derstanding of our datasets. For example, LLMs
can easily comb through a large number of nega-
tive classes from historical datasets, and surface
candidate missing papers or other errors (e.g., Sec-
tion 4.3). An LLM can be vital for efficiently con-
structing such a golden sample dataset.

5.3 Future Improvements
Our solution for the TRACS task can likely benefit
from additional optimization. In particular, other
LLMs can help iteratively optimize the prompts
used to guide the (TRACS-specific) amc code, by
using meta-optimizers (see, e.g., Opsahl-Ong et al.,
2024; Agrawal et al., 2025) in a prompt compila-
tion framework like DSPy (Khattab et al., 2023).
Given the large TRACS training data set, meta-
optimization could be costly, and may be precari-
ously sensitive to the training label quality. How-
ever, meta-optimization could also produce (as a
byproduct) empirical definitions of paper types like
science or instrumentation, which could be
valuable for comparing against explicit definitions
that bibliographers have historically adopted.

Another option is to use AI agents: LLMs that
can call tools in a loop in order to accomplish a
task.5 Even though an AI agent might access the

5For one definition of an AI “agent” that we like, see
https://simonwillison.net/2025/Sep/18/agents/
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same tools that we have described in Section 3,
e.g., keyword search, reranking, filtering, or sum-
marization, the LLM’s agency means that it can
decide when and how to use such tool calls. The
LLM agent can also maintain a working memory,
allowing it to determine whether it has enough in-
formation to make a classification; for instance, if
it finds immediate evidence that the paper presents
scientific results, then the agent can stop the analy-
sis and classify the paper as science.

Finally, we may wish to deploy smaller, spe-
cialized models for this task because they can be
run locally and perhaps at lower costs. For ex-
ample, our keyword filtering and reranking steps
are somewhat reminiscent of “late-interaction” re-
trieval mechanisms (e.g., ColBERT, Khattab and
Zaharia, 2020), and it may be advantageous to sub-
stitute those steps with more lightweight model like
ColBERT. We might simplify further by substitut-
ing this initial stage with classical NLP algorithms
like TF-IDF. Models with specialized tokenizers
for scientific literature like SciBERT (Beltagy et al.,
2019) may also prove to be beneficial for parsing
the astronomical literature.

6 Summary

We have presented amc, an LLM-based system that
can automatically categorize real astronomical pa-
pers into specific labels. Using a specialized in-
stance of amc, we demonstrate strong performance
(F1 = 0.84) and secure third place on the TRACS
shared task (Grezes et al., 2025). Our tool is also
valuable for evaluating labeled data quality, as it
provides reasoning and supporting quotes to justify
its predicted labels. Given the growing volume of
papers, as well as the rising capabilities of LLMs,
we believe that AI tools represent scalable solutions
for accomplishing or assisting with this task.

In the future, however, LLMs may completely
obviate the need for predefined “classifications”
that comprise current paper types; instead, we may
be able to directly ask LLMs questions like: “How
many papers present ground-based follow-up obser-
vations for targets initially discovered with HST?”
or “How did the fraction of Chandra archival sci-
ence papers change between 2010 through 2025?”
We envision that, by exploiting the capabilities of
AI systems, library scientists can study a broader
range of bibliographic questions than ever before.

Ethical Disclosure

All of this text was written solely by the authors.
The document was partially reviewed by LLMs,
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idated the software and results, the authors take
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presented here.
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A Examples of amc Structued Outputs for the TRACS Test Set

In Listings 1, 2, 3, and 4, we show several representative examples of amc outputs for the TRACS test
dataset.

"2024ApJ...977..173C_JWST": {
"id": "2024ApJ...977..173C_JWST",
"bibcode": "2024ApJ...977..173C",
"telescope": "JWST",
"classification": {

"telescope": "JWST",
"science": true,
"instrumentation": false,
"mention": false,
"not_telescope": false,
"quotes": [
"we present JWST MIRI observations of the hydrocarbon-rich source, DoAr 33, a 1.1 M star.",
"We detect the emission of H 2 O, CO 2 , OH, and C 2 H 2 , including its isotopologue 13 C

12 CH 2 , C 4 H 2 , and tentatively CH 4 and HC 3 N, for all of which we retrieve co↪→
lumn densities, temperatures, and emitting areas, as described in Section 2 .",

"We detect the presence of H 2 O, CO 2 , OH, C 2 H 2 , HCN, C 4 H 2 , and tentatively CH 4
and HC 3 N in the JWST MIRI-MRS spectrum of the solar-mass star DoAr 33.",↪→

"JWST/MIRI Detection of a Carbon-rich Chemistry in the Disk of a Solar Nebula Analog",
"Figure 1. JWST MIRI-MRS spectrum of DoAr 33."

],
"reasoning": "The excerpts clearly describe original JWST MIRI-MRS observations of the target

DoAr 33 and report new detections and quantitative retrievals (column densities, te↪→
mperatures, emitting areas) derived in this paper. These are new scientific results based on JWST

data, so 'science' is True. The text discusses data reduction using a custom JDISCS p↪→
ipeline and calibration references but does not present new instrument design, calibration method

development as the primary focus or a technical/instrumentation paper, so 'instrument↪→
ation' is False. Because the paper actively uses JWST data to produce new results, it is not

merely a mention; therefore 'mention' is False. There is no indication that references to↪→
JWST are false positives, so 'not_telescope' is False."
}

}

Listing 1: amc output for an science paper type.

B The JWST Preprints Automation

The design of amc was initially devised for a specific task: automatically checking whether new arXiv
preprints feature JWST science. While identifying JWST science preprints is useful on its own, it is
also necessary for another goal: determining whether JWST science publications are accompanied by
digital object identifiers (DOIs), which offers downstream benefits to individual scientists (Henneken and
Accomazzi, 2012) and the broader science community (Pepe et al., 2014). Therefore, we built an earlier
version of amc for automatically classifying whether a JWST preprint is science or not.6 We achieved
F1 ≈ 0.95 on real-world tests, using a held-out golden sample dataset with N = 114 papers, and this
system is currently being used in production at STScI.

There are two major differences between the JWST preprints automation and the TRACS task: (1) the
former downloads PDF files from arXiv and converts them into a single plain-text body, while the latter
provides more cleanly separated metadata and body text (when available); and (2) the former task is only
concerned with identifying science papers, whereas the latter solicits binary classifications for science,
instrumentation, mention, and not_telescope.

There are several important implications due to distinction #1. For example, we do not have a
programmatic method for separating abstracts or other titles from the body, and so we must always
proceed with the full body text. Another consequence is that the references section is included in the

6https://github.com/spacetelescope/jwst-preprint-automator
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"1996SPIE.2808..650F_CHANDRA": {
"id": "1996SPIE.2808..650F_CHANDRA",
"bibcode": "1996SPIE.2808..650F",
"telescope": "CHANDRA",
"classification": {

"telescope": "CHANDRA",
"science": false,
"instrumentation": true,
"mention": false,
"not_telescope": false,
"quotes": [
"Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings: II",
"In order to characterize the instrumentation on AXAF, each of the science instrument teams

carries out sub-assembly calibrations.",↪→
"For the high energy transmission grating (HETG) group, this means individual measurements

of the diffraction efficiencies of each of the 336 grating elements that goes into t↪→
he completed HETG assembly."

],
"reasoning": "The excerpt discusses calibration and modeling of the AXAF high-energy

transmission gratings (HETG), measurements, data reduction and instrumentation
characterization. AXAF is the original name for the Chandra X-ray Observatory, and the
content is clearly about instrument performance and calibration rather than presenting
new astrophysical results. Therefore instrumentation = True. It does not present new
scientific/astronomical analyses using telescope observations, so science = False.
Because the paper actually discusses the telescope/instrument technical work, it should
not be classified as a mere mention or as not_telescope."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

}
}

Listing 2: amc output for an instrumentation paper type.

plain-text body extract from arXiv preprints. Thus, the body text contains references to titles of other
papers, which can sometimes mimic sentences that appear to support a JWST science classification.

Because we focus only on classifying whether a JWST paper is science (distinction #2), we break
down the LLM output into two stages (see Figure 1. First, we write out a specialized prompt with
in-context examples of low and high science scores, and prompt the LLM to output reasoning and
supporting quotes. Then, given its provided justification and quotes, we force the LLM to output a
science score as a floating point number between 0 and 1.

C Other Mission Bibliographies

We note that NASA flagship missions tend to be mentioned in the paper abstract, or even in the title. Thus,
for TRACS and for JWST preprints automation, it is often possible to accurately classify papers using just
the abstract, a tiny fraction of the available text per entry.

However, we designed amc based on our experience performing bibliometrics for other missions,
including TESS, Pan-STARRS, and GALEX, which all enable archival science well after the telescope
ceases operations (e.g., Peek et al., 2019). However, these telescopes—and, in general, archival science
usage of telescopes—are less likely to appear in the title or abstract. Therefore, parsing the much longer
body text is imperative for correctly predicting those telescopes’ paper types. We design amc so that it can
be used just as easily to compute bibliometrics for non-flagship telescopes and/or archival science.
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"2024A&A...691A.352W_JWST": {
"id": "2024A&A...691A.352W_JWST",
"bibcode": "2024A&A...691A.352W",
"telescope": "JWST",
"classification": {

"telescope": "JWST",
"science": false,
"instrumentation": false,
"mention": true,
"not_telescope": false,
"quotes": [
"an unbiased mid-infrared survey observing H-dominated metal-enriched white dwarfs making

use of the much improved sensitivity of JWST, compared to previous facilities, would
likely reveal the true population of discs.",

↪→
↪→
"infrared spectroscopy can identify the mineralogy of discs, with silicates having been

detected using Spitzer and JWST ( Jura et al. 2007 ; Swan et al. 2024 )."↪→
],
"reasoning": "The excerpt discusses JWST in the context of future or potential surveys and

improved sensitivity compared to previous facilities, and cites JWST detections (Swan et
al. 2024) as literature. There is no indication that this paper presents new JWST
observational data or original data analysis; it instead suggests that an unbiased survey
with JWST would be useful and refers to prior JWST detections. This fits the 'mention'
category (discussion of future/planned observations and citing others). It does not
describe instrumentation or calibration, and the references to JWST clearly refer to the
telescope, so not_telescope is false."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

}
}

Listing 3: amc output for a mention paper type.

"2008ApJ...673..657M_HST": {
"id": "2008ApJ...673..657M_HST",
"bibcode": "2008ApJ...673..657M",
"telescope": "HST",
"classification": {

"telescope": "HST",
"science": false,
"instrumentation": false,
"mention": false,
"not_telescope": true,
"quotes": [
"Hubble diagram showing the magnitude deviation relative to an empty universe, for the three

models considered.",↪→
"Fig. 4. — Hubble diagram showing the magnitude deviation relative to an empty universe, for

the three models considered. The dotted lines separate the Tonry et al. ( 2003 ) data (
left ) from the mock data ( right )."

↪→
↪→

],
"reasoning": "The excerpts discuss a 'Hubble diagram' and cosmological supernova analyses;

there is no mention of the Hubble Space Telescope or HST observations, instruments,
calibrations, or use of HST data. The term 'Hubble' here refers to the Hubble diagram
(relation to Hubble expansion), which is a false positive for the telescope name.
Therefore this is not about the HST telescope (not_telescope = True). Because it does not
discuss any telescope data usage or instrumentation, science and instrumentation are
False. It also is not merely a mention of the telescope, so mention = False. The provided
exact substrings showing 'Hubble diagram' are included as supporting quotes."

↪→
↪→
↪→
↪→
↪→
↪→
↪→

}
}

Listing 4: amc output for a not_telescope paper type.
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Abstract
We present a dataset of 408,590 astrophysics
papers from arXiv (astro-ph), spanning 1992
through July 2025. Each paper has been pro-
cessed through a multi-stage pipeline to pro-
duce: (1) structured summaries organized into
six semantic sections (Background, Motivation,
Methodology, Results, Interpretation, Implica-
tion), and (2) concept extraction yielding 9,999
unique concepts with detailed descriptions.
The dataset contains 3.8 million paper-concept
associations and includes semantic embeddings
for all concepts. Comparison with traditional
ADS keywords reveals that the concepts pro-
vide denser coverage and more uniform dis-
tribution, while analysis of embedding space
structure demonstrates that concepts are seman-
tically dispersed within papers—enabling dis-
covery through multiple diverse entry points.
Concept vocabulary and embeddings are
publicly released at https://github.com/
tingyuansen/astro-ph_knowledge_graph.

1 Introduction

A frontier application of large language models is
their deployment as autonomous agents that reason
about scientific literature, plan research strategies,
and execute multi-step retrieval tasks (Brown et al.,
2020; Wang and Zeng, 2025). Such systems, al-
ready demonstrated in materials science and chem-
istry for autonomous experimentation (Szymanski
et al., 2023; Boiko et al., 2023; Bran et al., 2023;
Caldas Ramos et al., 2024), require structured
knowledge representations to function—moving
beyond language processing to operate on seman-
tically organized information. While LLMs can
process raw text, their utility as research agents
depends on access to curated intermediate repre-
sentations that bridge unstructured documents and
formal knowledge structures (Lewis et al., 2020).

Astronomy presents an advantageous testing
ground: most papers are archived on arXiv (astro-
ph since 1992), and the open-sky policy enables

databases to link astronomical objects directly to
papers. The combination of papers, observed ob-
jects, and their properties provides an ecosystem
where structured representations could enable agen-
tic research and autonomous discovery.

However, text as a modality remains under-
curated in the astronomy literature. Current re-
sources are either too complete (full source, which
is difficult to extract insights) or too sparse (ab-
stracts only). Both extremes limit downstream ap-
plications. Useful scientific ideas emerge from
holistic understanding of concepts rather than di-
rect processing of individual words—this is how
humans engage with literature. Keywords were
designed to bridge this gap, but when present, are
rarely mapped to controlled vocabularies like the
Unified Astronomy Thesaurus (UAT) and exhibit
sparsity—most keywords appear in very few pa-
pers and many papers have very few keywords,
rendering them unsuitable for systematic analysis.

LLMs can extract such structured representa-
tions from papers, but this is cost-intensive. Indi-
vidual researchers performing this task separately
would waste computational resources. A single,
centralized effort provides economies of scale and
ensures consistency across the literature.

To address this, we organize all astro-ph papers
into structured summaries and concepts—two inter-
mediate layers that bridge the gap between raw text
and knowledge representation. Our work builds
on recent developments in applying LLMs to astro-
nomical research, including domain-specific mod-
els like AstroLLaMA (Pan et al., 2024) and As-
troSage (de Haan et al., 2025), complementary ef-
forts in knowledge graph construction (Sun et al.,
2024; Kau et al., 2024), and the development of rec-
ommender systems (Geng et al., 2022; Chu et al.,
2023; Zhao et al., 2023; Vats et al., 2024). We
present a comprehensive dataset spanning 408,590
papers with 9,999 unique concepts, their semantic
embeddings, and structured summaries.
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2 PDF to Text: OCR Pipeline

Converting astrophysics PDFs to machine-readable
text presents challenges due to the prevalence of
mathematical equations, multi-column layouts, and
figures with embedded captions. We chose to use
OCR rather than LaTeX source files because La-
TeX sources are not uniformly structured across
papers and many papers use custom macros that
complicate parsing.

Our pipeline initially used Nougat (Blecher et al.,
2023)1, an academic document OCR model that
converts PDFs to markdown format for ease of
processing. Processing each paper requires approx-
imately 1 minute on a V100 GPU, representing a
substantial computational investment—processing
over 350,000 papers required about 6,000 V100
GPU-hours. Starting in November 2024, we tran-
sitioned to Mathpix OCR API2 as it proved more
reliable than Nougat.

Both Nougat and Mathpix preserve mathemati-
cal notation in LaTeX format within the OCR out-
put. For section detection, Nougat outputs mark-
down headers (###) while Mathpix preserves La-
TeX section commands (\section). The transi-
tion to Mathpix was motivated by Nougat’s occa-
sional failure mode where approximately 1 in 500
pages would produce repetitive text; such corrupted
pages are naturally excluded during the summa-
rization stage, though this may result in missing
information at a subdominant level. For Mathpix
OCR (covering approximately 50,000 papers from
November 2024 onward), author team inspection
of randomly sampled pages revealed no systematic
OCR errors at levels that would impact summary
quality.

3 Multi-Stage Summarization

3.1 Chunk-Based Compression

During early development, we found that process-
ing entire papers at once led to incomplete sum-
maries, with LLMs often omitting important de-
tails or providing superficial coverage. This was
problematic for generating organized summaries
with properly populated sections—methodological
details, for instance, were frequently under-
represented. Processing single abstracts typically
missed useful information like detailed derivations
and technical implementation specifics. This moti-

1https://github.com/facebookresearch/nougat
2https://mathpix.com/ocr

vated our chunk-based approach, which processes
papers in manageable segments while maintaining
context across chunks.

We split each paper into approximately 10,000-
character chunks using section-aware boundaries
to avoid mid-sentence breaks. Papers are split
at section boundaries (detecting either markdown
headers from Nougat or \section commands from
Mathpix), with adjacent small sections merged up
to the 10,000-character limit. Each chunk is sequen-
tially compressed with context from previously
compressed chunks, ensuring coherence across the
full paper. This approach increases token costs
several-fold compared to single-pass processing,
but when this project started in late 2023, this was
necessary to achieve adequate quality. We main-
tained this approach for subsequently processed
papers to ensure consistency.

The compression system prompt emphasizes: (1)
retaining LaTeX formulas, (2) focusing on motiva-
tions and methods, (3) highlighting key results and
connections to other works, (4) preserving tech-
nical jargon for expert readers, and (5) excluding
acknowledgments and references. As language
models improved, we adopted the most affordable
versions while maintaining quality. Different pa-
pers were processed with GPT-4o, GPT-4o-mini,
o1-mini, and DeepSeek-v3 depending on availabil-
ity. The complete summarization process for all
408,590 papers required over $50,000 in API costs,
not including OCR costs.

3.2 From Raw Summaries to Structured
Organization

Abstract sections often jumble information chrono-
logically or by importance, making systematic anal-
ysis difficult. We reorganize raw summaries into
seven semantic sections that follow the logical flow
of scientific papers: Title and Author, Background,
Motivation, Methodology, Results, Interpretation,
and Implication. This structured format enables
targeted queries and facilitates knowledge repre-
sentation by clearly separating context, methods,
and outcomes. Appendix A shows a complete ex-
ample demonstrating all six sections.

4 Concept Extraction and Vocabulary

4.1 Extraction Methodology

For each organized summary, we prompt the LLM
to extract approximately 10 key concepts focusing
on novel contributions. The target of 10 concepts
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provides finer granularity than traditional keyword
systems (where author-supplied keywords typically
number 3-5 per paper) while remaining tractable
for LLM extraction. The system prompt empha-
sizes: (1) identifying innovations and novel meth-
ods, (2) covering both scientific concepts (obser-
vational phenomena, theoretical frameworks) and
technological concepts (computational techniques,
instrumentation), and (3) avoiding generic field
names or overly specific parameters.

This approach leverages the capacity of mod-
ern language models (Achiam et al., 2023; Belt-
agy et al., 2019; Ting et al., 2025) to understand
domain-specific scientific contexts. Each concept
includes three components: a Name (3-4 word con-
cise label), a Class (Cosmology & Nongalactic
Physics, High Energy Astrophysics, Instrumental
Design, Galaxy Physics, Numerical Simulation,
Statistics & AI, Solar & Stellar Physics, or Earth
& Planetary Science), and a Description (∼100-
word technical explanation). The final concept
vocabulary was generated homogeneously using
a combination of GPT-4o and o1-mini to ensure
consistency across all papers.

4.2 Vocabulary Construction and Clustering
LLM-extracted concepts lack a priori control over
consistency—different papers may use different
terminology for the same concept, and there is no
guarantee of controlled vocabulary. To address this,
following the methodology of Sun et al. (2024), we
employ a multi-stage clustering process. For each
extracted concept in each paper, we combine the
organized summary with the concept name to gen-
erate detailed descriptions. These descriptions are
then embedded using OpenAI’s text-embedding-
3-large model. We perform K-means clustering
(k=10,000) in the cosine similarity space to consoli-
date similar concepts, merging semantically equiva-
lent variants into single unified entries. The cluster-
ing maximizes inter-cluster distances while group-
ing semantically similar extractions. The clustering
process synthesizes new unified concept descrip-
tions that capture the full semantic range across
papers.

We experimented with different vocabulary gran-
ularities in log space (3,000, 10,000, and 30,000
concepts). We found 10,000 concepts to provide
the most useful balance. All 10,000 concepts and
descriptions were manually reviewed by the author
team, during which one null concept (represent-
ing rare OCR failure cases) was identified and re-

Category Count

Cosmology & Nongalactic Physics 2,192
High Energy Astrophysics 1,606
Instrumental Design 1,295
Galaxy Physics 1,267
Numerical Simulation 1,050
Statistics & AI 1,020
Solar & Stellar Physics 930
Earth & Planetary Science 639

Table 1: Distribution of 9,999 concepts across research
categories.

moved, leaving the final vocabulary of 9,999. The
concepts have been used in various downstream
analyses (Sections 5-6) providing ongoing valida-
tion. Given the dataset scale, our validation strategy
prioritized full vocabulary review over exhaustive
paper-by-paper evaluation, and users should ex-
ercise appropriate scrutiny when employing the
dataset for specific applications.

Each concept retains its detailed description syn-
thesized from multiple papers, providing more con-
text than typical keyword systems. The concept
distribution across categories is shown in Table 1.
Each concept appears in an average of 383 papers
(median: 223), making them statistically robust
while maintaining sufficient specificity. As we will
see in Section 5, this granularity avoids both the
overly broad categories and overly specific identi-
fiers that plague traditional keyword systems.

5 Quality Evaluation

5.1 Comparison with Traditional Keywords
To evaluate our concept vocabulary, we compare
it with traditional ADS keywords extracted via the
NASA ADS API for all 408,590 papers. ADS key-
words are author-supplied and not systematically
checked against controlled vocabularies like the
Unified Astronomy Thesaurus. We performed cu-
ration by removing arXiv classification keywords
(e.g., "Astrophysics - Cosmology"), normalizing to
lowercase, and filtering overly common keywords
(>20,000 occurrences) and rare keywords (<10 oc-
currences). After curation, ADS keywords cover
73% of papers (298,658) with 6,909 unique key-
words and 1.27M associations.

Figure 1 shows two key differences. First, ADS
keywords suffer from severe sparsity: 44% of pa-
pers have ≤3 keywords and 62% have ≤4 key-
words—insufficient for effective semantic search
or recommendation systems. This primarily re-
flects different generation mechanisms: author-
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Figure 1: Distribution of keywords/concepts per paper (left) and frequency distribution (right). ADS keywords
show high sparsity with many papers having few keywords, while our concepts provide consistent coverage. The
frequency distribution (right) reveals a large pile-up of overly generic terms and an extended tail of overly specific
identifiers, while our concepts maintain more balanced intermediate granularity.

supplied keywords are known to be sparse partly
because authors often do not systematically check
controlled vocabularies, and different journals have
varying keyword standards. In contrast, our extrac-
tion prompt explicitly requests approximately 10
concepts per paper, achieving complete coverage:
all 408,590 papers have structured summaries and
concept associations. The average paper has 9.4
concepts (median: 10) concepts per paper with a
small dispersion.

Beyond coverage, our concepts exhibit more
balanced frequency distribution. While ADS key-
words suffer from extreme imbalances—most com-
mon keywords like "galaxies: evolution" appear in
16,321 papers while 2,658 keywords (38% of the
vocabulary) appear in only 10-20 papers—our con-
cepts maintain intermediate granularity. Table 2 il-
lustrates this problem: the most common keywords
represent overly broad field categories with limited
discriminative power, while rare keywords are of-
ten object-specific identifiers (e.g., "grb 080319b")
rather than research themes.

In contrast, our concepts balance these extremes
through systematic curation and maintain seman-
tic meaningfulness across all frequency ranges,
through the clustering and consolidation process.
Table 3 demonstrates this: high-frequency con-
cepts represent general methodologies applicable
across subfields (e.g., "Monte Carlo Simulations"
with 13,671 papers) that retain semantic specificity
and discriminative power for retrieval, medium-
frequency concepts capture well-established re-
search areas (e.g., "Stellar Evolution Models" with
2,751 papers), and low-frequency concepts identify

Keyword Papers %

Most Common (Overly Broad)

galaxies: evolution 16,321 5.5
galaxies: active 14,121 4.7
accretion 12,540 4.2
methods: numerical 12,510 4.2
stars: formation 9,172 3.1
dark matter 9,032 3.0
methods: data analysis 8,384 2.8
galaxies: formation 8,313 2.8

Rare (Overly Specific) - 2,658 keywords with 10-20 papers

gamma-ray burst: individual: grb 080319b
stars: individual: alphanumeric: hd 209458
galaxies: individual: alphanumeric: ngc 1275
pulsars: individual: alphanumeric: psr j1614-2230
x-rays: binaries: individual: alphanumeric: cygnus x-1

Table 2: Examples of overly broad and overly specific
ADS keywords. The most common keywords represent
broad field categories with limited discriminative power,
while rare keywords are often object-specific with mini-
mal value for thematic analysis.

emerging or specialized topics while remaining
thematic rather than object-specific (e.g., "Inter-
pretable Machine Learning in Astronomy" with
49 papers). The median concept appears in 223
papers—more balanced than the median of 28 for
ADS keywords.

These limitations of traditional keywords make
content-based recommendation systems difficult
to implement. This dataset provides an alternative
that enables more robust semantic search and rec-
ommendation algorithms, which may be useful for
platforms like NASA ADS. Our concept vocabu-
lary includes many terms not present in the UAT,
including in emerging areas like deep learning ap-
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Frequency Concept Papers Class

High Monte Carlo Simulations 13,671 Numerical Simulation
N-Body Simulation Dynamics 12,041 Numerical Simulation
Astronomical Spectral Energy Profiles 9,590 Galaxy Physics
Cosmic Microwave Background 9,166 Cosmology & Nongalactic Physics

Medium-High Stellar Evolution Models 2,751 Solar & Stellar Physics
Dynamic Cosmological Constant 2,692 Cosmology & Nongalactic Physics
Galaxy Morphological Study 2,485 Galaxy Physics
High-Redshift Quasars 1,626 Cosmology & Nongalactic Physics

Medium Gravitational Lensing Surveys 278 Instrumental Design
CMB Simulation Methodologies 276 Numerical Simulation
Marginalization in Bayesian Inference 268 Statistics & AI
Neural Inference Methods 202 Statistics & AI

Low Interpretable Machine Learning in Astronomy 49 Statistics & AI
Neutrino-Driven Supernova Simulations 48 Numerical Simulation
Exoplanetary Companion Systems 44 Solar & Stellar Physics
Gravitational Wavefront Interactions 35 Cosmology & Nongalactic Physics

Table 3: Examples of our concepts across frequency ranges. Unlike traditional keywords that become meaningless
at extremes (overly broad or object-specific), our concepts remain scientifically meaningful across all frequencies,
maintaining thematic coherence rather than becoming object-specific identifiers.

plications in astronomy. While our concepts can
be mapped to UAT for compatibility with existing
systems, we also propose this vocabulary as a po-
tential foundation for extending or complementing
the UAT with contemporary research terminology.

5.2 Concepts for Discovery

Beyond coverage and frequency balance, why are
concepts superior to abstracts for discovery tasks?
While abstracts provide summaries of papers, they
operate at a narrative level that is not optimal for
discovery. Novel ideas often emerge from specific
methodological details, intermediate results, or con-
ceptual connections that are embedded within a
paper but not prominently featured in its abstract.
Furthermore, current language models process con-
tinuous text rather than discrete conceptual tokens,
limiting their ability to generate novel hypotheses
through systematic exploration of the idea space.

To demonstrate why concepts are critical for dis-
covery, we analyze the embedding space structure
of 10,000 randomly sampled papers. Each concept
in our vocabulary has a detailed description (see
Table 3), from which we extract embeddings us-
ing OpenAI’s text-embedding-3-large. We perform
the same embedding extraction for each paper’s
abstract and for the six individual sections of its
structured summary.

Figure 2 shows UMAP projections of four repre-
sentative papers—two with high concept dispersion
(top row) and two with low dispersion (bottom row).
The faint gray background represents all 9,999 con-

cepts in our vocabulary, providing spatial context.
Even in cases labeled as "low dispersion" (bottom
row), the concepts assigned to individual papers
(bold gray circles with labels) remain dispersed
across semantic space.

This dispersion occurs because papers contain
multiple distinct ideas spanning different domains.
For example, the top-right panel shows a paper
on fractional cosmology that discusses concepts
including "Hubble Data Analysis Diagnostics",
"Variational Principles in Physics", "Fractional
Calculus in Physics", and "Riccati Equations in
Physics"—concepts that occupy distant regions of
semantic space, bridging observational analysis,
theoretical cosmology, and mathematical physics.
Such concepts cannot be recovered from abstract
embeddings alone; some are embedded deeply
in methodological sections and never explicitly
mentioned in abstracts. In stark contrast, the six
summary sections (colored diamonds) and abstract
(gold star) cluster tightly together in all cases, as all
sections describe the same paper from different an-
gles—they are semantically coherent because they
narrate a single research story.

This analysis does not diminish the value of
structured summaries—quite the contrary. It re-
veals the complementarity of concepts and sum-
maries in our knowledge graph. Concepts are dis-
persed across semantic space, assigned to papers
based on diverse topical content, making them ideal
for discovery. A researcher exploring "Variational
Principles in Physics" can find relevant papers,
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Figure 2: UMAP projections of concept (grey symbols) and summary embeddings (colored diamonds) and the
abstract (gold star) for four representative papers. Faint gray background shows all 9,999 concepts in the vocabulary.
Even papers classified as "low dispersion" (bottom row) have concepts spread across distinct semantic regions,
showing that abstracts (and summaries) cannot capture the full conceptual diversity present in papers, unlike
concepts.

even if this concept appears only in a methodologi-
cal subsection and not in the abstract. Summaries,
conversely, cluster together because all sections
describe the same paper. This narrative coherence
makes them valuable for understanding context
after relevant papers are identified through concept-
based discovery.

6 Applications

Having established the quality advantages of our
concept vocabulary, we now demonstrate its utility
through two applications that leverage these prop-
erties: temporal analysis of concept emergence and
co-occurrence analysis of research themes.

6.1 Temporal Evolution of Concepts

The granular and semantically meaningful nature
of our concepts enables precise tracking of how
ideas emerge, evolve, and connect across different
research areas. This application demonstrates the
value of our vocabulary for constructing knowl-
edge graphs (Kau et al., 2024) that trace research
evolution. We analyze concept emergence by iden-
tifying when each concept first appeared in at least
5 papers (a threshold ensuring stability rather than
single-paper anomalies). Figure 3 shows the tem-
poral evolution across three decades, with new con-
cepts per year (left) and cumulative growth (right).

The declining rate of new concept emergence in
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Figure 3: Temporal evolution of concept vocabulary across three decades. (a) Number of new concepts emerging
each year (crossing the 5-paper threshold). (b) Cumulative growth of the concept vocabulary. The rapid expansion
in the early years reflects foundational concepts when arXiv began. A secondary peak in 2007 corresponds to
cross-listing policy changes.

recent years does not necessarily indicate reduced
innovation. Several factors contribute to this pat-
tern. First, many fields have matured, with research
increasingly focused on connections between es-
tablished concepts rather than entirely new topics.
Second, our 5-paper threshold means concepts can
appear earlier than their peak importance—for ex-
ample, concepts about the Gaia mission and the
James Webbs Space Telescope emerged earlier than
their launch, when early planning papers crossed
the threshold, despite these missions becoming
prominent only after launch. Third, our clustering
methodology itself may exhibit systematic bias: be-
cause clustering aims to consolidate semantically
similar terms across all papers, genuinely novel
concepts appearing in recent years may be merged
into established clusters from earlier periods if suf-
ficiently similar in embedding space, suppressing
the apparent emergence rate.

A notable secondary peak occurred in 2007, cor-
responding to arXiv expanding cross-listing poli-
cies to allow papers from other disciplines to in-
clude astro-ph as a secondary category. Analy-
sis of these 2007 concepts reveals their origin:
51% are classified as Cosmology & Nongalactic
Physics and 13% as High Energy Astrophysics,
dominated by theoretical topics including Loop
Quantum Gravity, Holographic Duality, Einstein-
Gauss-Bonnet Gravity Theories, Quantum Entan-
glement Entropy, Conformal Field Theory, and
Type IIB and Heterotic String Theories. These
reflect contributions from theoretical physics and
general relativity research that began appearing in
astro-ph through cross-listing.

Over the past decade (2015-2025), 190 new con-
cepts emerged (Appendix B, Tables 5 and 6). Deep

learning dominates recent emergence: Astronomi-
cal CNN Applications (1,676 papers), Deep Learn-
ing in Astronomy (604 papers), Residual Neural
Networks (402 papers), U-Net Variants in Astron-
omy (373 papers), Transformer Architectures in As-
tronomy (185 papers), and Physics-Informed Neu-
ral Networks (120 papers). Recent concepts also in-
clude observational capabilities—including JWST
Deep Extragalactic Surveys (75 papers, emerged
2022) and GW170817 Multimessenger Merger
(324 papers, emerged 2017), which by our metric
are considered "new" when they first crossed the
5-paper threshold, even though JWST’s scientific
impact continues to grow. Appendix B provides
representative astronomy-relevant examples from
the full list.

6.2 Concept Co-occurrence

While temporal analysis reveals when individual
concepts emerge, understanding how concepts ap-
pear together in papers provides complementary
insights into the thematic structure of research. Un-
like traditional citation analysis which tracks paper-
to-paper relationships, concept co-occurrence re-
veals how different methodologies, observations,
and theories interconnect within the field, identify-
ing which ideas are commonly explored together
and how these patterns shift as the field develops.

We quantify co-occurrence using the Ochiai co-
efficient, which normalizes by concept popularity.
Intuitively, if two concepts i and j appear together
in Nij papers, and appear individually in Ni and
Nj papers respectively, the Ochiai coefficient is:

Ochiai(i, j) =
Nij√
Ni ·Nj

(1)

176



Figure 4: Evolution of concept co-occurrence in astrophysics. Darker colors indicate stronger co-occurrence. (a)
Early period (1992–2003): established domain structure. (b) Recent period (2023–2025): computational domains
(Statistics/AI, Numerical Simulation) show increased internal coherence and enhanced cross-domain integration
with traditional astrophysical domains, reflecting the field’s evolution toward data-intensive research.

This normalization is important because differ-
ent subfields have vastly different publication vol-
umes—this ensures we measure genuine concep-
tual relationships rather than simply reflecting
which fields are most active.

Co-occurrence analysis is a rich topic with many
dimensions to explore. Here we present a simple
comparison between two time periods to illustrate
the utility of our concept vocabulary. Figure 4
compares the earliest window (1992–2003, 40,000
papers) with the most recent window (2023–2025,
40,000 papers). Using fixed-size temporal windows
removes field growth bias—later periods do not
appear artificially stronger simply due to increased
publication volume.

For visualization, we apply spectral clustering
within each of the 8 predefined domains (Table 1)
using 2025 data to identify subclusters, producing
the fine-grained structure visible in Figure 4. To ag-
gregate the 9,999×9,999 concept matrix into this
manageable visualization, we compute the 10th
percentile of co-occurrence scores within each sub-
cluster block (capturing robust signal while filter-
ing noise), and use the spread between 10th and
30th percentiles to set transparency (indicating con-
sistency of patterns). These percentile choices en-
hance dynamic range: the 10th percentile provides
a stable color metric that is less sensitive to out-
liers than the median, while the 30th-10th spread
reveals whether co-occurrence within a block is
consistent (low spread, high transparency) or het-
erogeneous (high spread, lower transparency). This
hierarchical structure is held fixed across all tem-

poral windows, enabling direct comparison.
As shown in the figure, the technical do-

mains—Statistics/AI, Numerical Simulation, and
to some extent Instrumentation—exhibit more
cross-domain interactions in the recent period com-
pared to the early period. In the recent period,
the Statistics/AI domain shows prevalent integra-
tion with all astrophysical domains, reflecting the
widespread adoption of machine learning and data-
driven methods across subdisciplines. The Numeri-
cal Simulation domain displays increased internal
coherence, consistent with the field’s growing re-
liance on computational methods. These patterns
show that computational and statistical approaches
have evolved from peripheral tools to core compo-
nents of the research ecosystem.

Concepts in science domains (Galaxy Physics,
High Energy, Solar/Stellar) maintain relatively sta-
ble internal structure and interdomain connections
across both periods. The Cosmology domain
shows notable internal growth along with increased
cross-connections to High Energy. This growth
is partly attributable to the 2007 cross-listing pol-
icy expansion discussed previously, which brought
theoretical physics concepts into astro-ph. The
Earth/Planetary domain shows increased internal
coherence in the recent period, consistent with the
expansion of exoplanet research enabled by mis-
sions such as Kepler and TESS in recent years.

This analysis demonstrates how our concept vo-
cabulary enables quantitative study of field evo-
lution in ways that would be difficult or impos-
sible with traditional keyword systems. The pat-
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terns revealed—computational integration, method-
ological shifts, and domain stability—provide em-
pirical evidence for narratives about how astro-
physics research has changed over three decades.
Appendix C provides representative examples of
within-domain and cross-domain concept pairs
with strong co-occurrence, demonstrating fine-
grained thematic structure. More sophisticated tem-
poral analyses are beyond the scope of this paper,
but the released dataset supports such investiga-
tions.

7 Dataset Release

We release the dataset on GitHub at
https://github.com/tingyuansen/astro-ph_
knowledge_graph which covers all astro-ph
papers from 1992 through July 2025. The public
release prioritizes the concept vocabulary and
embeddings to enable reproducibility and support
downstream applications. For structured sum-
maries, we adopt a more conservative distribution
policy detailed in Appendix A. The public release
includes: Concept vocabulary as CSV with
labels, names, classes, and descriptions; concept
embeddings using text-embedding-3-large; paper
metadata including year, arXiv ID, and ADS
bibcodes; and Python scripts for data loading,
verification, and analysis. A complementary
citation network extracted from NASA ADS API
is also provided, with 1.67M unique identifiers
covering both internal references (between astro-ph
papers) and external citations (to other disciplines).
Table 4 summarizes the dataset statistics.

8 Conclusion

This work presents a dataset of 408,590 astro-
physics papers from arXiv astro-ph (1992-2025)
with structured six-section summaries, 9,999 AI-
generated concepts with detailed descriptions, and
semantic embeddings.

The key contribution is a systematically gen-
erated concept vocabulary that addresses limita-
tions of traditional keyword systems. Unlike
author-supplied ADS keywords that suffer from
extreme sparsity and frequency imbalances, our
AI-generated concepts provide consistent coverage
across all papers with balanced distributions. Each
concept includes a detailed description that pre-
serves scientific context, enabling more effective
discovery than single-word keywords. Our em-
bedding space analysis demonstrates that concepts

capture dispersed semantic information within pa-
pers that abstracts alone cannot represent, making
them critical for scientific discovery rather than
merely navigation.

Metric Value

Total papers 408,590
Unique concepts 9,999
Total concept associations 3,827,232
Avg concepts per paper 9.4 (median: 10)
Avg papers per concept 383 (median: 223)

Table 4: Summary statistics of the astro-ph knowledge
graph dataset (Table 1). All 408,590 papers have com-
plete structured summaries, concept associations, and
semantic embeddings.

Temporal analysis reveals how the concept vo-
cabulary captures field evolution. Recent emer-
gence (2015-2025, 190 concepts, Tables 5 and 6) is
dominated by machine learning adoption, while
also tracking major observational facilities and
theoretical developments. Co-occurrence analysis
demonstrates the increasing integration of compu-
tational domains (Statistics/AI, Numerical Simula-
tion) with traditional astrophysical research areas,
revealing the field’s evolution toward data-intensive
methodologies. These analyses show the vocab-
ulary’s ability to capture both enduring founda-
tions and emerging research frontiers across three
decades of astrophysics.

This dataset enables applications including se-
mantic search systems, research trend analysis,
knowledge graph construction, and training lan-
guage models for scientific understanding. The
combination of structured summaries, comprehen-
sive concept vocabulary, and semantic embeddings
makes this resource suitable for advancing AI-
assisted scientific discovery. Recent work has
demonstrated the potential of LLM agents in astro-
nomical analysis (Sun et al., 2025; Wang and Zeng,
2025), and our structured representations provide
the foundation for developing autonomous systems
in astronomical research.

While this paper focuses on dataset creation and
preliminary analysis, extrinsic evaluation through
task-based applications is an important next step.
We are actively exploring integration with recom-
mender systems and semantic search platforms to
enable concept-based paper discovery and citation
network analysis. Such applications will provide
quantitative evaluation of utility through user stud-
ies in production environments.
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Code and Data Availability

All code, system prompts, and data pro-
cessing pipelines are publicly available at
https://github.com/tingyuansen/astro-ph_
knowledge_graph. This includes OCR processing
scripts, multi-stage summarization prompts,
concept extraction and clustering code, embedding
generation, co-occurrence calculation, and data
verification scripts. While the proprietary APIs are
not open-source, all prompts and processing logic
are fully documented to enable replication with
alternative models.
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A Example Structured Summary

This appendix provides a representative example
of our structured summaries to demonstrate their
comprehensive nature and systematic organization.
Unlike traditional abstracts that prioritize brevity,
our summaries (typically 600-900 words, averaging
740 words) systematically separate six semantic
sections: Background (observational and theoret-
ical context), Motivation (scientific questions and
goals), Methodology (technical approach and data),
Results (empirical findings), Interpretation (theo-
retical analysis), and Implication (broader signifi-
cance). This structure enables targeted information
retrieval—a researcher can directly access method-
ological details or theoretical interpretations with-
out reading the entire paper. While paper summa-
rization is now routine with LLMs, we provide
these structured summaries upon request rather
than through public release out of caution at this
scale (0.4M papers). Researchers interested in ac-
cessing the summaries should contact the authors.

Title: Usco1606-1935: An unusually wide low-

mass triple system?
Author: Adam L. Kraus et al. (arXiv:0704.0455)

Background: The study of multiple star sys-
tems is crucial for understanding star formation
processes. Surveys have shown that binary frequen-
cies and properties vary significantly with mass.
Solar-mass stars exhibit high binary frequencies
(>60%) and can have separations up to ∼104 AU.
In contrast, M dwarfs have lower frequencies (30-
40%) and fewer companions beyond ∼500 AU,
while brown dwarfs show even lower frequencies
(∼15%) with few companions exceeding 20 AU.
The observed decline in maximum binary separa-
tion with decreasing mass has been described by
empirical functions, suggesting that this limit is
established early in stellar lifetimes. Surveys of
young stellar associations have identified a few un-
usually wide systems, but not enough to analyze
their properties statistically.

Motivation: To address the scarcity of unusu-
ally wide low-mass systems, we utilized archival
2MASS data to search for candidate wide binary
systems among known members of three nearby
young associations, including Upper Sco. Our find-
ings aim to align with the standard paradigm, re-
vealing a deficit of wide systems among very low-
mass stars and brown dwarfs, while also identi-

fying a few candidates, such as USco1606-1935,
a wide pair of stars with similar fluxes and col-
ors. This study seeks to evaluate the probability
of USco1606-1935 being an unusually wide, low-
mass binary, thereby contributing to the understand-
ing of multiple system formation and evolution in
young stellar associations.

Methodology: We identified USco1606-1935
AB as a candidate binary using 2MASS data, lever-
aging its bright and resolved components to gather
additional photometry and astrometry from vari-
ous surveys, including DENIS, USNO-B, and SSS.
The analysis focused on 2MASS JHK magnitudes
and USNO-B I magnitudes, ensuring consistency
through comparisons with DENIS data... Opti-
cal spectroscopy was conducted using the Dou-
ble Spectrograph at Palomar Observatory, process-
ing the spectrum with standard IRAF tasks and
comparing it with spectral standards from Upper
Sco and Taurus to confirm the spectral type. High-
resolution imaging was achieved with laser guide
star adaptive optics on the Keck-II telescope, ob-
taining nearly diffraction-limited images in both
narrow and wide camera modes to measure pho-
tometry and astrometry for the components.

Results: High-resolution images revealed that
USco1606-1935 A comprises two sources, Aa and
Ab, with the probability of an unbound bright
source near A being extremely low, suggesting
that Aa and Ab form a bound binary system. Pho-
tometric data confirmed that USco1606-1935 B
aligns with known members of Upper Sco, sup-
porting its membership, although its position in
color-magnitude diagrams raised questions about
potential differential reddening or unresolved com-
panions. Astrometric analysis summarized the rel-
ative positions of the system components and field
stars, with proper motion indicating that B is likely
a comoving member... Stellar and binary proper-
ties for the Aa-Ab and A-B systems were estimated
using isochrones and temperature scales to derive
component masses and spectral types.

Interpretation: Identifying pre-main sequence
binaries presents challenges in distinguishing gravi-
tationally bound pairs from coeval, comoving stars.
To assess clustering among PMS stars, we calcu-
lated the two-point correlation function (TPCF),
which quantifies the number of excess pairs at a
given separation compared to a random distribu-
tion. Utilizing a Monte Carlo approach, the TPCF
revealed significant clustering of stars at small sep-
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arations. The analysis indicated that the expected
surface density of unbound companions is ∼60
deg−2, suggesting a 25% chance of chance align-
ments among low-mass members. Consequently,
while the detection of Aa and Ab as a close binary
is highly probable, the physical association of Aab
and B cannot be assumed based solely on prob-
abilistic grounds, highlighting the complexity in
confirming wide binary status in such systems.

Implication: If Aab and B are gravitationally
bound, USco1606-1935 would represent one of
the rare young multiple systems with wide separa-
tions comparable to field systems of similar mass.
However, the significant probability of chance
alignment necessitates caution in such classifica-
tions. This underscores the need for systematic
searches for wide binaries in the Upper Sco as-
sociation and similar young stellar environments
to better understand the frequency and properties
of wide, low-mass multiple systems. Enhanced
observational strategies and comprehensive data
analyses are essential to distinguish truly bound
systems from coincidental alignments, thereby
refining our knowledge of star formation and
the dynamical evolution of multiple star systems.

B Recent Concept Emergence
(2015-2025)

A total of 190 concepts emerged during 2015-2025,
defined as crossing the 5-paper publication thresh-
old during these years. This represents approxi-
mately 2% of our total vocabulary, reflecting the
maturation of the field where new research increas-
ingly builds connections between established con-
cepts rather than introducing entirely new topics.
Tables 5 and 6 present representative astronomy-
relevant examples from this emergence, focusing
on concepts that reflect genuine recent develop-
ments in astrophysics methodology, observations,
and theory.

The dominance of machine learning and deep
learning concepts (46 concepts emerged in 2015
alone) reflects the rapid adoption of AI methods
across astrophysics during this period. Traditional
methodologies like Monte Carlo simulations and N-
body dynamics had already been well-established
in the 1990s, but their application within modern
neural network architectures represents a distinct
conceptual development. The examples shown cap-
ture major observational events (GW170817 Multi-

messenger Merger in 2017) and the scientific im-
pact of new facilities (JWST Deep Extragalactic
Surveys in 2022, Gaia-Sausage-Enceladus Merger
in 2018).

The declining number of new concepts in very re-
cent years (2 in 2025, 4 in 2024, 7 in 2023) reflects
several factors discussed in the main text. First,
many fields have matured, with research increas-
ingly focused on connections between established
concepts rather than entirely new topics. Second,
our 5-paper threshold means concepts can appear
earlier than their peak importance—papers from
2024-2025 have had less time to accumulate the
required citations. Third, our clustering methodol-
ogy may exhibit systematic bias: genuinely novel
concepts appearing in recent years may be merged
into established clusters from earlier periods if suf-
ficiently similar in embedding space. However,
the continued emergence of new concepts demon-
strates that even mature fields continue generating
new research directions.

C Subcluster Co-occurrence Patterns

The co-occurrence analysis in Section 6 reveals
fine-grained substructure within each primary do-
main. Table 7 presents representative concept pairs
exhibiting strong co-occurrence within domains
and across domain boundaries, illustrating the the-
matic patterns visible in Figure 4. The Ochiai coef-
ficients quantify co-occurrence strength normalized
by concept frequency.

These patterns demonstrate the rich thematic
structure within the concept vocabulary. Within-
domain pairs reveal specialized research areas: cos-
mological theories (axion-like particles, Bianchi
models), AGN dynamics (reverberation mapping,
episodic jets), stellar physics (sunspot dynam-
ics, variable stars), and computational methods
(molecular spectroscopy, hydrodynamic simula-
tions). Cross-domain pairs reveal methodological
connections: cosmological dynamics linking with
numerical stability analysis, radiative transfer sim-
ulations connecting Galaxy Physics with Numer-
ical methods, neutrino and gamma-ray detection
bridging High Energy physics with specialized in-
strumentation, helioseismology connecting Solar
physics with time-series analysis, and gravitational
wave template matching linking Numerical simula-
tions with statistical inference methods.
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Concept Papers Concept Papers

2015

Astronomical CNN Applications 1676 Extremely Randomized Trees 50
Deep Learning in Astronomy 604 Odd Radio Circles 46
Astronomical Data Augmentation 403 Planetary Similarity Metrics 41
Autoencoder Architectures 281 Global 21-cm Signal 38
Astronomical Transfer Learning 273 Planetary Weather Simulation Systems 37
Exoplanet Atmospheric Retrieval Systems 162 MeerKAT Data Pipelines 32
Cosmic Reionization Simulations 144 CMB Interaction Effects 25
Precision-Recall Evaluation 127 Millimeter-Wave Technology Integration 22
Skill Score Metrics 108 Protostellar Evolutionary Metrics 18
Rapid Bayesian Sky Localization 84 Gravitational Wave Data Systems 17
Astronomical Anomaly Detection Pipelines 54 Plasma Momentum Dynamics 15
Nuclear Matter Meta-Modeling 54 CORDIC-based Signal Processing 13
Detection Metric Balance 53 Nonlinear Supersymmetry and Gravity Theories 9

2016

Gravitational Wave Mergers 202 Planetary Robotic Mobility Systems 43
Exoplanet Radiative Transfer Codes 198 Non-Minimal Coupling Models 31
Recurrent Neural Networks 169 Trust Region Optimization Methods 29
t-SNE and Topological Data Analysis 157 OPTICS Clustering Techniques 28
No-U-Turn Sampling 117 Low-Noise Transistor Technologies 26
Astronomical Classification Techniques 106 Snow Uncertainty Mitigation in Ice Detection 26
Synthetic Minority Oversampling 88 Infrared Stellar Outbursts 22
Data-Driven Spectral Inference 86 Asteroid Exploration Missions 21
Joule-Thomson Thermodynamics 77 Solar ALMA Integration 14
Sub-Threshold Signal Analysis 57
Continuous Wave Detection Algorithms 54
Mars Atmospheric and Thermal Studies 44

2017

Residual Neural Networks 402 Interstellar Object Dynamics 100
GW170817 Multimessenger Merger 324 Probabilistic Neural Networks 100
S8 Clustering Discrepancy 240 Batch Normalization in Neural Networks 78
Adversarial Neural Architectures 196 Thermal Protection Systems 34
DHOST Theories 167 Titan Aeolian Dynamics Exploration 29
Deep Learning Frameworks 159 SOXS Optical and Control Architecture 23
Graph Neural Networks in Astronomy 121
Electron Lepton Number Dynamics 102
Kilonova Emission Modeling 101

2018

U-Net Variants in Astronomy 373 Rapid Blue Transients 41
Gaia-Sausage-Enceladus Merger 215 Particle Spray Simulation 38
LSTM Neural Architectures 160 Dirac-Fermion Stars 37
PHANGS Astronomical Surveys 118 FLASK Cosmological Simulation and Web Framework 31
Inception-Based Neural Networks 96 Protoplanetary Disk Substructure Research 29
EDGES 21-cm Anomaly 56 SPHINX Cosmological Simulations 28
Astronomical Data Sonification 52
Interpretable Machine Learning in Astronomy 49
CubeSat Scientific Missions 43
Remote Sensing Indices and Nighttime Imaging 42

Table 5: Recent concept emergence (2015-2018): Part 1 showing representative astronomy-relevant examples.
Concepts sorted by total papers within each year.
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Concept Papers Concept Papers

2019

Probabilistic Transformation Flows 288 VGG-based Neural Networks 63
Neural Inference Methods 202 SH0ES Hubble Constant Measurement 45
Variational Autoencoders 176 Dataset Tension and Suspiciousness Metrics 37
Quantum Entanglement Islands 139 Neutrino Event Reconstruction Methods 30
Physics-Informed Neural Networks 120 Primordial Black Hole Dynamics 26
Explainable AI Visualization Techniques 79 Lyman-Alpha Tomography 26
Deep Learning for Astronomy 79 Atmospheric Refraction and Polarimetry Models 11
Astronomy-Focused AI Language Models 69 Helium Suppression Phenomena 8
Commensal Radio Astronomy Surveys 67

2020

Advanced Attention Mechanisms 154 Gaia Black Hole Binaries 22
Barrow Entropy in Cosmology 77 ALMA Protoplanetary Chemistry Studies 15
Yebes 40m QUIJOTE Survey 76 Seismic Noise Mitigation for Gravitational Observatories 11
Satellite Brightness Mitigation 61
Bern Planetary Formation Model 25

2021

Transformer Architectures in Astronomy 185 T-ReX Cosmic Analysis 19
Astronomical Image Datasets 36 YSO Characterization Techniques 9
Photon Propagation Simulations 21

2022

JWST Deep Extragalactic Surveys 75 Cosmology Data Efficiency Techniques 13
Lyman-Alpha Forest Correlations 19 Stingray Astrophysical Analysis 11
Lorentz Violation in High-Energy Phenomena 13

2023

Astrochemical Molecular Analysis 8 Pulsar Signal Analysis Methods 6

2024

Adaptive Neural Architectures 17 Galactic Foreground Contamination 10
Distributed Sampling Efficiency 12

2025

Rotating Outflow Dynamics 6

Table 6: Recent concept emergence (2019-2025): Part 2 showing representative astronomy-relevant examples.
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Domain Pair Concept 1 Concept 2 Ochiai

Within-Domain Co-occurrence

Cosmology & Nongalactic Axion-Like Particle Phenomenon Photon-ALP Oscillations 0.594
Complexity-Volume Conjecture Holographic Complexity 0.538
Anisotropic Cosmology Bianchi Cosmological Models 0.420
Einstein-Cartan Theories Spacetime Torsion Dynamics 0.406

Galaxy Physics AGN Reverberation Mapping Broad-Line Region Dynamics 0.377
Double-Double Radio Galaxies Episodic AGN Jet Activity 0.368
Galactic Pattern Speeds Tremaine-Weinberg Methods 0.360
Quasar Broad Absorption Dynamics Quasar Outflow Dynamics 0.347

High Energy Astrophysics Superhump Dynamics SU UMa-Type Dwarf Nova Superoutbursts 0.560
Double Degenerate SN Progenitors Single Degenerate SN Progenitors 0.455
GZK Cosmic Ray Limit Ultra-High Energy Cosmic Rays 0.447
Black Hole Entropy Dynamics Quantum Entanglement Islands 0.434

Solar & Stellar Physics Sunspot Flow Dynamics Sunspot Penumbra Dynamics 0.516
Cepheid Variable Stars Variable Star Distance Scaling 0.421
Blazhko Effect Dynamics RR Lyrae Stars 0.386
Standard Solar Model Solar Neutrino Dynamics 0.378

Earth & Planetary Science Light Pollution Dynamics Night Sky Brightness Quantification 0.562
Extraterrestrial Signal Assessment Technosignature Detection 0.450
Graphene Curvature Dynamics Graphene Quantum Analogues 0.428
Geomagnetic Activity Metrics Geomagnetic Storm Dynamics 0.404

Numerical Simulation Molecular Dipole Moments Molecular Spectroscopy Computation 0.317
Molecular Spectroscopy Computation Partition Functions in Astrophysics 0.292
Astrophysical Hydrodynamic Simulations FARGO Numerical Simulation Suite 0.280
Potential Energy Surfaces Quantum Coupled Interactions 0.279

Instrumental Design Acoustic Neutrino Detection Underwater Acoustic Positioning Systems 0.368
Satellite Brightness Mitigation Satellite Astronomical Interference 0.353
Atmospheric Seeing Instrumentation Atmospheric Turbulence Dynamics 0.348
Axion Haloscope Detection Resonant Cavity Systems 0.333

AI/Statistics Neural Inference Methods Simulation-Based Inference 0.491
Transformer Architectures in Astronomy Advanced Attention Mechanisms 0.432
Nonextensive Statistical Mechanics Nonextensive Tsallis Thermodynamics 0.343
Astronomical CNN Applications Astronomical Data Augmentation 0.296

Cross-Domain Co-occurrence

Cosmology ↔ Numerical Simulation Cosmological Dynamical Systems Fixed and Critical Points Stability 0.417
Poisson Sprinkling in Causal Sets Causal Set Quantum Gravity 0.375
Fuzzy Dark Matter Mechanics Schrödinger-Poisson Dynamics 0.346
Bose-Einstein Condensate Phenomena Gross-Pitaevskii-Poisson Dynamics 0.309

Galaxy ↔ Numerical Simulation Sersic Light Distribution Galaxy Modeling Software 0.208
Lyman Alpha Line Profiles Lyman Alpha Radiative Transfer 0.204
Ionization State Dynamics Photoionization Models 0.201
Gas-Grain Surface Chemistry Astrochemical Modeling Systems 0.196

High Energy ↔ Instrumental High-Energy Cosmic Neutrinos IceCube Neutrino Observatory 0.403
Black Hole Shadow Phenomenon Global Interferometric BH Imaging 0.340
Very High Energy Gamma Rays Imaging Atmospheric Cherenkov Telescopes 0.259
Cosmic Ray Air Showers Cosmic Ray Radio Detection 0.255

Solar/Stellar ↔ AI/Statistics Skill Score Metrics Solar Cycle and Flare Prediction 0.302
Helioseismic Signal Correlations Helioseismic Travel-Time Kernels 0.296
Stellar Flare Frequency Dynamics Automated Flare Detection 0.279
Mass-to-Flux Ratio Dynamics Davis-Chandrasekhar-Fermi Method 0.233

Earth/Planetary ↔ Instrumental Meteor Stream Dynamics Global Meteor Observation Networks 0.358
VLF/ULF Electromagnetic Phenomena VLF Electromagnetic Observation Systems 0.357
Mesospheric Sodium Layer Dynamics Guide Stars in Adaptive Optics 0.293
Meteoroid Trajectory Analysis Global Meteor Observation Networks 0.274

Numerical ↔ AI/Statistics Cellular Automaton Systems Self-Organized Criticality 0.239
Gravitational Wave Template Banks Gravitational Wave Matched Filtering 0.213
Kernel-Based Seismic Inversion Regularized Inversion Methods 0.180
Poincaré Analysis Lyapunov Measures in Chaos 0.172

Table 7: Representative concept co-occurrence patterns within and across primary domains. Within-domain pairs
show specialized research themes with multiple representative examples per domain from actual co-occurrence
analysis. Cross-domain pairs reveal methodological connections between fields, including the integration of
computational and statistical methods with traditional astrophysics domains. All pairs extracted from empirical
co-occurrence across 408,590 papers (1992-2025) using Ochiai normalization.
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Abstract

Large Language Models (LLMs) are increas-
ingly used for scientific writing and research
assistance, yet their ability to maintain consis-
tent citations across multi-turn conversations
remains largely unexplored. This study intro-
duces the concept of citation drift—the phe-
nomenon where references mutate, disappear,
or get fabricated during extended LLM inter-
actions. Through a comprehensive analysis of
240 conversations across 4 LLaMA models us-
ing 36 authentic scientific papers from 6 do-
mains, this work demonstrates significant cita-
tion instability. Results reveal that citation sta-
bility varies dramatically across models, with
llama-4-maverick-17b showing the highest sta-
bility (0.481) and llama-4-scout-17b showing
the worst fabrication rates (0.856). This study
introduces novel metrics including citation drift
entropy and willingness-to-cite, providing a
framework for evaluating LLM citation reli-
ability in scientific contexts. Our framework
offers a standardized benchmark for assessing
factual reliability in conversational scientific
LLMs.

1 Introduction

The integration of Large Language Models (LLMs)
into scientific research workflows has accelerated
rapidly, with models increasingly assisting in litera-
ture reviews, paper writing, and research synthesis
(Devlin et al., 2019; Brown et al., 2020). How-
ever, a critical gap exists in our understanding of
how these models handle citations—the fundamen-
tal currency of scientific communication—across
extended conversations.

Citation drift represents a novel phenomenon
where references undergo systematic changes dur-
ing multi-turn LLM interactions. This includes
citation mutation (changes in format or content),
citation loss (disappearing references), and cita-
tion fabrication (invented references). Citation drift
threatens the integrity of scientific communication

by propagating misinformation, compromises fac-
tual reliability in generative models, and erodes
user trust in AI-assisted research tools. This work
directly supports WASP’s goal of advancing AI for
scientific publishing by quantifying reliability in
reference generation. This study presents the first
comprehensive analysis of citation drift across mul-
tiple LLM architectures, introducing novel metrics
and providing actionable insights for the research
community.

2 Related Work

2.1 Narrative Related Work

The reliability of LLMs in scientific communica-
tion hinges on controlling hallucinations and main-
taining accurate references. Comprehensive sur-
veys synthesize the landscape of hallucination re-
search (Huang et al., 2024b; Alansari and Luq-
man, 2025). Citation accuracy and mitigation
have been studied via benchmarks and training
frameworks, including This Reference Does Not
Exist (Byun et al., 2024), ALCE (Gao et al.,
2023), FRONT (Huang et al., 2024a), and post-
hoc Citation-Enhanced Generation (Li et al., 2024).
Capacity analyses further probe citation generation
and metrics (Qian et al., 2024).

Citation recommendation and verification lines
of work provide retrieval and validation founda-
tions, spanning classic surveys (Färber and Ja-
towt, 2020) and recent verification-first RAG de-
signs such as VeriCite (Zhu, 2025), CoV-RAG (He
et al., 2024), and FEVER-style claim verification
pipelines (Adjali, 2024). Broader RAG evaluation
surveys contextualize metrics and datasets (GAN,
2025).

Because citation drift unfolds across conversa-
tion turns, multi-turn interaction and prompting
studies are directly relevant. Surveys of multi-
turn capabilities (Zhang et al., 2025) and advances
in chain-of-thought prompting (Wei et al., 2022;
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Shizhe Diao, 2024) inform protocol design that
encourages models to maintain and justify cita-
tions across turns. Fine-grained citation evaluation
frameworks (ALiiCE (Qin et al., 2024) and follow-
ups (Marzieh Tahaei, 2024)) enable claim-level
grounding analysis that complements our drift met-
rics.

3 Methodology

3.1 Experimental Design

This study designed a controlled experiment to mea-
sure citation drift across multiple LLM models us-
ing authentic scientific content. The experimental
setup includes:
• Models: 4 LLaMA variants (llama-4-maverick-

17b, llama-4-scout-17b, llama-3.3-70b, llama-
3.3-8b)

• Dataset: 12 seed paragraphs with 36 gold-
standard citations across 6 scientific domains

• Protocol: 5-turn conversation structure with
structured citation format hints

• Scale: 240 total data points (4 models × 12 para-
graphs × 5 turns)

• Hyperparameters: All models were run with
temperature = 0.0, top-p = 1.0, and max tokens =
1024 to ensure deterministic responses

• Execution: Each conversation was generated in-
dependently per model in parallel to prevent in-
formation leakage

• Ethics: No human or sensitive data was used; all
content was synthetically generated

Figure 1: System architecture for citation drift analysis

3.2 Dataset Construction

Our dataset comprises 36 authentic scientific pa-
pers across 6 domains:
• NLP (6 papers): BERT, RoBERTa, GPT-3, T5,

InstructGPT, XLNet

• Computer Vision (6 papers): ResNet, YOLO,
Mask R-CNN, Vision Transformer, CLIP, Sim-
CLR

• ML Theory (6 papers): Adam, Dropout, Batch-
Norm, Transformer, U-Net, GAN

• Medicine (6 papers): AlphaFold, BioBERT,
ClinicalBERT, CheXNet, Deep Patient, Diabetic
Retinopathy

• Astronomy (6 papers): LIGO, Planck, Hubble
Constant, Exoplanets, Supernovae, Dark Energy

• HCI (6 papers): Fitts’ Law, KLM, Direct Manip-
ulation, Heuristic Evaluation, Two-Handed Input,
CPM-GOMS
Each paper includes verified metadata: title, au-

thors, publication year, venue, DOI, and URL.

3.3 Conversation Protocol

We developed a structured 5-turn conversation pro-
tocol designed to elicit citation behavior:
1. Summarization: "Summarize the paragraph

and list central references"
2. Explanation: "Explain how each cited work

supports the claims"
3. Adaptation: "Rewrite for a graduate student

audience"
4. Simplification: "Explain for a 12-year-old"
5. Extension: "Add 3 related papers and integrate

them"
Each turn includes structured citation format

hints: "List references as Title — Authors (Year) —
Venue — DOI:<value or NONE>; each on a new
line."

3.4 Citation Parsing

We developed a comprehensive citation extraction
system supporting multiple formats:
• DOIs: Standard 10.XXXX/XXXX format
• arXiv IDs: arXiv:XXXX.XXXXX or

XXXX.XXXXX
• URLs: HTTP/HTTPS links
• Author-Year: (Author, Year) or Author (Year)

patterns
• Structured: Title — Authors (Year) — Venue —

DOI format

3.5 Metrics

We introduce five novel metrics for measuring cita-
tion drift:
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Figure 2: Citation parsing and analysis pipeline

3.5.1 Stability (Jaccard Similarity)
Measures citation preservation between consecu-
tive turns:

Stability =
|Ct ∩ Ct+1|
|Ct ∪ Ct+1|

(1)

where Ct represents citations at turn t. Jaccard sim-
ilarity was chosen for interpretability and robust-
ness to partial citation overlap. Future extensions
may explore cosine or Levenshtein similarity for
fine-grained text overlap.

3.5.2 Fabrication Rate
Proportion of citations that are invented or incor-
rect:

Fabrication Rate =
|Fabricated Citations|
|Total Citations| (2)

3.5.3 Drift Rate
Rate of citation changes between turns:

Drift Rate =
|Ct△Ct+1|
|Ct ∪ Ct+1|

(3)

where△ denotes symmetric difference.

3.5.4 Drift Entropy
Measures randomness in citation changes:

H = −
∑

i

pi log2 pi (4)

where pi is the probability of citation change type
i.

Model Stability Fabrication Drift Rate Drift Entropy

llama-4-maverick-17b 0.481 0.377 0.197 1.114
llama-3.3-70b 0.057 0.293 0.104 0.385
llama-3.3-8b 0.000 0.762 0.239 0.807
llama-4-scout-17b 0.000 0.856 0.232 1.005

Table 1: Model performance across metrics (higher stability
better; lower fabrication better).

3.5.5 Willingness-to-Cite

Binary metric indicating whether the model pro-
vides any citations:

WTC =

{
1 if |Ct| > 0

0 otherwise
(5)

4 Results

4.1 Overall Performance

Our analysis of 240 conversations reveals signifi-
cant variation in citation behavior across models.
Table 1 summarizes the key findings.

4.2 Key Findings

Summary (compact). Stability varies widely
across models (0.000–0.481). llama-4-maverick-
17b leads on stability; llama-3.3-70b has the low-
est fabrication; llama-4-scout-17b shows the high-
est fabrication. The Maverick model shows 8×
higher stability than 8B, suggesting parameter
count and fine-tuning strategy both affect citation
persistence. Larger models do not consistently out-
perform smaller ones, and domain-specific patterns
are evident.

4.3 Results Summary

Figures 3–8 show key patterns: llama-4-maverick-
17b leads stability; llama-4-scout-17b shows high-
est fabrication; llama-3.3-70b has lowest drift rate;
entropy varies significantly across models.

Figure 3: Citation stability across 5 turns. LLaMA-4-
Maverick-17B preserves citations better than other models.
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Figure 4: Citation fabrication rates by model and turn

Figure 5: Citation drift rates across conversation turns

Figure 6: Drift entropy indicating randomness in citation
changes

Figure 7: Model willingness to provide citations across turns

Figure 8: Total citations vs DOI citations by turn

5 Discussion

5.1 Implications and Limitations
Implications: Researchers should prioritize llama-
4-maverick-17b for citation tasks; avoid llama-4-
scout-17b due to high fabrication (85.6%). High
fabrication rates (29.3-85.6%) require systematic
verification. Structured format hints improve con-
sistency. This framework can support editorial re-
view pipelines, automated citation checkers, and
reliability audits for AI-generated scientific texts.
Citation drift reveals underlying instability in fac-
tual memory retention, aligning with recent work
on temporal consistency in LLMs.

Limitations: Limited to 4 LLaMA variants, 6
domains, 240 data points.

Future Work: Scale to 100 paragraphs/300 pa-
pers, include GPT/Claude models, add real-time
DOI validation, expand domains.

6 Conclusion

This study introduces citation drift and provides the
first comprehensive analysis of citation stability in
multi-turn LLM conversations. Key contributions:
novel metrics (stability, fabrication rate, drift rate,
drift entropy, willingness-to-cite), comprehensive
analysis (240 conversations, 4 models, 36 papers),
practical insights (model rankings), and method-
ological framework. We introduce the first bench-
mark for evaluating citation reliability in multi-turn
scientific dialogue systems.

Findings reveal significant citation instability
(fabrication rates up to 85.6%). llama-4-maverick-
17b is most reliable; llama-4-scout-17b shows con-
cerning patterns. Results emphasize need for sys-
tematic citation verification and careful model se-
lection in scientific contexts. Future work will ex-
tend the framework to include GPT-4, Claude, and
open-source RAG integrations.
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A Addressing Reviewer Questions

This section addresses key questions and concerns
raised during review.

Why a 5-Turn Protocol? Empirical studies
show median conversation lengths of 4-6 turns for
literature review tasks. Our protocol tests citation
preservation under increasing cognitive load: Turns
1-2 (summarization, explanation) test basic recall;
Turns 3-4 (adaptation, simplification) test format
changes; Turn 5 (extension) tests integration—a
critical failure mode where models fabricate ci-
tations. This mirrors real-world scenarios where
researchers iteratively refine drafts and integrate
new references.

Clarifying the Five Metrics. Our metrics cap-
ture complementary dimensions: Stability (Jaccard
similarity) measures consistency—citation persis-
tence between turns, independent of correctness.
Fabrication Rate measures accuracy—proportion
of invented citations. Drift Rate (symmetric differ-
ence) measures volatility—rate of citation changes.
While drift rate = 1 - stability mathematically, they
emphasize different aspects: stability focuses on
what persists, drift rate on what changes. Drift
Entropy measures predictability of citation changes
using Shannon entropy, capturing temporal dynam-
ics. Willingness-to-Cite (WTC) is binary (0/1) be-
cause our protocol explicitly requests citations;
it measures engagement/compliance, not quality.
A model could have WTC=1.0 but fabrication
rate=0.9.

Input/Output Examples. Input (Turn 1):
"Summarize the paragraph and list references.
Format: Title — Authors (Year) — Venue —
DOI:<value or NONE>. [BERT paragraph]." Out-
put: "BERT: Pre-training of Deep Bidirectional
Transformers — Devlin et al. (2019) — NAACL
— DOI:10.18653/v1/N19-1423". Input (Turn 2):
"Explain how each cited work supports the claims."
Output: Model explains BERT but may add fab-
ricated citations. Metrics capture: stability (did
BERT persist?), fabrication rate (are new citations
real?), drift rate (how much changed?), entropy (is
pattern predictable?), WTC (did model cite?).

Dataset Size and Model Selection. Our dataset
comprises 12 paragraphs with 36 gold-standard ci-
tations across 6 domains, yielding 240 data points
(4 models × 12 × 5 turns). This size enables con-
trolled, reproducible analysis; future work will
scale to 100+ paragraphs. We focused on LLaMA
variants for controlled comparison (same architec-

ture family), API accessibility, and resource con-
straints. Our framework is model-agnostic and can
be applied to any LLM.

Statistical Rigor and Human Evaluation. We
report means with standard deviations across 240
data points. Future work will include confidence in-
tervals and hypothesis testing. While human valida-
tion would strengthen findings, our gold-standard
DOI verification provides objective accuracy as-
sessment. Human evaluation would be valuable for
assessing relevance and format quality; we plan to
incorporate this in future iterations.

Figure Descriptions. Figures 4-9 visualize
key patterns: Figure 4 (stability) shows llama-4-
maverick-17b maintains highest stability; Figure 5
(fabrication) reveals llama-4-scout-17b has highest
fabrication (85.6%); Figure 6 (drift rate) shows
volatility patterns; Figure 7 (entropy) indicates
randomness; Figure 8 (WTC) shows engagement;
Figure 9 (counts) compares total vs DOI citations.
These demonstrate citation drift as a measurable,
systematic phenomenon.

Relationship Between Turns. Each turn builds
on previous context: Turn 1 establishes baseline;
Turn 2 tests persistence during elaboration; Turn 3
tests format changes; Turn 4 tests extreme adapta-
tion; Turn 5 tests integration (critical failure mode).
This progression is not independent—each turn
uses full conversation history, making citation drift
cumulative. Multi-turn analysis is essential for
understanding citation reliability in real-world sci-
entific writing.
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Abstract

The creation of telescope bibliographies is a
crucial part of assessing the scientific impact of
observatories and ensuring reproducibility in
astronomy. This task involves identifying, cate-
gorizing, and linking scientific publications that
reference or use specific telescopes. However,
this process remains largely manual and re-
source intensive. In this work, we present an ef-
ficient SciBERT-based approach for automatic
classification of scientific papers into four cat-
egories — science, instrumentation, mention,
and not telescope. Despite strict context-length
constraints (maximum 512 tokens) and limited
compute resources, our approach achieved a
macro F1 score of 0.89, ranking at the top of the
WASP-2025 leaderboard. We analyze the ef-
fect of truncation and show that even with half
the samples exceeding the token limit, SciB-
ERT’s domain alignment enables robust classi-
fication. We discuss trade-offs between trunca-
tion, chunking, and long-context models, pro-
viding insights into the efficiency frontier for
scientific text curation.

Keywords: Scientific Document Processing,
Multi-label Classification, SciBERT, Bibliography
Curation, Astronomy, Context Limitation.

1 Introduction

The assessment of the scientific impact of obser-
vational facilities often relies on bibliometric anal-
yses of research publications that use data from
those telescopes. Creating and maintaining these
bibliographies requires identifying relevant papers,
disambiguating telescope mentions, and classifying
the nature of data use — a process still largely per-
formed manually. Automating this process would
significantly benefit librarians, archivists, and re-
search scientists by improving reproducibility and
discoverability of astronomical data.

*Our code is available at https://github.com/E0NIA/
TRACS-WASP-2025-1st-Place.

The WASP-2025 Shared Task[1] aims to develop
AI assistants capable of automating this bibliogra-
phy curation. Given textual data from scientific
papers—including title, abstract, body, acknowl-
edgments, and grants—participants were asked to
identify the telescope referenced and classify each
paper as science, instrumentation, mention, or not
telescope.

Large language models (LLMs) are capable of
understanding complex scientific semantics, but ap-
plying them efficiently under strict computational
and input-length constraints remains challenging.
In this work, we focus on designing a lightweight
yet effective SciBERT - based model [2] that can
operate within a 512-token window, significantly
below the combined 100k token context of the com-
bined row sample.

Our contributions:

• We demonstrate that domain-specific pretrain-
ing (SciBERT) can outperform large-scale
general models in constrained settings.

• We empirically analyze the trade-off between
token truncation and classification perfor-
mance.

• We achieve top leaderboard performance (F1
= 0.89) using only Kaggle GPU resources.

2 Task and Dataset

The task consists of identifying whether a paper
refers to a telescope and classifying its relationship
to that telescope into one or more of four labels: sci-
ence, instrumentation, mention, and not telescope.
Each record in the dataset includes:

• Textual fields: title, abstract, body, acknowl-
edgments, and grants.

• Metadata: author, year, and a unique bib-
code.

1
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• Target labels: science, instrumentation, men-
tion, and not telescope, requiring multi-label
classification.

The training data exhibits a significant class imbal-
ance. The frequencies for each positive label are as
follows:

• science: 37,881

• mention: 34,813

• not_telescope: 7,772

• instrumentation: 875

A primary challenge of this task is the extensive
length of the input text. As quantified in Table 1,
a substantial number of samples contain text sec-
tions that individually exceed the 512-token context
window of standard transformer models. The com-
bined text from all fields when including body can
surpass 50,000 tokens, creating a severe context
limitation and motivating our approach of using an
efficient, truncated-context model.

3 Methodology

3.1 Baseline: TF-IDF + Logistic Regression

As a baseline, we implemented a traditional ma-
chine learning pipeline combining TF-IDF vector-
ization with a One-vs-Rest Logistic Regression
classifier. Each sample was represented using the
concatenation of its title, abstract, acknowledg-
ments, and grants sections, separated by [SEP] to-
kens. The TF-IDF vectorizer was configured with
bi-grams (1–2), a vocabulary size of 20,000, and
English stopword removal. In addition, one-hot
encoding was applied to the telescope categorical
feature, and the year was treated as a numeric fea-
ture and passed through directly.

The classifier used the liblinear solver with class-
balanced weighting to handle label imbalance, and
was wrapped in a One-vs-Rest strategy to support
multi-label classification across the four categories
(science, instrumentation, mention, not telescope).
The model was trained on an 80/20 train–validation
split. This baseline achieved a macro F1 score of
0.66 on the training set and 0.82 on the test leader-
board, providing a strong benchmark for subse-
quent transformer-based experiments.

3.2 SciBERT with Truncated Context

Our best-performing system was based on SciB-
ERT (allenai/scibert scivocab uncased), fine-tuned
for multi-label classification over the four task cat-
egories: science, instrumentation, mention, and
not telescope. The input text was constructed by
concatenating the telescope name, year, title, ab-
stract, acknowledgments, and grants fields using
special [SEP] separators. All missing text fields
were replaced with empty strings to ensure consis-
tency. Data were split into training and validation
sets (80/20), and tokenized using the SciBERT to-
kenizer with a maximum sequence length of 512
tokens, truncating any longer samples.

The model was trained using AdamW optimizer
with a learning rate of 2e-5, batch size 48, and 3
epochs on the Kaggle 2 * T4 GPU (15 GB VRAM).
A BCEWithLogitsLoss function was used to ac-
commodate the multi-label nature of the task, and
learning rate scheduling was handled via a lin-
ear scheduler with no warmup. Training was dis-
tributed using DataParallel for multi-GPU availabil-
ity. The best model was selected based on macro
F1 score on the validation set, and checkpointed
whenever improvement was observed. Despite trun-
cation of roughly 50% of samples exceeding 512
tokens, this configuration achieved robust general-
ization, reaching a leaderboard F1 of 0.89, indicat-
ing strong adaptation of domain-specific represen-
tations for telescope bibliography classification.

3.3 Potential Extensions

Given more time and compute, two extensions
could be performed:

Chunked Input Windows: Breaking long docu-
ments into overlapping windows (stride = 128) for
majority voting or mean pooling of predictions.

Longformer Backbone: Leveraging 4096-token
context to capture extended information from the
abstract and acknowledgement sections.

4 Results

See Table 2, for the model and Even though SciB-
ERT processed less than half of the full context, it
outperformed models capable of handling longer in-
puts. This suggests that key discriminative signals
are concentrated in the title, abstract, and acknowl-
edgments.

The truncation robustness of SciBERT highlights
the power of domain-specific pretraining, particu-
larly when resources are limited.
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Table 1: Token length statistics for key textual fields excluding body using the SciBERT tokenizer. The median
(50%), 75th, and 95th percentiles are shown, highlighting that the abstract and acknowledgments sections often
exceed typical model input limits.

Field Mean Median (50%) 75th Percentile 95th Percentile
Title 18.3 17.0 22.0 32.0
Abstract 337.6 325.0 419.0 631.0
Acknowledgments 163.8 106.0 228.0 554.0
Grants 0.8 0.0 0.0 7.0

Table 2: Macro F1 scores for our model and baselines on the validation set (CV) and the final leaderboard (LB).

Model Context F1 (CV) F1 (LB)
TF-IDF + OVR NA 0.66 0.82
SciBERT 512 0.80 0.89
Random Baseline NA NA 0.24
gpt-oss20b NA NA 0.31

5 Discussion

The results demonstrate that domain-specific lan-
guage models like SciBERT are highly effective for
automating telescope bibliography curation, even
under significant computational constraints. A key
observation is that the acknowledgment section
strongly correlates with the presence of telescope-
related data, particularly for widely used observato-
ries such as Chandra or Hubble. This suggests that
acknowledgment text often encodes implicit evi-
dence of data usage, making it an informative input
for classification. However, due to the limited GPU
resources available on the Kaggle platform (P100
GPU with 15 GB VRAM and 30 GB CPU RAM),
experiments were restricted to a maximum context
length of 512 tokens, with longer inputs truncated.
Despite this limitation, the model achieved a macro
F1 score of 0.89 on the leaderboard, significantly
outperforming both the GPT-OSS20B [3] baseline
(0.31) and the random submission (0.24). Longer-
context architectures such as Longformer or chun-
ked SciBERT approaches could potentially capture
broader contextual signals, especially from the full
body text, and further improve classification accu-
racy.

6 Conclusion

This work presents a lightweight yet high-
performing approach for classifying telescope-
related literature within the WASP-2025 shared
task. Starting from a TF-IDF baseline and advanc-
ing to a fine-tuned SciBERT model, the system
achieved state-of-the-art results while operating

within strict computational limits. The findings
highlight that concise context—when combined
with a domain-trained encoder—can effectively
capture scientific intent and data references in as-
tronomy papers. Future extensions may include
section-wise modeling, hierarchical encoding, or
integration of long-context transformer variants to
enhance interpretability and recall. More broadly,
this study underscores the potential of AI-assisted
systems to support the bibliographic curation and
reproducibility efforts of scientific observatories.
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Abstract

Scientific literature in astronomy is rapidly ex-
panding, making it increasingly important to
automate the extraction of key entities and con-
textual information from research papers. In
this paper, we present an encoder-based sys-
tem for extracting knowledge from astronomy
articles. Our objective is to develop models
capable of classifying telescope references, de-
tecting auxiliary semantic attributes, and recog-
nizing instrument mentions from textual con-
tent. To this end, we implement a multi-task
transformer-based system built upon the SciB-
ERT model and fine-tuned for astronomy cor-
pora classification. To carry out the fine-tuning,
we stochastically sample segments from the
training data and use majority voting over the
test segments at inference time. Our system,
despite its simplicity and low-cost implementa-
tion, significantly outperforms the open-weight
GPT baseline.

1 Introduction

Evaluating the scientific influence of an astronom-
ical observatory often relies on quantitatively re-
viewing publications that use its data, typically by
constructing bibliographies that link datasets to
scholarly articles (Kurtz et al., 2000; Accomazzi,
2011; Henneken and Accomazzi, 2011; Grezes
et al., 2023). This process enables bibliometric
analyses and supports scientific reproducibility, al-
though it remains labor-intensive and depends heav-
ily on expert knowledge. While some tools for lit-
erature curation offer inexpensive solutions by rely-
ing on keyword matching (Dai and Karimi, 2022),
others have used recent generative transformer-
based models (Vaswani et al., 2017; Feng et al.,
2025). Their self-attention mechanism enables the
modeling of long-range dependencies in text, and
their ability to generate and classify human-like
language has led to successful cross-domain appli-
cations (Chae and Davidson, 2023; Aly et al., 2025).

However, while LLMs offer some advantages in
accurately extracting general and fine-grained in-
formation from domain-specific astrophysical texts
(Shao et al., 2024), they are computationally ex-
pensive to deploy and are not always optimized
for specialized scientific concepts. As a result,
a lightweight, domain-adapted method that can
support large-scale curation without prohibitive re-
source costs is needed. In this work, we present
a simple, low-cost approach for classifying and
inferring instrumentation information from astro-
physical literature. We show that it significantly
outperforms the 20B-parameter LLM baseline1 on
this task, demonstrating the value of domain align-
ment over sheer model size. Our contributions are
twofold: (1) we implement an efficient model that
can be deployed at scale; and (2) we provide em-
pirical evidence that lightweight, domain-specific
methods can surpass much larger general-purpose
LLMs. By enabling accurate and scalable link-
age between observational data and the scholarly
record, our approach supports both bibliometric
evaluation and scientific reproducibility and high-
lights the importance of tailored NLP solutions for
scientific domains.

2 Task Description

The Telescope Reference and Astronomy Catego-
rization Shared Task (TRACS) at IJCNLP-AACL
2025 (Grezes et al., 2025) presents us with a unique
opportunity to apply natural language processing
techniques to astrophysical literature and derive
actionable insights to assist the scientific method.

2.1 Objective

The objective of the given task is that given an as-
trophysical text, we need to train a language model
that can infer the information about the telescope
instrument being used. The model should be able

1https://huggingface.co/openai/gpt-oss-20b
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Figure 1: System design for the shared task. Input documents are chunked into equal segments with 512 tokens.
Each segment is given the same label as the original input and is used to fine-tune the model. At inference time, we
use majority voting to assign the test labels.

to identify the telescope being used in the text and
also in what capacity it is being used. To quantify it,
the text needs to be classified into 4 boolean labels,
which are "science", "instrumentation", "mention",
and "not_telescope".

2.2 Dataset
The dataset provided for the TRACS@WASP task
is full papers or fragments of papers that are taken
from SciX2 and are meticulously annotated by the
domain experts. The dataset is provided in a CSV
format. Each row consists of the following ele-
ments:

• "bibcode": A unique string for entry identifica-
tion in the SciX database, which is necessary
for organization and traceability.

• "telescope": The name of the telescope, which
is referenced in the entry.

• "author", "year": The metadata on the re-
searchers and the time of publication of the
entry.

• "title", "abstract", "body", "acknowledg-
ments", "grants": The textual content of the
entry, which are essentially different parts of
the research document, is split according to
these labels.

• "science", "instrumentation", "mention",
"not_telescope": These are boolean labels
which classify the entry according to how the
papers use the data from the telescopes.

For the training dataset, the annotated labels that
the model needs to train and predict are the mul-

2https://www.scixplorer.org

Model Optimizer LR Scheduler Batch Size Epochs
SciBERT AdamW 2e-5 linear 8 4

Table 1: Model training hyperparameters

ticlass label "telescope" and the four boolean la-
bels "science", "instrumentation", "mention", and
"not_telescope". The data for training, as one can
infer, is the textual information for the research pa-
per split into "title", "abstract", "body", "acknowl-
edgments", and "grants".

2.3 Data Statistics and Preprocessing

Diving into the statistics of the provided dataset,
it consists of 80385 unique entries spanning 4
decades for three telescopes. These are the Hub-
ble Space Telescope (HST), the Chandra X-ray
Observatory (CXO), and the James Webb Space
Telescope (JWST). Also, among the four boolean
labels, "science" and "mention" are fairly evenly
distributed, but the remaining two are quite skewed,
with the majority of entries being the boolean label
"FALSE". For the full entry text to be processed
by our model, we convert the dataset into multiple
JSON files. First, we concatenate the content of
the fields "title", "abstract", "body", "acknowledg-
ments", and "grants". Then, we split this string
into chunks of 512 tokens, which were then saved
in the JSON format along with the labels. Each
JSON file contains 1000 entries, which are chunked
in the manner described. Finally, for 80385 rows
in the CSV file, we get 81 JSON files, which are
then used for training purposes (Figure 1). These
preprocessed JSON files are used as training data.
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3 Experiments and Results

3.1 Model Selection

To perform the task, we opted for the SciBERT
model (Beltagy et al., 2019) since it is a pretrained
language model designed to enhance natural lan-
guage understanding within the scientific domain.
Built upon the foundational BERT architecture (De-
vlin et al., 2019), SciBERT extends its capabilities
by being trained on a large corpus of scientific
publications sourced from the Semantic Scholar
database (Ammar et al., 2018). This domain-
specific pretraining enables SciBERT to capture
the specialized vocabulary, structure, and linguistic
patterns prevalent in scientific writing, which are
often underrepresented in general-domain corpora.

The model maintains the same architecture as
BERT-Base but introduces a newly constructed vo-
cabulary, SciVocab, tailored to the scientific do-
main. This vocabulary shares only about 42%
overlap with BERT’s original WordPiece vocab-
ulary, highlighting the substantial linguistic differ-
ences between general and scientific texts (Beltagy
et al., 2019). Through this adaptation, SciBERT
demonstrates superior performance across a range
of scientific NLP tasks, including named entity
recognition, relation classification, sentence clas-
sification, and dependency parsing, outperforming
general-domain models on domain-specific bench-
marks. Its advantages are particularly pronounced
in biomedical and life science applications, where
scientific terminology and context play crucial
roles in comprehension and information extraction.

3.2 Experiments and Results

We report the results for two sets of experiments
that showed a marginal difference in their perfor-
mance. Both these experiments achieved the 6th

rank in the competition leaderboard.
In our approach, we initially do a baseline run

to measure the scope of improvement. The pre-
trained SciBERT encoder was used without any
fine-tuning, while the classification heads remained
randomly initialized. The [CLS] token represen-
tations from each chunk were processed by the
random classification heads to generate logits for
both telescope and boolean labels. Predictions were
then aggregated across all chunks to produce final
outputs. We call this experiment SciBERT_v1.

Following this, we begin our training procedure.
In the first experiment, we use the first 512 tokens
from each entry, along with the entry-level classifi-

Model Macro F1 score

SciBERT_base 0.18
Random baseline 0.24

Openai-gpt-oss-20b3 0.31
SciBERT_v1 0.72
SciBERT_v2 0.73

Table 2: Performance metrics. Here, ’_base’ represents
the baseline run, ’_v1’ is the SciBERT model trained
with the initial 512 tokens, and ’_v2’ is the SciBERT
model trained on the 10 random chunks from each entry.

cation labels. This results in a dataset comprising
approximately 41 million tokens. The training hy-
perparameters used are listed in Table 1. The loss
function governing this training process is the sum
of the cross-entropy loss for the multiclass label
(e.g., the “telescope” label) and the BCEWithLog-
its loss for the four boolean labels.

Next, we carry out a similar experiment, but in-
stead of using just the first 512 tokens, we use 10
random chunks from each entry (if an entry has
fewer than 10 chunks, we consider all of them).
We call this experiment SciBERT_v2. All the re-
sulting chunks get labeled the same as the full entry
itself. This was done to give a fair chance to the
other chunks of the same entry to contribute to
the training part, specifically the acknowledgment
and grants, which often contain direct references
to instrumentation. For this experiment, the dataset
comprises approximately 410 million tokens. The
remaining part of the training process (the hyper-
parameters, loss function, etc) was similar to the
previous experiment.

These models were tested on the test dataset,
which consisted of 9194 entries. These were
also preprocessed in the same way as the train-
ing dataset. To quantify the model’s classification
capability appropriate metric is needed. For clas-
sification tasks where there is label imbalance F1
score is most widely used. The F1 score provides
a balanced measure of a model’s precision and re-
call, which is especially important for imbalanced
datasets, which we have as we discussed in the 2.3
already. Now, since we have 5 classes to predict,
we will have an F1 score per class. So we con-
sider the macro F1 score as the model performance

3https://ui.adsabs.harvard.edu/WIESP/2025/
shared_task
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Paper ID Telescope Science Instrument Mention Not_telescope

GT Pred GT Pred GT Pred GT Pred GT Pred

2014H...6C_CHANDRA CHANDRA CHANDRA ✓ 1 1 ✓ 0 0 ✓ 0 0 ✓ 0 0 ✓
2001t...7M_CHANDRA CHANDRA CHANDRA ✓ 0 0 ✓ 0 0 ✓ 1 1 ✓ 0 0 ✓
2008l...8S_HST HST HST ✓ 1 1 ✓ 0 0 ✓ 0 0 ✓ 0 0 ✓
2012A...4S_CHANDRA CHANDRA CHANDRA ✓ 0 0 ✓ 0 0 ✓ 1 1 ✓ 0 0 ✓
2011A...1M_CHANDRA CHANDRA CHANDRA ✓ 1 0 ✗ 0 0 ✓ 0 1 ✗ 0 0 ✓
2020S...9M_HST HST JWST ✗ 0 0 ✓ 0 0 ✓ 0 1 ✗ 1 0 ✗
2022s...1W_CHANDRA CHANDRA CHANDRA ✓ 1 0 ✗ 0 0 ✓ 0 1 ✗ 0 0 ✓
2000H...7S_CHANDRA CHANDRA CHANDRA ✓ 1 0 ✗ 0 0 ✓ 0 1 ✗ 0 0 ✓

Table 3: Model prediction examples

metric given as:

ModelF1 =
multiclassF1 +

1
N

∑
i boolF1,i

2
(1)

where multiclass is for the "telescope" label and
bool for the four boolean classes "science", "instru-
mentation", "mention", and "not_telescope". The
metrics of the trained model are compared to the
baseline in Table 2. As we can see, the results from
our two experiments are similar (0.72 and 0.73).
However, they significantly outperform the LLM
baseline, which has a performance of 0.31, as well
as our own baseline, which is the same model with-
out fine-tuning (0.18). This can be attributed to
the domain-specific fine-tuning, which allowed our
trained models to be specialized classifiers.

4 Error Analysis

To gain deeper insights into the limitations of our
approach, we perform an error analysis. Since
ground-truth labels for the test set are not avail-
able, this analysis is conducted on the validation
split of the training data, which was also used for
evaluation during model development.

In Table 3, we present selected example pre-
dictions from our best-performing model, SciB-
ERT_v2. In the misclassified cases, we observe that
the boolean labels “science” and “mention” tend
to be mispredicted more frequently. This behavior
is likely because these labels are highly context-
dependent, requiring a nuanced understanding of
the surrounding textual semantics. In contrast, the
labels “instrument” and “not_telescope” are gen-
erally easier to predict correctly, as their identifi-
cation primarily depends on the explicit mention
of instrument names rather than broader contextual
cues. This issue could be alleviated by employing
models capable of handling longer context win-
dows or those pretrained on domain-specific astro-
nomical corpora. Furthermore, for the telescope

Figure 2: Telescope predictions confusion matrix

classification, a clear trend emerges (Figure 2): the
model achieves the highest accuracy for CHAN-
DRA, followed by HST, and then JWST. Also, we
see increased false predictions, i.e., more confusion
for the HST and JWST classes. The reason behind
this could be the naming scheme of the classes for
this label. The classes of the Hubble Space Tele-
scope (HST) and the James Webb Space Telescope
(JWST) share the words "Space" and "Telescope"
that might have confused the model predictions,
while CHANDRA is more distinct.

5 Conclusion and Future Work

We introduced our system for the telescope refer-
ence and astronomy categorization. Leveraging
the SciBERT model, our method utilizes domain-
adapted language representations to automatically
identify telescope mentions and their contextual
roles within astrophysical literature. We showed
that fine-tuning SciBERT on random segments
selected from the article data considerably im-
proves model performance and significantly out-
performs the LLM baseline. Looking ahead, we
aim to further enhance the framework by exploring
transformers with extended context windows and
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models pretrained on astronomy-specific corpora,
which could help capture the nuanced contextual
cues required for labels such as science and men-
tion. We also plan to investigate data balancing
strategies and contrastive learning methods to miti-
gate class skewness in telescope categories and im-
prove robustness across less frequent instruments.

6 Limitations

The limitations of this work primarily stem from
the inherent challenges of modeling complex scien-
tific text and the class imbalance in the dataset. Al-
though our framework effectively captures domain-
specific semantics, the context-dependent nature
of certain labels makes it prone to misclassifica-
tion, suggesting that the current model’s context
window may be insufficient to fully capture subtle
relationships between telescope usage and scien-
tific context. Furthermore, the reliance on weakly
supervised labels may introduce annotation noise,
affecting the precision of the boolean attribute de-
tection. The telescope classification results also
reflect dataset skewness, where classes such as
CHANDRA are overrepresented, leading to uneven
performances across telescope types.
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Abstract
Tables are fundamental for presenting infor-
mation in research articles, technical docu-
ments, manuals, and reports. One key chal-
lenge is accessing the information in tables that
are embedded in Portable Document Format
(PDF) files or scanned images. It requires ac-
curately recognising table structures in diverse
table layouts and complex tables. Table Struc-
ture Recognition (TSR) task aims to recognise
the internal structure of table images and con-
vert them into a machine-readable format. We
propose a flexible multi-modal framework for
image-based TSR. Our approach utilises two-
stream transformer encoders in conjunction
with task-specific decoders for extracting table
structures and detecting cell bounding boxes.
Experiments on benchmark datasets demon-
strate that our model achieves highly com-
petitive results compared to strong baselines,
outperforming single-modality approaches by
5.4% on the FinTabNetd dataset.

1 Introduction

Tables commonly present and summarise informa-
tion in a structured format. They are widely used
in various texts, such as scientific literature, books,
business documents, manuals, and technical doc-
uments, due to their easier readability in present-
ing data. Managing, understanding, and analysing
table data have become increasingly important, es-
pecially with the rapid growth of digitised data
and the demand for intelligent document process-
ing (Cui et al., 2021; Yu et al., 2023). However,
table data are often restricted to digitised docu-
ments or images. While humans can easily inter-
pret them, they are not readily processed by ma-
chines. The digitised table can be easily converted
into a table image, but recognising its structure is
challenging due to the complex styles. Therefore,
extracting table data while preserving its structure
in a machine-readable format is a fundamental step
in table understanding.

Figure 1: Examples of failures in an end-to-end method
include cases where the model identifies the correct
table structure but incorrect content (Ly and Takasu,
2023).

Table Structure Recognition (TSR) is the task
of automatically recognising table structures and
extracting table content as free text for machine
processing, which is a key step in table understand-
ing. The table structure could follow pre-defined
formats, such as HTML or JSON. Once the ta-
ble structure is recognised, the table content can
be extracted by any optical character recognition
(OCR) tool, allowing the reorganisation of data into
a table as it was originally presented in the table
image. The structured table data, consisting of free
text, enables machine processing and analysis of
table data, and it is a crucial step for table-related
downstream tasks, such as table-based question
answering (TQA) (Iyyer et al., 2017; Chen et al.,
2020b; Gupta et al., 2023), table-based fact veri-
fication (Chen et al., 2020a; Xie et al., 2022), in-
formation retrieval (Chen et al., 2020c; Engelmann
et al., 2023), and text mining (Xie et al., 2020).

Tables have diverse structures and styles, which
pose significant challenges for accurate recognition.
For instance, tabular data is often organised with
cells spanning multiple rows and columns. Such ta-
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bles may include complex headers, cells containing
multi-line text, empty cells, and varying line sizes
or shapes used to separate cell contents. Moreover,
table size introduces an additional challenge for the
TSR task, as large tables may extend across multi-
ple pages, particularly in certain scientific domains
or technical documents.

Models based on deep neural networks have
been proposed to address challenges in the TSR
task. Recent methods for TSR can be divided into
two strategies: the end-to-end and the non-end-to-
end approach. The end-to-end method aims to use
a single pipeline to process a given table image
and output all table information, including the ta-
ble structure, table cell bounding boxes, and table
cell content (Schreiber et al., 2017; Ly and Takasu,
2023). This method is straightforward to under-
stand, but its effectiveness is often unsatisfactory,
especially when complex characters are present in
the cell content. For example, as shown in Figure 1,
the table structure can be identified well, but some
content may be lost or incorrectly recognised.

On the other hand, the non-end-to-end method
divides the TSR task into two sub-tasks: (1) recog-
nising the table structure and table cell bounding
boxes; and (2) extracting the cells’ contents (Qiao
et al., 2021; Nassar et al., 2022). Table cell con-
tent recognition can be considered an OCR task,
which means we only need to extract the content
rather than understand its semantic meaning. Many
off-the-shelf OCR tools can be utilised instead of
being integrated into the model training process to
increase the training complexity.

We explore the efficacy of pre-training a multi-
modal model for TSR. We propose a novel multi-
modal approach for the TSR task, which differs
from previous studies that only consider single
modality pixel-based images (e.g., (Chi et al., 2019;
Xing et al., 2023)). Our approach uses both the
table image and its content as inputs for two
transformer-based encoders, followed by separate
decoders to generate the table structure and bound-
ing boxes for non-empty table cells. This method
aims to enhance the accuracy and robustness of
TSR by integrating multiple data modalities, ad-
dressing the limitations of single-modality mod-
els for the task. Our main contributions are sum-
marised as follows:

• Exploring and comparing the effectiveness
of multi-modal models compared to vision-
based models for the TSR task.

Figure 2: Our proposed two-stream multi-modal model
architecture.

• Proposing a novel multi-modal approach for
the TSR task, and the experimental results
demonstrate that the approach is efficient.

2 Related Work

Early work on the TSR task relied on heuristic rule-
based methods. These approaches required hand-
crafted features and designed rules or templates to
cover specific table layouts for structure recogni-
tion. For example, ruling lines were used to detect
horizontal and vertical lines in tables, and the ar-
rangement of text components followed a top-down
approach to recognise table structures (Ramel et al.,
2003; Hassan and Baumgartner, 2007). These ap-
proaches work well with simple tables, but struggle
with complex table structures.

Machine learning-based methods are widely
used for the TSR task. Early methods involved
statistical machine learning techniques, such as
using Support Vector Machines (SVM) to clas-
sify tables based on line information (Kasar et al.,
2013), or clustering word segments in a bottom-up
manner (Kieninger and Dengel, 1999). Recently,
with the availability of large datasets, deep learn-
ing methods have been preferred. One common
approach considers TSR as an object detection
task, employing well-known detection frameworks
such as Faster R-CNN (Girshick, 2015), Mask R-
CNN (He et al., 2017), and YOLO (Redmon and
Farhadi, 2018). Another approach frames TSR
as an image-to-sequence task using transformer-
based encoder-decoder methods (Khang and Hong,
2024), for example, applying Convolutional Neural
Networks (CNN) as the encoder for image fea-
ture representation and Recurrent Neural Networks
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(RNN) as the decoder for structure sequence gener-
ation (Li et al., 2020a), or using vision transformers
for TSR (Nassar et al., 2022; Chen et al., 2023).
Graph Neural Networks (GNN) have also been ap-
plied to TSR, leveraging text cells as graph vertices
and employing graph attention mechanisms to gen-
erate their representations (Xue et al., 2019; Chi
et al., 2019). More recently, Vision Large Lan-
guage Models (VLLMs) (Zhou et al., 2025) have
been explored for TSR as well.

3 Methodology

We consider the TSR task as an image-to-sequence
generation task. We propose a framework that uses
vision and text transformer as two-stream encoders,
with the fused multi-modal feature representation
for sequence generation through two decoders. The
model generates a machine-processable sequence
S from a given table image I. The generated se-
quence S includes the table structure T = [t1, ...,
tn], and the non-empty table cell bounding box B =
[b1, ..., bm]. The table cell contents C = [c1, ...cm]
are obtained using an off-the-shelf OCR (Smith,
2007). The table cell contents correspond to the
table bounding boxes, but may differ from the table
structure sequence due to empty cells in the ta-
ble. The table structure is represented using HTML
tags, which can be converted into various formats
depending on the requirements.

3.1 Encoder

We use two stream encoders to extract visual and
textual features, aiming to obtain better cross-
modal representations from table images. For the
visual encoder, inspired by ViT (Dosovitskiy et al.,
2021), the input table image is resized and split
into non-overlapping P x P patches, which are
then reshaped into flattened 2D patches. These
patches are linearly projected into a D-dimensional
sequence, serving as the input to a stack of trans-
former encoder layers. The final output is encoded
visual sequence features of the table image. The
textual encoder follows the approach of Roberta
(Liu et al., 2019). It takes word embeddings of the
table’s textual content as input. The global tokens
[CLS] and [SEP] are added at the beginning and
the end of each text sequence, and [PAD] tokens
are appended to the end to match the maximum
sequence length L. The textual encoder outputs the
textual representation. Finally, the outputs of both
encoders are integrated using an element-wise sum.

This allows the model to learn the complex relation-
ships between visual and textual features to obtain
contextual text-and-image representations.

3.2 Decoder
The decoder is built on a standard transformer de-
coder that takes embedded features from the fused
encoder outputs. It consists of a stack of four de-
coder layers, each containing multi-head attention
and feed-forward layers. We employ separate de-
coders with the same architecture to decode the ta-
ble structure and the table cell bounding boxes. The
structure decoder generates HTML tags represent-
ing the table structure, including starting tags such
as <thead>, <tbody>, <tr>, etc. The bounding box
decoder generates coordinates for each non-empty
table cell in the format [xmin, ymin, xmax, ymax].
We apply teacher forcing during model training and
use beam search for inference.

Since the pre-trained vision encoder is not
trained on table images, we continue to train it with
the TableBank dataset (Li et al., 2020b), along with
the aligned table text encoder, to enhance table fea-
ture representation. Masked image modeling (Bao
et al., 2022) is applied to the visual encoder during
pre-training. We fine-tune the entire TSR model
during the fine-tuning process.

4 Experimental Setup

The pre-trained Swin-tiny transformer (Liu et al.,
2021) is used for visual embedding initialisa-
tion, and the text embedding is initialised from
Roberta (Liu et al., 2019). We use Adam opti-
miser (Kingma and Ba, 2015) with an initial learn-
ing rate of 2e−5, which decays by 0.02 after the
3rd epoch. We trained the encoder for 10 epochs
with a batch size of 16. The decoder includes 4
layers with an input feature size of 512 and 4 atten-
tion heads for table structure and cell bounding box
decoding. Similar to the encoder, the decoder uses
the Adam optimiser but with an initial learning rate
of 2e−4, trained for 10 epochs with a batch size
of 16. We use Tesseract OCR 1 to obtain table cell
content from the table image.

4.1 Datasets
We evaluate our approach on three benchmark
datasets for the TSR task.

PubTabNet (Zhong et al., 2020) contains 509k
table images extracted from scientific literature and

1https://github.com/tesseract-ocr/tesseract
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provides annotation for table structure in HTML
format, table cell bounding boxes, and table cell
content. This dataset also provides evaluation
metrics such as Tree-edit-distance-based similarity
(TEDS) for both table structure and table cell con-
tent evaluation. We use the validation dataset as the
test dataset since the test dataset is not available.

FinTabNet (Zheng et al., 2021) is created from
the annual reports of the S&P 500 companies in
PDF format. It includes 113k table images from
1,600 different types of financial tables and is an-
notated for table structure (in HTML), table cell
bounding box, and table cell content. This dataset
is reviewed manually, making it more reliable.

SciTSR (Chi et al., 2019) contains 15k tables
extract from scientific PDF files. It provides cor-
responding structure labels obtained from LaTeX
source files. The dataset is split into 12k tables
for training and 3k tables for testing. Because Sc-
iTSR does not provide tables in HTML format,
we convert the structure labels into HTML for S-
TEDS evaluation. We use the bounding box co-
ordinates to recover the logical row and column
layout, place each cell into the correct position in a
two-dimensional grid, and produce an HTML table
that reflects the original structure.

4.2 Evaluation Metrics

For evaluation, we use Intersection over Union
(IoU) with COCO average precision (AP) (Lin
et al., 2014) to measure the overlap between ground
truth and predicted bounding boxes. The AP50

is reported as the evaluation result for table cell
bounding box detection. The structure-only Tree-
Edit-Distance-Based Similarity or S-TEDS (?) is
used for table structure-based evaluation. It con-
verts table HTML tags into a tree structure and
measures the edit distance between the prediction
and ground-truth tree structures. Higher similarity
corresponds to a shorter edit distance, leading to a
higher TEDS score.

5 Experimental Results

We compared our models with six baselines—
Cascade R-CNN (Cai and Vasconcelos,
2018), Deformable-DETR (Zhu et al., 2021),
TSRDet (Xiao et al., 2025), VAST (?),
TABLET (Hou and Wang, 2025), and NGTR (Zhou
et al., 2025)—on three TSR task-related benchmark
datasets (PubTabNet, FinTabNet, and SciTSR),

Model Dataset AP50 S-TEDS(%)

Cascade R-CNN PubTabNet 95.38 83.78
Deformable-DETR PubTabNet 97.43 95.73
TSRDet PubTabNet 98.26 96.58
VAST PubTabNet 94.80 97.23
TABLET PubTabNet — 97.67
Ours PubTabNet 97.90 97.69

Cascade R-CNN FinTabNet 97.53 87.49
Deformable-DETR FinTabNet 98.42 97.81
TSRDet FinTabNet 98.33 99.05
VAST FinTabNet 96.20 98.63
TABLET FinTabNet — 98.99
Ours FinTabNet 98.97 98.96

Cascade R-CNN SciTSR 95.27 79.09
Deformable-DETR SciTSR 97.39 97.30
TSRDet SciTSR 96.79 98.41
Ours SciTSR 98.32 98.52

Table 1: Comparing our method with baselines on
PubTanNet, FinTanNet, and SciTSR datasets.

Model AP50 S-TEDS(%)

Swin-T 92.36 93.56

Ours 98.97 98.96

Table 2: Ablation results for vision-only and multi-
modal approaches on the FinTabNet dataset.

using AP50 and S-TEDS metrics. We utilised
structure-based S-TEDS as the primary evaluation
metric to avoid the noise of table cell content that
is generated by OCR. Our multi-modal approach
outperformed almost all visual-only baseline
methods and achieved highly competitive results
on table structure recovery, as shown in Table 1.
In particular, the multi-modal approach showed a
clear improvement in S-TEDS compared with the
vision-only Deformable-DETR, which suggests
that using text information helps the model better
handle confusing layouts and cells that look similar
in table images. The ablation study on FinTabNet
(Table 2) demonstrates that incorporating the
visual modality leads to a significant gain in
S-TEDS (+5.4), indicating that visual and textual
features work together and complement each
other for TSR. We note that our approach also
outperforms the VLLM approach (NGTR) (Zhou
et al., 2025) (Table 3) as per reported results on the
same datasets.

6 Conclusions

We present a multi-modal approach with two
stream encoders and separate decoders for the Ta-
ble Structure Recognition (TSR) task. The pro-
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Model Dataset S-TEDS(%)

NGTR PubTabNet 92.31
Ours PubTabNet 97.69

NGTR SciTSR 95.78
Ours SciTSR 98.52

Table 3: Comparing our TSR method and reported
results on VLLMs (Zhou et al., 2025).

posed model integrates features from both visual
and textual modalities, generating table structure
and table cell bounding boxes simultaneously. Our
experimental results on three different datasets
from scientific and financial domains show that the
effectiveness of the proposed model is competitive
compared to visual-only approaches.

7 Limitations

The proposed multi-modal approach demonstrated
its effectiveness with regular table images, but it
is worthwhile to further explore irregular table im-
ages in real-world scenarios, such as table images
from scanned books, wired tables in the wild, and
handwritten tables. Meanwhile, training a unified
framework to integrate all sub-tasks of TSR (table
structure, table cell bounding boxes, and table cell
content) also presents opportunities for exploration.
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