@inproceedings{parida-bojar-2025-findings,
title = "Findings of {WAT}2025 {E}nglish-to-{I}ndic Multimodal Translation Task",
author = "Parida, Shantipriya and
Bojar, Ond{\v{r}}ej",
editor = "Nakazawa, Toshiaki and
Goto, Isao",
booktitle = "Proceedings of the Twelfth Workshop on Asian Translation (WAT 2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wat-1.10/",
pages = "103--108",
ISBN = "979-8-89176-309-8",
abstract = "This paper presents the findings of the English-to-Indic Multimodal Translation shared task from the Workshop on Asian Translation (WAT2025). The task featured three tracks: text-only translation, image captioning, and multimodal translation across four low-resource Indic languages: Hindi, Bengali, Malayalam, and Odia. Three teams participated, submitting systems that achieved competitive performance, with BLEU scores ranging from 40.1 to 64.3 across different language pairs and tracks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="parida-bojar-2025-findings">
<titleInfo>
<title>Findings of WAT2025 English-to-Indic Multimodal Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shantipriya</namePart>
<namePart type="family">Parida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Workshop on Asian Translation (WAT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-309-8</identifier>
</relatedItem>
<abstract>This paper presents the findings of the English-to-Indic Multimodal Translation shared task from the Workshop on Asian Translation (WAT2025). The task featured three tracks: text-only translation, image captioning, and multimodal translation across four low-resource Indic languages: Hindi, Bengali, Malayalam, and Odia. Three teams participated, submitting systems that achieved competitive performance, with BLEU scores ranging from 40.1 to 64.3 across different language pairs and tracks.</abstract>
<identifier type="citekey">parida-bojar-2025-findings</identifier>
<location>
<url>https://aclanthology.org/2025.wat-1.10/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>103</start>
<end>108</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Findings of WAT2025 English-to-Indic Multimodal Translation Task
%A Parida, Shantipriya
%A Bojar, Ondřej
%Y Nakazawa, Toshiaki
%Y Goto, Isao
%S Proceedings of the Twelfth Workshop on Asian Translation (WAT 2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-309-8
%F parida-bojar-2025-findings
%X This paper presents the findings of the English-to-Indic Multimodal Translation shared task from the Workshop on Asian Translation (WAT2025). The task featured three tracks: text-only translation, image captioning, and multimodal translation across four low-resource Indic languages: Hindi, Bengali, Malayalam, and Odia. Three teams participated, submitting systems that achieved competitive performance, with BLEU scores ranging from 40.1 to 64.3 across different language pairs and tracks.
%U https://aclanthology.org/2025.wat-1.10/
%P 103-108
Markdown (Informal)
[Findings of WAT2025 English-to-Indic Multimodal Translation Task](https://aclanthology.org/2025.wat-1.10/) (Parida & Bojar, WAT 2025)
ACL