@inproceedings{vinjamuri-sun-2025-transfer,
title = "Transfer learning for dependency parsing of {V}edic {S}anskrit",
author = "Vinjamuri, Abhiram and
Sun, Weiwei",
editor = "Zhang, Chen and
Allaway, Emily and
Shen, Hua and
Miculicich, Lesly and
Li, Yinqiao and
M'hamdi, Meryem and
Limkonchotiwat, Peerat and
Bai, Richard He and
T.y.s.s., Santosh and
Han, Sophia Simeng and
Thapa, Surendrabikram and
Rim, Wiem Ben",
booktitle = "Proceedings of the 9th Widening NLP Workshop",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.winlp-main.12/",
pages = "50--55",
ISBN = "979-8-89176-351-7",
abstract = "This paper focuses on data-driven dependency parsing for Vedic Sanskrit. We propose and evaluate a transfer learning approach that benefits from syntactic analysis of typologically related languages, including Ancient Greek and Latin, and a descendant language - Classical Sanskrit. Experiments on the Vedic TreeBank demonstrate the effectiveness of cross-lingual transfer, demonstrating improvements from the biaffine baseline as well as outperforming the current state of the art benchmark, the deep contextualised self-training algorithm, across a wide range of experimental setups."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vinjamuri-sun-2025-transfer">
<titleInfo>
<title>Transfer learning for dependency parsing of Vedic Sanskrit</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhiram</namePart>
<namePart type="family">Vinjamuri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Widening NLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lesly</namePart>
<namePart type="family">Miculicich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinqiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meryem</namePart>
<namePart type="family">M’hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">He</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="given">Simeng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="given">Ben</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-351-7</identifier>
</relatedItem>
<abstract>This paper focuses on data-driven dependency parsing for Vedic Sanskrit. We propose and evaluate a transfer learning approach that benefits from syntactic analysis of typologically related languages, including Ancient Greek and Latin, and a descendant language - Classical Sanskrit. Experiments on the Vedic TreeBank demonstrate the effectiveness of cross-lingual transfer, demonstrating improvements from the biaffine baseline as well as outperforming the current state of the art benchmark, the deep contextualised self-training algorithm, across a wide range of experimental setups.</abstract>
<identifier type="citekey">vinjamuri-sun-2025-transfer</identifier>
<location>
<url>https://aclanthology.org/2025.winlp-main.12/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>50</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transfer learning for dependency parsing of Vedic Sanskrit
%A Vinjamuri, Abhiram
%A Sun, Weiwei
%Y Zhang, Chen
%Y Allaway, Emily
%Y Shen, Hua
%Y Miculicich, Lesly
%Y Li, Yinqiao
%Y M’hamdi, Meryem
%Y Limkonchotiwat, Peerat
%Y Bai, Richard He
%Y T.y.s.s., Santosh
%Y Han, Sophia Simeng
%Y Thapa, Surendrabikram
%Y Rim, Wiem Ben
%S Proceedings of the 9th Widening NLP Workshop
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-351-7
%F vinjamuri-sun-2025-transfer
%X This paper focuses on data-driven dependency parsing for Vedic Sanskrit. We propose and evaluate a transfer learning approach that benefits from syntactic analysis of typologically related languages, including Ancient Greek and Latin, and a descendant language - Classical Sanskrit. Experiments on the Vedic TreeBank demonstrate the effectiveness of cross-lingual transfer, demonstrating improvements from the biaffine baseline as well as outperforming the current state of the art benchmark, the deep contextualised self-training algorithm, across a wide range of experimental setups.
%U https://aclanthology.org/2025.winlp-main.12/
%P 50-55
Markdown (Informal)
[Transfer learning for dependency parsing of Vedic Sanskrit](https://aclanthology.org/2025.winlp-main.12/) (Vinjamuri & Sun, WiNLP 2025)
ACL