@inproceedings{sermsri-panboonyuen-2025-debiasing,
title = "Debiasing Large Language Models in {T}hai Political Stance Detection via Counterfactual Calibration",
author = "Sermsri, Kasidit and
Panboonyuen, Teerapong",
editor = "Zhang, Chen and
Allaway, Emily and
Shen, Hua and
Miculicich, Lesly and
Li, Yinqiao and
M'hamdi, Meryem and
Limkonchotiwat, Peerat and
Bai, Richard He and
T.y.s.s., Santosh and
Han, Sophia Simeng and
Thapa, Surendrabikram and
Rim, Wiem Ben",
booktitle = "Proceedings of the 9th Widening NLP Workshop",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.winlp-main.13/",
pages = "56--64",
ISBN = "979-8-89176-351-7",
abstract = "Political stance detection in low-resource and culturally complex settings poses a critical challenge for large language models (LLMs). In the Thai political landscape{---}rich with indirect expressions, polarized figures, and sentiment-stance entanglement{---}LLMs often exhibit systematic biases, including sentiment leakage and entity favoritism. These biases not only compromise model fairness but also degrade predictive reliability in real-world applications. We introduce ThaiFACTUAL, a lightweight, model-agnostic calibration framework that mitigates political bias without fine-tuning LLMs. ThaiFACTUAL combines counterfactual data augmentation with rationale-based supervision to disentangle sentiment from stance and neutralize political preferences. We curate and release the first high-quality Thai political stance dataset with stance, sentiment, rationale, and bias markers across diverse political entities and events. Our results show that ThaiFACTUAL substantially reduces spurious correlations, improves zero-shot generalization, and enhances fairness across multiple LLMs. This work underscores the need for culturally grounded bias mitigation and offers a scalable blueprint for debiasing LLMs in politically sensitive, underrepresented languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sermsri-panboonyuen-2025-debiasing">
<titleInfo>
<title>Debiasing Large Language Models in Thai Political Stance Detection via Counterfactual Calibration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kasidit</namePart>
<namePart type="family">Sermsri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teerapong</namePart>
<namePart type="family">Panboonyuen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Widening NLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lesly</namePart>
<namePart type="family">Miculicich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinqiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meryem</namePart>
<namePart type="family">M’hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">He</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="given">Simeng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="given">Ben</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-351-7</identifier>
</relatedItem>
<abstract>Political stance detection in low-resource and culturally complex settings poses a critical challenge for large language models (LLMs). In the Thai political landscape—rich with indirect expressions, polarized figures, and sentiment-stance entanglement—LLMs often exhibit systematic biases, including sentiment leakage and entity favoritism. These biases not only compromise model fairness but also degrade predictive reliability in real-world applications. We introduce ThaiFACTUAL, a lightweight, model-agnostic calibration framework that mitigates political bias without fine-tuning LLMs. ThaiFACTUAL combines counterfactual data augmentation with rationale-based supervision to disentangle sentiment from stance and neutralize political preferences. We curate and release the first high-quality Thai political stance dataset with stance, sentiment, rationale, and bias markers across diverse political entities and events. Our results show that ThaiFACTUAL substantially reduces spurious correlations, improves zero-shot generalization, and enhances fairness across multiple LLMs. This work underscores the need for culturally grounded bias mitigation and offers a scalable blueprint for debiasing LLMs in politically sensitive, underrepresented languages.</abstract>
<identifier type="citekey">sermsri-panboonyuen-2025-debiasing</identifier>
<location>
<url>https://aclanthology.org/2025.winlp-main.13/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>56</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Debiasing Large Language Models in Thai Political Stance Detection via Counterfactual Calibration
%A Sermsri, Kasidit
%A Panboonyuen, Teerapong
%Y Zhang, Chen
%Y Allaway, Emily
%Y Shen, Hua
%Y Miculicich, Lesly
%Y Li, Yinqiao
%Y M’hamdi, Meryem
%Y Limkonchotiwat, Peerat
%Y Bai, Richard He
%Y T.y.s.s., Santosh
%Y Han, Sophia Simeng
%Y Thapa, Surendrabikram
%Y Rim, Wiem Ben
%S Proceedings of the 9th Widening NLP Workshop
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-351-7
%F sermsri-panboonyuen-2025-debiasing
%X Political stance detection in low-resource and culturally complex settings poses a critical challenge for large language models (LLMs). In the Thai political landscape—rich with indirect expressions, polarized figures, and sentiment-stance entanglement—LLMs often exhibit systematic biases, including sentiment leakage and entity favoritism. These biases not only compromise model fairness but also degrade predictive reliability in real-world applications. We introduce ThaiFACTUAL, a lightweight, model-agnostic calibration framework that mitigates political bias without fine-tuning LLMs. ThaiFACTUAL combines counterfactual data augmentation with rationale-based supervision to disentangle sentiment from stance and neutralize political preferences. We curate and release the first high-quality Thai political stance dataset with stance, sentiment, rationale, and bias markers across diverse political entities and events. Our results show that ThaiFACTUAL substantially reduces spurious correlations, improves zero-shot generalization, and enhances fairness across multiple LLMs. This work underscores the need for culturally grounded bias mitigation and offers a scalable blueprint for debiasing LLMs in politically sensitive, underrepresented languages.
%U https://aclanthology.org/2025.winlp-main.13/
%P 56-64
Markdown (Informal)
[Debiasing Large Language Models in Thai Political Stance Detection via Counterfactual Calibration](https://aclanthology.org/2025.winlp-main.13/) (Sermsri & Panboonyuen, WiNLP 2025)
ACL