@inproceedings{pranida-etal-2025-asr,
title = "{ASR} Under Noise: Exploring Robustness for {S}undanese and {J}avanese",
author = "Pranida, Salsabila Zahirah and
Genadi, Rifo Ahmad and
Airlangga, Muhammad Cendekia and
Shehata, Shady",
editor = "Zhang, Chen and
Allaway, Emily and
Shen, Hua and
Miculicich, Lesly and
Li, Yinqiao and
M'hamdi, Meryem and
Limkonchotiwat, Peerat and
Bai, Richard He and
T.y.s.s., Santosh and
Han, Sophia Simeng and
Thapa, Surendrabikram and
Rim, Wiem Ben",
booktitle = "Proceedings of the 9th Widening NLP Workshop",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.winlp-main.16/",
pages = "87--99",
ISBN = "979-8-89176-351-7",
abstract = "We investigate the robustness of Whisper-based automatic speech recognition (ASR) models for two major Indonesian regional languages: Javanese and Sundanese. While recent work has demonstrated strong ASR performance under clean conditions, their effectiveness in noisy environments remains unclear. To address this, we experiment with multiple training strategies, including synthetic noise augmentation and SpecAugment, and evaluate performance across a range of signal-to-noise ratios (SNRs). Our results show that noise-aware training substantially improves robustness, particularly for larger Whisper models. A detailed error analysis further reveals language-specific challenges, highlighting avenues for future improvements."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pranida-etal-2025-asr">
<titleInfo>
<title>ASR Under Noise: Exploring Robustness for Sundanese and Javanese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salsabila</namePart>
<namePart type="given">Zahirah</namePart>
<namePart type="family">Pranida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rifo</namePart>
<namePart type="given">Ahmad</namePart>
<namePart type="family">Genadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="given">Cendekia</namePart>
<namePart type="family">Airlangga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shady</namePart>
<namePart type="family">Shehata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Widening NLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lesly</namePart>
<namePart type="family">Miculicich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinqiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meryem</namePart>
<namePart type="family">M’hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">He</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="given">Simeng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="given">Ben</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-351-7</identifier>
</relatedItem>
<abstract>We investigate the robustness of Whisper-based automatic speech recognition (ASR) models for two major Indonesian regional languages: Javanese and Sundanese. While recent work has demonstrated strong ASR performance under clean conditions, their effectiveness in noisy environments remains unclear. To address this, we experiment with multiple training strategies, including synthetic noise augmentation and SpecAugment, and evaluate performance across a range of signal-to-noise ratios (SNRs). Our results show that noise-aware training substantially improves robustness, particularly for larger Whisper models. A detailed error analysis further reveals language-specific challenges, highlighting avenues for future improvements.</abstract>
<identifier type="citekey">pranida-etal-2025-asr</identifier>
<location>
<url>https://aclanthology.org/2025.winlp-main.16/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>87</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ASR Under Noise: Exploring Robustness for Sundanese and Javanese
%A Pranida, Salsabila Zahirah
%A Genadi, Rifo Ahmad
%A Airlangga, Muhammad Cendekia
%A Shehata, Shady
%Y Zhang, Chen
%Y Allaway, Emily
%Y Shen, Hua
%Y Miculicich, Lesly
%Y Li, Yinqiao
%Y M’hamdi, Meryem
%Y Limkonchotiwat, Peerat
%Y Bai, Richard He
%Y T.y.s.s., Santosh
%Y Han, Sophia Simeng
%Y Thapa, Surendrabikram
%Y Rim, Wiem Ben
%S Proceedings of the 9th Widening NLP Workshop
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-351-7
%F pranida-etal-2025-asr
%X We investigate the robustness of Whisper-based automatic speech recognition (ASR) models for two major Indonesian regional languages: Javanese and Sundanese. While recent work has demonstrated strong ASR performance under clean conditions, their effectiveness in noisy environments remains unclear. To address this, we experiment with multiple training strategies, including synthetic noise augmentation and SpecAugment, and evaluate performance across a range of signal-to-noise ratios (SNRs). Our results show that noise-aware training substantially improves robustness, particularly for larger Whisper models. A detailed error analysis further reveals language-specific challenges, highlighting avenues for future improvements.
%U https://aclanthology.org/2025.winlp-main.16/
%P 87-99
Markdown (Informal)
[ASR Under Noise: Exploring Robustness for Sundanese and Javanese](https://aclanthology.org/2025.winlp-main.16/) (Pranida et al., WiNLP 2025)
ACL