@inproceedings{coggins-etal-2025-aint,
title = "That Ain{'}t Right: Assessing {LLM} Performance on {QA} in {A}frican {A}merican and {W}est {A}frican {E}nglish Dialects",
author = "Coggins, William and
McKenzie, Jasmine and
Youm, Sangpil and
Mummaleti, Pradham and
Gilbert, Juan and
Ragan, Eric and
Dorr, Bonnie J",
editor = "Zhang, Chen and
Allaway, Emily and
Shen, Hua and
Miculicich, Lesly and
Li, Yinqiao and
M'hamdi, Meryem and
Limkonchotiwat, Peerat and
Bai, Richard He and
T.y.s.s., Santosh and
Han, Sophia Simeng and
Thapa, Surendrabikram and
Rim, Wiem Ben",
booktitle = "Proceedings of the 9th Widening NLP Workshop",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.winlp-main.21/",
pages = "123--129",
ISBN = "979-8-89176-351-7",
abstract = "As Large Language Models (LLMs) gain mainstream public usage, understanding how users interact with them becomes increasingly important. Limited variety in training data raises concerns about LLM reliability across different language inputs. To explore this, we test several LLMs using functionally equivalent prompts expressed in different English sublanguages. We frame this analysis using Question-Answer (QA) pairs, which allow us to detect and evaluate appropriate and anomalous model behavior. We contribute a cross-LLM testing method and a new QA dataset translated into AAVE and WAPE variants. Early results reveal a notable drop in accuracy for one sublanguage relative to the baseline."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coggins-etal-2025-aint">
<titleInfo>
<title>That Ain’t Right: Assessing LLM Performance on QA in African American and West African English Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Coggins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasmine</namePart>
<namePart type="family">McKenzie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sangpil</namePart>
<namePart type="family">Youm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradham</namePart>
<namePart type="family">Mummaleti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Gilbert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Ragan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Dorr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Widening NLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lesly</namePart>
<namePart type="family">Miculicich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinqiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meryem</namePart>
<namePart type="family">M’hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">He</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="given">Simeng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="given">Ben</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-351-7</identifier>
</relatedItem>
<abstract>As Large Language Models (LLMs) gain mainstream public usage, understanding how users interact with them becomes increasingly important. Limited variety in training data raises concerns about LLM reliability across different language inputs. To explore this, we test several LLMs using functionally equivalent prompts expressed in different English sublanguages. We frame this analysis using Question-Answer (QA) pairs, which allow us to detect and evaluate appropriate and anomalous model behavior. We contribute a cross-LLM testing method and a new QA dataset translated into AAVE and WAPE variants. Early results reveal a notable drop in accuracy for one sublanguage relative to the baseline.</abstract>
<identifier type="citekey">coggins-etal-2025-aint</identifier>
<location>
<url>https://aclanthology.org/2025.winlp-main.21/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>123</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T That Ain’t Right: Assessing LLM Performance on QA in African American and West African English Dialects
%A Coggins, William
%A McKenzie, Jasmine
%A Youm, Sangpil
%A Mummaleti, Pradham
%A Gilbert, Juan
%A Ragan, Eric
%A Dorr, Bonnie J.
%Y Zhang, Chen
%Y Allaway, Emily
%Y Shen, Hua
%Y Miculicich, Lesly
%Y Li, Yinqiao
%Y M’hamdi, Meryem
%Y Limkonchotiwat, Peerat
%Y Bai, Richard He
%Y T.y.s.s., Santosh
%Y Han, Sophia Simeng
%Y Thapa, Surendrabikram
%Y Rim, Wiem Ben
%S Proceedings of the 9th Widening NLP Workshop
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-351-7
%F coggins-etal-2025-aint
%X As Large Language Models (LLMs) gain mainstream public usage, understanding how users interact with them becomes increasingly important. Limited variety in training data raises concerns about LLM reliability across different language inputs. To explore this, we test several LLMs using functionally equivalent prompts expressed in different English sublanguages. We frame this analysis using Question-Answer (QA) pairs, which allow us to detect and evaluate appropriate and anomalous model behavior. We contribute a cross-LLM testing method and a new QA dataset translated into AAVE and WAPE variants. Early results reveal a notable drop in accuracy for one sublanguage relative to the baseline.
%U https://aclanthology.org/2025.winlp-main.21/
%P 123-129
Markdown (Informal)
[That Ain’t Right: Assessing LLM Performance on QA in African American and West African English Dialects](https://aclanthology.org/2025.winlp-main.21/) (Coggins et al., WiNLP 2025)
ACL