@inproceedings{plaza-del-arco-etal-2025-yes,
title = "No for Some, Yes for Others: Persona Prompts and Other Sources of False Refusal in Language Models",
author = {Plaza-del-Arco, Flor Miriam and
R{\"o}ttger, Paul and
Scherrer, Nino and
Borgonovo, Emanuele and
Plischke, Elmar and
Hovy, Dirk},
editor = "Zhang, Chen and
Allaway, Emily and
Shen, Hua and
Miculicich, Lesly and
Li, Yinqiao and
M'hamdi, Meryem and
Limkonchotiwat, Peerat and
Bai, Richard He and
T.y.s.s., Santosh and
Han, Sophia Simeng and
Thapa, Surendrabikram and
Rim, Wiem Ben",
booktitle = "Proceedings of the 9th Widening NLP Workshop",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.winlp-main.39/",
pages = "268--282",
ISBN = "979-8-89176-351-7",
abstract = "Large language models (LLMs) are increasingly integrated into our daily lives and personalized. However, LLM personalization might also increase unintended side effects. Recent work suggests that persona prompting can lead models to falsely refuse user requests. However, no work has fully quantified the extent of this issue. To address this gap, we measure the impact of 15 sociodemographic personas (based on gender, race, religion, and disability) on false refusal. To control for other factors, we also test 16 different models, 3 tasks (Natural Language Inference, politeness, and offensiveness classification), and nine prompt paraphrases. We propose a Monte Carlo-based method to quantify this issue in a sample-efficient manner. Our results show that as models become more capable, personas impact the refusal rate less. However, we find that the choice of model significantly influence false refusals, especially in sensitive content tasks. The impact of certain sociodemographic personas further increases the false refusal effect in some models, which suggests that there are underlying biases in the alignment strategies or safety mechanisms."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plaza-del-arco-etal-2025-yes">
<titleInfo>
<title>No for Some, Yes for Others: Persona Prompts and Other Sources of False Refusal in Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Flor</namePart>
<namePart type="given">Miriam</namePart>
<namePart type="family">Plaza-del-Arco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Röttger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nino</namePart>
<namePart type="family">Scherrer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emanuele</namePart>
<namePart type="family">Borgonovo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elmar</namePart>
<namePart type="family">Plischke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Widening NLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lesly</namePart>
<namePart type="family">Miculicich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinqiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meryem</namePart>
<namePart type="family">M’hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">He</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="given">Simeng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wiem</namePart>
<namePart type="given">Ben</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-351-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) are increasingly integrated into our daily lives and personalized. However, LLM personalization might also increase unintended side effects. Recent work suggests that persona prompting can lead models to falsely refuse user requests. However, no work has fully quantified the extent of this issue. To address this gap, we measure the impact of 15 sociodemographic personas (based on gender, race, religion, and disability) on false refusal. To control for other factors, we also test 16 different models, 3 tasks (Natural Language Inference, politeness, and offensiveness classification), and nine prompt paraphrases. We propose a Monte Carlo-based method to quantify this issue in a sample-efficient manner. Our results show that as models become more capable, personas impact the refusal rate less. However, we find that the choice of model significantly influence false refusals, especially in sensitive content tasks. The impact of certain sociodemographic personas further increases the false refusal effect in some models, which suggests that there are underlying biases in the alignment strategies or safety mechanisms.</abstract>
<identifier type="citekey">plaza-del-arco-etal-2025-yes</identifier>
<location>
<url>https://aclanthology.org/2025.winlp-main.39/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>268</start>
<end>282</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T No for Some, Yes for Others: Persona Prompts and Other Sources of False Refusal in Language Models
%A Plaza-del-Arco, Flor Miriam
%A Röttger, Paul
%A Scherrer, Nino
%A Borgonovo, Emanuele
%A Plischke, Elmar
%A Hovy, Dirk
%Y Zhang, Chen
%Y Allaway, Emily
%Y Shen, Hua
%Y Miculicich, Lesly
%Y Li, Yinqiao
%Y M’hamdi, Meryem
%Y Limkonchotiwat, Peerat
%Y Bai, Richard He
%Y T.y.s.s., Santosh
%Y Han, Sophia Simeng
%Y Thapa, Surendrabikram
%Y Rim, Wiem Ben
%S Proceedings of the 9th Widening NLP Workshop
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-351-7
%F plaza-del-arco-etal-2025-yes
%X Large language models (LLMs) are increasingly integrated into our daily lives and personalized. However, LLM personalization might also increase unintended side effects. Recent work suggests that persona prompting can lead models to falsely refuse user requests. However, no work has fully quantified the extent of this issue. To address this gap, we measure the impact of 15 sociodemographic personas (based on gender, race, religion, and disability) on false refusal. To control for other factors, we also test 16 different models, 3 tasks (Natural Language Inference, politeness, and offensiveness classification), and nine prompt paraphrases. We propose a Monte Carlo-based method to quantify this issue in a sample-efficient manner. Our results show that as models become more capable, personas impact the refusal rate less. However, we find that the choice of model significantly influence false refusals, especially in sensitive content tasks. The impact of certain sociodemographic personas further increases the false refusal effect in some models, which suggests that there are underlying biases in the alignment strategies or safety mechanisms.
%U https://aclanthology.org/2025.winlp-main.39/
%P 268-282
Markdown (Informal)
[No for Some, Yes for Others: Persona Prompts and Other Sources of False Refusal in Language Models](https://aclanthology.org/2025.winlp-main.39/) (Plaza-del-Arco et al., WiNLP 2025)
ACL