@inproceedings{hb-ptaszynski-2025-rbg,
title = "{RBG}-{AI}: Benefits of Multilingual Language Models for Low-Resource Languages",
author = "Hb, Barathi Ganesh and
Ptaszynski, Michal",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.100/",
pages = "1233--1239",
ISBN = "979-8-89176-341-8",
abstract = "This paper investigates how multilingual language models benefit low-resource languages through our submission to the WMT 2025 Low-Resource Indic Language Translation shared task. We explore whether languages from related families can effectively support translation for low-resource languages that were absent or underrepresented during model training. Using a quantized multilingual pretrained foundation model, we examine zero-shot translation capabilities and cross-lingual transfer effects across three language families: Tibeto-Burman, Indo-Aryan, and Austroasiatic. Our findings demonstrate that multilingual models failed to leverage linguistic similarities, particularly evidenced within the Tibeto-Burman family. The study provides insights into the practical feasibility of zero-shot translation for low-resource language settings and the role of language family relationships in multilingual model performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hb-ptaszynski-2025-rbg">
<titleInfo>
<title>RBG-AI: Benefits of Multilingual Language Models for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barathi</namePart>
<namePart type="given">Ganesh</namePart>
<namePart type="family">Hb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Ptaszynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>This paper investigates how multilingual language models benefit low-resource languages through our submission to the WMT 2025 Low-Resource Indic Language Translation shared task. We explore whether languages from related families can effectively support translation for low-resource languages that were absent or underrepresented during model training. Using a quantized multilingual pretrained foundation model, we examine zero-shot translation capabilities and cross-lingual transfer effects across three language families: Tibeto-Burman, Indo-Aryan, and Austroasiatic. Our findings demonstrate that multilingual models failed to leverage linguistic similarities, particularly evidenced within the Tibeto-Burman family. The study provides insights into the practical feasibility of zero-shot translation for low-resource language settings and the role of language family relationships in multilingual model performance.</abstract>
<identifier type="citekey">hb-ptaszynski-2025-rbg</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.100/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1233</start>
<end>1239</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RBG-AI: Benefits of Multilingual Language Models for Low-Resource Languages
%A Hb, Barathi Ganesh
%A Ptaszynski, Michal
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F hb-ptaszynski-2025-rbg
%X This paper investigates how multilingual language models benefit low-resource languages through our submission to the WMT 2025 Low-Resource Indic Language Translation shared task. We explore whether languages from related families can effectively support translation for low-resource languages that were absent or underrepresented during model training. Using a quantized multilingual pretrained foundation model, we examine zero-shot translation capabilities and cross-lingual transfer effects across three language families: Tibeto-Burman, Indo-Aryan, and Austroasiatic. Our findings demonstrate that multilingual models failed to leverage linguistic similarities, particularly evidenced within the Tibeto-Burman family. The study provides insights into the practical feasibility of zero-shot translation for low-resource language settings and the role of language family relationships in multilingual model performance.
%U https://aclanthology.org/2025.wmt-1.100/
%P 1233-1239
Markdown (Informal)
[RBG-AI: Benefits of Multilingual Language Models for Low-Resource Languages](https://aclanthology.org/2025.wmt-1.100/) (Hb & Ptaszynski, WMT 2025)
ACL