@inproceedings{zhou-etal-2025-transsionmts,
title = "{T}ranssion{MT}{'}s Submission to the {I}ndic {MT} Shared Task in {WMT} 2025",
author = "Zhou, Zebiao and
Li, Hui and
Zhu, Xiangxun and
Liu, Kangzhen",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.106/",
pages = "1271--1275",
ISBN = "979-8-89176-341-8",
abstract = "This study addresses the low-resource Indian lan- 002guage translation task (English Assamese, English Ma- 003nipuri) at WMT 2025, proposing a cross-iterative back- 004translation and data augmentation approach based on 005dual pre-trained models to enhance translation perfor- 006mance in low-resource scenarios. The research method- 007ology primarily encompasses four aspects: (1) Utilizing 008open-source pre-trained models IndicTrans2{\_}1B and 009NLLB{\_}3.3B, fine-tuning them on official bilingual data, 010followed by alternating back-translation and incremen- 011tal training to generate high-quality pseudo-parallel cor- 012pora and optimize model parameters through multiple 013iterations; (2) Employing the open-source semantic sim- 014ilarity model (all-mpnet-base-v2) to filter monolingual 015sentences with low semantic similarity to the test set 016from open-source corpora such as NLLB and BPCC, 017thereby improving the relevance of monolingual data 018to the task; (3) Cleaning the training data, including 019removing URL and HTML format content, eliminating 020untranslated sentences in back-translation, standardiz- 021ing symbol formats, and normalizing capitalization of 022the first letter; (4) During the model inference phase, 023combining the outputs generated by the fine-tuned In- 024dicTrans2{\_}1B and NLLB3.3B"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2025-transsionmts">
<titleInfo>
<title>TranssionMT’s Submission to the Indic MT Shared Task in WMT 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zebiao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangxun</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kangzhen</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>This study addresses the low-resource Indian lan- 002guage translation task (English Assamese, English Ma- 003nipuri) at WMT 2025, proposing a cross-iterative back- 004translation and data augmentation approach based on 005dual pre-trained models to enhance translation perfor- 006mance in low-resource scenarios. The research method- 007ology primarily encompasses four aspects: (1) Utilizing 008open-source pre-trained models IndicTrans2_1B and 009NLLB_3.3B, fine-tuning them on official bilingual data, 010followed by alternating back-translation and incremen- 011tal training to generate high-quality pseudo-parallel cor- 012pora and optimize model parameters through multiple 013iterations; (2) Employing the open-source semantic sim- 014ilarity model (all-mpnet-base-v2) to filter monolingual 015sentences with low semantic similarity to the test set 016from open-source corpora such as NLLB and BPCC, 017thereby improving the relevance of monolingual data 018to the task; (3) Cleaning the training data, including 019removing URL and HTML format content, eliminating 020untranslated sentences in back-translation, standardiz- 021ing symbol formats, and normalizing capitalization of 022the first letter; (4) During the model inference phase, 023combining the outputs generated by the fine-tuned In- 024dicTrans2_1B and NLLB3.3B</abstract>
<identifier type="citekey">zhou-etal-2025-transsionmts</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.106/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1271</start>
<end>1275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TranssionMT’s Submission to the Indic MT Shared Task in WMT 2025
%A Zhou, Zebiao
%A Li, Hui
%A Zhu, Xiangxun
%A Liu, Kangzhen
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F zhou-etal-2025-transsionmts
%X This study addresses the low-resource Indian lan- 002guage translation task (English Assamese, English Ma- 003nipuri) at WMT 2025, proposing a cross-iterative back- 004translation and data augmentation approach based on 005dual pre-trained models to enhance translation perfor- 006mance in low-resource scenarios. The research method- 007ology primarily encompasses four aspects: (1) Utilizing 008open-source pre-trained models IndicTrans2_1B and 009NLLB_3.3B, fine-tuning them on official bilingual data, 010followed by alternating back-translation and incremen- 011tal training to generate high-quality pseudo-parallel cor- 012pora and optimize model parameters through multiple 013iterations; (2) Employing the open-source semantic sim- 014ilarity model (all-mpnet-base-v2) to filter monolingual 015sentences with low semantic similarity to the test set 016from open-source corpora such as NLLB and BPCC, 017thereby improving the relevance of monolingual data 018to the task; (3) Cleaning the training data, including 019removing URL and HTML format content, eliminating 020untranslated sentences in back-translation, standardiz- 021ing symbol formats, and normalizing capitalization of 022the first letter; (4) During the model inference phase, 023combining the outputs generated by the fine-tuned In- 024dicTrans2_1B and NLLB3.3B
%U https://aclanthology.org/2025.wmt-1.106/
%P 1271-1275
Markdown (Informal)
[TranssionMT’s Submission to the Indic MT Shared Task in WMT 2025](https://aclanthology.org/2025.wmt-1.106/) (Zhou et al., WMT 2025)
ACL