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Abstract

This system paper describes the development
of a Neural Machine Translation system that
is adapted to the Information Technology (IT)
domain, and is able to translate specialized
IT-related terminologies. Despite the popu-
larity of incorporating terminology constraints
at training time to develop terminology-aware
Neural Machine Translation engines, one of
the main issues is: In the absence of termi-
nology references for training, and with the
proliferation of source-target alignments, how
does one select word alignments as pseudo-
terminology constraints? The system in this
work uses the encoder’s final hidden states as
proxies for terminologies, and selects word
alignments with the highest norm as pseudo-
terminology constraints for inline annotation
at run-time. It compares this context-based
approach against a conventional statistical ap-
proach, where terminology-constraints are se-
lected based on a low-frequency threshold. The
systems were evaluated for general translation
quality and Terminology Success Rates, with
results that validate the effectiveness of the con-
textual approach.

1 Introduction

This paper describes UW-BENMT’s submission'
to WMT2025 Terminology Translation Shared
Task (Semenov et al., 2025). The aim of this edition
of the shared task is to evaluate how well machine
translation systems can handle specialized terms in
specific domains where terminology accuracy and
consistency are critical. Although general machine
translation systems have improved significantly,
specialized terminology remains a challenge (Se-
menov et al., 2023; Alam et al., 2021), and this
task evaluates the effectiveness of integrating ter-
minology dictionaries into machine translation en-

'Repository for system development can be found

at https://github.com/Benjamin-Pong/Terminology-Neural-
Machine-Translation-IT-domain. git

gines in the Information Technology (IT) domain.
This is a highly practical task as machine transla-
tion engines that have been adapted to this domain
can potentially assist in the international commu-
nication of technical APIs, manuals and DevOp
guides across IT teams that operate in multilingual
environments. This task involves segment-level
terminology translation for three language pairs:
English — {German, Spanish, Russian}. The pro-
vided data consists of 500 parallel sentences per
language pairs, with reference terminology dictio-
naries.

2 Related Work

There are two major approaches to terminology
translation, with the first being lexical constrained
decoding where the target terminologies entries are
forced to match the source side lexical terms as
decoding-time constraints (Chatterjee et al., 2017).
However, one major shortcoming of this strategy
is the computational overload as the number of
terminology constraints increase. To address this
issue, Dinu et al. (2019) pioneered a methodol-
ogy to train neural machine translations engines to
recognize terminology constraints. The focus of
their approach is to annotate the data with source-
target terms inline as soft constraints (i.e., a form
of data augmentation). The success of this ap-
proach is reflected in popularity of system sub-
missions that adopted it at the WMT2021 and
WMT2023 Terminology Translation Shared Tasks
(Ailem et al., 2021; Nieminen, 2023; Bogoychev
and Chen, 2023; Park et al., 2023). Different alter-
natives to implementing this approach have been
proposed, such as masking out the source-side
terms (Ailem et al., 2021; Liu et al., 2023), which
have been argued to surpass simple inline term an-
notations.

As pointed out by Bogoychev and Chen (2023),
one of the main challenges of terminology transla-
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tion is that terminology dictionaries are not readily
available for training, and their proposal differs
from Dinu et al. (2019) in that they devised a way
to automatically create terminology constraints for
existing training corpora. The development of
pseudo-terminology constraints is a challenge in it-
self because it is difficult to select word alignments
that are most representative of ‘technical terminolo-
gies’. While Dinu et al. (2019) and Bogoychev
and Chen (2023) used randomly selected terms,
other systems construed domain-specific terms as
low frequency lexical items (Semenov et al., 2023;
Park et al., 2023), a common approach that is prac-
ticed in works beyond the shared task (Koehn and
Knowles, 2017; Yuan et al., 2018; Bowker, 2021).

The main contribution of this system paper is to
shed light on the context-driven approach to select-
ing pseudo-terminology constraints for IT-adapted
NMT training, and present this as an alternative to
the frequency-based approach. It focuses on im-
proving the psuedo-terminology creation process
in the absence of training terminology dictionar-
ies by comparing two methods; frequency-based,
context-based.

Words in corpora
® proper terms

Probability (log scale)
5

10° 10t 102 10° 104 10° 108
Word Rank (1 = most probable)

Figure 1: Rank-frequency plot showing the
frequency distribution of proper terms against
all words in a corpora

3 Selection of Pseudo-terminology
Constraints

3.1 Proxies for Terminology Selection:
Frequency vs Context

There are two main reasons why frequency may not
be the best proxy for terminology selection. The

first reason is motivated by the statistical frequen-
cies of proper terms against the tokens in publicly
available corpora. Consider the Rank-Frequency
Distribution in Figure 1, where the frequencies
of the provided data’s English terminologies were
compared against the frequencies of all English to-
kens from the Europarl and WikiMatrix data®. The
frequencies were rescaled to a value between 0 to
1. Based on the Rank-Frequency distribution of ter-
minologies, terminologies lie in mid-rank, contrary
to conventional assumptions that terminologies are
low-frequencies.

The second reason lies in the fact that lexical
terms selected as proper terms are not treated as
proper terms in all contexts. A vast majority of the
proper terms in the development set are also treated
as random terms and do not have any domain-
specific meanings. Consider the way ’create’, a
mid-ranked frequency word based on the rank-
frequency distribution, is used in following sen-
tences taken from the provided data: (1) With the
Story Builder, you can create stories to visualize
information with charts and table and (2) Activate
or Create your Data Provider Profile.

"Create” is treated as a specialized IT-
terminology in the first sentence, but not in the
second sentence. This ambiguity is difficult to re-
solve but one could speculate that "create" in the
first instance is used in the context of a software
application assisting with the creation, which ren-
ders it a specialized IT-terminology. Since it is
challenging to define deterministic semantic rules
for domain-specific terminologies, and neither does
a frequency-based approach suffice since ’create’
is not exactly a low-frequency word, an approach
that is agnostic to these two conditions should be
explored.

3.2 Terminology Constraint Filtering by
Norm of Top Most Hidden States

Inspired by Wu et al. (2024) and Schakel and Wil-
son (2015) who established a theoretical and em-
pirical connection between important-words and
context for general machine translation, this pa-
per adapts their methodology to terminology-aware
machine translation. More specifically, the method-
ology is applied at the pseudo-terminology con-
straints creation stage of the end-to-end NMT
pipeline, where source-target alignments are fil-
tered based on how "important" they are in seman-

There are a total of 4 million unique English words in
both of these corpora.
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Language Pair  Dataset Sentences  Out-domain Out-domain
Training For CED filtering
en-es WikiMatrix 6,452,177 30,000 8,303,595
Europarl 1,881,418
Total 8,333,595
en-de WikiMatrix 6,227,188 30,000 8,025,709
Europarl 1,828,521
Total 8,055,709
en-ru WikiMatrix 5,203,872 30,000 10, 551, 783
ParaCrawl v9 5,377,911
Total 10,581,783

Table 1: This table shows the dataset sources and statistics for each language pair. It also shows the amount of data
that was used for CED filtering, from which approximately 2.2 million samples were selected for training purposes.

tic meaning. The norm of the encoder’s final hidden
states represents contextually important informa-
tion within lexical items (Wu et al., 2024).

While the importance of context in resolving
ambiguities in machine translation (Maruf et al.,
2019; Post and Junczys-Dowmunt, 2024) is not en-
tirely new, its effects on terminology translation
has yet to be explored, which is the focus of this
system paper. Given a set of source-target align-
ments for a sentence-pair, and given that the norm
of the encoder’s final hidden states is computed
for each source word, the word-alignment pair(s)
whose source-word has the highest norm will be
chosen as a pseudo-terminology constraint for aug-
mentation.

4 Neural Machine Translation Training

4.1 Training Data: IT-domain Parallel Data
Selection using Cross-Entropy Difference

Due to data sparsity in the IT-domain, it is neces-
sary to procure sufficient quality data for system
developments. To do so, Cross Entropy Difference
(CED) (Moore and Lewis, 2010) was applied to
select IT-specific data from a larger corpus of out-
of-domain or general domain content.

For CED to be effective, the assumption is
that there is already some available in-domain
data. Inspired by Moslem et al. (2023), LLM
was used to generate synthetic monolingual
(English) in-domain parallel data using the gold
terminologies provided by the organizers. The
data provided contains 500 parallel sentences
per language pair, and each sentence-pair comes
with a set of terminology mappings. Using
only the source-side terminologies as inputs
into Aya-expanse-8b (Dang et al., 2024) with
temperature=0 and top-p sampling of 1, synthetic

monolingual data was generated with the following
prompt: Please use the terms ’{terms}’ to
generate {number_of_sents} full sentences
in {source_language}-{target_language}
whose content is related to information
technology.

Note that eventhough parallel data was gener-
ated, for the purposes of the task at hand, the En-
glish source sentences were used for subsequent
indomain and outdomain language modeling. A
total of 30K IT-related synthetic sentences were
generated and treated as in-domain data. The aver-
age sentence length is 50-75 tokens.

Table 1 shows the sets of publicly-available par-
allel corpora that were considered for each lan-
guage pair. These serve as the general-domain
content. For each set of corpora, 30K English
sentences were randomly sampled to train an out-
domain 4-gram language model (with Laplace
Smoothing). To ensure that the in-domain and out-
domain models are comparable, apart from con-
trolling for the size of training data, the sentences
selected for out-domain model training also had an
average of 50-75 tokens.

The remaining sentences were scored accord-
ing to the cross-entropy difference between the
in-domain and out-domain language models, and
ranked in non-increasing order since lower en-
tropy signifies a closer match to the in-domain
data®. Throughout this process, several prepro-
cessing strategies were applied to reduce noise in
the publicly available data. FastText (Joulin et al.,
2016) with a threshold of 0.9 was used to remove
sentence-pairs where either the source or target
sentence was not the desired language. Sentence-

Discussion of CED is beyond the scope of this paper. 1
encourage the reader to refer to Moore and Lewis (2010) for
details.
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pairs that contained only punctuations and numbers
were also removed. The top 20% was chosen as
in-domain training data, and the bottom 20% as out-
domain data, which amounts to 2.2 million parallel
sentences per language pair. Additional checks
were performed to ensure that parallel sentences
chosen for training did not overlap with the pro-
vided data so that the provided data can be held-out
for evaluation.

The overall effectiveness of CED for data selec-
tion was validated on downstream general transla-
tion quality, and hence the main approach to data
selection for subsequent experiments for terminol-
ogy translation. See Section 6 for details.

4.2 Experiments

The baseline uses the training data as they are, with-
out any lexical constraints being augmented inline
at training time. Since the chief focus of this paper
is to compare the effects of using (low)frequency
and encoder-based contextual scoring for pseudo-
terminology selection, two more experimental con-
figurations were designed. The first being training
data where only low frequency words were selected
as pseudo-terminologies for augmentation (i.e Fre-
qTerm). The second configuration consists of data
where only words with the highest norm computed
from the final layer of the encoder’s hidden states
(i.e ContexTerm). For these two configurations
where lexical constraints are augmented inline, sim-
ilar to Dinu et al. (2019), only 10% of the training
data is augmented, amounting to around 200K ran-
domly selected sentence-pairs. The special token
<src> was used to mark the start of the source word
and <rgr> was used to mark the start of the corre-
sponding target word.

The first part of creating the pseudo-terminology
involved extracting word alignments between the
source and target languages by using a state-of-
the-art neural word aligner, Awesome Align (Dou
and Neubig, 2021). Alignments between stop-
words were removed. Given that awesome align
does not account for multi-word alignment, fur-
ther lightweight processing was applied to merge
consecutive source words that were mapped to the
same target word to produce multiword source-
target word alignments.

To address the proliferation of word-alignments,
the next step is to implement the frequency and con-
textual approaches for selecting word-alignments
to be used as pseudo-terminology constraints.

The former was straightforwardly implemented

by first computing a frequency distribution (normal-
ized to values between 0 and 1) for the source-side
words using the source-side’s training data. Only
source-target aligned pairs whose source words’
probabilities were at most 1075, were selected.
This low-frequency threshold is not arbitrary but in-
stead, motivated by the aforementioned frequency
distribution of terminologies (See Section 3.1 and
Figure 1). For a multiword source word, if a sub-
word met the threshold, the entire multiword source
word was chosen as a suitable candidate for term
annotation. Furthermore, since each sentence may
have multiple candidate word-aligned pairs that
meet this threshold, randomly chosen aligned word-
pairs were chosen for augmentation per sentence.
Note that the number of word aligned pairs chosen
for augmentation can be adjusted by the engineer.

As for the context-scoring configuration, a pre-
trained encoder-decoder NMT model (Ng et al.,
2019) was used to extract the final layer’s hidden
representation per token. Only the source-side (En-
glish) needs to be encoded for all language pairs.
For each multiword source word, max-pooling is
applied to compute a unified final hidden repre-
sentation, followed by a computation of the norm
of this hidden representation. These words were
ranked in non-increasing order, with the source
word with the highest norm being selected, and
consequently, its corresponding source-target align-
ment, was selected as a terminology constraint.

To ensure a fair comparison between FreqTerm
and ContexTerm, two factors were considered; first,
the number of terminology constraints selected per
sentence for augmentation, and the number of sen-
tences that contain the constraints. The latter was
standardized across both experiments by choosing
only 10% of the data to be augmented. The for-
mer was enforced by enforcing identical thresholds
on hyperparameter k; k-randomly selected low fre-
quency word(s) and the top-k highest norm(s).

The training data per language pair were tok-
enized using Moses (Koehn et al., 2007). Byte Pair
Encoding (BPE) for subword segmentations (Sen-
nrich et al., 2016) were independently applied to
both the source and target languages with 32000
merge operations. 500,000 sentences from the train-
ing data were selected to generate BPE codes.

4.3 Model Architecture

All systems were Transformer-based networks,
trained (Vaswani et al., 2023) using fairseq (Ott
et al., 2019). Training configurations were specif-
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ically optimized for each language pair. See Ap-
pendix A for the hyperparameters. En-es and en-ru
were trained for minimum of 35 epochs and a maxi-
mum of 50 epochs with early stopping, while en-de
was trained for a minimum of 50 epochs and a
maximum of 100 epochs with early stopping. Uni-
formly across all models, the last 7 checkpoints
were averaged and used for decoding, with a beam
size of 5.

5 Evaluation

Systems were evaluated on the provided data,
which was not used for training purposes, and have
been verified to not overlap with the selected train-
ing data. Although examples were taken from the
data to illustrate the point in Section 3.1, note that
the approach in this paper does not rely on defined
patterns or rules from the data, resulting in minimal
risk of evaluation bias. Furthermore, the provided
data is the only source of gold references for qual-
ity evaluation. With these careful considerations,
the provided data was safely treated as held-out test
data.

5.1 Evaluation Metrics

The translations provided by the trained models
were scored against the gold references using
BLEU (Papineni et al., 2002), Chrff++ (Popovi¢,
2017) and COMET-DA (Rei et al., 2020) to assess
general translation quality. Terminology Success
Rate (TSR) (Semenov et al., 2023) was also used
to assess the degree of occurrences of the term
translations, with and without lemmatization to ac-
count for morphological complexities across the
different languages, and also fuzzysearch with a
threshold of 90% to account for orthographic devi-
ations. Another reason for selecting this mode of
evaluation instead of exact matching (Alam et al.,
2021) is to capture adequate term translations, and
also to consider the effect of syntactic contexts on
the morphological shape of the terms.

5.2 Modes of Evaluation

The NMT systems were evaluated under three
modes of incorporating terminology constraints at
inference time, with the first mode being no termi-
nologies (i.e., no term) where the source sentence
is freely translated into the target language. The
second mode requires the proper terminologies to
be incorporated, and the third mode incorporates
random source-target word alignments.

Results from NMT engines are compared be-
tween these three modes. The purpose of incor-
porating random source-target word alignments is
to ensure that any improvements over the no term
setting brought about by incorporating proper ter-
minologies are not by-products of superior general
translation quality (Semenov et al., 2023).

6 Results

Table 2 shows the results of all three systems (base-
line, freqTerm and ContexTerm) for all language
pairs across the three terminology modes. Table 3
shows the validation results for CED-selected data
without any terminology incorporation for training
or inference.

6.1 Translation quality

From the results in Table 2, the highest scores for
translation quality metrics tend to skew toward the
ContexTerm system, with the exception of en-es
language pair, where FreqTerm achieved the high-
est BLEU and ChrF++ scores. Notably, none of
the baselines achieved the highest scores.

With regards to how the terminology modes af-
fect overall translation quality, based on the results,
the highest scores tend to skew towards systems
with proper terminology settings. However, there
are several exceptions. For instance, the no term
setting for ContexTerm has the highest BLEU score
for en-es. In a similar vein, among the baseline sys-
tems, incorporating random terms or proper terms
at inference time tends to result in a drop in trans-
lation quality.

6.2 Terminology Success Rate

The incorporation of soft constraints at training
time increased the Terminology Success Rate
(TSR) by a huge margin compared to the base-
lines. This is demonstrated by the fact that for
all language pairs, the proper terminology setting
achieved the highest TSR compared to the random
and no term. The latter two settings tend to perform
comparably low. This pattern is observed for both
FreqTerm and ContexTerm, regardless of whether
lemmatization was employed. These results are
expected and aligns with the findings of previous
works mentioned in Section 2.

Crucially, using proper terminology setting as
a basis for comparison between FreqTerm system
and ContexTerm system, the latter has the highest
TSR.
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Language  System Modes BLEU ChrF++ COMET TSR TSR

en — es
Baseline No Term 27.79 56.60 0.731 0.219 0.233
Random 18.18 47.93 0.474 0.189 0.198
Proper  22.35 50.78 0.482 0421 0423
FreqTerm  No Term 27.42 55.79 0.732 0.222  0.232
Random  26.08 55.20 0.720 0.227 0.238
Proper 29.83 57.94 0.713 0.512 0.525
ContexTerm No Term 27.62 56.13 0.700 0.233 0.250
Random  26.08 56.22 0.726 0.229 0.240
Proper  27.75 57.84 0.734 0.663  0.678
en — ru
Baseline No Term 21.02 54.53 0.830 0.251 0.329
Random 19.98 52.51 0.812 0.232 0.309
Proper 20.37 53.28 0.810 0.237 0.326
FreqTerm  No Term 23.46 53.20 0.807 0.248 0.327
Random 22.98 53.56 0.810 0.249 0.337
Proper 22.63 53.91 0.811 0.489 0.571
ContexTerm No Term 24.39 53.34 0.814 0.248 0.327
Random 22.66 53.93 0.812 0.248 0.325
Proper 23.22 55.34 0.820 0.574 0.654
en — de

Baseline No Term 1391 41.96 0.656 0.151 0.142
Random 13.21 40.0 0.41 0.150 0.141
Proper 14.09 42.00 0.661 0.151 0.147

FreqTerm  No Term 13.62 41.48 0.665 0.153  0.147
Random  13.00 42.67 0.653 0.154  0.145
Proper 13.56 44.05 0.672 0.654  0.645

ContexTerm No Term 13.10 41.04 0.66 0.152 0.150
Random 14.43 45.23 0.670 0.177 0.171
Proper 14.62 45.98 0.641 0.774 0.755

Table 2: Evaluation of systems by language direction, augmentation approaches and terminology modes across
BLEU, ChrF++, COMET and Terminology Success Rates(TSR). TSR refers to non-lemmatized setting while
TSR* refers to lemmatized setting. Best performing systems and with their corresponding terminology settings are
bolded.

Language Domain BLEU ChrF++ COMET TSR™ TSR™

en — es
in 27.79 56.60 0.731 0.219 0.233
out 24.92 52.464 0.767 0.200 0.212
en — ru
in 21.02 54.53 0.830 0.251 0.329
out 20.69 53.57 0.826 0.248 0.317
en — de
in 13.91 41.96 0.656 0.151 0.142
out 15.50 45.68 0.69 0.172 0.194

Table 3: This table shows the evaluation of "IT-domain’ CED-selected data vs out-domain data without terminology
constraints incorporated for training or inference.
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With respect to the effect of lemmatization, TSR
tends to be better with lemmatization for en-es and
en-ru. Such improvements are consistent across
all terminology modes as well, and across both
systems. However, the degree of improvement is
language-dependent. For instance, in the context
of en-ru (proper), the lemmatized setting surpassed
the non-lemmatized setting by at least 0.1 points.
This is in stark contrast with en-es (proper) where
the lemmatized setting only surpassed the non-
lemmatized setting by 0.02 points. Interestingly,
for en-de, we observe an opposite effect, where the
non-lemmatized setting surpasses the lemmatized
setting by a small margin. This is consistent across
both systems, and across terminology modes. See
Section 7 for possible explanations and implica-
tions of evaluating the adequacy of terminology
translation with or without lemmatization.

6.3 Data Selection by Cross-Entropy
Difference

Table 3 shows that CED-selected data scored higher
in general domain translation tasks. In addition,
even without terminology incorporation, using in-
domain data achieved relatively higher TSR. How-
ever, German is an exception, which will be dis-
cussed in Section 7.

7 Discussion

7.1 Contextual Selection of Terminology
Constraints

The comparisons between FreqTerm and Con-
texTerm clearly show the effectiveness of using
contextually-based scoring to distill quality word-
alignments to be used as terminology constraints
or inline term annotations. ContexTerm surpasses
FreqTerm by 0.08-0.15 points. This suggests that
terminologies are construed in terms of the way
they are being used in an utterance (i.e the ’cre-
ate’ example from Section 3), and not completely
dependent on frequencies.

7.2 Effect of Contextually-selected
Terminology Constraints on Translation
Quality

The use of contextually-selected constraints seem
to have a trickle-down effect on translation quality
as well. As noted previously, systems with termi-
nology constraints at training time tend to have
higher translation quality. While this is expected
(Dinu et al., 2019), the fact that BLEU , ChrF++

and COMET scores tend to be higher in Contex-
Term compared to FreqTerm across all terminol-
ogy modes suggest that these translation engines
are learning domain-specific lexical alignments,
which reduces variability, and thereby improving
the translation outputs.

7.3 Terminology Success Rate:
Lemmatization

The asymmetrical results between en-es and en-ru
against en-de with regards to lemmatization could
be attributed to the morphological properties of
the languages. German, compared to Spanish has
been argued to have more complex inflectional
paradigms, and that simplifying them improves
word alignment (Axelrod et al., 2008). This sug-
gests that lemmatization should correlate with im-
proved scores, but this is not the case. Perhaps the
lemmatization oversimplified certain lexical items,
resulting in noise. This is an interesting case and
should be left for future work through error analy-
sis.

7.4 Data Selection by Cross-Entropy
Difference

The fact that CED-selected data showed marginally
higher general translation and TSR for en-es and
en-ru may indeed suggest that this is an effective
approach to source quality parallel data for a less
resourced domain. Furthermore, the higher TSR
scores suggest that training on data closer to the
actual domain can boost terminologies, without the
incorporation of constraints at train time. However,
the converse results for en-de, although disappoint-
ing, may be due to actual noise in the data. This
investigation will be left for future work.

8 Conclusion

This paper addresses a challenge in terminology
translation engines that incorporate term annota-
tions at run-time: with the proliferation of source-
target word alignments, how does one select the op-
timal subset of alignments as pseudo-terminology
constraints? Results from this work show that the
encoder’s hidden representations serve as useful
estimations of terminology constraints. It also high-
lights the robustness of a main-stay data selection
approach in the absence of curated I'T-related paral-
lel data.
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9 Limitations

However, there are some limitations, which open
avenues for future work.

The approach to ContexTerm relies on pretrained
models to extract the encoders’ final hidden states
from the source language (or target language).
While this makes practical use of existing models,
it assumes that such a model exists but this may
not be so, especially when there are low resource
languages that are under-served.

The current system also does not consider post-
processing by lexical constrained decoding. Its in-
teraction with ContexTerm might result in overall
translation quality and Terminology Success Rates.

The general translation quality is still not up to
par with state-of-the-art neural machine translation
engines, and this could be due to severe domain
mismatches. As mentioned previously, carefully
curated IT-related parallel data is under-resourced.
Although CED was used to select domain-specific
data from a large pool of domain-agnostic data, this
approach may not actually capture actual human-
curated IT-related data. This is especially true for
German, whose general translation quality falls
below 20.

More IT-related parallel data is needed and it
would be interesting to see how the contextual ap-
proach would fair against NMT systems that have
been trained on quality IT-related data.
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Hyperparameters en-de en-es en-ru

Encoder Embedding Size 512 512 512
Decoder Embedding Size 512 512 512
Encoder FFN Embedding Size 2048 2048 2048
Decoder FFN Embedding Size 2048 2048 2048
Encoder Layers 6 2 6
Decoder Layers 6 2 6
Encoder Attention Heads 16 16 16
Decoder Attention Heads 16 16 16
Learning Rate 3e-4 Se-4 3e-4

Ir scheduler Inverse Sqrt Inverse Sqrt Inverse Sqrt
Optimizer Adam Adam Adam
Max Tokens 10000 10000 10000
Attention Dropout 0.0 0.0 0.0
Dropout 0.2 0.3 0.3
Criterion Label-Smoothed CE  Label-Smoothed CE  Label-Smoothed CE
Warmup Steps 8000 6000 8000
Warmup init Ir le-8 le-8 le-8
Clip Norm 1.0 1.0 1.0
Label Smoothing 0.1 0.1 0.1
Max source-target positions 4096 4096 4096

Table 4: Language-pair-specific hyperparameters that were used for NMT training
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