@inproceedings{jaswal-2025-takes,
title = "It Takes Two: A Dual Stage Approach for Terminology-Aware Translation",
author = "Jaswal, Akshat",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.112/",
pages = "1344--1350",
ISBN = "979-8-89176-341-8",
abstract = "This paper introduces DuTerm, a novel two-stage architecture for terminology-constrained machine translation. Our system combines a terminology-aware NMT model, adapted via fine-tuning on large-scale synthetic data, with a prompt-based LLM for post-editing. The LLM stage refines NMT output and enforces terminology adherence. We evaluate DuTerm on English-to German, English-to-Spanish, and English-to-Russian for the WMT 2025 Terminology Shared Task. We demonstrate that flexible, context-driven terminology handling by the LLM consistently yields higher quality translations than strict constraint enforcement. Our results highlight a critical trade-off, revealing that an LLM{'}s intrinsic knowledge often provides a stronger basis for high-quality translation than rigid, externally imposed constraints."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jaswal-2025-takes">
<titleInfo>
<title>It Takes Two: A Dual Stage Approach for Terminology-Aware Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akshat</namePart>
<namePart type="family">Jaswal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>This paper introduces DuTerm, a novel two-stage architecture for terminology-constrained machine translation. Our system combines a terminology-aware NMT model, adapted via fine-tuning on large-scale synthetic data, with a prompt-based LLM for post-editing. The LLM stage refines NMT output and enforces terminology adherence. We evaluate DuTerm on English-to German, English-to-Spanish, and English-to-Russian for the WMT 2025 Terminology Shared Task. We demonstrate that flexible, context-driven terminology handling by the LLM consistently yields higher quality translations than strict constraint enforcement. Our results highlight a critical trade-off, revealing that an LLM’s intrinsic knowledge often provides a stronger basis for high-quality translation than rigid, externally imposed constraints.</abstract>
<identifier type="citekey">jaswal-2025-takes</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.112/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1344</start>
<end>1350</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T It Takes Two: A Dual Stage Approach for Terminology-Aware Translation
%A Jaswal, Akshat
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F jaswal-2025-takes
%X This paper introduces DuTerm, a novel two-stage architecture for terminology-constrained machine translation. Our system combines a terminology-aware NMT model, adapted via fine-tuning on large-scale synthetic data, with a prompt-based LLM for post-editing. The LLM stage refines NMT output and enforces terminology adherence. We evaluate DuTerm on English-to German, English-to-Spanish, and English-to-Russian for the WMT 2025 Terminology Shared Task. We demonstrate that flexible, context-driven terminology handling by the LLM consistently yields higher quality translations than strict constraint enforcement. Our results highlight a critical trade-off, revealing that an LLM’s intrinsic knowledge often provides a stronger basis for high-quality translation than rigid, externally imposed constraints.
%U https://aclanthology.org/2025.wmt-1.112/
%P 1344-1350
Markdown (Informal)
[It Takes Two: A Dual Stage Approach for Terminology-Aware Translation](https://aclanthology.org/2025.wmt-1.112/) (Jaswal, WMT 2025)
ACL