@inproceedings{obrien-etal-2025-dochplt,
title = "{D}oc{HPLT}: A Massively Multilingual Document-Level Translation Dataset",
author = {O{'}Brien, Dayy{\'a}n and
Malik, Bhavitvya and
de Gibert, Ona and
Chen, Pinzhen and
Haddow, Barry and
Tiedemann, J{\"o}rg},
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.17/",
pages = "286--300",
ISBN = "979-8-89176-341-8",
abstract = "Existing document-level machine translation resources are only available for a handful of languages, mostly high-resourced ones. To facilitate the training and evaluation of document-level translation and, more broadly, long-context modeling for global communities, we create DocHPLT, the largest publicly available document-level translation dataset to date. It contains 124 million aligned document pairs across 50 languages paired with English, comprising 4.26 billion sentences. By adding pivoted alignments, practitioners can obtain 2500 additional pairs not involving English. Unlike previous reconstruction-based approaches that piece together documents from sentence-level data, we modify an existing web extraction pipeline to preserve complete document integrity from the source, retaining all content, including unaligned portions. After our preliminary experiments identify the optimal training context strategy for document-level translation, we demonstrate that LLMs fine-tuned on DocHPLT substantially outperform off-the-shelf instruction-tuned baselines, with particularly dramatic improvements for under-resourced languages. We open-source the dataset under a permissive license, providing essential infrastructure for advancing multilingual document-level translation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="obrien-etal-2025-dochplt">
<titleInfo>
<title>DocHPLT: A Massively Multilingual Document-Level Translation Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dayyán</namePart>
<namePart type="family">O’Brien</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhavitvya</namePart>
<namePart type="family">Malik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ona</namePart>
<namePart type="family">de Gibert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pinzhen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>Existing document-level machine translation resources are only available for a handful of languages, mostly high-resourced ones. To facilitate the training and evaluation of document-level translation and, more broadly, long-context modeling for global communities, we create DocHPLT, the largest publicly available document-level translation dataset to date. It contains 124 million aligned document pairs across 50 languages paired with English, comprising 4.26 billion sentences. By adding pivoted alignments, practitioners can obtain 2500 additional pairs not involving English. Unlike previous reconstruction-based approaches that piece together documents from sentence-level data, we modify an existing web extraction pipeline to preserve complete document integrity from the source, retaining all content, including unaligned portions. After our preliminary experiments identify the optimal training context strategy for document-level translation, we demonstrate that LLMs fine-tuned on DocHPLT substantially outperform off-the-shelf instruction-tuned baselines, with particularly dramatic improvements for under-resourced languages. We open-source the dataset under a permissive license, providing essential infrastructure for advancing multilingual document-level translation.</abstract>
<identifier type="citekey">obrien-etal-2025-dochplt</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.17/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>286</start>
<end>300</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DocHPLT: A Massively Multilingual Document-Level Translation Dataset
%A O’Brien, Dayyán
%A Malik, Bhavitvya
%A de Gibert, Ona
%A Chen, Pinzhen
%A Haddow, Barry
%A Tiedemann, Jörg
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F obrien-etal-2025-dochplt
%X Existing document-level machine translation resources are only available for a handful of languages, mostly high-resourced ones. To facilitate the training and evaluation of document-level translation and, more broadly, long-context modeling for global communities, we create DocHPLT, the largest publicly available document-level translation dataset to date. It contains 124 million aligned document pairs across 50 languages paired with English, comprising 4.26 billion sentences. By adding pivoted alignments, practitioners can obtain 2500 additional pairs not involving English. Unlike previous reconstruction-based approaches that piece together documents from sentence-level data, we modify an existing web extraction pipeline to preserve complete document integrity from the source, retaining all content, including unaligned portions. After our preliminary experiments identify the optimal training context strategy for document-level translation, we demonstrate that LLMs fine-tuned on DocHPLT substantially outperform off-the-shelf instruction-tuned baselines, with particularly dramatic improvements for under-resourced languages. We open-source the dataset under a permissive license, providing essential infrastructure for advancing multilingual document-level translation.
%U https://aclanthology.org/2025.wmt-1.17/
%P 286-300
Markdown (Informal)
[DocHPLT: A Massively Multilingual Document-Level Translation Dataset](https://aclanthology.org/2025.wmt-1.17/) (O’Brien et al., WMT 2025)
ACL