@inproceedings{grozea-verbitsky-2025-evaluation,
title = "Evaluation of {QWEN}-3 for {E}nglish to {U}krainian Translation",
author = "Grozea, Cristian and
Verbitsky, Oleg",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.34/",
pages = "594--598",
ISBN = "979-8-89176-341-8",
abstract = "We report the results of evaluating Qwen3 for the English-to-Ukrainian language pair of the general MT task of WMT 2025.In addition to the quantitative evaluation, we performed a qualitative evaluation, in collaboration with a native Ukrainian speaker - therefore we present an example-heavy analysis of the typical failures the LLMs still do when translating natural language, particularly into Ukrainian.We report also on the practicalities of using LLMs, such as on the difficulties of making them follow instructions, on ways to exploit the increased ``smartness'' of the reasoning models while simultaneously avoiding the reasoning part improperly interfering with the chain in which the LLM is just one element."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grozea-verbitsky-2025-evaluation">
<titleInfo>
<title>Evaluation of QWEN-3 for English to Ukrainian Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cristian</namePart>
<namePart type="family">Grozea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Verbitsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>We report the results of evaluating Qwen3 for the English-to-Ukrainian language pair of the general MT task of WMT 2025.In addition to the quantitative evaluation, we performed a qualitative evaluation, in collaboration with a native Ukrainian speaker - therefore we present an example-heavy analysis of the typical failures the LLMs still do when translating natural language, particularly into Ukrainian.We report also on the practicalities of using LLMs, such as on the difficulties of making them follow instructions, on ways to exploit the increased “smartness” of the reasoning models while simultaneously avoiding the reasoning part improperly interfering with the chain in which the LLM is just one element.</abstract>
<identifier type="citekey">grozea-verbitsky-2025-evaluation</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.34/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>594</start>
<end>598</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of QWEN-3 for English to Ukrainian Translation
%A Grozea, Cristian
%A Verbitsky, Oleg
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F grozea-verbitsky-2025-evaluation
%X We report the results of evaluating Qwen3 for the English-to-Ukrainian language pair of the general MT task of WMT 2025.In addition to the quantitative evaluation, we performed a qualitative evaluation, in collaboration with a native Ukrainian speaker - therefore we present an example-heavy analysis of the typical failures the LLMs still do when translating natural language, particularly into Ukrainian.We report also on the practicalities of using LLMs, such as on the difficulties of making them follow instructions, on ways to exploit the increased “smartness” of the reasoning models while simultaneously avoiding the reasoning part improperly interfering with the chain in which the LLM is just one element.
%U https://aclanthology.org/2025.wmt-1.34/
%P 594-598
Markdown (Informal)
[Evaluation of QWEN-3 for English to Ukrainian Translation](https://aclanthology.org/2025.wmt-1.34/) (Grozea & Verbitsky, WMT 2025)
ACL