@inproceedings{zheng-etal-2025-shy,
title = "Shy-hunyuan-{MT} at {WMT}25 General Machine Translation Shared Task",
author = "Zheng, Mao and
Li, Zheng and
Du, Yang and
Qu, Bingxin and
Song, Mingyang",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.36/",
pages = "607--613",
ISBN = "979-8-89176-341-8",
abstract = "In this paper, we present our submission to the WMT25 shared task on machine translation, for which we propose Synergy-enhanced policy optimization framework, named \textit{Shy}. This novel two-phase training framework synergistically combines knowledge distillation and fusion via reinforcement learning.In the first phase, we introduce a multi-stage training framework that harnesses the complementary strengths of multiple state-of-the-art large language models to generate diverse, high-quality translation candidates. These candidates serve as pseudo-references to guide the supervised fine-tuning of our model, Hunyuan-7B, effectively distilling the collective knowledge of multiple expert systems into a single efficient model.In the second phase, we further refine the distilled model through Group Relative Policy Optimization, a reinforcement learning technique that employs a composite reward function. By calculating reward from multiple perspectives, our model ensures better alignment with human preferences and evaluation metrics.Extensive experiments across multiple language pairs demonstrate that our model Shy-hunyuan-MT yields substantial improvements in translation quality compared to baseline approaches. Notably, our framework achieves competitive performance comparable to that of state-of-the-art systems while maintaining computational efficiency through knowledge distillation and strategic ensemble."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2025-shy">
<titleInfo>
<title>Shy-hunyuan-MT at WMT25 General Machine Translation Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mao</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingxin</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingyang</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>In this paper, we present our submission to the WMT25 shared task on machine translation, for which we propose Synergy-enhanced policy optimization framework, named Shy. This novel two-phase training framework synergistically combines knowledge distillation and fusion via reinforcement learning.In the first phase, we introduce a multi-stage training framework that harnesses the complementary strengths of multiple state-of-the-art large language models to generate diverse, high-quality translation candidates. These candidates serve as pseudo-references to guide the supervised fine-tuning of our model, Hunyuan-7B, effectively distilling the collective knowledge of multiple expert systems into a single efficient model.In the second phase, we further refine the distilled model through Group Relative Policy Optimization, a reinforcement learning technique that employs a composite reward function. By calculating reward from multiple perspectives, our model ensures better alignment with human preferences and evaluation metrics.Extensive experiments across multiple language pairs demonstrate that our model Shy-hunyuan-MT yields substantial improvements in translation quality compared to baseline approaches. Notably, our framework achieves competitive performance comparable to that of state-of-the-art systems while maintaining computational efficiency through knowledge distillation and strategic ensemble.</abstract>
<identifier type="citekey">zheng-etal-2025-shy</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.36/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>607</start>
<end>613</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Shy-hunyuan-MT at WMT25 General Machine Translation Shared Task
%A Zheng, Mao
%A Li, Zheng
%A Du, Yang
%A Qu, Bingxin
%A Song, Mingyang
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F zheng-etal-2025-shy
%X In this paper, we present our submission to the WMT25 shared task on machine translation, for which we propose Synergy-enhanced policy optimization framework, named Shy. This novel two-phase training framework synergistically combines knowledge distillation and fusion via reinforcement learning.In the first phase, we introduce a multi-stage training framework that harnesses the complementary strengths of multiple state-of-the-art large language models to generate diverse, high-quality translation candidates. These candidates serve as pseudo-references to guide the supervised fine-tuning of our model, Hunyuan-7B, effectively distilling the collective knowledge of multiple expert systems into a single efficient model.In the second phase, we further refine the distilled model through Group Relative Policy Optimization, a reinforcement learning technique that employs a composite reward function. By calculating reward from multiple perspectives, our model ensures better alignment with human preferences and evaluation metrics.Extensive experiments across multiple language pairs demonstrate that our model Shy-hunyuan-MT yields substantial improvements in translation quality compared to baseline approaches. Notably, our framework achieves competitive performance comparable to that of state-of-the-art systems while maintaining computational efficiency through knowledge distillation and strategic ensemble.
%U https://aclanthology.org/2025.wmt-1.36/
%P 607-613
Markdown (Informal)
[Shy-hunyuan-MT at WMT25 General Machine Translation Shared Task](https://aclanthology.org/2025.wmt-1.36/) (Zheng et al., WMT 2025)
ACL