SH at WMT?25 General Machine Translation Task

Hayate Shiroma
University of the Ryukyus
€225719_@_cs.u-ryukyu.ac. jp

Abstract

We participated in the unconstrained track
of the English-to-Japanese translation task at
the WMT 2025 General Machine Translation
Task. Our submission leverages several large
language models, all of which are trained
with supervised fine-tuning, and some further
optimized via preference learning. To en-
hance translation quality, we introduce an au-
tomatic post-editing model and perform auto-
matic post-editing. In addition, we select the
best translation from multiple candidates us-
ing Minimum Bayes Risk (MBR) decoding.
For MBR decoding, we use COMET-22 and
LaBSE-based cosine similarity as evaluation
metrics.

1 Introduction

In this paper, we describe the system submitted by
Team SH to WMT2025.

We participated in the unconstrained track of
the General Machine Translation Task for English-
to-Japanese (En-Ja) translation.

Our submission leverages several large lan-
guage models (LLMs) trained with supervised
fine-tuning, and some further optimized via pref-
erence learning.

To enhance translation quality, we introduce an
automatic post-editing model that performs auto-
matic post-editing.

Additionally, we select the best translation from
multiple candidates using Minimum Bayes Risk
(MBR) decoding (Fernandes et al., 2022).

For MBR decoding, we use COMET-22 (Rei
et al.,, 2022) and LaBSE-based cosine similar-
ity (Feng et al., 2022) as evaluation metrics.

Our system is designed to translate text on a
sentence-by-sentence basis, with each sentence
separated by newlines.

Our system is based on two hypotheses. First,
we hypothesize that preference learning con-
tributes to improving translation quality, as it can

consider both positive and negative examples, en-
couraging the model to generate better transla-
tions. Second, we hypothesize that the combina-
tion of automatic post-editing and MBR decod-
ing contributes to improving translation quality.
While automatic post-editing can sometimes de-
grade translations, using MBR decoding allows us
to select the best translation from multiple candi-
dates, thereby mitigating the risk of degradation
and improving overall translation quality.

2 System Overview

Our system consists of three components: an ini-
tial translation model (Section 3), an automatic
post-editing model (Section 4), and a reranking
step (Section 5). The overall architecture of the
system is shown in Figure 1.

The initial translation model produces a transla-
tion given the source text as input. The automatic
post-editing model takes both the source text and
the initial translation as input and generates an im-
proved translation, thereby enhancing the output
of the initial translation model.

The initial translation model is trained us-
ing supervised fine-tuning (SFT) and preference
learning, while the automatic post-editing model
is trained using SFT. We denote the model
trained with only SFT as INITgpr and the model
trained with both SFT and preference learning as
INITsimpo. Their corresponding automatic post-
editing models are denoted as PEDITgpr and
PEDITgimpo, respectively.

During inference, we generate multiple trans-
lations from these models and select the best
translation using MBR decoding. Specifi-
cally, we construct a candidate set from four
pipelines: INITgpr alone, INITg;,po alone,
PEDITgprT applied to the output of INITgpT,
and PEDITg,po applied to the output of
INITsimpo-
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Figure 1: Overall architecture of the system

3 Initial Translation Model
3.1 Datasets

We used the following datasets for supervised fine-
tuning: News Commentary (Kocmi et al., 2023),
the Kyoto Free Translation Corpus (KFTT) (Neu-
big, 2011), TED Talks (Barrault et al., 2020), and
past WMT General Machine Translation Task test
data (WMT20, WMT21, WMT22, WMT23).

For preference learning, we used the same
datasets as for supervised fine-tuning, but refor-
matted them to meet the requirements.

Preference learning requires a triplet consist-
ing of source text, preferred translation, and
non-preferred translation. However, the original
datasets contain only the source text and the refer-
ence translation.

Therefore, we translated the source text us-
ing SFT model and used the output as the non-
preferred translation.

3.2 Model Selection

We employed the cyberagent/DeepSeek-R1-
Distill-Qwen-14B-Japanese (Ishigami, 2025) as a
pre-trained model.

This model was further trained on Japanese
data based on deepseek-ai/DeepSeek-R1-Distill-
Qwen-14B (DeepSeek-Al et al., 2025).

The reason for selecting this model is that it
has been trained on large amounts of Japanese and
Chinese data in addition to English, making it suit-
able for the English-to-Japanese translation task.
Moreover, it is one of the most recent Japanese
LLM:s.

3.3 Training Procedure

The training procedure of the initial translation
model is shown in Figure 2.

Supervised Fine-Tuning First, We performed
supervised fine-tuning using QLoRA (Dettmers
et al., 2023).

QLoRA is an efficient fine-tuning method
that combines the low-rank adaptation technique

Quantization Settings

Load in 4-bit True
Quantization Datatype 4-bit NormalFloat
Double Quantization True

Compute Datatype float16

Table 1: Quantization Settings

LoRA Settings
Target Modules d_proj, v_proj
Rank / Alpha 4716
Dropout 0.05

Table 2: LoRA Settings

LoRA (Hu et al., 2022) with 4-bit quantization.

We used the BitsAndBytes library (Dettmers
et al., 2023) (Dettmers et al., 2022a) (Dettmers
et al.,, 2022b) for quantization and the PEFT
library (Mangrulkar et al., 2022) for applying
LoRA.

The training was executed using the Trainer
class from the Transformers library (Wolf et al.,
2020).

Table 1, Table 2, and Table3 show the specific
quantization settings, LoRA settings, and hyper-
parameters used in QLoRA, respectively. Table 4
shows the prompt used for the initial translation
model.

Preference Learning We conducted preference
learning using QLoRA after supervised fine-
tuning.

For preference learning, we adopted the
SimPO (Meng et al., 2024) method. SimPO is
a method that is efficient while suppressing re-
dundant sentence generation. We used the trl li-
brary (von Werra et al., 2020) for implementation.

The quantization settings, LoRA settings, and
prompts were the same as those used for super-
vised fine-tuning. Table 3 shows the hyperparam-
eters used for preference learning.

Hereafter, we refer to the model trained with
supervised fine-tuning only as INITspr and with
both supervised fine-tuning and preference learn-
ing as INITsimpo.

4 Automatic Post-Editing Model
4.1 Datasets

For training the automatic post-editing model, we
need a triplet consisting of the source text, pre-
ferred translation, and non-preferred translation,
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Figure 2: Left: Supervised fine-tuning step of the initial translation model; Right: Preference learning step of the

initial translation model.

similar to preference learning. We used the fol-
lowing two datasets:

The first dataset is the same dataset used for

Common Settings

preference learning of the initial translation model.

The second dataset is a dataset where the source
text and preferred translation are the same as in
the first dataset, but the non-preferred translation
is not the output of the SFT model, but rather the
output of the preference learning model.

4.2 Model Selection

We employed the same pre-trained model

Optimizer AdamW (51 = 0.9, 5, =
0.999,¢ = 1le — 08)

Gradient Clipping 1.0
Batch Size 1
Gradient Accumu- 64
lation
Epochs 1

Supervised Fine-Tuning Settings
Learning Rate 5e-05

SimPO Settings

Learning Rate 1e-06
Alpha 1.0
Beta 0.1
Gamma 0.5
Context Length 1024

as the initial translation model, which is
cyberagent/DeepSeek-R1-Distill-Qwen-14B-
Japanese.

4.3 Training Procedure

Table 3: Hyperparameter Settings

Translate this from English to Japanese:
English: {source}
Japanese:

Table 4: Prompt for Initial Translation Model

The training procedure of the automatic post-
editing model is shown in Figure 3.

We conducted supervised fine-tuning of the au-
tomatic post-editing model using QLoRA.

The automatic post-editing model was trained
separately on each of the two datasets described
above. The quantization settings, LoRA set-
tings, and hyperparameters used for QLoRA were
the same as those used for the initial translation
model. Table 5 shows the prompt used for the au-
tomatic post-editing model.

Hereafter, we refer to the model trained
with supervised fine-tuning on the first dataset
as PEDITspr and on the second dataset as
PEDITsimpo-
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Figure 3: Left: Supervised fine-tuning step of PEDITgpr; Right: Supervised fine-tuning step of PEDITg;,po

Please improve the following English-to-
Japanese translation:

English: {source}

Japanese: {pred}

Table 5: Prompt for Automatic Post-Editing Model

5 Reranking

5.1 Method

MBR decoding is a selection strategy that selects
the candidate with the maximum expected utility
from a candidate set.

This strategy takes the form of reranking in
practice and is formulated as follows:

Ic|
Ui = aurgmaxi Z u(ci, ¢j)
cieC |C| j=1

where ¢j; is the selected candidate, ¢; is a can-
didate in the candidate set C, and u(c;, ¢;) is the
utility function between candidates c; and c;.

In machine translation, reference-based evalua-
tion metrics (e.g., BLEU, COMET) are often used
as the utility function. That is, MBR decoding is
defined as a strategy that selects the candidate with
the highest average utility with respect to the other
candidates in the set.

5.2 Reranking Procedure

Candidate  Generation First, we  gen-
erated a candidate set. We used four
combinations of  models: INITspT,

INITSime, PEDITSFT(INITSFT), and
PEDITgimpo (INITsimpo)-

Here, PEDITgpr(INITgpr) refers to the out-
put of PEDITgrr when given the output of
INITgpr as input and PEDITgipo (INITsimpo)
refers to the output of PEDITg;,,po When given
the output of INITsin,po as input.

We generated two translations for each model
using two decoding strategies: Greedy decoding
and Temperature 0.9 + Top-p 0.6 + Top-k 50.

The Greedy decoding is a decoding strategy that
selects the most probable token at each step, while
the Temperature 0.9 + Top-p 0.6 + Top-k 50 is a
sampling-based decoding strategy that introduces
randomness in the selection of tokens.

Therefore, the number of candidates generated
foreach inputis 24242 x2+2x2 = 12 because
INITspr and INITsi,po each generate two trans-
lations, and PEDITspr and PEDITg;,po each
generate two translations for each of the outputs
of INITspr and INITg;mpo, respectively.

Reranking Next, we applied MBR decoding to
the generated candidate set. The utility function
used is a linear combination of the following:

0.8 x COMET-22 + 0.2 x LaBSE-cos

Where LaBSE-cos is the cosine similarity
based on LaBSE. The combination of these util-
ity functions is inspired by the winning sys-
tem in the WMT24 General Machine Translation
Task (Kondo et al., 2024).
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6 Experiment and Analysis

We used the WMT24++ (Deutsch et al., 2025) as
the evaluation dataset. We evaluated the system
using automatic metrics, specifically COMET-22
and BLEU (Papineni et al., 2002). We used sacre-
BLUE (Post, 2018) for BLEU calculation.

We evaluated zero-shot performance of
the base model as a baseline. In addition to
the submitted system, we compared the fol-
lowing four model configurations: INITgpr,
INITsimpo, PEDITgpr (INITspT), and
PEDITSimpo (INITSimpo ).

For baseline, INITspr and INITg;mpo, we
used the same prompt as the one used during
the training of the initial translation model. For
PEDITspr and PEDITSs;npo, we used the same
prompt as the one used during the training of the
automatic post-editing model.

Since the baseline outputs think tokens, we re-
moved the text enclosed in <think> tags using reg-
ular expressions during evaluation.

Except for the submitted system, we used the
default decoding strategy of the base model: Tem-
perature 0.6 and Top-p 0.95.

Table 6 shows the results of the automatic
evaluation. For BLEU, INITgpr achieved the
highest score, followed by the submitted system.
For COMET-22, however, the submitted system
scored the highest. In both metrics, the baseline
had the lowest score.

The baseline achieved a significantly lower
BLEU score, possibly because its outputs often
contained extraneous information in addition to
the translation (see Table 7). On the other hand, af-
ter SFT, cases where extraneous information other
than the translation was included in the output
were rarely observed. Therefore, the reason for
the improvement in score after SFT is thought
to be that the improvement in output consistency
worked favorably for automatic evaluation.

Also, when automatic post-editing was applied,
the BLEU score decreased, but the COMET-22
score improved. This may be because there was
only one reference sentence when calculating the
BLEU score this time, and the automatic post-
editing, which generates diverse expressions, led
to a decrease in the BLEU score. On the other
hand, since COMET-22 is tolerant of diverse ex-
pressions, it is thought that the COMET-22 score
improved when automatic post-editing was ap-
plied. In fact, when we checked some transla-

BLEU
Baseline 1.34
INITgpT 49.89
INITsimpo 48.11
PEDITgpr(INITgpr) 47.96
PEDITSimpo (INITsimpo) 46.61
Submitted System 49.45
COMET-22

Baseline 0.6696
INITgpT 0.8368
INITgimpo 0.8453
PEDITgpr (INITgpT) 0.8451
PEDITgimpo (INITsimpo) 0.8471
Submitted System 0.8761

Table 6: Results of Automatic Evaluation

tion examples, we found that there were few cases
where the quality significantly deteriorated when
automatic post-editing was applied.

The submitted system achieved a highest score
in COMET-22. This is thought to be due to MBR
decoding, which can suppress quality degradation
caused by automatic post-editing.

Based on these results, we confirm that super-
vised fine-tuning, preference learning, and the in-
troduction of the automatic post-editing model are
effective.

7 Conclusion

In this paper, we described the system submit-
ted by Team SH to the WMT2025 General Ma-
chine Translation Task. We developed the initial
translation model through supervised fine-tuning
and preference learning, and the automatic post-
editing model through supervised fine-tuning. We
generated multiple translations from these models
and selected the best translation using MBR de-
coding. The submitted system demonstrated supe-
rior performance compared to the baseline in both
automatic evaluation metrics, namely BLEU and
COMET-22.
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Input:

A final push for female equality
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Table 7: Example of baseline output containing extra-
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