@inproceedings{kim-2025-multi,
title = "Multi-agent{MT}: Deploying {AI} Agent in the {WMT}25 Shared Task",
author = "Kim, Ahrii",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Tenth Conference on Machine Translation",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.wmt-1.53/",
pages = "769--777",
ISBN = "979-8-89176-341-8",
abstract = "We present Multi-agentMT, our system for the WMT25 General Shared Task. The model adopts Prompt Chaining, a multi-agent workflow combined with Rubric-MQM, an automatic MQM-based error annotation metric. Our primary submission follows a Translate{--}Postedit{--}Proofread pipeline, in which error positions are explicitly marked and iteratively refined. Results suggest that a semi-autonomous agent scheme for machine translation is feasible with a smaller, earlier-generation model in low-resource settings, achieving comparable quality at roughly half the cost of larger systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-2025-multi">
<titleInfo>
<title>Multi-agentMT: Deploying AI Agent in the WMT25 Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahrii</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-341-8</identifier>
</relatedItem>
<abstract>We present Multi-agentMT, our system for the WMT25 General Shared Task. The model adopts Prompt Chaining, a multi-agent workflow combined with Rubric-MQM, an automatic MQM-based error annotation metric. Our primary submission follows a Translate–Postedit–Proofread pipeline, in which error positions are explicitly marked and iteratively refined. Results suggest that a semi-autonomous agent scheme for machine translation is feasible with a smaller, earlier-generation model in low-resource settings, achieving comparable quality at roughly half the cost of larger systems.</abstract>
<identifier type="citekey">kim-2025-multi</identifier>
<location>
<url>https://aclanthology.org/2025.wmt-1.53/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>769</start>
<end>777</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-agentMT: Deploying AI Agent in the WMT25 Shared Task
%A Kim, Ahrii
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Tenth Conference on Machine Translation
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-341-8
%F kim-2025-multi
%X We present Multi-agentMT, our system for the WMT25 General Shared Task. The model adopts Prompt Chaining, a multi-agent workflow combined with Rubric-MQM, an automatic MQM-based error annotation metric. Our primary submission follows a Translate–Postedit–Proofread pipeline, in which error positions are explicitly marked and iteratively refined. Results suggest that a semi-autonomous agent scheme for machine translation is feasible with a smaller, earlier-generation model in low-resource settings, achieving comparable quality at roughly half the cost of larger systems.
%U https://aclanthology.org/2025.wmt-1.53/
%P 769-777
Markdown (Informal)
[Multi-agentMT: Deploying AI Agent in the WMT25 Shared Task](https://aclanthology.org/2025.wmt-1.53/) (Kim, WMT 2025)
ACL